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Abstract Now-a-days, ordinal patterns are shown to

be effective in extracting discriminant image features.

In this paper, we present the ordinal matrix encoding

(OME) as a method that transforms an 8-bit encoded

image into another image with s gray levels. Such an en-

coding acts as a highpass filter and allows us to enhance

the image contours that are useful for feature extrac-

tion. In this work, we hybridized the OME technique

with the linear discriminant analysis (LDA) approach

to define the modified LDA (MLDA) to extract image

features. The MLDA considers only interclass matrices

of encoded images to highlight their singularities. Sub-

sequently, a support vector machine (SVM) is applied

to the MLDA output to perform facial image classifica-

tion. We validated the proposed classification method

using images from the ORL, FERET and FEI standard
databases. The results indicate an overall accuracy of

99.07%, 73.61% and 98.78% for the ORL, FERET and

FEI databases, respectively. Further, we evaluated the

impact of OME by analyzing the classification accuracy
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of the SVM-LDA combination on raw images from the

ORL database. The accuracy was 95.25% with intra-

class matrices and 94.50% without, both lower than the

99.07% achieved with encoded images. This improve-

ment occurs because OME preserves only the essential

details of the raw images for feature extraction, enhanc-

ing their discriminative ability.

Keywords Feature extraction · Facial recognition ·
Ordinal pattern · Image classification

1 Introduction

Facial recognition has been an active research field for

several decades and has recently gained significant at-

tention in domains like computer vision, machine learn-

ing, artificial intelligence, and video surveillance. This

growing interest is driven by major advances and the

wide range of applications of technology in society. The

primary function of facial recognition systems is to iden-

tify individuals from static images, video footage, or

data streams [1]. The effectiveness of the system de-

pends largely on its ability to extract key features that

ensure accurate identification. Linear methods, for ex-

ample, have been extensively used in computer vision

and machine learning over the past two decades. These

methods include Principal Component Analysis (PCA),

Linear Discriminant Analysis (LDA), and their vari-

ants, which use eigenfaces and fisherfaces for feature

extraction [2, 3]. PCA is a dimensional reduction tech-

nique and achieved a 95% accuracy rate in the ORL im-

age database for facial recognition [4]. Similarly, LDA

has become one of the most popular linear projection

techniques for feature extraction and facial recognition.

Studies such as those in [5] have used LDA to improve
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class separability in image samples. However, it is of-

ten recommended to combine LDA with other methods,

as its accuracy usually stabilizes around 95%. Gui-Fu

et al. introduced an incremental approach to Complete

Linear Discriminant Analysis (CLDA), which updates

discriminant vectors as new samples are added to the

training set athushe efficiency of the model [6]. In [7], a

novel LDA-based method achieved an impressive facial

recognition accuracy of 97.54%. Despite their success,

facial recognition remains challenging in unconstrained

environments, where factors such as changing lighting

conditions and varied poses affect performance [8,9]. In-

novative solutions to improve face recognition against

adversarial attacks and mask-induced occlusions were

proposed in [10] and [11]. However, these approaches re-

main complex and resource-intensive. The InceptBlock

Enhanced Attention Fusion Network (IBEAFNet) de-

veloped in [11] was used to suppress the less relevant

mask regions of the face, while focusing on significant

fine- and coarse-level features. Its application on the

CASIA, Yale, and HIF databases showed an accuracy

of 91.00%, 89.5%, and 93.00%, respectively.

Recently, entropy-based methods have been intro-

duced for feature extraction [12]. Building on the con-

cept of permutation entropy (PE), Manas Ghosh et al.

developed an algorithm that combines PE with fuzzy G-

2DLDA for facial recognition. Their approach resulted

in an average accuracy of 99.03% and 66.04% on the

ORL and FERET dataset respectively [13]. These find-

ings highlight the effectiveness of ordinal patterns (OP)

in image classification. However, the accuracy of these

methods varies unpredictably with changes in the size

of the training set. Ideally, the accuracy should have

shown a consistent improvement with the increase in

the size of the training set. Additionally, the relatively

low accuracy with the FERET database indicates that

challenges remain to be addressed.

This paper proposes a technique to improve facial

recognition accuracy by combining the OP transform

with LDA and SVM. The process involves the use of

OP transform for image pre-processing, the Fisher ap-

proach for dimensionality reduction, LDA to extract

features that optimize class separability, and finally,

SVM as the classification method for testing. Ordinal

patterns are typically defined for one-dimensional (1D)

data series. When applied to images, 2D matrices are

first converted to 1D signals before determining the OPs

[14]. In our approach, we introduce a two-dimensional

transform called ordinal matrix encoding (OME), which

outputs ordinal matrices. OME builds on the 1D OP

encoding described in [15], transforming each pixel in

the original image into a new pixel value to gener-

ate the ordinal image. OME enhances image details,

thus improves their discrimination characteristics. Ap-

plying LDA on encoded images, we expect to highlight

discriminant features between different image classes,

thereby strengthening similarities between images of

the same class. This helps to ignore the intra-class scat-

ter matrices in the LDA algorithm, while improving the

classification accuracy. We therefore define the modified

LDA (MLDA) by replacing original test images by their

ordinal representation in the LDA approach where only

inter-class scatter matrices are considered. The main

contributions of this paper are the following.

1. The applications of ordinal matrix encoding (OME)

to highlight image details.

2. The use of MLDA including OME to enhance fea-

ture extraction by suppressing the computation of

intraclass scatter matrices.

3. The combination of MLDA with SVM to enhance

the recognition accuracy.

The remainder of the paper is structured as follows.

Section 2 presents the ordinal matrix encoding, Section

3 is devoted to the application of OME to image classi-

fication, and simulation results are given in Section 4,

followed by conclusions in Section 5.

2 Ordinal matrix encoding

2.1 Brief recall on ordinal patterns

Consider a time series {xt}t=0,1,...,L−1, where t is the

time index and P defines an embedding dimension.

Comparing the neighboring values sorted into ascend-

ing order in a given embedding vector xi = (xi, xi+τ , . . .
xi+(P−1)τ ), i = 0, . . . , L − (P − 1)τ − 1 and P ∈ N≥3,

permutations πi of length P are obtained. τ ∈ N≥1 is

the delay time of the samples or the time lag [16]. In

fact, each embedding vector xi is associated with the

ordered vector of position π0 = (0, 1, · · ·P −1). Sorting

xi in ascending order yields the sorted vector x0
i , and

rearranging the values of π0 according to their previous

position in xi leads to the ordinal pattern πi [17]. An ex-

ample is given for {xt} = {1, 9, 8, 6, 1, 7, 3, 5, 2}, P = 3

and τ = 1. In this case, the first embedding vector

x0 = (1, 9, 8) in ascending order leads to x0
0 = (1, 8, 9),

while the corresponding vector of position (0, 1, 2) leads

to the ordinal pattern π0 = (0, 2, 1). The complete list

of ordinal patterns for this example is shown in Fig.1.

2.2 Ordinal matrix encoding

We define the ordinal matrix encoding as 2D nonlin-

ear transform f . It consists of transforming a matrix
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Fig. 1: Example of ordinal patterns of length 3 derived from the time series {xt} = {1, 9, 8, 6, 1, 7, 3, 5, 2}, P = 3.

From top to bottom are shown the time series {xt}, the embedding vectors xi and the corresponding ordinal

patterns πi, respectively.

W = (ωi,j)0≤i<P, 0≤j<Q, (P,Q) ∈ N≥1 into an en-

coded scalar value λ = f(W ). Rows or columns of W

are first individually sorted into ascending order to ob-

tain an ordinal matrix Π(x) or Π(y) that is of the size

P × Q as W and whose rows or columns are ordinal

patterns π
(x)
i or π

(y)
j , respectively. Thereafter, the rows

or columns of the ordinal matrix are encoded to de-

rive λ. In the case of row sorting, Π(x) is a vector of

P rows of Q-length ordinal patterns π
(x)
i , the number

of distinct patterns π
(x)
i being Q!. According to [15],

the set of possible ordinal patterns {π(x)
i } can be en-

coded, so that each pattern π
(x)
i is assigned a unique

code 0 ≤ ϵ(x) ≤ Q! − 1, ϵ(x) ∈ N, as shown in Table 1.

By assigning each π
(x)
i in Π(x), its corresponding code

Table 1: Example of encoding values of ordinal patterns

of length 3.

πi (0,1,2) (0,2,1) (1,0,2) (1,2,0) (2,0,1) (2,1,0)
ϵi 0 1 2 3 4 5

ϵ
(x)
i , the ordinal matrix Π(x) is transformed into an

encoded vector Γ (x) = (ϵ
(x)
0 , ϵ

(x)
1 , · · · , ϵ(x)P−1)

T or simply(
ϵ
(x)
0 ϵ

(x)
1 . . . ϵ

(x)
P−1

)
Q!
. Given that 0 ≤ ϵ(x) < Q!, ϵ(x) can

be seen as symbols of the Q! basis and Γ (x) represents

the number representation in the same basis. Thus, the

decimal value λ(x) of Γ (x) is obtained as

λ(x) =

P−1∑
i=0

ϵ
(x)
i · (Q!)i, (1)

where 0 ≤ λ(x) < (Q!)P , λ(x) ∈ N. By applying the

same principle in the y-dimension, λ(y) is obtained as

λ(y) =

Q−1∑
j=0

ϵ
(y)
j · (P !)j , (2)

where 0 ≤ λ(y) < (P !)Q. λ(x) and λ(y) are directional

values. We can also define the non-directional value λ̄

by considering the mean value of the two directional

values as

λ̄ =

⌊
λ(x) + λ(y)

2

⌋
. (3)

An example is given forW =

120 191 47

233 188 153

27 14 77

, P = Q =

3. The ordinal matrices in the x and y direction are, re-

spectively, Π(x) =

2 0 1

2 1 0

1 0 2

 and Π(y) =

2 2 0

0 1 2

1 0 1

. Ac-

cording to Table 1, Π(x) is encoded as Γ (x) = (4, 5, 2)T

or simply 4526; and Π(y) as Γ (y) = (4, 5, 1) or sim-

ply 4516. Taking into account Eqs. (1)-(3), the cor-

responding scalar values on basis 10 are, respectively,

λ(x) = 106, λ(y) = 70 and λ̄ = 88.

2.3 Ordinal image encoding

Let an original image A = (am,n)0≤m<M, 0≤n<N ,

(N,M) ∈ N≥1, the corresponding OMEI Λ = (λm,n)

is obtained by transforming each sub-matrix W (m,n) =



4 Guillène Martiale Wandja et al.

Fig. 2: Example of OME of matrix A. The OME parameters are set as P = Q = 3 respectively along x and y

direction
.

(ωi,j)P×Q, (P,Q) ∈ N2
≥1 centered at am,n with P ≤ M ,

Q ≤ N . Thus, each pixel λm,n of Λ is obtained by ap-

plying the OME to the local region covered by W (m,n).

This process involves the sub-matrix moving pixel by

pixel across the image, starting from the top left corner

and moving to the right, then moving down line by line

until the bottom right corner. A zero padding is con-

sidered for the processing of the image borders. As an

example, let us consider the image A defined as

A =


1 2 1 4

8 3 4 5

6 7 5 6

5 6 8 9

 , (4)

with M = N = 4. By considering sub-matrices W (m,n)

of size 3 × 3 and performing the OME in the x or y

direction, we obtain the OMEIs Λ(x) or Λ(y), respec-

tively. The corresponding results are shown in Fig.2.

The results obtained by applying the proposed image

encoding method to an image of the ORL database are

depicted in Fig.3. The corresponding spectra are shown

in Fig. 4 to confirm that the bandwidth of low frequen-

cies depicted by the relatively large white spot in the

center of the original image spectrum is narrowed in

the transformed image spectra, whereas the high fre-

quencies are accentuated. The spectrum of the mean

encoded image is brightened beyond low frequencies

and in all directions. The low frequencies in the trans-

formed image preserve structural information ( general

shapes and contours of objects within an image) that

is crucial for object recognition and classification [18].

The accentuation of high frequencies allows us to high-

light fine details, such as image texture and edges [19].

Given that the application of the OME preserves es-

sential structural information and accentuates details

of the image, it could constitute an important tool for

the discrimination and classification of images. There-

fore, we suggest combining OME with LDA to perform

facial image feature extraction. .

3 Application of OME to image classification

Our model for feature extraction combines OME and

LDA. In this section, we provide details on the algo-

rithmic steps of the proposed image classification ap-

proach.

3.1 Brief recall of LDA

LDA is a commonly used technique in supervised ma-

chine learning to solve multi-class classification prob-

lems. It is a classical approach for dimensionality reduc-

tion and supervised classification. Consider that there

are C classes and D training face images for each class.

Assuming that Iij is the j-th face image of the i-th

class in the X database, then X can be represented as

X = {Iij} with 1 ≤ i ≤ C and 1 ≤ j ≤ D.

Performing LDA on this data set for classification

purposes involves five steps as described below.

Step 1: Compute the dataset global mean image µ as

µ =
1

C ·D

C∑
i=1

D∑
i=1

Iij (5)

Step 2: Compute the mean images for each class i as

µi =
1

D

D∑
j=1

Iij (6)
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Fig. 3: Example of OME applied to an image of the ORL database: (a) original image, (b) x-direction encoded

image Λ(x), (c) y-direction encoded image Λ(y) and (d) mean encoded image Λ
.

(a ) (b) (c) (d)

Fig. 4: Evidence of high-pass nonlinear filtering with the OME: (a) spectrum of the original image, (b) spectrum of

the x-direction encoded image, (c) spectrum of the y-direction encoded image, (d) spectrum of the mean encoded

image Λ
.

Step 3: Compute the scatter inter-class matrix Sb and

the scatter intra-class matrix Sw as

Sb =

C∑
i=1

D · (µi − µ)(µi − µ)T (7)

Sw =

C∑
i=1

D∑
j=1

(Iij − µi)(Iij − µi)
T (8)

Step 4: Compute the eigenvalues of S−1
w Sb and derive

the projection matrix ϑ = (θ0, θ1, · · · , θL−1), where

θl are eigenvectors corresponding to the above eigen-

values, with L ≤ M .

Indeed, the objective of LDA is to find the projection

matrix ϑ that maximizes the ratio

J(ϑ) =

∣∣ϑTSbϑ
∣∣

|ϑTSwϑ|
(9)

Such an optimal solution is obtained by considering the

matrix ϑ = (θ0, θ1, · · · , θL−1) of eigenvectors θl corre-

sponding to the L largest eigenvalues of S−1
w Sb, with

0 ≤ l < L and L ∈ N≥1. L is the dimension of the

projected subspace. Thus, LDA consists of projecting

the image Iij onto an optimal discriminant subspace

to obtain the projected image ξij used for classification

such that

ξij = ϑT (Iij − µ) (10)

ξij = (εm,n), 0 ≤ m < M and 0 ≤ n < L, is the

projection of Iij in the space of ϑ.

3.2 Modified LDA for image feature extraction

In this section, we propose the modified LDA (MLDA)

as a method to improve the extraction of image fea-

tures. MLDA is based on the combination of LDA with

OME techniques. We suggest increasing the distance

between means of the various image classes by enhanc-

ing the image contours, and hence discriminating im-

ages on the basis of their details. For this purpose, we

apply the OME prior to images and then consider only

inter-class scatter matrices, instead of both inter-class

and intra-class as in the LDA approach. Thus, the fea-

tures obtained in that case are optimal projections of

OMEIs, where the projection matrix ϑ is derived from

the inter-class scatter matrix. The corresponding steps

of the MLDA are listed below:
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Step 1: Apply the OME transform to the database im-

ages,

OME({Iij}) = {Λij}; 1 ≤ i ≤ C, 1 ≤ j ≤ D,

Step 2: Compute the mean of encoded images

µ =
1

C ·D

C∑
i=1

D∑
i=1

Λij (11)

Step 3: Compute the mean of each class of encoded face

images

µi =
1

D

D∑
j=1

Λij (12)

Step 4: Calculate the inter-class dispersion matrix,

Sb =

C∑
i=1

D · (µi − µ)(µi − µ)T (13)

Step 5: Compute the eigenvalues of Sb and derive the

projection matrix ϑ = (θ0, θ1, · · · , θL−1).

Depending on the the OMEI used in the MLDA al-

gorithm, we can define the x-directed MLDA (xMLDA)

based on Λ(x), the y-directed MLDA (yMLDA) based

on Λ(y), and the mean MLDA (mMLDA) based on Λ.

3.3 MLDA based image classification

We used the Support Vector Machine (SVM) as a clas-

sifier as it offers high adaptability, robustness to noisy

data, built-in regularization, some interpretability, and

the ability to achieve good performance in many classifi-

cation and regression tasks. SVM features are projected

images converted into row vectors as

Fij =
(
ε
0,0

, . . . , ε
0,L−1

, . . . , ε
M−1,0

, . . . , ε
M−1,L−1

)
.

(14)

Each image is thus represented by a vector in the fea-

ture space, thereby each dimension corresponds to a

specific feature. Let us consider for example the inter-

class matrix below defined as

Sb =


36 17 12 168

6 163 110 172

1 17 18 172

0 4 3 28

 .

The corresponding matrix of eigenvectors ϑ0 is

ϑ0 =


−0.5989 −0.9242 −0.9242 0.7954

−0.7862 0.0845 0.0845 −0.3299

−0.1496 0.0434 0.0434 0.5065

−0.0284 −0.0310 −0.0310 −0.0438

 .

Using, for example, Fisher’s criterion that consists of se-

lecting L < M eigenvectors corresponding to the most

significant eigenvalues ranged into descending order, we

obtain the following projection matrix for L = 2

ϑ =


−0.5989 −0.9242

−0.7862 0.0845

−0.1496 0.0434

−0.0284 −0.0310


The corresponding projection of matrix A given in sec-

tion 2 is ξ = ϑT ×A such that

ξ =

(
−7.9281 −4.7740 −4.7189 −7.4798

−0.1428 −1.4771 −0.6172 −3.2929

)
This matrix is then transformed into a single-row vector

F to serve as input for SVM such that

F =
(
ξ1, ξ2

)
where ξ1 = (−7.9281,−4.7740,−4.7189,−7.4798) and

ξ2 = (−0.1428,−1.4771,−0.6172,−3.2929). To perform

the classification, the image database is divided into the

training set Xa = {Ia
ij} and test set Xb = {Ib

kl}, with
Ca = Cb = C, Da +Db = D, (Da < D), 1 ≤ i, k ≤ C ,

1 ≤ j ≤ Da , and 1 ≤ l ≤ Db. The projection matrix ϑ

of the MLDA is obtained by applying the OME exclu-

sively to the training set Xa. Thereafter, all the images

of Xa are projected to construct the feature matrix

M = (Fi,j) . (15)

M is used to build the SVM model. Each line of M
is obtained as described in Eq. (14), i.e. the projected

image is transformed into a row vector. The SVM algo-

rithm aims to identify the optimal hyperplane that sep-

arates the different classes within the feature space [20].

The constructed SVM model is then used to classify Xb

images based on the learned features. Fig.5 shows the

flow chart that outlines the proposed SVM-MLDA im-

age classification method.



Ordinal matrix encoding based facial recognition 7

Fig. 5: Flowchart of the proposed SVM-MLDA based

classification method

4 Results and Discussion

To evaluate the efficiency of our proposed classification

approach, we used the ORL and FERET databases [21,

22]. Metrics such as accuracy (β), receiver operating

characteristic (ROC) plots, and confusion matrix are

considered.

4.1 Application to ORL database

The ORL database is one of the most used for the

evaluation of facial recognition algorithms [21]. This

facial database contains 400 images of 40 individuals,

with 10 distinct images per subject. The images of the

ORL database were captured between April 1992 and

April 1994 in a laboratory setting, showcasing a va-

riety of conditions such as lighting, facial expressions

(open / closed eyes, smiling / not smiling) and facial

details (with/without glasses). All images were taken

against a dark and uniform background, with subjects

in a vertical and frontal position, allowing for some lat-

eral movement. The dimension of the database image

is 112× 92 pixels, with a color depth of 256 gray levels

per pixel [21]. As each individual is considered to be

a class, there are 10 images per class and 40 distinct

classes.

We divided the database into training sets and test

sets by randomly selecting images from each individual.

We repeated the experiment 20 times and evaluated the

average accuracy. We first considered the MLDA with

encoded images along the x-direction and y-direction,

with 80% images per individual for training and 20% for

test. The corresponding average accuracy values for 20

experiments are β = 97.88% for the x-directed MLDA,

and β = 98.79% for the y-directed MLDA. These re-

sults suggest that the MLDA performs better in the

y-direction than in the x-direction. This observation

is confirmed by the computed ROC area under the

curve (AUC) as α = 0.99 for the x-directed curve and

α = 1 for the y-directed curve. In Fig.3, the contours

of the mean OMEI were better observed than those

of the directed OMEIs. This observation suggests that

the nondirected MLDA may perform better than the

y-directed MLDA. Therefore, we repeated the experi-

ment above with the mean MLDA. The corresponding

average accuracy is β = 99.07%, which confirms our as-

sumption. The corresponding ROC curve with α = 1 is

shown in Fig.6. There are experiments for which the 120

test images were all well classified. We used the mean

MLDA for the rest of the experiments in the paper.

We considered different values of P and Q and com-

pared the results obtained. Table 2 shows that P = Q =

3 achieves better results than other combinations con-

sidered in comparison.

Table 2: Average classification accuracy β(%) obtained

with 10 experiments and different combinations of the

pair (P , Q), s = 8.

(P,Q) (β ± σ)%
(2, 2) 97.50± 1.76
(2, 3) 98.75± 2.14
(3, 2) 98.86± 1.84
(3, 3) 99.07± 1.01

Table 3: Average classification accuracy β(%) obtained

with 20 experiments and various sizes s of training sets.

s DLDA CLDA CDLDA/New mMLDA
3 83.7 89.4 89.4 93.86
4 89.7 94.3 94.3 96.29
5 92.1 97.1 97.1 97.39

We compared our proposed MLDA with other exist-

ing classification algorithms such as the DLDA method

[27], the CLDA method [23], and CDLDA/New [6]. For

this purpose, we randomly selected s = 3, 4, 5 images

of an individual over 10 for training and the rest for

validation, and repeated the experiment 20 times. The

average classification accuracy values are given in Table

3.
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Table 4: Comparison of the average recognition accuracy β(%) and standard deviation σ(%) with other methods

in ORL database.

Method (β ± σ)%
s = 3 s = 4 s = 5 s = 6 s = 7 s = 8

EnFFG-2DLDA [13] 93.71± 1.92 96.22± 1.32 98.25± 0.41 99.03± 1.32 98.92± 0.66 -
G-2DFLD [23] 92.82± 2.67 95.94± 1.21 97.68± 0.91 98.72± 0.92 98.42± 1.11 -
FG-2DLDA [24] 93.41± 1.11 96.07± 1.59 98.00± 1.07 98.78± 0.72 98.50± 0.74 -
WFG-2DFLD [25] 93.25± 2.30 96.16± 1.33 98.00± 1.10 98.91± 0.64 98.82± 1.06 -
FGD-2DIFDA [26] 93.54± 2.60 96.03± 1.63 98.12± 0.91 98.88± 0.72 98.74± 0.57 -
LDA 84.14± 2.56 93.07± 1.59 93.26± 2.30 94.50± 0.91 95.17± 1.14 95.25± 1.92
mMLDA 93.86± 1.94 96.29± 1.71 97.39± 1.79 98.59± 0.78 98.86± 1.81 99.07± 1.01

We extended the comparison to other methods that

used more than s = 5 images per class for training.

The corresponding results are summarized in Table 4.

We observe that the accuracy of the MLDA increases

uniformly with the training size s, suggesting better

performance. A good classification approach performs

better as the training set is large. This condition is not

verified for the other methods listed in Table 4. They

cannot guarantee a good performance by increasing the

size of the training set.
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Fig. 6: ROC curve of the [80, 20] mean MLDA classifi-

cation model

4.2 FERET database

The Facial Recognition Technology (FERET) database

contains a total of 14, 126 images belonging to 1, 199 in-

dividuals, as well as 365 sets of duplicate images taken

on different days [22]. The images were collected be-

tween December 1993 and August 1996. In this study,

we will consider 1400 images of 200 individuals, which

means 7 images per individual [22]. Depending on the

location of the eyes, the original images of the database

Table 5: Evaluation of average recognition accuracy

β(%) and standard deviation σ(%) with some classi-

cal methods on the FERET face database.

Method (β ± σ)%
s = 2 s = 3 s = 4

EnFFG-2DLDA 49.73± 0.97 59.69± 1.76 66.04± 2.18
G-2DFLD 48.51± 1.2 56.77± 2.11 64.49± 2.01
FG-2DLDA 49.05± 1.01 58.81± 1.13 65.51± 2.26
WFG-2DFLD 49.46± 1.52 59.41± 1.11 65.88± 2.62
FGD-2DIFDA 49.65± 0.70 58.75± 1.29 65.75± 2.47
LDA 49.08± 0.96 53.85± 1.26 70.50± 0.47
mMLDA 54.75± 1.46 62.29± 2.16 73.61± 1.76

were cropped and resized to 80× 80 pixels as described

in [13].

Furthermore, the performance of our method was

evaluated by selecting 20 different pairs of training sets

(s = 2, 3, 4) and test sets (7−s) in the FERET database.

A comparison between our method and other methods

is summarized in Table 5. We observe that mMLDA

once more performs better than the other methods in

comparison. In addition, the accuracy of the mMLDA

increases uniformly with training size s, which confirms

its better performance as the training size increases. We

computed the AUC of the ROC curve of the [70, 30]

mMLDA model as α = 0.97, which further confirms its

good performance as a classification approach. We also

compared with the XCEPTION CNN deep learning ar-

chitecture in [28], and the combination of neural net-

works with a genetic algorithm presented in [29], where

few image classes of the FERET database are consid-

ered, with s = 4. Both methods perform, respectively,

96.73% with only 16 classes and 94% with 50 classes,

while MLDA performs an average accuracy of 98.48%

and 94.08% over 20 epochs in both cases, respectively.

The above results obtained show that our OME

based feature extraction method improves image classi-

fication. Nonlinear enhancement of the image contours

allows one to achieve higher accuracy values. In order to

determine the importance of OME, we also considered
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raw images of the ORL database, with 80% images per

individual for training and 20% for tests. By comput-

ing the average accuracy of LDA combined with SVM

(SVM-LDA), we found β = 95.25 ± 1.92%. Similarly,

the average accuracy of SVM-LDA without considering

intraclass matrices Sw has given β = 94.50 ± 2.19%,

which is much lower than β = 99.07 ± 1.01% obtained

with encoded images. We did the same experiment with

the entire FERET database (200 classes) in case s = 4

and achieved a classification accuracy of β = 70.50%

with LDA, compared to β = 73.61% for MLDA. There-

fore, these results confirm the efficiency of OME in the

MLDA approach for feature extraction.

Table 6: Evaluation of average recognition accuracy

β(%) and standard deviation σ(%) with some classi-

cal methods on the FEI database.

Method β(%)
s = 7 s = 8 s = 11

SESRC&LDF [30] 93.67 − −
DCT-VQ [31] − 98.00 −
2D-DMWT [32] − − 97.447
G-F-LDA [33] 97.84 98.20 98.65
LDA 83.33 94.08 96.67
mMLDA 96.89 98.25 98.78

Additional tests were performed using the FEI face

database that has been widely used in the literature

to demonstrate the efficiency of MLDA. The database

contains 14 face images for each of the 200 distinct in-

dividuals, therefore, a total of 2800 images. All images

are colorful and taken against a homogeneous white

background in an upright frontal position with a pro-

file rotation of up to about 180 degrees [34]. The results

obtained are summarized in Table 6 where the high per-

formance of MLDA is observed compared to the results

in [30–33].

We also combined MLDA with random forest (RF)

and K-nearest neighbors (KNN) as classifier and com-

pared the results obtained with SVM. Table 7 shows

that SVM provides high classification rates, compared

to RF and KNN. The results are obtained by train-

ing and validating simultaneously with SVM, RF, and

KNN in the ORL database over 10 epochs, for various

training sizes s.

4.3 Speed performance

We designed and executed our classification model on

a Windows operating system running MATLAB 2018b.

The computer is equipped with an AMD Ryzen Core

Table 7: Comparison of SVM, RF and KNN average

classification accuracy β(%), obtained with 10 experi-

ments and various sizes s of training sets

β(%)

Method s = 4 s = 5 s = 6 s = 7 s = 8
SVM 96.25 97.02 98.45 98.78 100
RF 88.75 91.25 93.75 91.25 97.50
KNN 83.75 88.75 86.25 95.00 91.25

i7 processor (2.10 GHz) and 12.00 GB RAM. While

running our codes, the average execution time for ORL

database is 13.53 minutes per epoch for the MLDA,

and 6.8608 minutes for the plain LDA. Although the

MLDA computational time is two times greater than

the LDA time, it could be further reduced by optimizing

the MLDA code, which is not yet the case for the code

used. We also evaluated the useful memory for the two

methods and found 60.1 MB for plain LDA and 56.71

MB for MLDA.

5 Conclusion

This paper presented the Modified Linear Discriminant

Analysis (MLDA) approach, which enhances image fea-

ture extraction by combining Ordinal Matix Encoding

with Linear Discriminant Analysis (LDA). We also de-

veloped a classification method that integrates MLDA

with Support Vector Machines (SVM). Our results, tested

on the ORL and FERET databases, demonstrate that

the proposed approach performs well compared to ex-

isting classification methods. This strong performance

confirms MLDA’s efficiency in feature extraction. How-

ever, a key limitation of MLDA is its computational

time, which is currently twice that of LDA. This as-

pect needs further improvement. We intend to apply

MLDA to real-time facial image recognition in video

surveillance applications. We will also further investi-

gate the impact of the window size on the performance

of MLDA.
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