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Abstract

In [Koepf (1992)] it was shown how for a given holonomic function a representation as a formal
power series of hypergeometric type can be determined algorithmically. This algorithm – that
we call FPS algorithm (Formal Power Series) – combines three steps to obtain the desired
representation. The authors implemented this algorithm in the computer algebra system Maple
as c̀onvert/FormalPowerSeries` which is always successful if the input function is a linear
combination of hypergeometric power series.

In this paper we give a q-analogue of the FPS algorithm for q-holonomic functions and extend
this algorithm in such a way that it identifies and returns linear combinations of q-hypergeo-
metric series. The algorithm is a combination of mainly three subalgorithms, which make use
of existing algorithms from [Abramov, Paule, and Petkovšek (1998)], [Böing and Koepf (1999)]
and [Abramov, Petkovšek, and Ryabenko (2000)]. We introduce two different polynomial bases
for the representation of q-series and realize that they are sufficient to obtain all well-known
q-hypergeometric representations of the classical q-orthogonal polynomials of the q-Hahn class
[Koekoek and Swarttouw (1998)]. Then we develop an algorithm which converts a q-holonomic
recurrence equation of a q-hypergeometric series with nontrivial expansion point into the cor-
responding q-holonomic recurrence equation for the coefficients. Furthermore, we show how the
inverse problem can be handled. The latter algorithm is used to detect q-holonomic recurrences
for some types of generalized q-hypergeometric functions. We implemented all presented algo-
rithms (and many others) in Maple and make them available as Maple package qFPS which will
be described briefly. Additionally, in some examples we show how qFPS can be applied to deduce
special function identities in a simple way based on techniques used in [Zeilberger (1990)].

Key words: q-calculus, q-hypergeometric series, q-holonomic functions

Email addresses: sprenger@math.uni-kassel.de (Torsten Sprenger), koepf@math.uni-kassel.de

(Wolfram Koepf).

URLs: www.mathematik.uni-kassel.de/∼sprenger (Torsten Sprenger),

www.mathematik.uni-kassel.de/∼koepf (Wolfram Koepf).

Preprint submitted to Elsevier 7 December 2011



1. Introduction

Assuming K is a field of characteristic 0 and q a variable, we define F := K(q). The field
F is the basic field considered. Given a function term f(x), we deal with two linear q-
operators, the Hahn operator Dq and the q-shift operator εq which are defined as follows

Dqf(x) :=
f(x)− f(qx)

(1− q)x
and εqf(x) := f(qx).

We name Dqf(x) the q-derivative and εqf(x) the q-shift of f(x). These operators are
both linear and satisfy the product rules

Dq (f(x) · g(x)) = f(qx)Dqg(x) + g(x)Dqf(x) (1)
Dq (f(x) · g(x)) = f(x)Dqg(x) + g(qx)Dqf(x) (2)
εq (f(x) · g(x)) = εqf(x) · εqg(x). (3)

A function term f(x) is called q-hypergeometric term, if

r(x) :=
f(qx)
f(x)

∈ F(x).

The rational function r(x) is the q-certificate of f(x). A function term f(x) is an m-fold
q-hypergeometric term, if

f(qmx)
f(x)

∈ F(x).

We call a sequence cj a q-hypergeometric term, if
cj+1

cj
∈ F(qj).

This is consistent with the above definition, if we consider x on a linear q-lattice (x = qj

and cj = f(qj)). We say that a series
∑
j cjx

j is q-hypergeometric or a q-series, if the
coefficient cj is a q-hypergeometric term. Furthermore, we consider the generalized q-
hypergeometric function defined as

rφs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣ q;x) :=
∞∑
j=0

(a1; q)j · · · (ar; q)j
(b1; q)j · · · (bs; q)j

xj

(q; q)j

(
(−1)jq(

j
2)
)1+s−r

,

where
(a; q)j := (1− a) · (1− aq) · · · (1− aqj−1)

is the q-Pochhammer symbol and ai, bk ∈ F [Gasper and Rahman (1990)]. More well-
known q-functions are the q-analogue of a nonnegative integer j, called the basic number

[j]q :=
1− qj

1− q
= 1 + q + q2 + . . .+ qj−1,

the q-factorial
[j]q! := [j]q · [j − 1]q · · · [1]q

and the q-binomial coefficient[
n

j

]
q

:=
[n]q!

[j]q! [n− j]q!
=

(q; q)n
(q; q)j (q; q)n−j
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which are all q-hypergeometric terms w.r.t. j and n. Obviously, the generalized q-hyper-
geometric function is indeed a q-hypergeometric series.

In this paper we present the q-FPS algorithm, which determines a linear combination
of q-hypergeometric series for a given q-holonomic function f(x) (this type of functions
will be discussed in the forthcoming section in detail). The algorithm consists of three
steps, which will be explained in Section 3, 4 and 5 respectively. Here is a rough overview
of the three main parts of the algorithm.

(1) Determine a q-holonomic recurrence equation (or differential equation) for the given
q-holonomic function f(x).

(2) Convert this q-holonomic recurrence equation (or differential equation) into a q-
recurrence equation for the coefficients of the q-power series of f(x).

(3) Determine all q-hypergeometric solutions of the latter q-recurrence equation.

2. q-Holonomic Functions

The first step of the q-FPS algorithm is to determine a q-holonomic differential equation
or q-holonomic recurrence equation for f(x), that is a homogeneous q-differential or q-
recurrence equation

n∑
k=0

ak(x)Dk
q f(x) = 0 or

n∑
k=0

bk(x)εkqf(x) = 0

which is linear and has polynomial coefficients, e. g. ak, bk ∈ F[x]. In q-calculus
every q-differential equation corresponds to a q-recurrence equation, as there exist
the following explicit relationships between higher q-derivatives and higher q-shifts
[Koepf, Rajković, and Marinković (2007)]

εnq f(x) =
n∑
k=0

(−1)k(1− q)k
[
n

k

]
q

q(
k
2)xkDk

q f(x)

Dn
q f(x) =

1
(1− q)nxn

n∑
k=0

(−1)k
[
n

k

]
q

q(
k
2)−(n−1)kεkqf(x).

Functions satisfying q-holonomic differential equations or q-holonomic recurrence equa-
tions are called q-holonomic functions. In particular, q-hypergeometric terms (they sat-
isfy a first-order q-holonomic recurrence equation) as well as the q-exponential func-
tions, q-trigonometric functions [Gasper and Rahman (1990)], [Kac and Cheung (2002)]
and the classical q-hypergeometric orthogonal polynomials of the q-Hahn class
[Koekoek and Swarttouw (1998)] are all q-holonomic (see Table 1).
The Maple package qFPS supports all q-functions listed in Table 1, the generalized q-
hypergeometric function rφs and all classical q-orthogonal polynomials of the q-Hahn
class from [Koekoek and Swarttouw (1998)], and there exist procedures for q-deriving
(qdiff) and q-shifting (qshift) them, where all necessary q-derivative and q-shift rules
are implemented.

Example 1. We consider two examples of the procedures qshift and qdiff from the
Maple package qFPS.
> qshift(qsin(x,q),x,q);
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q-function definition q-function definition

expq(x) 1φ0

“
0
−

˛̨̨
q;x
”

eq(x) 1φ0

“
0
−

˛̨̨
q; (1− q)x

”
Expq(x) 0φ0

“
−
−

˛̨̨
q;−x

”
Eq(x) 0φ0

“
−
−

˛̨̨
q;−(1− q)x

”
sinq(x)

expq(ix)−expq(−ix)

2i
sq(x)

eq(ix)−eq(−ix)

2i

Sinq(x)
Expq(ix)−Expq(−ix)

2i
Sq(x)

Eq(ix)−Eq(−ix)

2i

cosq(x)
expq(ix)+expq(−ix)

2
cq(x)

eq(ix)+eq(−ix)

2

Cosq(x)
Expq(ix)+Expq(−ix)

2
Cq(x)

Eq(ix)+Eq(−ix)

2

Table 1. Constitutive q-holonomic functions [Gasper and Rahman (1990)],
[Kac and Cheung (2002)]

qsin (x, q)− xqcos (x, q)

> qdiff(qLaguerre(n,alpha,x,q),x,1/q);

(qn − 1)qLaguerre(n, α, x, q)

qn−1(q − 1)x
− (qnqα − 1)qLaguerre(n− 1, α, x, q)

qn−1(q − 1)x

3. Determination of q-Holonomic Differential and Recurrence Equations

It is known that sums and products of q-holonomic functions are also q-holonomic and
the composition of a q-holonomic function with a power function axb is q-holonomic,
too. By Hq we denote the set of q-holonomic functions generated by an iterative applica-
tion of these procedures starting with the set of constitutive q-holonomic functions 1 of
Table 1. There exist linear algebra algorithms [Koepf, Rajković, and Marinković (2007)],
[Kauers and Koutschan (2009)] based on an ansatz with undetermined coefficients which
determine the corresponding q-holonomic differential equation for the sum, the product
or the composition directly from the q-holonomic differential equation(s) of the underly-
ing q-holonomic function(s). Those algorithms (which we call the sum, the product and
the composition algorithm) and slightly modified versions for q-holonomic recurrence
equations, which are more efficient since the product rule for εq is much simpler than
the one for Dq, are implemented in the Maple package qFPS. The Mathematica package
[Kauers and Koutschan (2009)], which deals primarily with q-holonomic sequences, uses
related sum and product algorithms.

Example 2. We determine a q-recurrence equation for the function cosq(x) sin1/q(x) via
the product algorithm with our Maple package qFPS 2 .
> qRE1:=qHolonomicRE(qcos(x,q),F(x));

qRE1 := q
`
1 + x2´F (x)− (1 + q) SqxF (x) + Sqx,xF (x) = 0

> qRE2:=qHolonomicRE(qsin(x,1/q),F(x));

1 Of course, Hq can be extended easily by adding new constitutive functions to this list.
2 Sqx denotes the q-shift operator εq w.r.t. x
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qRE2 := qF (x)− (1 + q) SqxF (x) +
`
1 + q4x2´Sqx,xF (x) = 0

> qRE:=qProductRE(qRE1,qRE2,F(x));

qRE := q6 `1 + x2´ `1 + q2x2´F (x)

− q3 (1 + q)
`
1 + q2´ `1 + q2x2´SqxF (x)

+ q
`
1 + q2´ `1 + q4x2´ `1 + q + q2 − q5x2´Sqx,xF (x)

− (1 + q)
`
1 + q2´ `1 + q6x2´Sqx,x,xF (x)

+
`
1 + q8x2´ `1 + q6x2´Sqx,x,x,xF (x) = 0

The resulting q-holonomic recurrence equation qRE is a q-holonomic recurrence equation
for the product of the functions cosq(x) and sin1/q(x).

However, instead of using these algorithms in the q-FPS algorithm, standard linear
algebra techniques are directly applied to the input term in the following Algorithm
1 (qHolonomicDE), which is a straightforward q-generalization of the algorithm from
[Koepf (1992)], to enforce minimal order of the resulting q-holonomic differential or re-
currence equations. This algorithm can be slightly modified to obtain q-holonomic re-
currence equations, using the q-shift operator εq (qHolonomicRE) instead of the Hahn
operator Dq. For Algorithm 1 it is important that there exists a q-derivative rule for our
q-holonomic function f(x) with the property that the q-derivative can be represented as
a linear combination of q-functions from Hq, which are linearly independent over F(x),
preferably of f(x) and its q-shifts itself. This is strongly required in order to put line 6
of the algorithm in a computer algebra system adequately into practice.

Some q-derivatives of special q-functions cannot be easily represented by q-functions
from Hq. For those types of functions we have to develop a strategy to express the
q-derivatives appropriately and to detect linear dependencies between them. Here, we
consider in particular the case of the classical q-orthogonal polynomials Pn(x) of the q-
Hahn class. For our implementation we developed q-derivative rules of the following type

Dq−1Pn(x) = ᾱn(x)Pn(x) + β̄n(x)Pn−1(x) (4)

with ᾱn, β̄n ∈ F(x, qn), combining the well-known three-term recurrence equation
[Koekoek and Swarttouw (1998)]

Pn+1(x) = (Anx+Bn)Pn(x)− CnPn−1(x)

with An, Bn, Cn ∈ F(qn) and the structure formula [Koepf and Schmersau (2001)]

σ(x)Dq−1Pn(x) = αnPn+1(x) + βnPn(x) + γnPn−1(x)

with αn, βn, γn ∈ F(qn) and σ(x) ∈ F[x], which are both valid for each classical q-
orthogonal polynomial of the q-Hahn class Pn(x). By expanding Dq−1Pn(x) in (4) and
solving for εq−1Pn(x), we obtain a q-shift rule

εq−1Pn(x) = α̃n(x)Pn(x) + β̃n(x)Pn−1(x) (5)

with α̃n, β̃n ∈ F(x, qn). Analogous formulas for Dq or εq respectively are gained by
substituting (4) or (5) respectively into the well-known (balanced) q-differential equation

r̄(x)DqPn(x) + s̄(x)Pn(x) + t̄(x)Dq−1Pn(x) = 0

with r̄, s̄, t̄ ∈ F[x] or equivalent q-recurrence equation

r̃(x)εqPn(x) + s̃(x)Pn(x) + t̃(x)εq−1Pn(x) = 0
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with r̃, s̃, t̃ ∈ F[x] respectively and solving for DqPn(x) or εqPn(x) respectively. In order
to detect linear dependencies of the polynomials . . . , Pn−1(x), Pn(x), Pn+1(x), . . . in line
6 of Algorithm 1, we use once again the three-term recurrence. Under the above circum-
stances, the resulting q-holonomic differential equation will have minimal order, if all
linear dependencies are recognized by the computer algebra system.

Algorithm 1 Determination of a q-holonomic differential equation for a q-holonomic func-
tion 0 6≡ f(x) ∈ Hq from its q-derivatives (qHolonomicDE)

Input : a q-holonomic function 0 6≡ f(x) ∈ Hq
Output : a q-holonomic differential equation for f(x) of minimal order
begin1

n← 1, done← false2

repeat3

DE ← Dn
q F (x) +

Pn−1
j=0 Aj(x)Dj

qF (x) = 04

ansatz ← Dn
q f(x) +

Pn−1
j=0 Aj(x)Dj

qf(x)5

Decompose ansatz in a sum of linearly independent terms over F(x).6

Consider the coefficients of linearly independent terms and set them zero.7

Solve the resulting linear equation system with n unknowns A0(x), . . . , An−1(x)8

over F(x).
if a nontrivial solution exists then9

Substitute the solution in DE and multiply with10

lcm(denom(A0(x)), . . . , denom(An−1(x))).
return the q-holonomic differential equation11

else12

n← n+ 113

end14

until done15

end16

Proof. Throughout the algorithm we deal with q-differential equations which are monic
and have rational coefficients Aj(x) ∈ F (x). In order to get q-holonomic differential
equations, we have to multiply the q-differential equation by a common denominator of
the coefficients in line 10. The minimality of order is guaranteed by iterating over the
order beginning with order 1. Basically, by solving the linear equation system of line
8, we get the (up to a constant factor) uniquely determined q-differential equation, if
a nontrivial solution exists. The uniqueness is easy to see. If we consider two monic q-
differential equations of the same order, the difference of them is a q-differential equation
of smaller order. However, a q-differential equation of smaller order cannot exist, because
the algorithm would have detected this q-differential equation in the previous step, so
they must be the same. Note, that the repeat until loop will eventually end, because
the input is a q-holonomic function. Therefore a q-holonomic differential equation must
exist, which will be surely found by the algorithm. 2

Example 3. Here, we consider the q-functions f(x) = sinq(x) Sinq(x) and g(x) =
cosq(x) Cosq(x). With the sum algorithm we obtain a q-holonomic differential equa-
tion for f(x) + g(x) of order 3, in contrast to the direct linear algebra approach, which
leads to a q-holonomic differential equation of minimal order 1 (because of the identity
f(x) + g(x) = 1).
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> qDE1:=qProductDE(qHolonomicDE(qsin(x,q),F(x)),
> qHolonomicDE(qSin(x,q),F(x)),F(x)):
> qOrder(qDE1,F(x));

3
> qDE2:=qProductDE(qHolonomicDE(qcos(x,q),F(x)),
> qHolonomicDE(qCos(x,q),F(x)),F(x)):
> qOrder(qDE2,F(x));

3

> qSumDE(qDE1,qDE2,F(x));

(1 + q)
(
q2 + 1

)
Dqx (F (x)) + qx (q − 1) (1 + q)

(
q2 + 1

) (
Dqx,x

)
(F (x))

+
(
q4x2 + 1

)
(q − 1)2

(
Dqx,x,x

)
(F (x)) = 0

> f:=qsin(x,q)*qSin(x,q):
> g:=qcos(x,q)*qCos(x,q):
> qHolonomicDE(f+g,F(x));

Dqx (F (x)) = 0

4. q-Recurrence Equations for q-Series

With the notation of the q-power symbol [Kac and Cheung (2002)]

(x� y)jq = (x− y) · (x− qy) · · · (x− qj−1y)

we introduce two bases of the linear space of polynomials in x over F, the q-power basis

Ba := {(x� a)jq | j ∈ N≥0}

and the q-Pochhammer basis

Ba := {(a� x)jq | j ∈ N≥0}.

If we consider a q-series w.r.t. one of those bases, we call a the expansion point of the
q-series. By setting a = 0, polynomials of the basis Ba reduce to regular powers xj and
if we specify a = 1, polynomials of the basis Ba reduce to the q-Pochhammer symbols
(x; q)j , explaining their names.

Now, we formulate a generalized Taylor theorem ([Kac and Cheung (2002)],
[Sprenger (2009)]).

Theorem 1. A given function f(x) ∈ Hq can be expressed as

f(x) =
∞∑
j=0

[
Ljf(x)

]
x=a∏j

i=1 λi
P aj (x), (6)

if L is a linear operator with L(1) = 0 and the polynomials P aj (x) of degree j satisfy
(a) P a0 (a) = 1 and P aj (a) = 0 for all j ≥ 1
(b) LP aj (x) = λjP

a
j−1(x) with λj ∈ F for all j ≥ 1.

Proof. Applying L j times to both sides of the equation f(x) =
∑∞
k=0 ckP

a
k (x) leads to

Ljf(x) =
∞∑
k=0

ckL
jP ak (x)

(b)
=
∞∑
j=1

λkckL
j−1P ak−1(x)

(b)
= . . .

(b)
=
∞∑
k=j

λk · · ·λk−j+1ckP
a
k−j(x).
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Finally, by substituting x = a we get

cj =

[
Ljf(x)

]
x=a

λj · · ·λj−j+1P a0 (a)
=

[
Ljf(x)

]
x=a∏j

i=1 λi
. 2

For L = ∂
∂x and λj = j we obtain P aj (x) = (x − a)j and therefore the standard Taylor

formula. Now we consider the q-case, which will lead us to the q-Taylor theorem. Clearly,
elements of Ba and Ba fulfill property (a). If we assign L = Dq and λj = [j]q, then
the polynomials P aj (x) are uniquely determined and we get P aj (x) = (x� a)jq, see also
[Jackson (1909)]. On the other hand, if we take the operator L = Dq−1 and λj = − [j]q,
we get elements of Ba, once again in a unique way. So these bases arise quite naturally.

4.1. From the Series to the Coefficients

Let B = {P aj (x) | j ∈ N≥0, a ∈ F} with
(a) degx(P aj (x)) = j for all j ∈ N≥0

(b) P aj (x) | P ak (x) for all 0 ≤ j < k with j, k ∈ N≥0.
According to [Abramov, Petkovšek, and Ryabenko (2000)], we say that B is compatible
with a given linear operator L, if there exist i0, i1 ∈ N≥0 and ai ∈ F(qj) such that

LP aj (x) =
i1∑

i=−i0

ai(qj)εiP aj (x) with P ak (x) = 0, if k < 0, (7)

where ε is the shift operator defined by εj := j + 1. Table 2 lists our polynomial bases
and some of their compatible operators.

HH
HHHL
P aj (x)

(x� a)jq (a� x)jq

x
`
ε + aqj

´
(x� a)jq

“
− 1
qj ε + a

qj

”
(a� x)jq

Dq [j]q ε
−1 (x� a)jq -

εq
`
aqj−1(qj − 1)ε−1 + qj

´
(x� a)jq -

Dq−1 - − [j]q ε
−1 (a� x)jq

εq−1 -
“
a(qj−1)

qj ε−1 + 1
qj

”
(a� x)jq

Table 2. Compatible operators L for polynomial bases B = {P aj (x) | j ∈ N≥0, a ∈ F}

In the following, we assume that f(x) is a q-holonomic function and
∑∞
j=0 cjP

a
j (x) its

representation as a q-series w.r.t. a polynomial basis B = {P aj (x) | j ∈ N≥0, a ∈ F}.
We consider only q-holonomic recurrence equations for f(x), because they are easier to
handle than q-holonomic differential equations, in particular since the product algorithm
is much more efficient because of the linearity of the q-shift operator

εnq (f(x) · g(x)) = εnq f(x) · εnq g(x)

instead of the complicated q-Leibniz rule for the Hahn operator [Koornwinder (1999)]

Dn
q (f(x) · g(x)) =

n∑
k=0

[
n

k

]
q

(
Dn−k
q f

)
(qkx)

(
Dk
q g
)

(x).
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The second step of the q-FPS algorithm converts a given q-holonomic recurrence equa-
tion of f(x) into a q-holonomic recurrence equation for the coefficients cj , e. g.

n∑
k=0

αk(qj)cj+k = 0 with αk ∈ F[qj ].

For this purpose we define, according to [Abramov, Petkovšek, and Ryabenko (2000)], for
a given basis B and its compatible operator L the induced operator of L w.r.t. B, namely
RBL. If (7) holds, then RBL :=

∑i0
i=−i1 a−i(q

j+i)εi. The reason for this definition lies
in the fact that L applied to a q-series gives

L

∞∑
j=0

cjPj(x) :=
∞∑
j=0

cjLPj(x) =
∞∑
j=0

i1∑
i=−i0

ai(qj)cjεiPj(x)

=
∞∑
j=0

i1∑
i=−i0

ai(qj−i)cj−iPj(x) =
∞∑
j=0

i0∑
i=−i1

a−i(qj+i)cj+iPj(x).

In [Abramov, Petkovšek, and Ryabenko (2000)] it is shown that the set of all compatible
operators for a given basis B is an F-algebra, i.e. there exists a simple pattern-matching
algorithm for every q-holonomic equation involving an operator L which is compatible
to B, which efficiently determines the induced equation. This leads to the following
algorithm for computing RBL or the corresponding recurrence equation (RBL) (cj) = 0
respectively.

Algorithm 2 Determination of a q-holonomic recurrence equation for the coefficients of a q-
series (w.r.t. Ba or Ba resp.) from a q-holonomic recurrence equation of a q-series (qREtoRE
with base=qpower or base=qpochhammer resp. and expansionpt=a)

Input : a q-holonomic recurrence equation
Pn
k=0 ak(x)εkqf(x) = 0, a basis B and an

expansion point a
Output : a q-holonomic recurrence equation for cj , where f(x) =

P∞
j=0 cjP

a
j (x)

begin1

RE ←
Pn
k=0 ak(x)εkqf(x) = 02

RE ← expand the left hand side of RE3

Determine βki(cj) = β
(k+i)
ki (cj) for every αkix

iεkqf(x) from RE by induction w.r.t. B4

with formulas (9), which follow from the corresponding entries of Table 2
RE ← Substitute xiεkqf(x) in RE by βki(cj) and multiply with the least common5

multiple of the denominator
RE ← Shift RE such that only positive shifts occur6

return RE7

end8

Proof. Let

Lf(x) :=
n∑
k=0

ak(x)εkqf(x) =
n∑
k=0

mk∑
i=0

αkix
iεkqf(x) = 0 (8)

be the given q-holonomic recurrence equation. Because of compatibility the equations

εqP
a
j (x) =

i1∑
s=−i0

ãs(qj)εsP aj (x)
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and

xP aj (x) =
ĩ1∑

t=−ĩ0

b̃t(qj)εtP aj (x)

with ãs, b̃t ∈ F(qj) are valid. Then after multiplying with cj and summing we obtain

εqf(x) =
∞∑
j=0

i0∑
s=−i1

ã−s(qj+s)cj+sP aj (x)

and

x f(x) =
∞∑
j=0

ĩ0∑
t=−ĩ1

b̃−t(qj+t)cj+tP aj (x).

We define the following recurrence

β
(l)
ki (cj) :=

i0X
s=−i1

ã−s(q
j+s)εsβ

(l−1)
ki (cj) for l = 1, . . . , k,

β
(l)
ki (cj) :=

ĩ0X
t=−ĩ1

b̃−t(q
j+t)εtβ

(l−1)
ki (cj) for l = k + 1, . . . , k + i (9)

with initial value β(0)
ki (cj) := cj . Obviously, (8) is equivalent to

∞∑
j=0

n∑
k=0

mk∑
i=0

αkiβki(cj)︸ ︷︷ ︸
⇒(RBL)(cj)=0

P aj (x) = 0

with

βki(cj) := β
(k+i)
ki (cj) =

I1∑
r=−I0

pkir(qj)εrcj ,

pkir ∈ F(qj) and I0, I1 ∈ N≥0. �

Example 4. We continue with Example 2 and determine a recurrence equation for
the coefficients cj of the q-series of cosq(x) sin1/q(x) w.r.t. to B0, i.e. cosq(x) sin1/q(x) =∑∞
j=0 cjx

j .
> RE:=qREtoRE(qRE,F(x),c(j),base=qpower,expansionpt=0);

RE := q2
“

1 + qqj
”“

1 + q2qj
”
c (j) +

`
1 + q2´ “1 + q5`qj´2” c (j + 2)

+
“

1− q4qj
”“

1− q3qj
”
c (j + 4) = 0

4.2. From the Coefficients to the Series

Analogously to (7), we can define compatibility as

LPj(x) =
i1∑

i=−i0

ai(x)εiqPj(x) with Pk(x) = 0, if k < 0

with i0, i1 ∈ N≥0 and ai ∈ F(x). Then we use the identities of Table 3 and get an inverse
algorithm of Algorithm 2, which uses a similar recurrence as (9).
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H
HHHHL
P aj (x)

(x� a)jq (a� x)jq

qj 1
qx−aεqε (x� a)jq

`
x−a
x
εq + a

x

´
(a� x)jq

ε−1
“

a
(qx−a)x

εq + 1
x

”
(x� a)jq

q
qa−xε

−1
q (a� x)jq

Table 3. Compatible operators L for polynomial bases B = {P aj (x) | j ∈ N≥0, a ∈ F}

In case of the q-power basis, however, there is no pure compatibility, because of the
occurring shift operator ε in Table 3, so the algorithm needs to be slightly adapted. In
this case, for i, k ∈ N0, we have

∞X
j=0

“
qj
”i

(εkcj) (x� a)jq =

∞X
j=−1

“
qj
”i−1

(εkcj) q
j (x� a)jq

=

∞X
j=−1

“
qj
”i−1

(εkcj)
1

qx− aεqε (x� a)jq

=
q−(i−1)

qx− a εq
∞X
j=0

“
qj
”i−1

(εk−1cj) (x� a)jq

= . . . (iterating w.r.t. i)

= (−1)i
q−(i

2)

(a� qx)iq
εiq

∞X
j=0

(εk−icj) (x� a)jq . (10)

Roughly speaking, we first eliminate all powers
(
qj
)i in the corresponding operator of

the given recurrence equation
n∑
k=0

mk∑
i=0

αki(qj)iεkcj = 0 (αki ∈ F) (11)

with the help of equation (10). In order to get only nonnegative shifts we require that
k − i ∈ N0 for i, k ∈ N0. This can be achieved by shifting the expanded recurrence
equation (11) by j → j −min{k −mk ∈ −N0 | k = 0, . . . , n}. The positive shifts, which
are left, will be eliminated with the corresponding entry of Table 3, similar to Algorithm
2 (for details see [Sprenger (2009)]). With these modifications we can now determine a
q-holonomic recurrence equation for the series, given a q-holonomic recurrence for the
coefficients cj . In fact, for a = 0 this algorithm is the inverse function of Algorithm 2.

We apply this algorithm to the generalized q-hypergeometric function rφs and are now
able to determine a q-holonomic recurrence equation for those rφs, which can be written
as q-series w.r.t. Ba or Ba in a simple way. First of all, we check if the given rφs can be
represented as q-series w.r.t. one of the bases or not by analyzing the upper and lower
parameters and the argument of rφs. If it can be represented as q-series w.r.t. Ba or Ba,
we determine the underlying basis and the expansion point. Secondly, we can get the cor-
responding q-holonomic recurrence of first order for the coefficients from the term ratio
cj+1/cj and then apply Algorithm 2 properly to our recurrence equation. In detail, this
yields the following simple algorithm, which only uses rewriting techniques for the deter-
mination of the q-holonomic recurrence equation. If the algorithm fails, there could be
nevertheless a q-holonomic recurrence equation for rφs (but only for q-series which are no
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q-series w.r.t. Ba or Ba). In order to deduce a q-holonomic recurrence for the generalized
q-hypergeometric function in general, the q-Zeilberger algorithm ([Koornwinder (1993)],
[Böing and Koepf (1999)]) should be preferred, which is much more powerful.

Algorithm 3 Determination of a q-holonomic recurrence equation for the generalized q-
hypergeometric function rφs (qHolonomicRE for qphihypergeom)

Input : a generalized q-hypergeometric function rφs(a,b | q;X)
Output : a q-holonomic recurrence equation for rφs
begin1

switch rφs(a,b | q;X) do2

case x is in numerator of argument X and none of upper parameters a contains x3

cj ←
(a;q)j

(b;q)j

Xj

(q;q)j

“
(−1)jq(

j
2)
”1+s−r

1
xj , basis← B0

4

end5

case x is in numerator of argument X and denominator of one upper parameter a6

contains x

cj ←
(a;q)j

(b;q)j

Xj

(q;q)j

“
(−1)jq(

j
2)
”1+s−r

1
xj (a; q)−1

j , basis← Bax
7

end8

case x is not in argument X and numerator of one upper parameter a contains x9

cj ←
(a;q)j

(b;q)j

Xj

(q;q)j

“
(−1)jq(

j
2)
”1+s−r `

a
x

´j
(a; q)−1

j , basis← B x
a10

end11

otherwise12

return ”No q-holonomic recurrence equation could be found.”13

end14

end15

RE ← Construct the q-holonomic recurrence equation for cj of order 1 out of the term16

ratio cj+1/cj

RE ← Convert RE in a q-holonomic recurrence for the q-series w.r.t. basis with the17

inverse algorithm of Algorithm 2
return RE18

end19

Proof. The equations

xj
(a
x

; q
)
j

= (x� a)jq and (ax; q)j = aj
(

1
a
� x

)j
q

were applied (the latter for a 6= 0), in order to detect which basis to use in the represen-
tation of rφs as a q-series. �

With Algorithm 3, we can determine particularly q-holonomic recurrence equations for all
classical q-orthogonal polynomials of the q-Hahn class directly from their representation
as generalized q-hypergeometric function. Any classical q-orthogonal polynomial can be
represented as a q-hypergeometric series w.r.t. at least one of the bases Ba or Ba and
therefore Algorithm 3 leads definitely to the desired recurrence equation.

For the generalized q-hypergeometric function, which is a q-series w.r.t. the trivial
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basis B0 = {xj | j ∈ N≥0}, we can state its recurrence equation explicitly as(
(−1)s+1qr−mxε1+s−mq

( r∏
i=1

(1− aiεq)
)

+ (−1)r(εq − 1)εr−mq

( s∏
i=1

(1− q−1biεq)
))

f(x) = 0,

where m = min(r, s + 1). Obviously, the order of this recurrence is max(r, s + 1). One
can prove the q-holonomic recurrence equation directly out of the recurrence equation
for the coefficients cj of the generalized q-hypergeometric function

(1− qj)
s∏
i=1

(1− biqj)cj+1 − (−qk)1+s−r
r∏
i=1

(1− aiqj)xcj = 0

by multiplying xj , applying the rules of Table 3 and summing w.r.t. j, similar to the
proof of Theorem 2.1 in [Koepf (1992)].

5. q-Hypergeometric Solutions of q-Recurrence Equations

The third step of the q-FPS algorithm is to determine all q-hypergeometric solu-
tions of the q-holonomic recurrence equation. For this purpose we use the most effi-
cient algorithm by Horn [Horn (2008)] which is based on the q-Petkovšek algorithm
[Abramov, Paule, and Petkovšek (1998)]. In the difference case by far the fastest algo-
rithm known is van Hoeij’s algorithm [van Hoeij (1998)], [Cluzeau and van Hoeij (2005)].
However, a q-analogue [Horn (2008)] of this version turns out to be (in most cases) not
as efficient as Horn’s variant of q-Petkovšek’s algorithm. In this modified version of the
q-Petkovšek algorithm the q-Newton polygon and its characteristic equations are used to
reduce the numbers of possible solutions significantly.

Example 5. Continuing with Example 4, we determine all q-hypergeometric solutions
of the recurrence equation of fourth order with the modified q-Petkovšek algorithm and
obtain the linear combination 3

> qHypergeomSolveRE(RE,c(j));

A1i
j + (−1)j A2i

j

+
1

2
A3

ij
`
1 + qj

´
qpochhammer (−1, q, j)

qpochhammer (q, q, j)

+ (−1)j
1

2
A4

ij
`
1 + qj

´
qpochhammer (−1, q, j)

qpochhammer (q, q, j)

This part, together with the second part of the q-FPS algorithm which we described
in the previous section, can be regarded as a kind of an inverse q-Zeilberger algorithm
[Koornwinder (1993)], [Böing and Koepf (1999)]. Given a q-hypergeometric term F (n, k)
in n and k with finite support (i.e. F (ñ, k̃) 6= 0 only for finitely many (ñ, k̃) ∈ Z2), the q-
Zeilberger algorithm determines a q-holonomic recurrence equation for Sn :=

∑
k F (n, k).

3 one can use the classical q-Petkovšek algorithm by specifying the option method=qPetkovsek

and the q-van Hoeij algorithm by method=qVanHoeij to qHypergeomSolveRE. The default option is

method=modqPetkovsek.
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If Sn is given by its recurrence equation or as a q-holonomic function and it can be
represented as q-hypergeometric series w.r.t. one of our bases, the q-FPS algorithm surely
calculates a sum representation and therefore a summand F (n, k). The initial values can
be computed by the method described in the forthcoming section.

6. The q-FPS Algorithm

We sum up the three algorithms of the above sections and give an overview of the basic
q-FPS algorithm.

Algorithm 4 Determination of a (linear combination of) q-hypergeometric series (w.r.t.
Ba or Ba resp.) for a q-holonomic function ( c̀onvert/qFPS` with base=qpower or
base=qpochhammer resp. and expansionpt=a)

Input : a q-holonomic function f(x) ∈ Hq, a basis B and an expansion point a
Output : a (linear combination of) q-hypergeometric series

P∞
j=0 cjP

a
j (x) for f(x)

begin1

qRE ← Determine a q-holonomic recurrence equation for f(x) with Algorithm 1 (for2

recurrence equations)
RE ← Convert qRE in a q-holonomic recurrence equation for cj w.r.t. B and3

expansion point a with Algorithm 2
Determine all m-fold q-hypergeometric solutions of RE (if RE is of q-hypergeometric4

type) or (if this fails) all q-hypergeometric solutions of RE with the modified q-
Petkovšek algorithm
Determine with sufficiently many initial values (out of the q-Taylor theorem) the q-5

series with the above solutions
return the resulting (linear combination of) q-hypergeometric series6

end7

In the fourth line we first try to find m-fold q-hypergeometric solutions, if the recurrence
is of q-hypergeometric type, i.e. the recurrence equation can be written as

am(qj)cj+m + a0(qj)cj = 0 or
cj+m
cj

= − a0(qj)
am(qj)

.

From the q-Taylor theorem we know that

cj =

[
Ljf(x)

]
x=a∏j

i=1 λi
with λi =

LP ai (x)
P ai−1(x)

. (12)

Inductively we determine the m solutions

cmj , cmj+1, . . . , cmj+m−1

by using sufficiently many initial values, which we get from (12). Thus, we obtain the
following representation for f(x)

f(x) =
∞∑
j=0

cmjP
a
mj(x) +

∞∑
j=0

cmj+1P
a
mj+1(x) + · · ·+

∞∑
j=0

cmj+m−1P
a
mj+m−1(x).
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If there are no m-fold q-hypergeometric solutions, we try to find q-hypergeometric solu-
tions via the modified q-Petkovšek algorithm. Let{

c
(1)
j , c

(2)
j , . . . , c

(l)
j

}
be a basis of q-hypergeometric solutions of the q-holonomic recurrence for the coefficients
cj with order n and l ≤ n. Then we set up a linear equation system in the unknowns
tk ∈ F with the help of n initial values (from the q-Taylor theorem)

l∑
k=1

tkc
(k)
r =

[Lrf(x)]x=a∏r
i=1 λi

with r = 0, . . . , n− 1

and we try to solve it. If a solution exists, we get the q-series expansion

f(x) =
∞∑
j=0

(
l∑

k=1

tkc
(k)
j

)
P aj (x) =

l∑
k=1

tk

 ∞∑
j=0

c
(k)
j P aj (x)

 ,

which in general is not q-hypergeometric, but a linear combination of q-hypergeometric
series. This method requires that the initial values are defined for r = 0, . . . , n − 1 and
that there exists at least one nonvanishing initial value. We achieve this by the following
strategy. We directly determine an index i, such that cj is defined for all j ≥ i from the
recurrence equation. Let

Lcj :=
n∑
k=0

ak(qj)εkcj = 0

be given with ak ∈ F[qj ] and cj a q-hypergeometric solution. Furthermore, let

r(qj) :=
cj+1

cj
=
s(qj)
t(qj)

with s, t ∈ F[qj ]

be the q-certificate of cj with gcd(s(qj), t(qj)) = 1. This is equivalent to the fact, that the
operator L has a right factor t(qj)ε − s(qj). Let L̃ :=

∑n−1
k=0 bk(qj)εk be the appropriate

operator, such that L = L̃ · (t(qj)ε − s(qj)) is valid. By expanding we get

L = bn−1(qj)εn−1(t(qj))︸ ︷︷ ︸
an(qj)

εn + · · ·+
(
−b0(qj)s(qj)

)︸ ︷︷ ︸
a0(qj)

.

Hence, it follows that

s(qj) | a0(qj) and t(qj) | an(qj−n+1).

Let M := {k ∈ N≥0 | qk is a zero of a0(qj)an(qj−n+1)}. Obviously, M contains all
k ∈ N≥0, for which r(qj) has zeros and poles of the form qk. Therefore we have i =
1 + max (M ∪{−1}). For this reason, we consider r̃(qj) := r(qj+i) and get a q-certificate
of a q-hypergeometric term c̃j , which is defined for all j ≥ 0.

Example 6. First, we determine the corresponding q-series for the function
cosq(x) sin1/q(x) used in the previous examples. Then we show, how one can easily de-
termine further q-series representations of q-holonomic functions by a single function
call using qFPS. If no basis and no expansion point is specified in c̀onvert/qFPS`
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(implementation of the q-FPS algorithm in qFPS), then the options base=qpower and
expansionpt=0 are chosen 4 .
> convert(qcos(x,q)*qsin(x,1/q),qFPS);

∞X
k=0

1

4

(−1)k
`
2 (q; q)2k+1 −

`
1 + q2 k+1

´
(−1; q)2k+1

´
x2 k+1

(q; q)2k+1

By simplification we obtain the following q-series expansion of cosq(x) sin1/q(x) w.r.t. B0

1
2

∞∑
k=0

(−1)k
(q; q)2k+1 − (−q; q)2k+1

(q; q)2k+1

x2k+1.

Sums with finite support (n ∈ N0)

> PS:=convert(x^n,qFPS,x,expansionpt=1);

PS :=

∞X
k=0

(−1)k q
1/2 k(2n−k+1)

`
q−n; q

´
k

(x� 1)kq
(q; q)k

> convert(PS,qbinomial);
∞X
k=0

qbinomial (n, k, q) (x� 1)kq

> convert(qLaguerre(n,alpha,x,q),qFPS,x,base=qpochhammer,expansionpt=-1);

∞X
k=0

(−1)k qk(n+α+1)
`
q−n; q

´
k

(−1 � x)kq
(q; q)n (q; q)k

q-Hypergeometric series

> convert(qexp(x,q),qFPS,base=qpochhammer,expansionpt=a,var=1/q);

∞X
k=0

qexp (a, q) q−k (a� x)kq−1

(q−1; q−1)k

> convert(qsin(x,q)+qSin(x,1/q),qFPS);
∞X
k=0

−
(−1)k x2 k+1

`
q2 k+1 − 1

´
(q; q)2 k+1

Linear combinations of q-hypergeometric series

> convert(qsin(x,q),qFPS,expansionpt=a);

∞X
k=0

(−1)k qsin (a, q) (x� a)2k
q

(q; q)2k

+

∞X
k=0

(−1)k qcos (a, q) (x� a)2k+1
q

(q; q)2k+1

> convert(sinq(x,q)*qExp(x,q),qFPS);
∞X
k=0

1

2
i

e
1/2ikπ

qfactorial (k, q)

„
(−1)k

„
i

q − 1
; q

«
k

−
„
−i
q − 1

; q

«
k

«
xk

> convert((a*x+b)*qcos(x,q)+(c*x+d)*qsin(x,q),qFPS,x);
∞X
k=0

(−1)k
`
d+ a− aq2 k+1

´
x2 k+1

(q; q)2k+1

+
∞X
k=0

(−1)k
`
b− c+ cq2 k

´
x2 k

(q; q)2k

4 For the sake of readability, we use the short notation for q-Pochhammer symbols (a; q)k and q-powers

(a � b)kq instead of the long Maple versions qpochhammer(a,q,k) and qpower(a,b,q,k).
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7. The Maple Package qFPS

The main procedures of qFPS are qshift, qdiff, qHolonomicRE, qHolonomicDE,
qHypergeomSolveRE, the conversion procedures qREtoRE and REtoqRE, and the most
important procedure c̀onvert/qFPS`, which we have seen in examples before. The pro-
cedures for the q-holonomic algebra are qSumRE, qProductRE and qCompositionRE. For
all those procedures corresponding DE-variants are available. The existing q-functions are
listed in Table 4. For every q-function q-shift and q-derivative rules and function values
at specific points are available. Additionally, for every family of classical q-orthogonal
polynomials a three-term recurrence equation is stored for the usage in qHolonomicRE.
The generalized q-hypergeometric function

rφs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣ q;x)
can be invoked by the command qphihypergeom([a1,...,ar],[b1,...,bs],x,q).

One can extend this family of constituting functions via the procedures addqshift,
addqiff, addqrec (see the accompanying demo worksheet).

8. Applications of the q-FPS Algorithm

In this section we present several algorithmic proofs. The main idea of these types of
proofs go back to [Zeilberger (1990)]. With the q-FPS algorithm, we are now able to
deduce or verify easily and automatically special function identities like summation for-
mulas [Gasper and Rahman (1990)], [Koekoek and Swarttouw (1998)], e.g.(

c
b ; q
)
n

(c; q)n
bn = 2φ1

(
q−n, b

c

∣∣∣∣ q; q) , (13)

transformation formulas [Gasper and Rahman (1990)],
[Koekoek and Swarttouw (1998)], e.g. Jackson’s formula(

q
b ; q
)
∞(

q
b q
−n; q

)
∞

2φ1

(
q−n, ca
c

∣∣∣∣ q; aqb
)

= 3φ2

(
q−n, a, 0
b, c

∣∣∣∣ q; q) ,
q-hypergeometric series representations of Taylor coefficients of generating functions
[Koepf (2003)], e.g.

1
(t; q)∞

1φ1

(
−x
0

∣∣∣∣ q; qα+1t

)
=
∞∑
n=0

L(α)
n (x; q) tn,

simple identities like
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q-function Maple call

(x � a)kq qpower(x,a,q,k)

(x � a)∞q qpower(x,a,q,infinity)

(x; q)k qpochhammer(x,q,k)

(x; q)∞ qpochhammer(x,q,infinity)

expq(x) / eq(x) qexp(x,q) / expq(x,q)

Expq(x) / Eq(x) qExp(x,q) / Expq(x,q)

sinq(x) / sq(x) qsin(x,q) / sinq(x,q)

Sinq(x) / Sq(x) qSin(x,q) / Sinq(x,q)

cosq(x) / cq(x) qcos(x,q) / cosq(x,q)

Cosq(x) / Cq(x) qCos(x,q) / Cosq(x,q)

U
(a)
n (x; q) AlSalamCarlitzI(n,a,x,q)

V
(a)
n (x; q) AlSalamCarlitzII(n,a,x,q)

Cn (x; a; q) qCharlier(n,a,x,q)

Kn (x; a; q) AlternativeqCharlier(n,a,x,q)

hn (x; q) DiscreteqHermiteI(n,x,q)

h̃n (x; q) DiscreteqHermiteII(n,x,q)

pn (x; a, b|q) LittleqJacobi(n,a,b,x,q)

Pn (x; a, b, c; q) BigqJacobi(n,a,b,c,x,q)

pn (x|q) LittleqLegendre(n,x,q)

Pn (x; c; q) BigqLegendre(n,c,x,q)

pn (x; a|q) LittleqLaguerre(n,a,x,q)

Pn (x; a, b; q) BigqLaguerre(n,a,b,x,q)

L
(α)
n (x; q) qLaguerre(n,alpha,x,q)

Sn (x; q) StieltjesWigert(n,x,q)

Qn (x; a, b; N |q) qHahn(n,a,b,N,x,q)

Mn (x; b, c; q) qMeixner(n,b,c,x,q)

Kn (x; p, N ; q) qKrawtchouk(n,p,N,x,q)

Kaff
n (x; p, N ; q) AffineqKrawtchouk(n,p,N,x,q)

Kqtm
n (x; p, N ; q) QuantumKrawtchouk(n,p,N,x,q)

Table 4. q-Functions and their names and arguments in qFPS

expq(x) = eq

„
x

1− q

«
=

1

(x; q)∞
= 1φ0

„
0

−

˛̨̨̨
q;x

«
=

∞X
j=0

xk

(q; q)k

= expq(a) 1φ0

„
a
x

−

˛̨̨̨
q;x

«
= expq(a) 1φ1

 
a
x
a
q

˛̨̨̨
˛ 1

q
;
x

q

!

= expq(a) 2φ1

„ x
a
, 0
q
a

˛̨̨̨
q; q

«
= expq(a) 1φ0

„
x
a

−

˛̨̨̨
1

q
;
a

q

«
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or the q-addition theorems

sinq(x) Sinq(x) + cosq(x) Cosq(x) = 1

and
sinq(x) Cosq(x)− Sinq(x) cosq(x) = 0.

All these deductions are easily done from left to right with qFPS and presented in detail in
[Sprenger (2009)] or in the Maple worksheet accompanying this paper (to be downloaded
from http://www.mathematik.uni-kassel.de/~koepf/Publikationen).

In the following example we use a qFPS procedure called c̀onvert/qphihypergeom`,
which converts a q-hypergeometric series

∑
j cjP

a
j (x) in its representation as generalized

q-hypergeometric function. This is done (roughly) by factorizing numerator and denom-
inator of cj+1P

a
j+1(x)/cjP

a
j (x) and reading off parameters (every linear factor representing

one q-Pochhammer symbol).

Example 7. We deduce the q-Chu-Vandermonde identity (13) exemplarily.
> term:=qpochhammer(c/b,q,n)/qpochhammer(c,q,n)*b^n;

term :=

`
c
b
; q
´
n

(c; q)n
bn

> PS:=convert(term,qFPS,b,base=qpochhammer,expansionpt=1);

PS :=

∞X
k=0

`
q−n; q

´
k

(b; q)k
(q; q)k (c; q)k

qk

> convert(PS,qphihypergeom);

qphihypergeom
`
[q−n, b], [c], q, q

´
9. Remarks

This article is a condensed version of the PhD thesis [Sprenger (2009)]. The Maple pack-
age qFPS.mpl together with some example files can be downloaded from the author’s
web site http://www.mathematik.uni-kassel.de/~koepf/Publikationen .
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