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1. Introduction. Let P, (x) = x" +Zikxk be a sequence of monic polynomials orthogonal
k=0

with respect to the weight function w”(x) on [a,b], i.e.

2

(PP =] WMBMXP,®dx=(P,.P) . 5. =P

1)

2

0 (n#m),
{1 (h=m).

Since the norm square value of a sequence of orthogonal polynomials is in general minimal
[2,9], the coefficients 2, = A, ({w;}}%") in P,(x) can be computed by solving the following
linear system

R R R C{T e W,
2n-1
W, W, - W, j'1 ({Wj }jZO __ Wi (2)
2n-1
Wog Wy oo Wy, j‘n—l ({W i } ,:o Wan_1

in which w; = be"w*(x) dx denote the moments of order j and w’(x) is the weight function

over [a,b]. To solve the linear system (2), clearly n+1 separate determinants must be
calculated.



On the other hand, according to Favard’s theorem [1,9], if {P,(x)}._, is defined by a three-
term recurrence relation of the form

XP,(X)= A, P, () +B,P,(0)+C,P ()  (1=012..) 3

where P,(x)=0,R,(x)=1, A,B,,C, realand AC, , >0 for neN, then there exists a
weight function, say p(x), such that

fp(x)Pn (x) P, (x) dx =[]n_[% j p(X) dxj&hm. (4)

i=0

It is clear that relations (3) and (4) are also valid for the symmetric case A, =1, B, =0,

C,=-C’ and (—w0,00) —[-a,a] provided that —C~, >0. In this case, we encounter with
monic symmetric orthogonal polynomials satisfying the equation

_ _ . _ {§00=1,EU)=K
Pn+1(X) =X IDn (X) +Cn Pn—l (X) Wlth * (5)
1 <0,neN,

and also
P,(=x)=(-1)"P,(x).

Hence, there is an even weight function, say w(x), such that the solution of the symmetric
recurrence equation (5) satisfies the following orthogonality relation

a

[ WP, (x) P, (0 dx = [(—1)“{”[0: J W dxj Son- (6)

-

Relations (5) and (6) form the basis of the algorithm proposed in this paper. In other words,
instead of explicitly computing A, ({wj}fﬂg1 in the linear system (2), we establish a

symmetric three-term recurrence relation of type (5) for P (x) and then compute its norm
square value by relation (6).

First of all, we should note since the weight function corresponding to recurrence relation (5)
and orthogonality relation (6) is even, we automatically have

Wy, = Jix””w(x) dx=0 forevery j=012,.... (7

This result helps to reduce the volume of calculations in (2) as much as possible, because
substituting (7) in (2) yields



W, 0 w
0w 0 2w, ¥ W,
2 W. Z_n—l W
WZ 0 W4 j’l({ :]}]=0 ) — r.1+1 (8)
0 w, O . '
) PG Sy 0

The key point here is that solving the above linear system will eventually lead to either
Ao W X5 =0 or A, (fw;}i%") =0, because if we expand the recurrence relation (5),
[n/2]

then the general shape of P, (x) will finally be P, (x)= > @, (n)x"* where ®,(n)=1 and
k=0

®,(n)=0 for k>[n/2]. Hence, we deal with two different cases. In the first case, if
n=2m, then (8) is transformed to

W, 0 0 T w ]
2m
0 w. W, .
w0 o || AW B 0
2 Ay Qwy By Wame2
0 W, W2 . = 0 ©))
W, 0 0 j*2 m-1 ({Wz i }fr:n(; ' W4m02
L Wor, Wym—2 | - -

Now, by collapsing the matrix form of the linear system (9), it can be reduced to the following

matrix representation

W, W, W, , | §
" ﬂ*o ({Wz j }ijo ' W,
WZ W4 W2m i ({W }mel W
. . 2 2.j j=0 2r.n+2 (10)
W2 —4 W2 -2 W4 -6 . 2m-1
i i i j‘Zm—Z ({WZj}j=mo Wim-2
_W2m—2 W2m W4m—4_
For instance, set m =2 in (9) to get
WoA, + WA, =—-W,,
w,A, +w,A, =0,
Zj"l 47%3 (11)
W,A, + W,A, =W,
W, A, +WgA; =0.

Since w, = f X*W(x) dx = Zjoaxzw(x) dx>0 and w, >0, (11) implies that A, =21, =0.

Therefore we have w4, +w,4, =-w, and w,4, +w,4, =-w,, which is the same as (10) for
m=2.



Similar considerations can be done for n=2m+1. One can verify that the matrix
representation of the case n=2m+1 does directly depend on the previous case n=2m,
because when n=2m+1, (8) takes the form

fw, 0 W,,, 0
0 w 0 w.
0 Ao (W, 1
WZ e W2m+2 ({W }Zm 0
0 0 AW dio) L,
W4 : 2m+4 |0
A, ({w, }"
0 W, .. 0 i w,,
Wy, 0wy, | | 0 |
which is simplified as
I WZ W4 W2 ] 2
" j*1 ({Wz i }jTO Wiz
W4 WG W2m+2 ﬂ. 2m
: : 3({W2j}i=0 —_ Worma (12)
W2m72 W2m ce W4m74 . 2 .
Aoma ({Wz j }jTO W,
W2m W2m+2 W4m72 n

By comparing (10) and (12) we observe that just w,; in (10) has been substituted by w,;,, in
(12). Hence, solving these two linear systems finally results in

m
5 2m-1), 2m-2k
P2m (X) = sz +22'2m—2k ({sz}jTO )X " )
k=1

m

— — —2k

I:)2m+1 (X) = X2m+l + z ,iZm—Zk ({W2j+2}?r=nOl)X2m+l ? .
k=1

For instance, if n=1,2,...,.5 then the related polynomials respectively take the forms

BOO=X B =3+ AWy} o) =X 2,

0

_ w
P (x) = x° +io({W2j+2}lj=o) x=x’ _W_4X’
2

W, -Ww, W, W,

_ W, —W -w, W W W, — W, W. W W, — W,

Px)=x'+2—2 x4l A=yt 00 4242, 62 4
W, W, W, W, W, W, — W2 W, W, — W
W, W, W, W,




Wz _We _We W4
_ w, -Ww. W, W W W, — W, W W,W, — W2
PX)=x+ 22—+ Cx=x" 82 634 84 By
W, W, W, W, W W, — W W, W, — W,
W, W, W, W,

Now, the question is: How to find the sequence C_ in the symmetric recurrence relation (5)
when the moments {w;},_, are known.

To answer this question, we first refer to the coefficient matrix of system (2) and define the
Hankel determinant

WO Wl .o Wn
W W. W
n 1 2 n+1
A, =det(w, ) o= . T (13)
Wn Wn+1 WZI’]

Using the orthogonality relation (1) and taking a weighted inner product from both sides of the
recurrence equation (5) we get

[© WP, 00 % dx = [ w()P, () X"dx+C; [ w(x)B,,(x)x" " dx.
Therefore

" W(x)P, (x) x"d PP
C::_ I*GW(X) n(X)X X _ <P”’P”>w - _ An/An—l :_AnAn—zl (14)

j jx w(x)P_ (x) x" ™ dx <|5n—1’ P Ai/A, Ar

This gives us the final form of the recurrence relation (5) as

P (x)=x|5n(x)—%lsnl(x) for P(x)=1,P(X)=x,A,=1 and n=12,... (15)

n+1
n-1

Relation (15) shows that to compute C; we only need to compute one Hankel determinant A
in which w,;,, =0 forany j=0,1...,n-1. For instance, if n=12,3,4 then

Cl = ——2 = -,
A0 WO
Y-V
’ A12 WZ WO ’
O o AAL W —ww, W,
’ Ag W4W0 W22 WZ ’



Cr o DaBy W —WoW, | WeW, — W, W,
4 2 2 2
A; WoW, =W, W,W, — W,

*

After computing the explicit values C_ , one can directly obtain the explicit form of the
symmetric monic polynomials P, (x) by solving the recurrence equation

P..(X)=xP (x)+C P _,(x) with (P,(x)=1s.t C,=0) and P,(x)=x. (16)

In detail, by knowing that the solution of equation (16) is monic and symmetric, we can

assume that
[n/2]

P.(x) =D @, (nm)x"*. (17)

This can be substituted in equation (16) to eventually reach the functional equation
®,(n+1)-®, (n)=C, @, (n-1),

where ®@,(n)=1and @, (n)=0 for k >[n/2]. The above equation can straightforwardly be
solved by induction [8] so that we finally have

n+1-2k n+3-2k n+5-2k

n-1
q)k(n): ZC; ZCL ZC; ZC:k

11=0 J2=h+2 jz=l2+2 J=lkat2

The next question is: How to convert a general three-term recurrence relation of type (3) to
the symmetric type (5) (or conversely).

This question was first answered by Chihara [1] as follows: Since the solution of recurrence
equation (5) is a symmetric polynomial, we can first assume that

P(x)=Q,(x*) and P, (x)=xR,(x*), (18)

inwhich Q. (x) and R_(x) are two monic polynomials of degree n.
On the other hand, in (15) we obtained the relation

B ()=XP,()+C. P_,(x) where C; =22

A—H and Cg =0. (19)

1
Therefore if n is respectively given as2m or 2m+1 in (19), respectively, by using (18) we get

(20)

{x R, (x?)=xQ, (x*)+C, xR__(x?) . {Qn (xX)=R_(X)-C,. R_(x),
6m+1 (Xz) = X2 ﬁm (X2)+ C;m+l Gm (Xz) X ﬁm—l (X) = 6m (X) - C;m—l 6m—1(x)'



Combining these two latter relations in (20) one gets
XRy 200 = (R (0= C Ry (0)=Coa (R 00 = C . R, (),
which is equivalent to
Iierl(X) = [X -

Similarly for Q_ (x) we get

ApmioBom  AoniaBona j R (X) _ BomaBons R_.(X) (21)
m m-1 '

2 2
A2m+l A2m 2m—2m-1

XQpy (%) = Qs () = Cis @y ()~ Ciy (Q, (0= Ci Qs (),
which is equivalent to

Q)= [x - Smitma _ Sanan j Qu)-Eom5 G L0, (22)

2 2
A2m A2m—l 2m-1—7"2m-2

where C”, =C; =0.
Since now the recurrence relations of Q,(x) and R (x) have been determined in (21) and

(22), one can determine their orthogonality relations with related weight functions. For this
purpose, we reconsider (6) in the form

a

[ WP, (x) P, (0 dx = [(—1)”f[c: W dxj Son- (23)

-

By noting that w(x) is an even function, substituting n—2n and m — 2m, (23) changes to

a

[ WOOP,, 00, (00 0 = [ W0 Q, ()@, (%) e = 2 W@, (X)), (x7)

—a —

:Of w(/t)

) 3 (24)
FQ,0Q, (dt = (Hcr [ wix) dxjén,m .

t

This means that p, (t) = w(v/t)/+/t, which is equivalent to w(x) =[x p,(x*), is the weight

function corresponding to the orthogonal polynomials Q, (x) on [0, a?].
Similarly, if n—2n+1and m — 2m+1 in (23) then

[ WOOP, L (0P, (0 0k = [ XWOOR, ()R, () ok = 2] X WO R, (X7) R, () dx

-0

? il o« (25)
= j JEWWHR, ()R (t)dt {—HC;‘ jw(x)dij’n'm.



Therefore, p, (t) = vt w(y't), which is equivalent to w(x) =p,(x?)/|x|, is the weight function

corresponding to the orthogonal polynomials R (x) on [0,a?].

We can now summarize our approach for generating the sequence of orthogonal polynomials
whose moments with respect to the given weight function are given as follows:

Step 1. Suppose that a weight function p(x) (not necessarily even) is given on [0,a*] and
note that by a simple linear change of variable all arbitrary closed intervals can be transformed
to [0,a?].

Step 2. Instead of considering p(x) on [0,a*] consider one of the two following even weight
functions on [—«, ], which we call the dual weight functions corresponding to p(X):

(26)

{wl(x) =[x p(x*),
W, (X) =[}” p(x*) = p(x*) [

Step 3. Obtain the explicit values of the even moments related to (for example) w, (x) as

wy; = [©xPhw () dx = [ XY p(x*) dx = 2 "X p(x*) dx = '[Oaztjp(t) dt,

and substitute them in (13) to explicitly compute the Hankel determinant.

Step 4. Substitute the obtained Hankel determinant in (15) to reach the recurrence relation of
type (4).

Step 5. Obtain the explicit form of the orthogonal polynomials by (17) using the obtained
recurrence relation.

Step 6. Obtain the orthogonality relation corresponding to (6).

Step 7. Follow the explained symmetrization process for the orthogonality relation obtained in
step 5 by using the two orthogonality relations (24) and (25) and obtain the explicit forms of

the polynomials Q, (x) and R, (X) using (18) and (17) as follows

_ [n/2] o [n/2]
Q. (x) =D @, (2n)x"*  and R,(X) =D @, (2n+1)x"*.
P o

2. Hlustrative Examples

In this section we focus on three step-by-step examples to clarify the above-mentioned
method.



Example 1. Suppose that the non-symmetric weight function p(x) = exp(—\/;) IS given on
[0,0) . Here, one of its dual weight functions is w,(x) =|x|exp(-|x|) on (—e,) and the
moments corresponding to it can be explicitly computed as

W,;,, =0 and w,, =.[i x?J|x| exp(-{x|) dx = Zj:x”*l exp(—x)dx =2(2j +1!.

By substituting the above values in (13), the Hankel determinant for n=2m and n=2m+1

respectively take the forms

1! 0 0 2m+1!
0 3! (2m+1)! 0
A(m)=A,, = 22 : : : : : ,
0 @2m+1n! ... (4m-1! 0
(2m+1)! 0 0 (4m+3)!
and
1! 0 2m+1)! 0
0 3! 0 (2m+3)!
B(m) = Appir = 2°m? : : :
2m+1! 0 (4m+1)! 0
0 2m+3)! ... 0 (4m+3)!

According to (14) we have
~ _ A(m)A(m-1)

e B*(m-1)
~ _ B(m)B(m-1)
2m+1l Az(m) '

After computing the coefficients {C}“}:ﬂ={C;{|x|exp(—|x|)}} for this example, we

n
=t

encounter with a symmetric recurrence relation as
B (x) = xP,()+C, { [X|exp(=|x)} By . (%),

satisfying the orthogonality relation

.[|x|exp(—|x|)|5n(x)I5m(x)dx=[(—1)”ﬁc;{ x|exp(—|x|)}j |x|exp(—|x|)dxj5n'm. (27)

At this stage, step 7 should be employed by changing n — 2n and m — 2m in (27) to get



T |X|exp(=|X]) P,y (X) Py, (X) dx = ZT xe ™ Q,(x*)Q, (x*)dx :T e Q. (t)Q, (t)dt
:2[ﬂcf{|x|exp(—|x|)}j5nm

The sequence Q,(x) is the monic polynomial solution, which is orthogonal with respect to the

initial weight function p(x) = exp(—\/;) on [0,0) satisfying the non-symmetric recurrence
equation

Quat () = (x+ C oy {| X exp ()} + Ci { X exp (X)) Qo ()
Com | [X[eXD(—]X)}C s { X eXD(—]X) }Qps (0).

Example 2. Suppose that the non-symmetric weight function p(x;a,b,c)=x*(1-x")¢ is
given for a,ceR and b >0 on [0,1]. For b=1 it reduces to the well-known shifted Jacobi
weight function [1,3]. According to (26), one of the dual weight functions corresponding to
p(x;a,b,c) is the symmetric measure w,(x;a,b,c) =|x|2a+1 (1—x*)¢ on [-11]. Therefore, the
moments of w, (x;a,b,c) must be respectively computed as w,;,, =0 and

sz _ .[jl x2 |X|2a+1 (1_ Xzb)c dx = 211X2j+2a+1(1_ X2b)c dx

j (28)
11 12y ) jra+l
=Ej0t b (1—t)°dt == B( 5 c+1),

in which B(4,,4,) denotes the Beta integral [7] having various definitions as

xHt

1 1 "
B(A:4)=[x*1(1=x)*tdx = [ x?4 11— x2)>Ldx =
(A3 4s) j 1-x) j 1-x?) !(1+xwz

:2”/2 i1 (24D @ y gy = LT (L) _ g
}[sm X COS X dx Tt B(4,;4),

and

I'(z)= j X e *dx Re(z) >0,
0

is the well-known Gamma function satisfying the fundamental recurrence relation
I'(z+1)=12(2).

By substituting (28) in the Hankel determinant, a symmetric recurrence relation of type (15)
will be derived for the desired polynomials that satisfy the orthogonality relation

10



1

j| |2a+1(1 Xzb) P(XabC)P (XabC)dx_[( 1) HC {

|2a+1 (1- Xzb)c} ]5n i
(29)

At this stage, step 7 should be again employed by changing n— 2n and m — 2m in (29) to
get

1
2a+1 (1- XZb)C}I |X|2a+1 (1 x®)° dX]5n i
]

{( B e 1)1‘[(: {[x

1 1
j |x|2a+1 A-x*)°P, (x;a,b,c) P, (x;a,b,c)dx = 2] X (1-x*)°Q, (% a,b,c)Q, (x*;a,b,c) dx
-1

|2a+1 ) } j5n,m .

Remark 1. It may be interesting to remark that for b =1 in (29), the subject is explicitly
known, because according to [5] the generalized ultraspherical polynomials orthogonal with

respect to the weight function w, (x;a—1/2,1,b) =x*(1—x*)® on [-11] are in fact a particular
case of a main class of symmetric orthogonal polynomials [5] defined by

Sn[; : ij[ig‘][[n/z]j [[n/zll_[(kﬂ) (2,+( 1)”+1+2[n/2])p+rJ X" (30)

k Lo (2|+( 1)”*1+2)q+s
for (p,q,r,s)=(-1,1,—2a—-2b-2,2a), that satisfy a recurrence relation of symmetric type
(5) as

:.1[ta(l—tb)°Qn(t;a,b,c)(jm(t;a,b,c)dt—{ B(a_+1 C+ 1)HC {

k=0

5_n+1(X)=XS_n(X)+Cn(; :js_nl(x) ;S =1, 5,(x)=x, neN,

where

. (r sj pqn? +((r —2p)q — (~1)" ps)n + (r —2p) st — (-1)" )2
"p ¢ (2pn+r—p)(2pn+r—3p)

Moreover, the weight function corresponding to symmetric polynomials (30) is defined by

[5,6]:
r s B (r-2p)x° +s
W[p qxj_equ X(px’ +0) )

and
S

q

[n/2]-1 H _1\n+l
XJ:H (2|+(1) +2)q+s S(r S

Lo (2i+ ()™ +2[n/2])p+r "lp g

_ _(r
5,(0=5,
p

Consequently we have

11



t o s [—2a-2b-2, 2a| |- (-2a-2b-2, 2a
J.x (1-x°)"S, XS, X
-1 _11 _1, 1

2a-2b-2, 2aj

forfe

[x Za(l—xz)bdxj o

in which 7
e (— 2a-2b-2, ZaJ _- n®—(2b+2(1-(-D"a)n-2a(a+b)(L-(-1)")

-1, 1 (2n+2a+2b-1)(2n+2a+2b+1)

_—(n+@-(=)Ma)(n+(@L-(-1)")a + 2b)
~ (2n+2a+2b-1)(2n+2a+2b+1)

and
[(a+1/2)I'(b+1)
F(a+b+3/2)

1
sza(l— x2)dx = B(a+%,b+l) =
-1

In general, there are four classes of symmetric orthogonal polynomials that can be derived
from the main sequence (30). Two of them are infinitely orthogonal (namely the generalized
ultraspherical polynomials and generalized Hermite polynomials [4,5]) and two other ones,
which are less known [5,6], are finitely orthogonal as the following table shows.

Table 1: Four particular classes of S (p,q,r,s; X)

Definition Weight function Interval and Kind
—2a-2b-2, 2a-2b-2, 2 ..
s |~ “® ) J w( a-2b-2, 2a J:x?%l-x?)b [-L1], Infinite
-2, 2a 2
S ’ wl X | = x* exp(—x> —o0, ), Infinite
o 1 XJ [ 0 J p(=x%) (=00, 0)
—2a—-2b+2, —2a —2a-2b+2, -2a x 22 .
Sn W X|= PRIV (—OO,OO) , Finite
1, 1 2+ x%)
—-2a+2, 2 -2a+2, 2 -
S, " X W i X |= X exp(-1/x?) (—o0,0), Finite
1 0 1, 0

Example 3. Let the non-symmetric weight function p(x;a,b) = x*exp(-x") be given for
b=0 and a>0 on [0,). For b =1, it reduces to the well-known Laguerre weight function

2a+l

[3]. However, by considering w,(x;a,b) =[x exp(-x*") on (—o0,0) as one of the dual
weight functions corresponding to p(x;a,b), the moments of w,(x;a,b) are computed

respectively as w,; , =0 and

12



wy; =[x exp(—x*) dx = 2] " x21+2a oy x %) dx

j+a+l

1 0 -1
=Ej0 t b exp(—t)dt_—F(

j+a+l

).

By substituting the above values in the Hankel determinant, eventually a symmetric relation of
type (15) will be derived for the desired polynomials satisfying

j:|x|2a+1 exp(—x*) P. (x;a,b) P, (x;a,b) dx
= L(—l)”ﬁC;{
[( 1y r(a—”)Hc {Ix

x|za+1 exp(—be)} ji|x|za+1 exp(—x?) de@n .

K exp(-x™)] Jan .

(31)
Again, step 7 should be here employed by changing n — 2n and m — 2m in (31) to get

jjo |x|2a+1 exp(—x*) P, (x;a,b) P, (x;a,b)dx = 2.[ “x2 exp(—x®) Q, (x2;a,b) Q,, (x;a,b) dx

L exp(-x™))| ]&, .

:j:ta exp(—tb)(jn(t;a,b)(jm(t;a,b)dt—[ F(a—Jrl)HC {

Remark 2. Similarly to the previous remark, note that for the case b =1, the subject is
explicitly known, because it generates the generalized Hermite polynomials which are

orthogonal with respect to the weight function w,(x;a—1/2,1) =x** exp(—x*) on (—o0,),
and are a particular case of the main orthogonal polynomials (30) for
(p,qg,r,s)=(0,1,—2,2a). In other words, we have

e [ > XJ§m[‘02 axjdx{(—l)”]:[ci[‘oz ﬂjr(a%) o

inwhlch
. -2 2a —(=D"
C,=C, =—£n—1 ) a
0 1 2 2
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