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Since the norm square value of a sequence of orthogonal polynomials is in general minimal 
[2,9], the coefficients )}({ 12

0
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 n
jjkk w  in )(xPn  can be computed by solving the following 

linear system 
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in which 
b

a

j
j dxxwxw )(*  denote the moments of order j and )(* xw  is the weight function 

over ],[ ba . To solve the linear system (2), clearly 1n   separate determinants must be 
calculated. 
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On the other hand, according to Favard’s theorem [1,9], if 
0)}({ nn xP  is defined by a three-

term recurrence relation of the form 
 
                           ,...)2,1,0()()()()( 11   nxPCxPBxPAxPx nnnnnnn  ,                     (3) 
 
where 1 0( ) 0 , ( ) 1 , , , realn n nP x P x A B C   and 01 nnCA  for n , then there exists a 
weight function, say )(x , such that 
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It is clear that relations (3) and (4) are also valid for the symmetric case 0,1  nn BA , 

*
nn CC   and ],[),(   provided that 0*

1  nC . In this case, we encounter with 
monic symmetric orthogonal polynomials satisfying the equation  
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and also   
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n
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Hence, there is an even weight function, say )(xw , such that the solution of the symmetric 
recurrence equation (5) satisfies the following orthogonality relation 
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Relations (5) and (6) form the basis of the algorithm proposed in this paper. In other words, 
instead of explicitly computing )}({ 12

0



n

jjk w  in the linear system (2), we establish a 

symmetric three-term recurrence relation of type (5) for )(xPn  and then compute its norm 
square value by relation (6).  
 
First of all, we should note since the weight function corresponding to recurrence relation (5) 
and orthogonality relation (6) is even, we automatically have 
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This result helps to reduce the volume of calculations in (2) as much as possible, because 
substituting (7) in (2) yields  
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The key point here is that solving the above linear system will eventually lead to either 

0)}({ 12
02 


n

jjk w  or 0)}({ 12
012 


n

jjk w , because if we expand the recurrence relation (5), 

then the general shape of )(xPn  will finally be 
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kn xnxP  where 1)(0  n  and 

0)(  nk  for ]2/[nk  . Hence, we deal with two different cases. In the first case, if 
mn 2 , then (8) is transformed to  
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Now, by collapsing the matrix form of the linear system (9), it can be reduced to the following 
matrix representation 
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For instance, set 2m  in (9) to get 
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Therefore we have 0 0 2 2 4w w w     and 2 0 4 2 6w w w    , which is the same as (10) for 
2m .  
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Similar considerations can be done for 12  mn . One can verify that the matrix 
representation of the case 12  mn

 

does directly depend on the previous case mn 2 , 
because when 12  mn , (8) takes the form     
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which is simplified as 
 

                                 














































































m

m

m

m
jjm

m
jj

m
jj

mmm

mmm

m

m

w

w
w

w

w
w

www
www

www
www

4

42

22

2
0212

2
023

2
021

24222

44222

2264

242

)}({

)}({
)}({















.                (12) 

 
By comparing (10) and (12) we observe that just jw2  in (10) has been substituted by 22 jw  in 
(12). Hence, solving these two linear systems finally results in  
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For instance, if 5...,,2,1n  then the related polynomials respectively take the forms 
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Now, the question is: How to find the sequence *

nC  in the symmetric recurrence relation (5) 
when the moments 0}{ jjw  are known.  
To answer this question, we first refer to the coefficient matrix of system (2) and define the 
Hankel determinant 
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Using the orthogonality relation (1) and taking a weighted inner product from both sides of the 
recurrence equation (5) we get 
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This gives us the final form of the recurrence relation (5) as 
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After computing the explicit values *
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The next question is: How to convert a general three-term recurrence relation of type (3) to 
the symmetric type (5) (or conversely).  
This question was first answered by Chihara [1] as follows: Since the solution of recurrence 
equation (5) is a symmetric polynomial, we can first assume that  
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Combining these two latter relations in (20) one gets 
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1 12 2

2 2 1 2 1 2 2

( ) ( ) ( ) ,m m m m m m
m m m

m m m m

Q x x Q x Q x   
 

  

      
        

          (22) 

where 0*
0

*
1  CC . 

Since now the recurrence relations of )(xQn  and )(xRn  have been determined in (21) and 
(22), one can determine their orthogonality relations with related weight functions. For this 
purpose, we reconsider (6) in the form 
 

                                  mn

n

i
i

n
mn dxxwCdxxPxPxw ,

1

* )()1()()()( 















 



.                         (23) 

 
By noting that )(xw  is an even function, substituting nn 2  and mm 2 , (23) changes to 
 

            
.)()()()(

)()()(2)()()()()()(

,

2

1

*

0

0

2222
22

2

mn

n

i
imn

mnmnmn

dxxwCdttQtQ
t
tw

dxxQxQxwdxxQxQxwdxxPxPxw


































     (24) 

 
This means that ttwt /)()(1  , which is equivalent to )()( 2

1 xxxw  , is the weight 

function corresponding to the orthogonal polynomials )(xQn  on ],0[ 2 .  
Similarly, if 12  nn  and 12  mm  in (23) then  
 

.)()()()(

)()()(2)()()()()()(

,

12

1

*

0

0

222222
1212

2

mn

n

i
imn

mnmnmn

dxxwCdttRtRtwt

dxxRxRxwxdxxRxRxwxdxxPxPxw









































     (25) 
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Therefore, )()(2 twtt  , which is equivalent to xxxw /)()( 2
2 , is the weight function 

corresponding to the orthogonal polynomials )(xRn  on ],0[ 2 .  
We can now summarize our approach for generating the sequence of orthogonal polynomials 
whose moments with respect to the given weight function are given as follows:    
 
Step 1. Suppose that a weight function )(x  (not necessarily even) is given on ],0[ 2  and 
note that by a simple linear change of variable all arbitrary closed intervals can be transformed 
to ],0[ 2 . 
 
Step 2. Instead of considering )(x  on ],0[ 2

 

consider one of the two following even weight 
functions on ],[  , which we call the dual weight functions corresponding to )(x : 
 

                                                    











 ./)()()(

,)()(
221

1

2
1

xxxxxw

xxxw




                                       (26) 

 
Step 3. Obtain the explicit values of the even moments related to (for example) )(1 xw  as   
 

            

  



2

00

21222
1

2
2 )()(2)()(








 dtttdxxxdxxxxdxxwxw jjjj

j ,                 

 
and substitute them in (13) to explicitly compute the Hankel determinant.  
 
Step 4. Substitute the obtained Hankel determinant in (15) to reach the recurrence relation of 
type (4). 
 
Step 5. Obtain the explicit form of the orthogonal polynomials by (17) using the obtained 
recurrence relation.  
                                            
Step 6. Obtain the orthogonality relation corresponding to (6).      
                                        
Step 7. Follow the explained symmetrization process for the orthogonality relation obtained in 
step 5 by using the two orthogonality relations (24) and (25) and obtain the explicit forms of 
the polynomials )(xQn  and )(xRn  using (18) and (17) as follows 
 

                   



]2/[

0
)2()(

n

k

kn
kn xnxQ       and        




]2/[

0
)12()(

n

k

kn
kn xnxR .                     

                                                                                                                                                
2. Illustrative Examples 
 
In this section we focus on three step-by-step examples to clarify the above-mentioned 
method. 
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Example 1. Suppose that the non-symmetric weight function )exp()( xx   is given on 
),0[  . Here, one of its dual weight functions is )exp()(1 xxxw   on ),(   and the 

moments corresponding to it can be explicitly computed as  
 

         )!12(2)exp(2)exp(and0
0

122
212  

 

 jdxxxdxxxxww jj
jj .        

   

                  

 
By substituting the above values in (13), the Hankel determinant for 2n m  and 2 1n m   
respectively take the forms 
 

                               

2 1
2

1! 0 0 (2 1)!
0 3! (2 1)! 0

( ) 2 ,
0 (2 1)! (4 1)! 0

(2 1)! 0 0 (4 3)!

m
m

m
m

A m
m m

m m






  
 

 




    



            

and 

                             

2 2
2 1

1! 0 (2 1)! 0
0 3! 0 (2 3)!

( ) 2 .
(2 1)! 0 (4 1)! 0

0 (2 3)! 0 (4 3)!

m
m

m
m

B m
m m

m m







  
 

 




    



                         

According to (14) we have 

                                                           

*
2 2

*
2 1 2

( ) ( 1) ,
( 1)

( ) ( 1) .
( )

m

m

A m A mC
B m

B m B mC
A m

   
   


                                                                 

 

After computing the coefficients     * *

1 1
exp( )

nn

j jj j
C C x x

 
   for this example, we 

encounter with a symmetric recurrence relation as 
 
                                            *

1 1( ) ( ) exp( ) ( )n n n nP x x P x C x x P x    ,                                 
 
satisfying the orthogonality relation 
 

         *
,

1

exp( ) ( ) ( ) ( 1) exp( ) exp( ) .
n

n
n m j n m

j
x x P x P x dx C x x x x dx 

 

 

 
     

 
       (27) 

 
At this stage, step 7 should be employed by changing nn 2  and mm 2  in (27) to get 
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 

2 2
2 2

0 0

2
*

,
1

exp( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

2 exp( ) .

x t
n m n m n m

n

i n m
i

x x P x P x dx xe Q x Q x dx e Q t Q t dt

C x x 

  
 





  

 
  

 

  


    

 
The sequence )(xQn  is the monic polynomial solution, which is orthogonal with respect to the 

initial weight function )exp()( xx   on ),0[   satisfying the non-symmetric recurrence 
equation  
 

                              
    

    .)()exp()exp(

)()exp()exp()(

1
*

12
*
2

*
2

*
121

xQxxCxxC

xQxxCxxCxxQ

mmm

mmmm








                   

 
Example 2. Suppose that the non-symmetric weight function cba xxcbax )1(),,;(   is 
given for ,a c  and 0b  on ]1,0[ . For 1b  it reduces to the well-known shifted Jacobi 
weight function [1,3]. According to (26), one of the dual weight functions corresponding to 

),,;( cbax  is the symmetric measure cba xxcbaxw )1(),,;( 212
1 

  on ]1,1[ . Therefore, the 
moments of ),,;(1 cbaxw  must be respectively computed as 012 jw  and  
 

                                 

1 12 12 2 2 2 1 2
2 1 0

1 11

0

(1 ) 2 (1 )

1 1 1(1 ) ( ; 1) ,

aj b c j a b c
j

j a
cb

w x x x dx x x dx

j at t dt c
b b b

  



 


   

 
   

 

 B
                        (28)

   

                  

 
in which 1 2( , ) B  denotes the Beta integral [7] having various definitions as 
 

                      

1
1 2 1 2

1 2

1 2

1 1 1
1 1 2 1 12

1 2
0 1 0

/2
(2 1) (2 1) 1 2

2 1
1 20

( ; ) (1 ) (1 )
(1 )

( ) ( )2 sin cos ( ; ) ,
( )

xx x dx x x dx dx
x

x x dx


   

 


 

 

 
 

 

 
   




 

    


 
  

 

  



B

B
              

and   

                                                 1

0

( ) Re( ) 0z xz x e dx z


    ,                                    

 
is the well-known Gamma function satisfying the fundamental recurrence relation 

)()1( zzz  .  
By substituting (28) in the Hankel determinant, a symmetric recurrence relation of type (15) 
will be derived for the desired polynomials that satisfy the orthogonality relation
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 

 

1 1
2 1 2 1 2 12 * 2 2

,
11 1

2 1* 2
,

1

(1 ) ( ; , , ) ( ; , , ) ( 1) (1 ) (1 )

1 1( 1) ( ; 1) (1 ) .

n
a a ab c n b c b c

n m j n m
j

n
an b c

j n m
j

x x P x a b c P x a b c dx C x x x x dx

a c C x x
b b





  

 





 
     

 
 

    
 

 

B

                                                                                                                                                 (29) 
At this stage, step 7 should be again employed by changing nn 2  and mm 2  in (29) to 
get 

 

1 1
2 1 2 2 1 2 2 2

2 2
1 0

1 2
2 1* 2

,
10

(1 ) ( ; , , ) ( ; , , ) 2 (1 ) ( ; , , ) ( ; , , )

1 1(1 ) ( ; , , ) ( ; , , ) ( ; 1) (1 ) .

a b c a b c
n m n m

n
aa b c b c

n m j n m
j

x x P x a b c P x a b c dx x x Q x a b c Q x a b c dx

at t Q t a b c Q t a b c dt c C x x
b b



 







  

 
     

 

 

 B

                                                                                                                                                  
Remark 1. It may be interesting to remark that for 1b  in (29), the subject is explicitly 
known, because according to [5] the generalized ultraspherical polynomials orthogonal with 
respect to the weight function ba xxbaxw )1(),1,2/1;( 22

1   on ]1,1[  are in fact a particular 
case of a main class of symmetric orthogonal polynomials [5] defined by 
 

                  
 

  





































 ]2/[

0

2
)1(]2/[

0
1

1

2)1(2
]2/[2)1(2]2/[n

k

kn
kn

i
n

n

n x
sqi

rpni
k

n
x

qp
sr

S ,        (30)  

  
for )2,222,1,1(),,,( abasrqp  , that satisfy a recurrence relation of symmetric type 
(5) as 

               1 1 0 1( ) ( ) ( ) ; ( ) 1 , ( ) ,n n n n

r s
S x x S x C S x S x S x x n

p q 

 
     

 
 ,             

where 
           

                 
)32)(2(

2/))1(1()2()1()2(2

prpnprpn
sprnpsqprnpq

qp
sr

C
nn

n 










,             

and 

                  
  




















 








x
qp
sr

S
rpni

sqix
qp
sr

SxS n

n

i
n

n

nn

1]2/[

0
1

1

]2/[2)1(2
2)1(2)(  .          

 
Moreover, the weight function corresponding to symmetric polynomials (30) is defined by 
[5,6]:  

                                                  )
)(

)2(exp( 2

2

dx
qpxx

sxprx
qp
sr

W  










.                              

Consequently we have 
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,)1(
1,1

2,222
)1(

1,1
2,222

1,1
2,222

)1(

,

1

1

22

1

1

1

22

mn
ba

n

i
i

n

mn
ba

dxxx
aba

C

dxx
aba

Sx
aba

Sxx





















































       

in which  

        
,

)1222)(1222(
)2))1(1()())1(1((

)1222)(1222(
))1(1)((2)))1(1(22(

1,1
2,222 2

*






















banban
banan

banban
baanabnaba

CC

nn

nn

nn

   

and  

                                    
)2/3(

)1()2/1()1,
2
1()1(

1

1

22





 ba

babaBdxxx ba  .                 

 
In general, there are four classes of symmetric orthogonal polynomials that can be derived 
from the main sequence (30). Two of them are infinitely orthogonal (namely the generalized 
ultraspherical polynomials and generalized Hermite polynomials [4,5]) and two other ones, 
which are less known [5,6], are finitely orthogonal as the following table shows. 
  

Table 1: Four particular classes of );,,,( xsrqpSn  
 
            Definition                           Weight function                                  Interval and Kind 
 












x

aba
Sn 1,1

2,222
      ba xxx

aba
W )1(

1,1
2,222 22 











     ]1,1[ , Infinite 









x

a
Sn 1,0

2,2
                      )exp(

1,0
2,2 22 xxx

a
W a 








               ),(  , Infinite 








 
x

aba
Sn 1,1

2,222
   b

a

x
xx

aba
W

)1(1,1
2,222

2

2










  

     ),(  , Finite 








 
x

a
Sn 0,1

2,22
                )/1exp(

0,1
2,22 22 xxx

a
W a 







          ),(  , Finite 

 
Example 3. Let the non-symmetric weight function )exp(),;( ba xxbax   be given for 

0b  and 0a  on ),0[  . For 1b , it reduces to the well-known Laguerre weight function 

[3]. However, by considering )exp(),;( 212
1

ba xxbaxw 
  on ),(   as one of the dual 

weight functions corresponding to ),;( bax , the moments of ),;(1 baxw  are computed 
respectively as 012 jw  and  
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2 12 2 2 2 1 2
2 0

1 1

0

exp( ) 2 exp( )

1 1 1exp( ) ( ).

aj b j a b
j

j a
b

w x x x dx x x dx

j at t dt
b b b

   



 


   

 
   

 


              

   

                  

 
By substituting the above values in the Hankel determinant, eventually a symmetric relation of 
type (15) will be derived for the desired polynomials satisfying 
 

                                

 

2 1 2

2 1 2 1* 2 2
,

1

2 1* 2
,

1

exp( ) ( ; , ) ( ; , )

( 1) exp( ) exp( )

1 1( 1) ( ) exp( ) .

a b
n m

n
a an b b

j n m
j

n
an b

j n m
j

x x P x a b P x a b dx

C x x x x dx

a C x x
b b





 



 










 
    
 

 
    
 



 



 

                                                                                                                                                 (31) 
Again, step 7 should be here employed by changing nn 2  and mm 2  in (31) to get 
 

  
 

2 1 2 2 1 2 2 2
2 2 0

2
2 1* 2

,0
1

exp( ) ( ; , ) ( ; , ) 2 exp( ) ( ; , ) ( ; , )

1 1exp( ) ( ; , ) ( ; , ) ( ) exp( ) .

a b a b
n m n m

n
aa b b

n m j n m
j

x x P x a b P x a b dx x x Q x a b Q x a b dx

at t Q t a b Q t a b dt C x x
b b



  



 



  

 
     

 

 


             

 
Remark 2. Similarly to the previous remark, note that for the case 1b , the subject is 
explicitly known, because it generates the generalized Hermite polynomials which are 
orthogonal with respect to the weight function )exp()1,2/1;( 22

1 xxaxw a   on ),(  , 
and are a particular case of the main orthogonal polynomials (30) for 

)2,2,1,0(),,,( asrqp  . In other words, we have 
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







































 ,    

in which  

                                          an
a

CC
n

nn 2
)1(1

2
1

10
22* 









 .                                    
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