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1.1 Introduction

Orthogonal polynomials can be calculated by computation of determinants, by the
use of generating functions, in terms of Rodrigues formulas, by iterating recurrence
equations, calculating the polynomial solutions of differential equations, through closed
form representations and by other means.

In computer algebra systems all these methods can be implemented. Depending on
the application one might need

1. one (or many) of these polynomials in any form or specifically in
expanded form,

2. the exact rational value of one of these polynomials at a certain rational
point,

3. or a decimal approximation of the value of one of these polynomials at
a certain point.

In this article, we give an overview about the efficiency of the above methods in the
general purpose computer algebra systems Axiom, Macsyma, Maple, Mathematica,
MuPAD and REDUCE. Primarily we study the implementation of the Chebyshev
polynomials of the first kind as an example case.

First, we consider the builtin implementations of the Chebyshev polynomials in
these systems. Next we study the classical algorithms beginning with the slow ones,
and leading to the efficient ones. Finally, we finish with an algorithm based on a divide
and conquer approach which has a remarkable complexity.

In particular, we will show that

• to obtain the expanded form of one of the Chebyshev polynomials (this
is how the output is given by all the builtin commands), an iterative use
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of its power series representation is most efficient; the same argument
applies to other classical systems of orthogonal polynomials; this is almost
trivial because the classical orthogonal polynomials form hypergeometric
series, but only Mathematica uses this approach;1

• for numerical purposes (mainly rationally exact, but also decimal
approximation), a divide and conquer approach that is available for
Chebyshev polynomials is much preferable. This approach, however, is
not efficient if the expanded form of the polynomial is needed.

We present all algorithms as short programs. In each case, we choose the language with
the best “asymptotic performance”. This code should show that we tried to implement
in as straightforward a manner as possible. The other implementations of this article
may be obtained from the author.

1.2 The Chebyshev Polynomials

The Chebyshev polynomials Tn(x) of the first kind are defined by

Tn(cos t) = cos(nt) ,

hence
Tn(x) = cos(n arccosx) . (1.1)

They form a family of polynomials that are orthogonal with respect to the scalar
product

〈f, g〉 :=

∫ 1

−1

f(x) g(x)
dx√

1 − x2

with the weight function (1 − x2)−1/2, and with the standardization T0 = 1 and

〈Tn, Tn〉 =

∫ 1

−1

T 2
n(x)

dx√
1 − x2

= π (n ≥ 1) .

Table 1 The Size of Tn(x)

n Kbytes

10 0.04 kB
100 1.8 kB

1000 153 kB
10000 15.2 MB

Tn(x) form polynomials with integer coefficients whose size grows rapidly with
increasing n. The leading coefficient of Tn(x) equals 2n−1, for example. Hence the
expanded polynomials need a lot of storage space. Table 1 shows the byte sizes of
Tn(x) in input form.2

1 Note that new versions of MuPAD and REDUCE already contain the best codes
presented in this article since a previous version of this article was widely distributed
in 1996. Also in Derive’s new releases, these functionalities are incorporated.

2 Saved by Maple, spaces not counted. The space requirements grow quadratic with n.
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The Chebyshev polynomials have the nice property that Tn(1) = 1. This can be
used to check the accuracy of the numerical computations (both rationally exact
and decimal representation). For further details about these (and other families of
orthogonal) polynomials including the algorithms of this article, we refer the reader
to [2]§22, [5], [6], [7], and [8].

We think that the user of a computer algebra system is mainly interested in good
timings. The memory management is not of such a large interest to him besides the
fact that large memory usage might influence the timings, or may even crash the
system. By this reason we just compared timings and did not separately check the
memory usage. We found an hour waiting time for a result acceptable.

All timings are given in CPU-seconds truncated to three digits, and for Maple,
Mathematica, MuPAD and REDUCE, they were originally calculated on a SUN Sparc
10 under SunOS 4.1.3 with the releases Maple V.3, Mathematica 2.2, MuPAD 1.2.2
and REDUCE 3.63. Recently the timings of Maple and Mathematica were repeated
with the newest versions: Maple V.5 and Mathematica 3.0. In some instances the
different releases behave quite differently, in which case we have included the timings
of the new releases in the tables, and we point this out. The timings for Axiom 2.0 were
done on an IBM RS 6000–320 H under AIX 3.25, and the timings for Macsyma 419.0
on a HP 9000–730 under HP–UX 9.0. All three computers have a 32 bit architecture.

For calibration purposes we used REDUCE 3.6 to calculate several Chebyshev
polynomials with the different types of algorithms in this article. This is the type
of calculation (with long integers, etc.) which is of interest for this article. It turned
out that the time ratio SUN/HP had an arithmetic mean of 1.0. Hence, we found
the timings of HP and SUN comparable. The time ratio SUN/IBM, however, had
an arithmetic mean of 0.4. Hence, to make time comparison possible, we multiplied
Axiom’s timings on the IBM by 0.4. But obviously one should not overestimate
the value of the timings, in particular since these platforms seem to perform quite
differently for different questions. Rather than giving complete ratings, we were
interested in showing trends.

We issued the statements in separate sessions to avoid the influence of memory
configurations, in particular the use of remember tables. The × sign in our tables
indicates that there was no response within one hour (calibrated) CPU-time, or
memory overflow occurred. Numerical calculations were done with 50 significant digits
to check the quality of the software numerics.

The Chebyshev and other classical families of orthogonal polynomials are acces-
sible in Axiom (chebyshevT), Macsyma (load("specfun"); chebyshev_t), Maple
(orthopoly[T]), Mathematica (ChebyshevT), MuPAD (orthpoly::chebyshev1) and
REDUCE (load specfn; chebyshevt).

Table 2 shows the calculation times of Tn(x) by the builtin procedures. All six
systems give the output as expanded polynomials. Tables 3–4 show the calculation
times of Tn(1) in exact and approximate modes, respectively. In Macsyma (and
Maple V.5), these computations were of no value since the rewrite rule Tn(1) = 1
is automatically applied for n ∈ N. Note that neither Maple V.3/V.4, nor MuPAD nor

3 All REDUCE calculations had been done with lisp supersparc(); to have access to
the Super-Sparc hardware arithmetic. This is only necessary on this particular type of
computer.
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REDUCE could calculate accurate approximations for large n, indicated in Table 4
by the symbol 3.4 This is due to the bad condition (subtractive cancellation) of the
series representation utilized. In all these systems, this bug is fixed by now since a
previous version of this article was widely distributed in 1996. In particular, for all
computations Maple V Release 5 now uses the divide and conquer approach that we
investigate in § 1.10. However, since the polynomials are still given in expanded form,
the timings of Table 2 are only slightly better, see the right-most column of Table 2,
but Maple gives now correct results in Tables 3–4 (also for arguments different from
x0 = 1). With Macsyma, one cannot compute decimal approximations for n ≥ 70.5

Table 2 Builtin Polynomials: Calculation of Tn(x)

n Axiom Macsyma Maple V.3 Mathematica MuPAD REDUCE Maple V.5

10 0.01 0.06 0.00 0.01 0.14 0.05 0.01
100 0.23 0.63 0.20 0.11 4.10 0.83 0.08
500 6.04 26.30 28.50 2.606 116.00 41.3 7.92

1000 23.30 165.00 347.00 12.306 506.00 288.00 81.70
5000 × × × 418.006

× × ×

Table 3 Builtin Polynomials: Calculation of Tn(1)

n Axiom Maple V.3 Mathematica MuPAD REDUCE

10 0.00 0.02 0.00 0.12 0.05
100 0.01 0.28 0.00 4.34 0.40
500 0.02 27.90 0.00 121.00 5.28

1000 0.02 353.00 0.01 514.00 24.90
5000 0.10 × 0.08 × ×

104 0.20 × 0.13 × ×

105 2.12 × 1.28 × ×

106 21.20 × 12.83 × ×

107 205.00 × 127.00 × ×

108 2059.00 × 1090.00 × ×

The invocation of the calculation Tn(x) has quite different consequences in the six
systems:

Macsyma, MuPAD and REDUCE calculate a single Tn(x) if issued, and use no
remember tables.

Maple V.3/V.4 calculates all consecutive Chebyshev polynomials Tk(x) (k =

4 For n = 500, the incorrect results have the magnitude 10140!
5 The command float(chebyshev t(70,0.25)); (without using even bigfloats) creates

the error message Out of bignum stack space, (si::MULTIPLY-BIGNUM-STACK n) to

grow, whereas the command bfloat(chebyshev t(69,0.25)); generates a completely
wrong result. Hence, Macsyma also falls in the trap of the subtractive cancellation
problem.

6 Release 2.2 was a bit slower, and one needed the setting $RecursionLimit=Infinity.
7 In release 2.2, Mathematica gave the wrong result 0.0.
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Table 4 Builtin Polynomials: 50-Digits Approximation of Tn(1.0)

n Axiom Maple V.3 Mathematica MuPAD REDUCE

10 0.04 0.01 0.01 0.15 0.06
100 0.04 0.33 0.03 4.38 0.49
500 0.26 3 0.11 3 3

1000 0.46 3 0.21 3 3

5000 2.37 3 0.98 3 3

104 4.74 3 1.96 3 3

105 44.30 3 19.607
3 3

106 440.00 3 196.007
3 3

0, . . . , n) in expanded form if Tn(x0) is issued for some x0, and puts these in memory
by the remember option. Hence the computation times are almost equal in any of the
three different situations. This procedure has the obvious advantage that all computed
functions are immediately available afterwards. On the other hand, as a disadvantage
the memory is full as soon as one has issued a single computation with high enough
n ∈ N even if only this particular result is needed.

Axiom and Mathematica calculate a particular Tn(x) if issued, and use no
remember tables. For numerical computations, both exact and approximate, they use
different algorithms that are faster, and better conditioned.

As a consequence of these considerations, Axiom and Mathematica seem to
have the most efficient builtin implementations of the Chebyshev (and other
families of orthogonal) polynomials. On the other hand, as we will see, appropriate
implementations enable Maple, MuPAD and REDUCE to calculate Tn(x) for large n
faster than these systems.

Maple V.3/V.4 uses the three-term recurrence equation to obtain the collection of
polynomials Tk(x) (k = 0, . . . , n). Table 9 of § 1.7 gives a fair comparison for this
approach between the six systems, which shows that for large n ∈ N, Mathematica is
faster in this case and can compute a larger list than Maple.

However, since the memory and storage requirements are so immense, we think that
an efficient computation of a single Tn(x) is the most important task. Hence, we are
mainly interested to compare the efficiency of the computation of Tn(x) for large n (as
large as the computer memory of today’s computers allow), and we do not deal with
the computation of lists of all Tk(x) (k = 0, . . . , n), but mainly with the computation
of a single Tn(x).

In the following sections, we will consider the efficiency of different approaches for
this task.
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1.3 Determinants

The Chebyshev polynomials have the representation

Tn(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x −1 0 0 · · · 0
−1 2x −1 0 · · · 0
0 −1 2x −1 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · −1 2x −1
0 0 · · · 0 −1 2x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

as the determinant of an n × n (almost) band-matrix. In Axiom, this is given as

ChebyshevT(n:NonNegativeInteger,x:Expression Integer):Expression Integer == _

determinant( matrix([[ (if (i=1 and j=1) then x else if i=j then 2*x _

else if abs(i-j)=1 then -1 else 0) _

for i in 1..n] for j in 1..n]))

The codes in Macsyma, Maple, Mathematica, MuPAD and REDUCE can be defined
analogously.

All classical families of orthogonal polynomials have similar representations.
Expanding the above determinant yields the well-known three-term recurrence
equation for Tn(x) which we consider in § 1.7.

To calculate Tn(x) via the above determinant is inherently ineffective since the
computation of determinants of large matrices is very expensive. Obviously the special
structure of the Chebyshev polynomials is not sufficiently utilized by this approach.

Table 5 Determinant Computation of Tn(x)

n Axiom Macsyma8 Maple Mathematica9 MuPAD10 REDUCE11

10 0.18 0.30 0.45 0.11 21.00 0.03
50 3.79 13.70 230.00 5.20 × 3.07

100 15.60 76.80 × 24.70 × 47.00
150 42.60 224.00 × 66.20 × 208.00
200 68.60 473.00 × 141.00 × 646.00
300 194.00 1566.00 × 464.00 × ×

500 637.00 × × 2576.00 × ×

700 1278.00 × × × × ×

8 with ratmx:true;.
9 These are the timings of Mathematica 3.0. The previous release 2.2 was much slower

and could not compute T50(x) within one hour!
10 MuPAD’s output is not in normalized polynomial form. This normalization can be done

by normal, but needs extra time. A more sophisticated programming technique makes
MuPAD a little faster.

11 with on cramer;.
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The timings for the determinant approach are given in Table 5. Determinant
computations are very slow in Maple, Mathematica 2.2, and MuPAD, whereas
Macsyma, Mathematica 3.0 and REDUCE are not bad. Axiom is astonishingly good,
and leaves the other systems far behind. Tn(x) cannot be computed for generic x with
any of the systems besides Axiom for n ≥ 600 within one hour. Note that the computer
algebra system Derive which is available only for IBM compatible PCs is almost as
fast as Axiom (checked with an INTEL 486-100 CPU under DOS/Windows 95).12

1.4 Generating Functions

The function

F (z) =
1

2

(

1 − z2

1 − 2xz + z2
+ 1

)

=

∞
∑

n=0

Tn(x) zn

is the generating function of the Chebyshev polynomials. By Taylor’s theorem, one
can therefore compute Tn(x) as

Tn(x) =
F (n)(0)

n!
.

In Mathematica this is given as

ChebyshevT[n_,x_]:=Module[{F,z,Dn},

F=((1-z^2)/(1-2*x*z+z^2)+1)/2;

Dn=D[F,{z,n}];

Expand[Dn/n!/.z->0]

]

Table 6 gives the timings for the calculation of a single Tn(x) with this
approach. MuPAD’s derivatives of F (z) are unnecessarily complicated13, which
makes their computation for high n inaccessible in reasonable time and space.
Axiom and REDUCE bring each iterated derivative of F (z) to a rational normal
representation which is quite expensive. Maple and Mathematica do not use such
normal representations, hence they are much faster.
On the other hand, Maple fails very soon because of memory overflow: The iterated
derivatives are large objects, and Maple remembers and stores all of them in memory.
Remembering everything is a typical Maple feature which frequently causes problems.
In the current situation, this effect can be avoided by clearing the memory ourselves
with the implementation

12 The computation of T200(x) took 146 sec. with Derive. Derive can calculate T700(x)
within one hour.

13 In Mupad 1.2.2 this defect starts already with n = 2, whereas in Release 1.4 it starts

with n = 3.
14 As always these are only the CPU times. The waiting times for the results are much

higher. Maple seems to do nothing but garbage collection.
15 MuPAD’s output is not in normalized polynomial form. This normalization can be done

by normal, but needs extra time.
16 with off exp;.
17 These are the results of Maple V Release 5. In Release V.3 the timings were about

25% larger.
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Table 6 Generating Function Computation of Tn(x)

n Axiom Macsyma Maple14 Mathematica MuPAD15 REDUCE16 Maple (forget)17

10 7.66 1.05 0.03 0.38 1.88 0.22 0.34
50 × 34.50 0.93 9.70 × 111.00 2.67

100 × 124.00 4.38 38.30 × × 8.41
200 × 633.00 25.20 160.00 × × 48.80
300 × 1821.00 × 371.00 × × 153.40
400 × × × 682.00 × × 306.00
500 × × × 1101.00 × × 571.00
600 × × × 1627.00 × × 971.00
700 × × × 2253.00 × × 1658.00

ChebyshevT:=proc(n,x)

local j,F,z;

readlib(forget);

F:=((1-z^2)/(1-2*x*z+z^2)+1)/2;

for j from 1 to n do

F:=diff(F,z);

forget(diff);

od;

RETURN(subs(z=0,F)/n!)

end:

which generates the right-most timings in Table 6: These are worse than the original
ones for small n, but much better for large n, and still better than Mathematica’s.
This example gives a clue how much a small trick can influence the overall behavior
of such an implementation.

The generating functions approach is little better than the determinant approach
in computer algebra systems without rational normal representation, but still is quite
inefficient.

1.5 Rodrigues Formulas

The Chebyshev polynomials have the Rodrigues representation

Tn(x) =
(−2)n n!

(2n)!

√

1 − x2
dn

dxn
(1 − x2)n−1/2 .

In REDUCE, this is given as

procedure ChebyshevT(n,x);

(-2)^n*factorial(n)/factorial(2*n)*sqrt(1-x^2)*df((1-x^2)^(n-1/2),x,n)$

All classical families of orthogonal polynomials have similar Rodrigues representations.
The complexity is comparable to the one of the last section.

The iterated derivatives of (1 − x2)n−1/2, however, are simpler functions than the
derivatives of F (z) so that the timings are better. In particular, this time the rational
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normal representation in Axiom and REDUCE is useful since it keeps the memory
size small, see Table 7.

Again, Maple has better behavior for large n with forget, see the right-most column
in Table 7.

Table 7 Rodrigues Formula Computation of Tn(x)

n Axiom Macsyma18 Maple Mathematica MuPAD REDUCE Maple (forget)19

10 0.91 0.35 0.05 0.15 2.12 0.05 0.36
100 16.20 20.00 3.70 13.60 24.90 3.85 6.98
200 78.60 138.00 23.90 60.10 127.00 19.60 27.10
300 224.00 454.00 85.60 138.00 409.00 49.80 63.50
400 511.00 881.00 × 254.00 838.00 103.00 126.00
500 1039.00 1631.00 × 431.00 × 190.00 226.00

1000 × × × 2000.00 × 1375.0020
×

1.6 Matrix Powers

Now, we start to discuss methods that are more efficient. One such method was
introduced in [5]. Here Richard Fateman considered the representation of the
Chebyshev polynomials

(

Tn(x)
Tn−1(x)

)

=

(

2x −1
1 0

) (

Tn−1(x)
Tn−2(x)

)

= · · · =

(

2x −1
1 0

)n−1 (

x
1

)

by matrix powers. In REDUCE, this is given as

procedure ChebyshevT(n,x);

begin

A:=mat((2*x,-1),(1,0));

b:=mat((x),(1));

A:=A^(n-1);

A:=A*b;

return(A(1,1));

end$

Whereas Maple Release V.3 was rather slow and could not compute T2000(x) within
one hour, Release V.5 beats REDUCE:

with(linalg);

ChebyshevT:=proc(n,x)

local b,c,A;

18 Here we use of the rational normal form rat. This is most efficient.
19 These are the results of Maple V Release 5. In Release V.3, the timings were about

25% larger.
20 with set heap size 3000000;.
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A:=array([[2*x,-1],[1,0]]);

b:=vector([x,1]);

A:=evalm(A^(n-1));

c:=linalg[multiply](A,b);

RETURN(c[1]);

end:

Table 8 Calculation of Tn(x) by Matrix Powers

n Axiom Macsyma Maple21 Mathematica MuPAD REDUCE Macs. (matrixpower)

10 0.22 0.12 0.14 0.06 7.06 0.01 0.09
100 0.70 × 0.72 4.01 24.10 0.37 14.40
500 19.90 × 10.80 111.20 151.00 12.20 577.00

1000 153.00 × 38.20 607.00 538.00 62.20 ×

2000 1722.00 × 135.00 4211.00 × 336.00 ×

3000 × × 291.00 × × 982.00 ×

4000 × × 479.00 × × 2201.00 ×

Since matrix powers can be calculated by iterative squaring, a typical divide and
conquer approach, it is interesting to check which of the systems provide this type
of implementation. It turns out that most systems calculate matrix powers by this
approach. Only Macsyma does not use this technique, hence it fails very soon, see
Table 8. Using the implementation

matrixpower(A,n):=block([B],

if n=1 then return(A),

if floor(n/2)=n/2 then

(B:matrixpower(A,n/2),

return(B.B))

else return(matrixpower(A,n-1).A)

)$

for the computation of matrix powers makes Macsyma much faster, although not
competitive with the other systems, see the right-most column in Table 8.

Note that the approach of this section cannot be generalized to the other systems
of orthogonal polynomials (besides the Chebyshev polynomials Un(x) of the second
type). Its availability depends heavily on the fact that the coefficients of the recurrence
equation of the Chebyshev polynomials, which will be considered next, do not depend
on n [5].

1.7 Recurrence Equations

In this section, we discuss the use of the recurrence equation

Tn(x) = 2x Tn−1(x) − Tn−2(x) (1.2)

21 These are the timings of Maple V Release 5. Release V.3 was much slower and could
not compute T2000(x) within one hour!
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with the initial functions

T0(x) = 1 and T1(x) = x .

Note that via (1.1) this recurrence equation is equivalent to the trigonometric identity

cos(nt) = 2 cos t cos((n − 1)t) − cos((n − 2)t) .

Using a remember table, we can use (1.2) recursively by the Mathematica procedure

ChebyshevT[n_,x_]:=ChebyshevT[n,x]=

If[n==0,1,If[n==1,x,Expand[2*x*ChebyshevT[n-1,x]-ChebyshevT[n-2,x]]]]

The use of remember tables gives recursive programs linear complexity since all
calculations are done exactly once.

Table 9 Recursive Computation of Tn(x)

n Axiom Macsyma Maple Mathematica MuPAD22 REDUCE

10 0.51 0.06 0.01 0.05 0.03 0.02
100 × ×

23 0.31 2.31 0.97 1.17
500 × × 29.10 53.60 18.60 28.2024

1000 × × 344.00 173.00 86.80 ×

2000 × × × 1246.00 × ×

Table 9 shows the timings for this approach. REDUCE generates variable stack
overflow since it does not have a remember feature.

The timings for Maple are comparable to those in Table 2, since this is Maple V.3’s
builtin strategy. As already mentioned, the remember feature has the disadvantage
that all previously calculated Tk(x) have to be stored. Therefore the memory
requirements are immense. If the user needs the complete list Tk(x) (k = 0, . . . , n),
then this recursive approach using remember is most efficient.

One might have the idea to use the recurrence equation without expanding
intermediate results. Indeed, this decreases the cost by the cost of the expansion,
but it generates so huge expressions that it turns out not to be a good idea at all, and
the resulting expression is difficult to handle even for small n. Already T20 needs more
than 80kB of storage space (in input format) with this approach, compare Table 1.
Their complicated nested structure makes any evaluation of these objects very time
consuming.

The following iterative approach

ChebyshevT(n:NonNegativeInteger,x:Variable x):Polynomial Integer == _

( _

22 with MuPAD’s type poly.
23 Macsyma generates the error message Bind stack overflow.
24 with set bndstk size(100000); lisp setq(simplimit!∗,100000);.
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if n=0 then return(1) else _

if n=1 then return(x) else ( _

T2:=1; T1:=x; _

for i in 2..n repeat ( _

T0:=2*x*T1-T2; _

T2:=T1; T1:=T0 ); _

return T0 ) _

)

in Axiom remembers only the last two polynomials and does therefore not generate
memory overflow, see Table 10. Since Axiom and REDUCE have a polynomial normal
representation, there is no need to use a high level language procedure like Expand,
hence the timings are much better than in the other systems.

This is until now the most successful approach for the calculation of a single Tn(x).
All the systems do rather well. On the other hand, with none of the systems can
one calculate T10000(x) (within the proposed one hour of computing time) using this
approach. In the following sections, we consider methods with which this is possible.

Table 10 Iterative Computation of Tn(x)

n Axiom Macsyma25 Maple Mathematica MuPAD REDUCE

10 0.19 0.04 0.01 0.05 0.04 0.00
100 1.66 2.18 0.26 2.16 0.87 0.44

1000 37.90 395.00 189.00 216.00 84.00 39.30
2000 137.00 1578.00 1246.00 1087.00 798.00 207.00
3000 362.00 × × 2442.00 × 554.00
4000 671.00 × × × × 1177.00
5000 1201.00 × × × × 1523.00

1.8 Differential Equations

The Chebyshev polynomial Tn(x) is the unique polynomial solution of the differential
equation

(1 − x2) f ′′(x) − x f ′(x) + n2 f(x) = 0 (1.3)

with the initial value

Tn(0) =

{

0 if n is odd

(−1)n/2 if n is even
.

In [1], a very efficient algorithm to calculate the polynomial and rational solutions of
certain operator equations was published, in particular for linear ordinary differential
equations with polynomial coefficients like (1.3).

25 Here we use of the rational normal form rat. This is most efficient.
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Using the Maple implementation ratlode of this algorithm, written by M. Bronstein
[3], one gets the timings of Table 11.

Table 11 Differential Equations Computation of Tn(x)

n Maple

10 0.50
100 0.60

1000 7.36
10000 612.00

The results are again given as expanded polynomials.26

Note that this algorithm is the first one to enable the calculation of Tn(x) for
n ≥ 10000 within an hour. Moreover, T1000(x) is calculated in no more than a few
seconds!

In the next section, we will see that with a more direct approach even better timings
are possible.

1.9 Series Representations

Since Tn(x) for fixed n ∈ N is a polynomial, any closed form series representation
might be helpful to calculate it. Several closed form series representations for Tn(x)
are known of which we only utilize the Taylor expansion at x = 0

Tn(x) =
n

2

bn/2c
∑

k=0

(−1)k (n − k − 1)!

k! (n − 2 k)!
(2x)n−2k . (1.4)

This representation has the advantage over other series representations that it requires
only n/2 additions rather than n. Hence other series representations are less efficient.

Representation (1.4) corresponds exactly to the expanded polynomial which was
the output of the preceding algorithms anyway. It can be calculated by the REDUCE
procedure

procedure ChebyshevT(n,x);

begin

scalar k;

return(for k:=0:floor(n/2)

sum n/2*(-1)^k*factorial(n-k-1)/factorial(k)/factorial(n-2*k)*(2*x)^(n-2*k))

end$

This implementation yields the timings of Table 12.
Axiom and REDUCE have the most efficient factorial calculation. This is why they

26 The algorithm expands in powers of x − a for a certain a. It turns out that in the
current situation a = 0 is chosen.

27 These are the results of Maple V Release 5. Release V.3 was slower.
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Table 12 Series Computation of Tn(x)

n Axiom Macsyma Maple27 Mathematica MuPAD REDUCE

10 0.94 0.04 0.00 0.01 0.09 0.03
100 4.78 0.92 0.15 0.33 0.38 0.37

1000 60.50 143.00 253.00 36.60 70.90 40.00
2000 316.00 1282.00 2549.00 335.00 602.00 251.00
3000 823.00 × × 1348.00 2150.00 789.00
4000 1868.00 × × 3406.00 × 1791.00
5000 3756.00 × × × × 3696.00

succeed in Table 12. This time, Maple’s problem is not the memory, but its factorial
computation is rather inefficient.

The timings are much worse than the timings of the last section. This behavior is
due to the fact that the calculation of the summands

ak =
n

2

(n − k − 1)!

k! (n − 2 k)!
(−1)k (2x)n−2k

of Tn(x) =
bn/2c
∑

k=0

ak is rather expensive: For any k = 0, . . . , bn/2c, large factorials have

to be calculated in both numerator and denominator, and finally the fraction has to
be converted to lowest terms. Since the coefficients

n

2

(n − k − 1)!

k! (n − 2 k)!
(−1)k

are integers, this procedure has a large overhead. To get better timings, we can replace
the factorials by a binomial coefficient

ak =
n

2

(

n − k − 1
k

) (−1)k

n − 2k
(2x)n−2k .

In Macsyma, this yields the implementation

ChebyshevT(n,x):=block([k,result],

if n=0 then return(1) else

if n=1 then return(x) else

(result:0,

for k:0 thru (n-1)/2 do

result:result+n/2*(-1)^k/(n-2*k)*binomial(n-k-1,k)*(2*x)^(n-2*k),

if floor(n/2)=n/2 then result:result+(-1)^(n/2),

return(result))

)$

In Axiom, MuPAD and REDUCE, this is unfortunately less efficient than the factorial
approach. Maple has an improved timing, but still severe problems, see Table 13.
However, Macsyma’s and Mathematica’s binomial coefficient implementations are
rather efficient and generate an impressive speed-up.
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Table 13 Series Computation of Tn(x) with Binomial Coefficients

n Macsyma Maple Mathematica

10 0.03 0.01 0.01
100 0.71 0.20 0.20

1000 23.30 64.50 11.00
2000 116.00 1049.00 66.80
3000 279.00 × 214.00
4000 555.00 × 489.00
5000 996.00 × 1060.00
6000 1546.00 × 1772.00

However, much more efficient is the following approach avoiding the computation
of factorials or binomial coefficients by calculating ak iteratively. Since the term ratio
is given by

ak

ak−1
= − (n − 2 k + 2) (n − 2 k + 1)

4 k x2 (n − k)
, (1.5)

the series computation (1.4) can be done alternatively by the MuPAD procedure

ChebyshevT:=proc(n,x)

local k,tmp,result;

begin

if n=0 then return(poly(1,[x])) end_if;

if n=1 then return(poly(x,[x])) end_if;

tmp:=poly((2*x)^n/2,[x]);

result:=tmp;

for k from 1 to n/2 do

tmp:=tmp*poly(-(n-2*k+2)*(n-2*k+1),[x]);

tmp:=divide(tmp,poly(4*k*(n-k)*x^2,[x]),Exact);

result:=result+tmp

end_for;

return(result);

end_proc:

using only polynomial arithmetic. Note that this approach can always be used if
polynomials are given as hypergeometric series, which applies to all classical orthogonal
polynomial systems.
It turns out that this is by far the most efficient way to calculate the expanded
polynomial Tn(x) for large n ∈ N. Maple, MuPAD as well as REDUCE are very
efficient in doing so, and leave Mathematica far behind them. MuPAD is most efficient
only if one uses the type poly (and does not work with expressions) since then its fast
polynomial arithmetic is used.

The timings of Tables 2 and 14 suggest that the present method is exactly how
Mathematica’s builtin implementation calculates the Chebyshev polynomials. Derive

28 with MuPAD’s type poly. Without using this type, the calculation times are ten times
slower for large n.

29 with set heap size 10000000;.
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Table 14 Iterative Series Computation of Tn(x)

n Axiom Macsyma Maple Mathematica MuPAD28 REDUCE Math. (Apply)

10 0.59 0.02 0.00 0.01 0.03 0.03 0.01
100 4.16 0.54 0.05 0.25 0.17 0.18 0.11

1000 39.70 9.77 3.00 16.50 2.24 3.38 2.88
10000 551.00 361.00 304.00 3027.00 62.30 210.00 1046.00
20000 1703.00 × 1761.00 × 210.00 816.00 ×

25000 × × 2851.00 × 326.00 1278.0029
×

30000 × × × × 470.00 × ×

again turns out to be as fast as the fastest systems here.30

Note that the implementations of this section using for loops are not optimal since
then the sum has to be restructured iteratively. This effect can be avoided using lists
as in the Mathematica code

ChebyshevT[n_,x_]:=Module[{k,tmp,tab},

If[n==0,Return[1]];

If[n==1,Return[x]];

tmp=(2*x)^n/2;

tab=Table[tmp=-tmp/4/k*(n-2*k+2)*(n-2*k+1)/x^2/(n-k),{k,1,Floor[n/2]}];

(2*x)^n/2+Apply[Plus,tab]

]

In Maple V.3, this measure did not increase the efficiency significantly despite
the message in Maple’s help page of the seq command.31 On the other hand,
Mathematica’s code can be significantly accelerated by the above code, see Table 14,
right column. This shows that Mathematica’s Do construct is quite inefficient. It turns
out, however, that this new code in Mathematica is really fast only together with a 64
bit word size, for example on a DEC Alpha workstation, generating T30000(x) in less
than 100 seconds!

1.10 Divide and Conquer Approach

In this section, we leave the road of trying to find the polynomials in expanded form.
Since (1.4) forms an alternating series with huge integer coefficients, by cancellation
it cannot be used for numerical purposes when using decimal representations of fixed
precision, and it is rather inefficient when using exact integer arithmetic.

We will find a way to calculate Tn(x) very efficiently in a non-expanded form which

30 The computation of T4000(x) took 12.4 sec. with Derive. Derive can calculate T10000(x)
in less than a minute.

31 Maple’s message is: “In either form, the seq version is more efficient than the for-
loop version because the for-loop version constructs many intermediate sequences.
Specifically, the cost of the seq version is linear in the length of the sequence generated
but the for-loop version is quadratic.” In Maple V.5, the seq command indeed gives
better timings.
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furthermore yields also an efficient representation for numerical purposes.32 Therefore,
we utilize the formula (see e.g., [2](22.7.24), or also [5])

2 Tn(x) Tm(x) = Tn+m(x) + Tn−m(x) (n ≥ m) . (1.6)

Using (1.6) for m = n and m = n − 1, we get the Maple implementation

ChebyshevT:=proc(n,x)

option remember;

if n=0 then 1

elif n=1 then x

elif type(n,even) then 2*ChebyshevT(n/2,x)^2-1

else 2*ChebyshevT((n-1)/2,x)*ChebyshevT((n+1)/2,x)-x

fi

end:

This is a typical divide and conquer approach since the problem of size n is carried
out by the computation of (at most) 2 subproblems of size n/2. With this approach, it
makes sense to use the remember feature since otherwise intermediate computations
have to be carried out several times, resulting in exponential complexity.33 On the
other hand, for n = 1015, e.g., only 50 iterations are necessary, hence the use of the
remember option does not cause memory problems. Table 15 shows the timings for
this approach.

Table 15 Divide and Conquer Computation of Tn(x)

n Axiom Macsyma Maple Mathematica MuPAD REDUCE34

1000 19.10 0.07 0.00 0.05 0.04 21.40
106

× 0.13 0.03 0.10 0.07 ×

109
× 0.45 0.03 0.16 0.11 ×

1012
× × 0.06 0.21 0.15 ×

1015
× × 0.05 0.25 0.20 ×

To get more detailed information about the handling of these expressions by the
different systems, we substituted x = 1 in the results, giving Table 16.

The efficiency of the method is due to the fact that it yields very sparse
representations of Tn(x) for large n. For T1000(x), we have for example

T1000(x) = 2
(

2
(

2
(

2
(

2
(

2
(

2
(

2 ( 2 x ( 2 x2 − 1 ) − x )
(

2 ( 2 x2 − 1 )2 − 1
)

− x
)

y − x
)

( 2 y2 − 1 ) − x
)2 − 1

32 For purely numerical calculations, there may be more efficient methods. These
cannot be used to compute rationally exact results, though. This type of numerical
calculations are not our primary concern. Still, the efficiency of our approach is not
bad.

33 With little effort, one can rewrite the procedure iteratively to avoid the remember

option.
34 with off exp;.
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Table 16 Substitution of x = 1 in Tn(x)

n Axiom Macsyma Maple Mathematica MuPAD REDUCE

1000 0.14 0.01 0.00 0.01 0.01 0.05
106

× 0.45 0.05 0.20 0.24 ×

109
× 14.10 1.43 7.51 7.62 ×

1012
× × 27.60 145.00 157.00 ×

1015
× × 255.00 × 1216.00 ×

) (

2
(

2
(

2
(

2 ( 2 x ( 2 x2 − 1 ) − x )
(

2 ( 2 x2 − 1 )2 − 1
)

− x
)

y − x
)

( 2 y2 − 1 ) − x
)

(

2 ( 2 y2 − 1 )2 − 1
)

− x
)

− x
)2

− 1
)2

− 1
)2

− 1

where y is an abbreviation for

y = 2
(

2 ( 2 x2 − 1 )2 − 1
)2 − 1 .

This obviously is a very compact way to write T1000(x), compare with Table 1. Note
that expansion of these expressions cannot be done with similar efficiency as in the
direct approach that we considered in the preceding section.35

For large enough n, Macsyma generates the error message Bind stack overflow.
REDUCE’s failure has two reasons: on the one hand it misses the remember option,
but more decisively even with off exp; and off factor;, it iteratively generates
“normal forms” making many evaluations of the expressions computed necessary, and
being very costly. The same comment applies to Axiom. In such cases, it should be
possible to turn off the rational normal representation.

Table 17 Divide and Conquer Computation of Tn(1)

n Axiom Macsyma Maple Mathematica36 MuPAD REDUCE

1010 0.18 × 0.05 0.18 0.14 ×

10100
×

37
× 0.50 1.90 1.39 ×

101000
× × 24.40 25.05 × ×

102000
× × 91.90 × × ×

Tables 17–18 give the timings of the exact and approximative calculations (50 digits)
of Tn(1) with the current approach. Mathematica computes the wrong approximation
0.0, indicated by the 3, although Mathematica 3.0 claims to keep track of error bounds.

These computations show that this is a very efficient way to calculate the Chebyshev
polynomials accurately, in particular with rationally exact results. On the other hand,

35 Maple V.5 computes Tn(x) by expanding the intermediate results in the divide and
conquer computation; compare the timings given in Table 2.

36 with $RecursionLimit=Infinity. For n = 102000, a segmentation fault occurs.
37 Axiom generates the error message Invocation history stack overflow.
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Table 18 50 Digits Divide and Conquer Approximation of Tn(1.0)

n Axiom Macsyma Maple Mathematica MuPAD REDUCE

1010 0.18 × 0.03 0.23 0.12 0.66
10100

× × 0.95 3 1.66 ×

101000
× × 30.70 3 × ×

102000
× × 109.00 × × ×

the complexity of the calculation depends heavily on the complexity of the output.
Since Tn(1) = 1 is very simple, the calculation is done almost instantly. If we calculate
Tn(x0) for rational x0 6= 1, then the result typically is a rational number with huge
numerators and denominators. Hence the timings are much slower in these cases, the
reason of which is the complexity of the result and not of the algorithm.

Nevertheless, the given implementations enable the fast rationally exact calculation
of Tn(x0) for x0 ∈ Q, and not too large n ∈ N, compare Table 19, e.g.38

T100

(

1

4

)

=
2512136227142750476878317151377

2535301200456458802993406410752
.

In Table 19, we present the timings for the calculation of Tn(1/4), and in Table 20,
the number of digits of both numerators and denominators of the corresponding results
are given.

Table 19 Divide and Conquer Computation of Tn(1/4)

n Axiom Macsyma Maple39 Mathematica MuPAD REDUCE

1000 0.10 0.12 0.02 0.05 0.07 0.27
104 1.64 0.63 0.13 0.13 1.85 10.10
105 106.00 × 3.71 2.08 179.00 ×

106
× × 128.00 76.10 × ×

107
× × × 2882.00 × ×

Table 20 Numerator and Denominator Size of Tn(1/4)

n numer. digits denom. digits

1000 300 301
104 3 010 3 010
105 30 103 30 103
106 301 029 301 030
107 3 010 300 3 010 300

38 The numerators and denominators of T1000(x0) are too large to be presented here,
compare Table 20.

39 These are the timings of Maple V Release 5. Release V.3 was much slower and could
not compute T

106 (x) within one hour!
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Table 21 Accuracy of 50-Digit Approximations of Tn(0.25)

n Axiom Macsyma Maple Mathematica MuPAD REDUCE

1000 48 50 47 43 50 50
106 46 47 44 39 50 50
109 42 44 40 35 49 45

1012
× × 38 33 47 44

1015
× × 34 29 44 40

Furthermore, the method gives a very fast algorithm to compute high precision
approximations for high n, e.g.40

T1015(0.25) = 0.7208079782290876405505238094892534183987994968000...

Note that the algorithm is much faster than Axiom’s and Mathematica’s builtin
approach, see Tables 3–4.

How accurate are these computations? Table 21 gives the number of correct digits
of the calculations of Tn(0.25), done with a precision of 50 digits, and the system
specific approximate modes (Float in Axiom, bfloat in Macsyma, evalf in Maple,
N in Mathematica, on rounded in REDUCE, and float in MuPAD).

The table shows that the presented divide and conquer algorithm is rather well-
conditioned (see e.g., [4]), hence the algorithm can be applied for quite large n ∈ N

without further precautions.
Unfortunately, such a divide and conquer approach is not available for all classical

orthogonal polynomials. The Chebyshev polynomials Un(x) of the second type,
however, can be calculated in a similar way by the identities (see e.g. [2](22.6.26),
(22.6.28))

2 Tn(x) Um−1(x) = Un+m−1(x) + Um−n−1(x) (m > n)

for m = n + 1 and

2 Tn(x) Un−1(x) = U2n−1(x) .

These give the Maple implementation

ChebyshevU:=proc(n,x)

option remember;

if n=0 then 1

elif n=1 then 2*x

elif type(n,even) then

2*ChebyshevT(n/2,x)*ChebyshevU(n/2,x)-1

else 2*ChebyshevU((n-1)/2,x)*ChebyshevT((n+1)/2,x)

fi

end:

40 Try to calculate this with another method of your choice!
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1.11 Conclusion

Our article presents algorithms for the computation of orthogonal polynomials,
especially Chebyshev polynomials, with which one can receive results that are not
available with previously implemented algorithms.

Our considerations show:

1. None of the general purpose systems considered had the “best”
algorithms implemented. For all of the systems, considerable speed-
up could be obtained by the implementation of better algorithms, for
symbolic as well as numerical computations.

2. New versions of MuPAD and REDUCE already contain the best codes
presented in this article since a previous version of this article was widely
distributed in 1996. Also, in Derive’s new releases, these functionalities
are incorporated.

3. The efficiency of a specific method does not only depend on the
underlying algorithm, but also heavily on the specifics of the computer
algebra system used. Here, in particular, the internal representation
(mainly the use of rational normal representations) plays an important
role, but also the efficiency of utilized subalgorithms (determinant
computation in Table 5, computation of factorials of large integers in
Table 12, . . . ) is an issue.

4. Efficient symbolic and efficient numeric computation often require
different algorithms.

5. Remember options can enhance efficiency in specific situations, but often
iterative programs are more adequate and faster since memory should
be used carefully in computer algebra to avoid overflow.

6. For the rationally exact computation of numerical values of the
Chebyshev polynomials, the presented divide and conquer algorithm
is most efficient. It it also well-conditioned and obtains decimal
approximations rather fast. If the expanded form is not required, this
algorithm also efficiently computes Tn(x) and Un(x) generically.

7. If the expanded form of an orthogonal polynomial is needed, then the
iterative use of the closed form series representation (Table 14) is most
efficient, and all the systems can compute T10000(x) by this approach.
The same technique applies also to the computation of the other classical
families of orthogonal polynomials.
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