Zentralblatt MATH Database 1931 – 2006

(c) 2006 European Mathematical Society, FIZ Karlsruhe & Springer-Verlag

1062.33010

Foupouagnigni, M.; Koepf, W.; Ronveaux, A. On fourth-order difference equations for orthogonal polynomials of a discrete variable: Derivation, factorization and solutions. (English) J. Difference Equ. Appl. 9, No.9, 777-804 (2003). [ISSN 1023-6198] http://dx.doi.org/10.1080/1023619031000097035

Let $(P_n)_n$, deg $P_n = n$, be a classical discrete orthogonal polynomial sequence. The authors consider all transformations

$$\overline{P}_n(x) = A_n(x)P_{n+k+1}^{(1)} + B_n(x)P_{n+k}, \quad n \ge k',$$
(1)

where A_n and B_n are polynomials of degree not depending on n, $P_n^{(1)}$ is the first associated of P_n , and k, k' are non-negative integers. The following result is proved. $(\overline{P}_n)_{n>k'}$ satisfy a difference equation

$$F_n(y) = \left(\sum_{i=0}^4 J_i \mathcal{F}^i\right) y = 0 \tag{2}$$

where J_i are polynomials with degree not depending on n, \mathcal{F}^i are the shift operators defined by $\mathcal{F}^i(P(x)) = P(x+i)$, i = 0, ..., 4, on the space of polynomials. The operators F_n can be factored as a product

$$X_n F_n = S_n T_n, \quad n \ge k$$

where S_n and T_n are second-order linear difference operators with polynomial coefficients not depending on k, and X_n is a polynomial of fixed degree. Moreover, the authors obtain four linearly independent solutions of (2) for operators F_n corresponding to the following polynomials \overline{P}_n : rth associated, generalized co-recursive, generalized co-recursive associated, generalized co-modified and co-dilated. Recall that all these polynomials related to starting classical discrete $(P_n)_n$ by particular cases of transformations (1). The extensions results to real order association of classical discrete orthogonal polynomials and to semi-classical cases are also presented.

Aleksey A.Dovgoshey (Donetsk)

Keywords: discrete classical and semi-classical orthogonal polynomials; Δ -Laguerre-Hahn class; perturbed discrete orthogonal polynomials; fourth-order difference equations

Classification:

*33C45 Orthogonal polynomials and functions of hypergeometric type

13P05 Polynomials, factorization

Cited in ...