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Abstract

By studying various properties of some divided difference operators, we prove that
Wilson polynomials are solutions of a second order difference equation of hypergeo-
metric type. Next, some new structure relations are deduced, the inversion and the
connection problems are solved using an algorithmic method.
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We define the difference operator D (see [1, 2, 3, 4]) and its companion operator S as
follows:

D f (x) =
f (x + i

2 )− f (x− i
2 )

2ix
S f (x) =

f (x + i
2 ) + f (x− i

2 )

2
.

The operator D transforms a polynomial of degree n (n ≥ 1) in x2 into a polynomial of
degree n− 1 in x2 and a polynomial of degree 0 into the zero polynomial. The operator
S transforms a polynomial of degree n in x2 into a polynomial of degree n in x2. We
introduce the basis ϑn(a, x) = (a− ix, a + ix)n.
Here, the symbol (a)n denotes the so-called Pochhammer symbol which is defined by

(a)m =

1 if m = 0

a(a + 1) . . . (a + m− 1) if m = 1, 2, . . .

and (a1, a2, . . . , ap)n = (a1)n(a2)n · · · (ap)n.
By studying various properties of D and S, we prove, following previous works ([5, 6, 7]),
that the Wilson polynomials defined in this paper by (2) (and the Continuous Dual Hahn
polynomials as special case of Wilson polynomials defined by (3)) are solutions of the
divided difference equation

φ(x2)D2y(x2) + ψ(x2)SDy(x2) + λy(x2) = 0, (1)

where φ and ψ are polynomials of degree 2 and 1, respectively, and λ is a constant de-
pending on the degree of the polynomial solution and the four parameters a, b, c and d
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and are given in (19)-(21). Here, it should be mentioned that the Wilson and Continuous
Dual Hahn polynomials are defined respectively as (see [8]):

Wn(x2; a, b, c, d)
(a + b, a + c, a + d)n

= 4F3

−n, n + a + b + c + d− 1, a + ix, a− ix

a + b, a + c, a + d

∣∣∣∣∣∣ 1

, (2)

Sn(x2; a, b, c)
(a + b, a + c)n

= 3F2

−n, a− ix, a + ix

a + b, a + c

∣∣∣∣∣∣ 1

. (3)

As consequences of (1), we derive the three-term recurrence relation and the first
structure relation. Next, inversion and connection problems are solved for those families.
It should be noted that the connection problem is the problem of finding the coefficients
Cm(n) in the expansion

Pn(x) =
n

∑
m=0

Cm(n)Qm(x).

Note that, in this setting, the polynomials Pn and Qm may belong to two different polyno-
mial families. If Pn(x) = Vn(x) (where Vn(x) appears in the expansion

Qn(x) =
n
∑

m=0
Bm(n)Vm(x) ), we are faced with the so-called inversion problem for the

family Qm(x).
The paper is organized as follows:

1. In Section 2, we present some identities for the operators D and S and the basis
ϑn(a, x). Next, using these identities, we state the second order divided difference
equation satisfied by the Wilson polynomials. Also we recover the coefficients of
the three-term recurrence and give some structural relations for the Wilson polyno-
mials. Similar results are deduced for the Continuous Dual Hahn polynomials by a
limiting process.

2. In Section 3, we prove by solving the divided difference equation stated in Section
2, using the algorithm described in [9, 10], that we can obtain the hypergeometric
representation of the Wilson polynomials. This clarifies that the Wilson polynomi-
als can also be defined by this divided difference equation. Next, by an algorithmic
method, we solve the inversion and the connection problems for the Wilson and
the Continuous Dual Hahn polynomials. Note that some results of this section can
also be obtained by limit considerations. However, we present here a selfcontained
method to obtain these formulas.

To the best of our knowledge, the identities (7)-(11), (18), (26), (29), (31), (39), (42) appear
here for the first time. The other formulas are already given in the literature and are
proved here using an algorithmic method.

1 Difference equation and structure relations

In order to establish the divided difference equation satisfied by the Wilson polynomials,
we state the following results.
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1.1 Some miscellaneous results

Proposition 1. The basis ϑn(a, x) fulfills the following relations

x2ϑn(a, x) = ϑn+1(a, x) + ν(a, n)ϑn(a, x), (4)
ϑ1(a, x)ϑn(a + 1, x) = ϑn+1(a, x), (5)

ϑ1(a, x)ϑn(a, x) = ϑn+1(a, x) + µ(a, n)ϑn(a, x), (6)

Dϑn(a, x) = nϑn−1

(
a +

1
2

, x
)

, (7)

D`ϑn(a, x) =
n!

(n− l)!
ϑn−`

(
a +

`

2
, x
)

, 0 ≤ ` ≤ n; (8)

ϑ1(a, x) D2ϑn(a, x) = δ(n)ϑn−1(a, x), (9)

Sϑn(a, x) = ϑn(a +
1
2

, x) + ε0(a, n)ϑn−1(a +
1
2

, x), (10)

ϑ1(a, x)SDϑn(a, x) = nϑn(a, x) + ε1(a, n)ϑn−1(a, x) (11)

where δ(n) = n(n − 1), ε0(a, n) = −n
(
n + a− 1

2

)
, ν(a, n) = −(a + n)2,

µ(a, n) = −(n2 + 2an), ε1(a, n) = −n(n− 1)(n + a− 1).

Proof. The proof is obtained by direct computation.

Proposition 2. The operators D and S satisfy the following product rules

D( f g) = D f Sg + S f Dg, (12)
S( f g) =−x2D f Dg + S f Sg, (13)

DS = SD− 1
2

D2, (14)

S2 =−x2D2−1
2

SD + I, (15)

where I f = f .

Proof. By using the definition of the operators D and S, the proof follows.

Proposition 3. The following relation is valid

DWn(x2;a, b, c, d) = −n(n + a + b + c + d− 1)Wn−1

(
x2;a +

1
2

, b +
1
2

, c +
1
2

, d +
1
2

)
. (16)

Proof. Using the relation (7) of Proposition 1 and the fact that
(−n)m+1 = −n(−n+ 1)m, the proof follows. We would like to mention that an equivalent
form of (16) is given in [11] without using the operator D.

Proposition 4 (see [8], P. 187). The following relation is valid.

D[ω(x; a, b, c, d)Wn(x2; a, b, c, d)]

= ω

(
x; a− 1

2
, b− 1

2
, c− 1

2
, d− 1

2

)
Wn+1

(
x2; a− 1

2
, b− 1

2
, c− 1

2
, d− 1

2

)
. (17)

where

ω(x; a, b, c, d) =
f (a, x) f (b, x) f (c, x) f (d, x)

2ixΓ(2ix)Γ(−2ix)

with f (r, x) = Γ(r + ix)Γ(r− ix), for r ∈ {a, b, c, d}.
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1.2 The second order difference equation

Theorem 5. The Wilson polynomials are solutions of the second order difference equation

φ(x2)D2y(x) + ψ(x2)SDy(x) + λny(x) = 0, (18)

where

φ(x2) = x4 − (ab + ac + bc + cd + ad + bd) x2 + abcd, (19)
ψ(x2) = (a + b + c + d)x2 − (acd + bad + bca + bcd) (20)

and
λn = −n(n + a + b + c + d− 1). (21)

Proof. First combine (16) and (17) to get the relation

D
[

ω

(
x; a +

1
2

, b +
1
2

, c +
1
2

, d +
1
2

)
DWn(x2; a, b, c, d)

]
=−n(n + a + b + c + d− 1)D

[
ω

(
x; a +

1
2

, b +
1
2

, c +
1
2

, d +
1
2

)
×Wn−1

(
x2; a +

1
2

, b +
1
2

, c +
1
2

, d +
1
2

)]
=−n(n + a + b + c + d− 1)ω(x; a, b, c, d)Wn(x2; a, b, c, d).

Next, use the property (12) to write the left-hand side as

D
[

ω

(
x; a +

1
2

, b +
1
2

, c +
1
2

, d +
1
2

)
DWn(x2; a, b, c, d)

]
= Sω

(
x; a +

1
2

, b +
1
2

, c +
1
2

, d +
1
2

)
D2Wn(x2; a, b, c, d)

+Dω

(
x; a +

1
2

, b +
1
2

, c +
1
2

, d +
1
2

)
SDWn(x2; a, b, c, d)

=−n(n + a + b + c + d− 1)ω(x; a, b, c, d)Wn(x2; a, b, c, d).

Since

Sω
(

x; a + 1
2 , b + 1

2 , c + 1
2 , d + 1

2

)
ω(x; a, b, c, d)

= −φ(x2), and
Dω

(
x; a + 1

2 , b + 1
2 , c + 1

2 , d + 1
2

)
ω(x; a, b, c, d)

= −ψ(x2),

we have proved (18).

Remark 6. It should be noted that (18) is equivalent to the well-known difference equation (see
[8], page 187)

n(n + a + b + c + d− 1)y(x) = B(x)y(x + i)− [B(x) + D(x)]y(x) + D(x)y(x− i),

where
y(x) = Wn(x2; a, b, c, d)

and 
B(x) =

(a− ix)(b− ix)(c− ix)(d− ix)
2ix(2ix− 1)

D(x) =
(a + ix)(b + ix)(c + ix)(d + ix)

2ix(2ix + 1)
The form (18) is closer to the second order differential equation satisfied by the classical con-

tinuous orthogonal polynomials. Therefore, following similar methods to the classical case many
interesting structure relations for the Wilson polynomials are recovered.
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1.3 Three-term recurrence relation

In order to recover the three-term recurrence relation satisfied by the Wilson polynomials,
we adapt the algorithm given in [10]. For this purpose, we expand Pn(x) (where Pn(x) =
Wn(x2; a, b, c, d)) in the basis ϑn(a, x) as:

Pn(x) = knϑn(a, x) + k′nϑn−1(a, x) + k′′nϑn−2(a, x) + . . . . (22)

and then we substitute it in the difference equation (1). Next we multiply the obtained
equation by ϑ1(a, x) and use Proposition 1.
Equating the coefficients of ϑn+1(a, x) gives

λn = −ψ1n− φ2n (n− 1) = −n(n + a + b + c + d− 1).

Equating the coefficients of ϑn(a, x) gives

k′n =−
knn (n− 1 + a + d) (n− 1 + a + c) (n− 1 + a + b)

2 n− 2 + d + c + b + a
(23)

and equating the coefficients of ϑn−1(a, x) gives

k′′n = knn (n− 1) (n− 1 + a + d) (n− 2 + a + d) (24)

× (n− 1 + a + c) (n + a + c− 2) (n− 1 + a + b) (n− 2 + a + b)
2 (2 n− 2 + d + c + b + a) (2 n− 3 + d + c + b + a)

Proposition 7. The Wilson polynomials satisfy the three-term recurrence relation

−ϑ1(a, x)Wn(x2; a, b, c, d)
= anWn+1(x2; a, b, c, d) + bnWn(x2; a, b, c, d) + cnWn−1(x2; a, b, c, d), (25)

with

an =
kn

kn+1

bn =
(

a4 + 6 n2a2 + 4 an3 − 5 n2d− 5 n2c− 5 n2b + 4 n3d + 4 n3c + 4 n3b

−2 cab− 2 a3 − 2 da2 + 2 da3 + 2 ca3 + 2 ba3 + an + 2 n2d2 + 2 n2c2

+2 n2b2 + 6 ndab + 6 ncab− 4 dbn + 6 n2da + 2 n2 + d2a2 + c2a2 + a2b2

+6 ndcb + 6 ndca + 6 dcn2 + 6 n2ca− 4 cbn + 6 n2ab− 4 dcn + 6 dbn2

+6 cbn2 + 6 nda2 + 6 nca2 + 6 nba2 − 4 n3 + 2 n4 + 4 dcab− 2 dcb− 2 dca
−2 dab− 2 ca2 − 2 ba2 − 5 an2 − 5 na2 + nb + nc + nd + d2cb + d2ca + dc2b
+dc2a + 2 dc2n + 2 d2cn + db2a + d2ba + db2c + 2 db2n + 2 d2bn + 2 d2an
+cb2a + c2ba + 2 cb2n + 2 c2bn + 2 c2an + 2 ab2n− 4 nab− 4 nca− 4 nda

+3 dca2 + 3 da2b + 3 ca2b + 4 na3 − nb2 − nd2 − nc2
)/

(2 n− 2 + d + c + b + a) (2 n + d + c + b + a)

cn =
kn

kn−1

(n− 1 + c + d) (n− 1 + b + d) (n− 1 + b + c)
(2 n− 1 + d + c + b + a)

× (b + d− 2 + c + a + n) n (n− 1 + a + d) (n− 1 + a + c) (n− 1 + a + b)
(2 n− 3 + d + c + b + a) (2 n− 2 + d + c + b + a)2
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Proof. In order to get those coefficients, we substitute the expression of
Wn(x2; a, b, c, d) given by (22) in (25). Next we multiply both sides of the resulting equa-
tion by ϑ1(a, x) and use the relation (6) to get simplifications. Next equating the coeffi-
cients of ϑn+1(a, x), we get an, equating the coefficients of ϑn(a, x) we get bn and equating
the coefficients of ϑn−1(a, x), we get cn.

1.4 Further structure relations

The approaches used to prove Proposition 8, Theorem 9, and Proposition 10 are similar
to those used in [6].

Proposition 8. Let f be a function satisfying (1). Then, the function D f is solution of the
equation

φ(1)(x)D2y(x) + ψ(1)(x)SDy(x) + λ(1)y(x) = 0, (26)

with

φ(1) = Sφ− x2Dψ− 1
2

Sψ, ψ(1) = Dφ + Sφ +
1
2

Dψ, λ(1) = Dψ + λ.

Proof. We apply the operator D to the difference equation (1) and use the relations (12),
(13), (14) and (15) to obtain the result.

A computation shows that

φ(1)(x) = φ
(1)
2 x4 + φ

(1)
1 x2 + φ

(1)
0 , ψ(1)(x) = ψ

(1)
1 x2 + ψ

(1)
0 , λ(1) = λ + ψ1 (27)

with

φ
(1)
2 = φ2, φ

(1)
1 = −3

2
φ2 −

3
2

ψ1 + φ1, φ
(1)
0 = −1

4
φ1 + φ0 +

1
16

φ2 +
1
8

ψ1 −
1
2

ψ0

and
ψ(1) = ψ1 + 2 φ2, ψ

(1)
0 =

1
4

ψ1 −
1
2

φ2 + φ1 + ψ0.

From Proposition 8, we deduce that the equation

−ϑ1(a, x)DW̄n(x; a, b, c, d)
= α?nDW̄n+1(x; a, b, c, d) + β?

nDW̄n(x; a, b, c, d) + γ?
nDW̄n−1(x; a, b, c, d), n ≥ 1 (28)

namely the recurrence relation for DW̄n(x; a, b, c, d) is valid and from (27), it follows that

α?
n = an

(
φ
(1)
2 , φ

(1)
1 , φ

(1)
0 , ψ

(1)
1 , ψ

(1)
0

)
, β?

n = bn

(
φ
(1)
2 , φ

(1)
1 , φ

(1)
0 , ψ

(1)
1 , ψ

(1)
0

)
,

and γ?
n = cn

(
φ
(1)
2 , φ

(1)
1 , φ

(1)
0 , ψ

(1)
1 , ψ

(1)
0

)
.

where αn(φ2, φ1, φ0, ψ1, ψ0), βn(φ2, φ1, φ0, ψ1, ψ0) and γn(φ2, φ1, φ0, ψ1, ψ0) are given by (25).

Theorem 9. Assume that Pn(x) is a solution of (1). Then a structure formula of the type

SPn(x) = α̂nDPn+1(x) + β̂nDPn(x) + γ̂nDPn−1(x) (α̂n, β̂n, γ̂n ∈ R for n ∈N) (29)

is valid for Pn(x). The coefficients α̂n, β̂n and γ̂n are related to the coefficients an, bn and cn of
(32) and the coefficients α?

n, β?
n and γ?

n by

α̂n = α?
n − an, β̂n = β?

n − bn +
1
4

, γ̂n = γ?
n − cn. (30)
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Proof. First we remark that

D(ϑ1(a, x)Pn(x)) = Dϑ1(a, x)SPn +Sϑ1(a, x)DPn(x) = SPn(x)+
(

ϑ1(a, x)− 1
4

)
DPn(x).

Applying D to the recurrence equation (25), we get

−
(

SPn(x) +
(

ϑ1(a, x)− 1
4

)
DPn(x)

)
= anDPn+1(x) + bnDPn + cnDPn−1.

Next we use (28) to obtain the result.

Proposition 10. Let f be a function satisfying (1), and m ≥ 1 an integer, then the function Dm f
is solution of the equation

φ(m)(x)D2y(x) + ψ(m)(x)SDy(x) + λ(m)y(x) = 0, (31)

where φ(m+1) = Sφ(m)− x2Dψ(m)− 1
2 Sψ(m), ψ(m+1) = Dφ(m)+Sφ(m)+ 1

2 Dψ(m), λ(m+1) =

Dψ(m) + λ(m), with φ(0) = φ, ψ(0) = ψ and λ(0) = λ.

Proof. We apply the operator D to the difference equation (1) and use the relations (12),
(13), (14) and (15) to obtain the result.

1.5 Three-term recurrence relation for D2Wn(x2; a, b, c, d)

In order to solve the inversion problem, we will need the following.

Proposition 11. The second-order divided differences of the Wilson polynomials satisfy the fol-
lowing three-term recurrence relation

ϑ1(a, x)D2Wn(x2; a, b, c, d)
= a?nD2Wn+1(x2; a, b, c, d) + b?nD2Wn(x2; a, b, c, d) + c?nD2Wn−1(x2; a, b, c, d), (32)

with

a?n =
n− 1
n + 1

kn

kn+1
,

b?n =
(

an + 2 n2 − 2 cab + a4 − nb2 − nc2 − nd2 − 5 n2d− 5 n2c− 5 n2b + 4 n3d

+4 n3c + 4 n3b + 4 na3 + 6 n2a2 + 4 an3 + 2 ab2n + d2ac + 2 d2an + 2 dc2n
+2 d2cn + 2 c2an + c2bd + c2ba + 2 cb2n + 2 c2bn + c2ad + db2a + d2bc
+d2ba + db2c + 2 db2n + 2 d2bn + cb2a + 6 cbn2 − 4 dbn− 4 dcn + 6 nba2

+6 n2da + 6 n2ca + 6 dbn2 + 6 dcn2 + 6 nca2 + 6 n2ab− 4 cbn + 6 nda2

+2 n2d2 + 2 n2c2 + 2 n2b2 + c2a2 + a2b2 + d2a2 − 2 a3 + 2 a3c + 2 a3d
−2 ba2 − 2 dcb− 2 dca− 2 dab + 4 dcab− 4 nab− 4 nda− 4 nca + 3 dca2

+3 da2b + 3 ca2b− 4 n3 + 2 n4 + 2 a3b + nb + nc + nd− 5 an2 − 5 na2

−2 da2 − 2 ca2 + 6 ndcb + 6 ndca + 6 ndab + 6 ncab
)/

(d + c + b + a + 2 n− 2) (d + c + b + a + 2 n)

c?n =
kn

kn−1

(d + n− 1 + c) (d + b + n− 1) (b + c− 1 + n)
(2 n− 1 + d + c + b + a)

× (−2 + n + d + c + b + a) n (a− 1 + n + d) (a + c− 1 + n) (a + n + b− 1)

(2 n− 3 + d + c + b + a) (2 n− 2 + d + c + b + a)2 .

Proof. Since the Wilson polynomials satisfy the difference equation (26), the three-term
recurrence relation (32) is valid. The coefficients a?n, b?n and c?n can be computed as in
Proposition 7.
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1.6 The Continuous Dual Hahn Polynomials

It is well known that the Continuous Dual Hahn polynomials are special cases of the
Wilson polynomials. More precisely, we have (see [8, P. 199])

Sn(x2; a, b, c) = lim
d→∞

Wn(x2; a, b, c, d)
(a + d)n

. (33)

The divided difference equation and the three-term recurrence relation for the Continu-
ous Dual Hahn polynomials are obtained from the ones of the Wilson polynomials by a
limiting process.

Theorem 12. The Continuous Dual Hahn polynomials are solutions of the second order difference
equation(

−(a + b + c)x2 + abc
)

D2y(x) +
(
x2 − ab− ac− bc

)
SDy(x)− ny(x) = 0. (34)

Proposition 13. The Continuous Dual Hahn polynomials satisfy the three-term recurrence rela-
tion

ϑ1(a, x)Sn(x2; a, b, c) = anSn+1(x2; a, b, c) + bnSn(x2; a, b, c) + cnSn−1(x2; a, b, c), (35)

with

an =
kn

kn+1
,

bn =−n + 2 an + a2 + 2 n2 + cb + ca + ab + 2 nc + 2 nb

cn =
kn

kn−1
n (−1 + c + a + n) (b + a− 1 + n) (−1 + b + n + c) .

Proposition 14. The second-order divided differences of the Continuous Dual Hahn polynomials
satisfy the following three-term recurrence relation

ϑ1(a, x)D2Sn(x2; a, b, c) = a?nD2Sn+1(x2; a, b, c) + b?nD2Sn(x2; a, b, c) + c?nD2Sn−1(x2; a, b, c),

with

a?n =
(n− 1)
n + 1

kn

kn+1

b?n = 1− 2 a− 2 b− 3 n− 2 c + 2 an + a2 + 2 n2 + cb + ca + ab + 2 nc + 2 nb,

c?n =
kn

kn−1
n (−1 + c + a + n) (b + a− 1 + n) (−1 + b + n + c) .

2 Hypergeometric representation, Inversion formula and Con-
nection coefficients

2.1 Hypergeometric Representation

Of course, the hypergeometric representation for the Wilson polynomials is well known
and is given as definition in this paper. Here, we recover this hypergeometric represen-
tation from the divided difference equation algorithmically.
We assume that the solution of (1) is of the form

yn(x) =
n

∑
m=0

Cm(n)ϑm(a, x). (36)
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Theorem 15. Let yn(s) be a polynomial system given by the q-differential equation (1) with
φ(x) = φ2x4 + φ1x2 + φ0 and ψ(x) = ψ1x2 + ψ0 given by (19) and (20). Then, the power series
coefficients Cm(n) given by (36) satisfy the second-order recurrence equation:

(m + 2) (m + 1) (m + 2 a + 1) (a + m + d + 1) (a + m + 1 + c) (1 + m + b + a)Cm+2(n)

−(m + 1)
(
−mnd + a + b + n + m + d + c−mnb + 2 a2 + cab + 6 am2 + 2 bm2

+2 dm2 + 2 cm2 + 5 a2m + 2 m3 + a3 + da2 + 2 bm + 2 cm + 2 dm + an− n2 + 4 am
+2 ab + dcb + dca + dab + 2 da + 2 ca + 4 abm + dcm + dbm + 4 dam + cbm + 4 cam
−mna + nm−mnc−mn2 + ca2 + ba2 − 2 an2 − 2 na2 − nb− nc− nd− 2 nab

−2 nca− 2 nda + 2 m2
)

Cm+1(n) + (m− n) (m− 1 + b + d + c + a + n)Cm(n) = 0.

Hence, the Wilson polynomials have the following hypergeometric representation

Wn(x2; a, b, c, d) = Kn

n

∑
m=0

(−n, n + a + b + c + d− 1)m

m!(a + b, a + c, a + d)m
ϑm(a, x) (37)

= Kn 4F3

−n, n + a + b + c + d− 1, a− ix, a + ix

a + b, a + c, a + d

∣∣∣∣∣∣∣ 1

.

Taking Kn = (a + b, a + c, a + d)n gives the usual form of the Wilson polynomials ([see [8], P.
185]).

Proof. Substitute yn(x) by the expression (36) in the equation (1), then multiply the result-
ing equation by ϑ1(a, x). Next use the relations (4)-(11) for simplification. The desired re-
currence relation follows by equating the coefficients of ϑn(a, x). Next, by Petkovšek-van-
Hoeij’s algorithm ([9], Chapter 9) via the Maple command LREtools[hypergeomsols],
we obtain the coefficient Cm(n) up to a constant factor.

Theorem 16. Let yn(s) be a polynomial system given by the q-differential equation (34), then the
power series coefficients Cm(n) given by (36) satisfy the recurrence equation

2(m + 2)(m + b + c + 1)Cm+2(n) +
(
− 4 m2 + (−4− 4 a + 2 n− 4 c− 4 b)m

+ (2 b + 2 c + 2) n− 2 b− 2− 2 ca− 2 c− 2 a2 − 2 ab− 2 cb
)

Cm+1(n)

+2
(a + m + b) (a + m + c) (m− n)

m + 1
Cm(n) = 0.

Hence, the Continuous Dual Hahn polynomials have the following hypergeometric representation

Sn(x2; a, b, c) = Kn

n

∑
m=0

(−n)m

m!(a + b, a + c)m
ϑm(a, x)

= Kn 3F2

−n, a− ix, a + ix

a + b, a + c

∣∣∣∣∣∣∣ 1

. (38)

Taking Kn = (a+ b, a+ c)n gives the usual form of the Continuous Dual Hahn polynomials ([see
[8], P. 196]).

Remark 17. Note that (38) can be deduced from (37) by a limiting process.
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2.2 Connection and Linearization formulas for (ϑn(a, x))n.

Theorem 18. The basis (ϑn(a, x))n satisfies the following linearization formula

ϑn(a, x)ϑm(a1, x) =
m

∑
k=0

Jn+k(m, n, a, a1)ϑn+k(a, x), m, n ∈N, (39)

with
Jn+k(m, n, a, a1) =

(
m
k

)
(a1 − a− n, a1 + a + n + k)m−k, k = 0, . . . , m.

Proof. We first remark that

ϑn(a, x) =
n−1

∏
j=0

((a + j)2 + x2).

Hence, for x = ξ j(a) = i(a + j), it happens that

ϑn(a, ξ j(a)) = 0, j = 0, 1, . . . , n− 1, and ϑn(a, ξn(a)) 6= 0.

We now expand the product ϑn(a, x)ϑm(a1, x) in the basis ϑk(a, x)

ϑn(a, x)ϑm(a1, x) =
n+m

∑
k=0

Jk(m, n, a, a1)ϑk(a, x). (40)

We get

0 = ϑn(a, ξ0(a))ϑm(a1, ξ0(a))

= J0(m, n, a, a1) +
n+m

∑
k=1

Jk(m, n, a, a1)ϑk(a, ξ0(a)) = J0(m, n, a, a1).

Hence, we can write

ϑn(a, x)ϑm(a1, x) =
n+m

∑
k=1

Jk(m, n, a, a1)ϑk(a, x).

By the same procedure, we get

J1(m, n, a, a1)ϑ1(a, x) = ϑn(a, ξ1(a))ϑm(a1, ξ1(a)) = 0,

and hence we get J1(m, n, a, a1) = 0. Progressively, we prove that

J0(m, n, a, a1) = J1(m, n, a, a1) = · · · = Jj(m, n, a, a1) = 0, j ≤ n− 1.

We can actually write

ϑn(a, x)ϑm(a1, x) =
n+m

∑
k=n

Jk(m, n, a, a1)ϑn+k(a, x) =
m

∑
k=0

Jk(m, n, a, a1)ϑn+k(a, x). (41)

First of all, we have

ϑn(a, ξn(a))ϑm(a1, ξn(a)) = Jn(m, n, a, a1)ϑn(a, ξn(a)),

and hence
Jn(m, n, a, a1) = ϑm(a1, ξn(a)) = (a1 + a + n, a1 − a− n)m.
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Using (41), we can write

ϑm(a1, x) =
m

∑
k=n

Jn+k(m, n, a, a1)
ϑn+k(a, x)
ϑn(a, x)

=
m

∑
k=0

Jn+k(m, n, a, a1)ϑk(a + n, x).

The use of the relation (8) yields

m!
(m− l)!

ϑm−l

(
a1 +

l
2

, x
)
=

m

∑
k=l

Jn+k(m, n, a, a1)
k!

(k− l)!
ϑk−l

(
a + n +

l
2

, x
)

.

Taking k = l and x = ξ0

(
a + n + l

2

)
, it follows that

Jn+l(m, n, a, a1) =

(
m
l

)
ϑm−l

(
a1 +

l
2

, ξ0

(
a + n +

l
2

))
.

The required result follows by an easy simplification.

Corollary 19. The following connection formula between (ϑn(a, x))n and
(ϑm(a1, x))m is valid

ϑm(a, x) =
m

∑
k=0

(
m
k

)
(a− a1, a + a1 + k)m−kϑk(a1, x), m ∈N. (42)

Remark 20. If we take a1 = a, then the formula (39) becomes

ϑm(a, x)ϑn(a, x) =
m

∑
k=0

(
m
k

)
(−n, 2a + n + k)m−kϑn+k(a, x), m, n ∈N. (43)

The case m = 1 gives relation (6).

2.3 Inversion Formula

2.3.1 Structure relation for the basis ϑn(a, x).

Proposition 21. The basis ϑn(a, x) fulfils the following structure relation.

ϑ1(a, x)D2ϑn(a, x) =
n− 1
n + 1

D2ϑn+1(a, x)− (n− 1)(n− 1 + 2a)D2ϑn(a, x). (44)

Proof. From relation (9), we have ϑ1(a, x)D2ϑn+1(a, x) = δ(n + 1)ϑn(a, x). Hence we
deduce

ϑn−1(a, x) =
1

δ(n)
ϑ1(a, x)D2ϑn(a, x), ϑn(a, x) =

1
δ(n + 1)

ϑ1(a, x)D2ϑn+1(a, x).

Finally, the use of the three-term recurrence relation (6) yields the result.

2.3.2 The inversion formula.

Next we find the coefficients Im(n) in the expansion

ϑn(a, x) =
n

∑
m=0

Im(n)ym(x), (45)

where yn(x) is Wn(x2; a, b, c, d) or Sn(x2; a, b, c, d).
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Theorem 22. The following inversion formulas are valid:

ϑn(a, x) =
n

∑
m=0

(
n
m

)
(−1)m(a + b + m, a + c + m, a + d + m)n−m

(a + b + c + d + m− 1)m(a + b + c + d + 2m)n−m
Wm(x2; a, b, c, d) (46)

ϑn(a, x) =
n

∑
m=0

(−1)m
(

n
m

)
(a + b + m, a + c + m)n−mSm(x2; a, b, c). (47)

Proof. Substituting the expression of ϑn(a, x) given by (45) in (6) and in (44), and using
the three-term recurrence relations (32) and (11) we get by an appropriate shift of indices
the following two cross-rules

Im(n + 1) + µ(a, n)Im(n) = am−1 Im−1(n) + bm Im(n) + cm+1 Im+1(n)
δ(n)

δ(n + 1)
Im(n + 1) + µ(a, n− 1)Im(n) = a?m−1 Im−1(n) + b?m Im(n)− c?m+1 Im+1(n).

By linear algebra, we eliminate the term Im(n + 1) and get a pure recurrence equation
with respect to m in Im(n). Next, by Petkovšek-van-Hoeij’s algorithm ([9], Chapter 9)
via the Maple command LREtools[hypergeomsols]. Identification of the coefficient of
ϑn(a, x) on both sides gives the desired constant.

2.4 Connection formulas

In this subsection, we give an explicit formula for the coefficients Dk(n) in the expansion

Pn(x) =
n

∑
k=0

Dk(n)Pk(x),

where Pn(x) = Wn(x2; a, b, c, d) or Pn(x) = Sn(x2; a, b, c), the parameters a, b, c and d may
be different.
First note the following

Pn(x) =
n

∑
m=0

Cm(n)ϑm(a, x) and ϑm(a, x) =
m

∑
k=0

Ik(m)Pk(x).

Combining those two relations we get

Pn(x) =
n

∑
k=0

Dk(n)Pk(x), with Dk(n) =
n−k

∑
m=0

Cm+k(n)Ik(m + k).

Proposition 23. The following connections are valid

Wn(x2; a, b, c, d) =
n

∑
k=0

(
n
k

)
(a + b + k, a + c + k, a + d + k)n−k

(a + β + γ + δ + k− 1)k

×(n + a + b + c + d− 1)k AkWk(x2; a, β, γ, δ) (48)

Sn(x2; a, b, c) =
n

∑
k=0

(
n
k

)
(a + b + k, a + c + k)n−k

×3F2

 k− n, a + β + k, a + γ + k

a + b + k, a + c + k

∣∣∣∣∣∣ 1

Sk(x2; a, β, γ). (49)

with

Ak = 5F4

 k− n, n + a + b + c + d + k− 1, a + k + β, a + k + γ, a + k + δ

2 k + δ + γ + β + a, a + b + k, a + c + k, a + d + k

∣∣∣∣∣∣ 1

.
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Proof. We start by writing the inversion formula (46) for Wn(x2; a, β, γ, δ). Combining this
inversion formula with the expansion of Wn(x2; a, b, c, d) in the basis ϑn(a, x), we get (48).
The result for the Continuous Dual Hahn polynomials follows in the same manner or can
be obtained from (48) by a limiting process.

Proposition 24. The Wilson polynomials Wn(x2, a, b, c, d) and the Continuous Dual Hahn poly-
nomials Sn(x2, a, b, c) have the following representation in the basis (ϑn(α, x))

Wn(x2; a, b, c, d) =
n

∑
m=0

(
n
m

)
(−1)m(a + b, a + c, a + d)n(n + a + b + c + d− 1)m

(a + b, a + c, a + d)m

×4F3

m− n, n + a + b + c + d + m− 1, a + α + m, a− α

a + b + m, a + c + m, a + d + m

∣∣∣∣∣∣ 1

ϑm(α, x), (50)

Sn(x2; a, b, c)=
n

∑
m=0

(
n
m

)
(−1)m(a + b, a + c)n

(a + b, a + c)m
3F2

m− n, a + α + m, a− α

a + b + m, a + c + m

∣∣∣∣∣∣ 1

ϑm(α, x). (51)

Proof. Combining (42) with (38), (50) follows. (51) is obtained from (50) by a limiting
process.

Proposition 25. The following connection formulas are valid.

Wn(x2; a, b, c, d) (52)

=
n

∑
m=0

{(
n
m

)
(n + a + b + c + d− 1)m(m + a + b, m + a + c, m + a + d)n−m

(m + α + β + γ + δ− 1)m

×
n−m

∑
k=0

(m− n, m + n + a + b + c + d− 1, m + α + β, m + α + γ, m + α + δ)k
k!(m + a + b, m + a + c, m + a + d, 2m + α + β + γ + δ)k

× 4F3

 k + m− n, a + α + k + m, a− α, n + a + b + c + d + m + k− 1

k + m + a + b, k + m + a + c, k + m + a + d

∣∣∣∣∣∣ 1


×Wm(x2; α, β, γ, δ),

Sn(x2, a, b, c) =
n

∑
m=0

(
n
m

) n−m

∑
k=0

(m− n, m + α + β, m + α + γ)k(a + b + m, a + c + m)n−m

k!(a + b + m, a + c + m)k

×3F2

m + k− n, a + α + k + m, a− α

a + b + m + k, a + c + m + k

∣∣∣∣∣∣ 1

Sm(x2, α, β, γ),

Proof. We start by writing the inversion formula (46) for Wn(x2; α, β, γ, δ). Combining this
inversion formula with the expansion of Wn(x2; a, b, c, d) in the basis ϑn(α, x) as in (50),
we get (52). The result for the Continuous Dual Hahn polynomials follows in the same
manner or can be obtained from (52) by a limiting process.
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Remark 26. 1. Connection formula (48) has been given by Jorge Sánchez-Ruiz and
Jesús S. Dehesa in [14] using the following formula derived by Fields and Wimp [12] (see
also [13], p. 7)

p+r+1Fq+s

−n, [ap], [cr]

[bq], [ds]

∣∣∣∣∣∣∣ zw

 =
n

∑
k=0

(
n
k

)
([ap])k([αt])kzk

([bp])k([βu])k(k + λ)k

×p+t+1Fq+u+1

 k− n, [k + ap], [k + αt]

2k + λ + 1, [k + bq], [k + βt]

∣∣∣∣∣∣∣ z


×r+u+2Fs+t

−k, k + λ, [cr], [βu]

[ds], [αt]

∣∣∣∣∣∣∣w

.

2. Connection formula (52) generalizes (48).

3. Connection formulas (48) and (52) were proved in [7] by a limiting process using the con-
nection formulas for the Askey-Wilson polynomials.
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