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3.8 Computer Algebra in Education

Twentyfive years ago when I studied Physics, only one of the students who
participated in a laboratory course that I took was possessing one of the first
calculators to process the data we were obtaining. Everybody else, including me,
used a slide-rule for this purpose. Nowadays, the calculator is used by everybody,
by far not only for academic purposes. Hence it is the responsibility of school
education, and here in particular of Mathematics education, to take this situation
into account, and to teach our children the (intelligent) use of a calculator.

In my opinion, there is no doubt that sooner or later computer algebra sys-
tems or hand-held computer algebra tools will be used by everybody in the same
way as (numeric) calculators are used today. Obviously this gives us a new re-
sponsibility to integrate computer algebra in the Math curriculum and to teach
the students the use of them. When I realized this, I began to use DERIVE in
my calculus courses at the Free University Berlin, in particular for the Math
teacher education [41, 38, 39] as a didactical tool.

Whereas calculators brought more numeric computation into the classroom,
computer algebra systems enable the use of more symbolic computation. In par-
ticular, the interaction between numeric and symbolic computation can enhance
the Math education substantially [40].

The usage of computer algebra in the classroom is increasing worlwide, and
slowly these steps are institutionalized and Math curricula are adapted accord-
ingly.

In the articles below, several main contributors come to word, and describe
their activities in this direction. These activities are spread from the use of hand-
held devices like the TI-89 in undergraduate education to the use of special
purpose computer algebra systems in graduate studies.

Wolfram Koepf (Kassel)

3.8.1 New Hand-Held Computer Symbolic Algebra Tools in Mathe-

matics Education

An unparalleled opportunity exists today to deliver better mathematics edu-
cation than we ever thought possible. And it can be delivered to all students
because of the rapid expansion of inexpensive powerful hand-held computer tech-
nology with built-in computer symbolic algebra (CA) software. These amazing
products are now available from Casio and Texas Instruments (TI-89, TI-92,
CASIO CFX-9970G and CASIO Algebra FX2.0). We fear, however, that our
community is not ready to deal with the implications of their use due to misun-
derstanding, fear, and inexperience.

It is a fact that hand-held scientific calculators have significantly changed
the high school and university mathematics curriculum around the world in
the past 25 years. For example, many topics that dealt with paper and pen-
cil “computation” involving transcendental functions have been deleted. Many
sections and even some chapters in textbooks dealing with paper-and-pencil
computation methods became obsolete and disappeared from the curriculum.
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Why? Because hand-held scientific calculators provided better ways to “com-
pute” than paper-and-pencil methods. The same thing (obsolescence) will soon
happen with paper-and-pencil symbolic algebraic manipulations common today
because of student use of inexpensive hand-held CA systems that now exist and
soon will proliferate.

It is important to note that less time is now spent on certain topics (ones
made obsolete by scientific calculators) but we still “do” the same things. For
example, we still “compute” the sine of 14.25 degrees but not by the time con-
suming method of paper-and-pencil linear interpolation. What changed was not
the “to do’s” but the “how to” do the “to do’s.” It is also equally important to
note that many educators found pedagogical ways to use scientific calculators
that enhanced the teaching and learning of mathematics.

We should continue to teach the same content topics, but we should expect
the methods we will use “to do” or “to apply” the topics will change (and likely
be much faster) because of advancing technology. For example, some reformers
have said it is no longer necessary or desirable to teach factoring. We believe
they are wrong. The mathematical topic of factoring is a major and important
topic. It must remain in the curriculum. However, in the past factoring was a
mental or tedious paper-and-pencil exercise that often hid the really beautiful
underlying mathematics. Recall using the “rational zeros theorem” to factor
2x3

− 5x2
− 9x + 18? What a painful experience for students—and it took a

good deal of time to do just one example! With CA this polynomial can be
factored instantly. What is important and was often lost in the fog of tedious
computations was recognizing what the factors can tell us about the behavior of
the expression. The concept topic of factoring is important! Integrating CA into
the curriculum means the same topics can be taught in less time so more time
can be devoted to new mathematics, better mathematics, understanding, proof,
problem solving and so forth.

Consider the “exercise” of evaluating the definite integral given in the ex-
ample below. We use the TI-89 “integrate” command to do the computation.

The answer shown is “exact” but what “is” −π
2

18
+ π

√

3

3
− 1 really? How do

we know it is correct? Rather than asking students to do the tedious “paper-
and-pencil” manipulations, with no real understanding of the integral concept
necessary to find the “exact” answer, a much better series of questions can now
be asked.
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a. How do you know this definite integral exists?
b. Describe a “problem” for which the integral is the “answer.”
c. Estimate the answer without using CA and compare your estimate with the

CA solution.

This solution is easy and involves a computer or graphing calculator graph in
the interval [0, π/3] by [0, 1] together with the observation that the area under
the curve is “about” the same as that under the line shown (1/2) ·base ·height ≈
0.5 · 0.5 · 1 = 0.25.

To conclude that the CA answer must be near 0.25 requires real understanding
of calculus concepts (not low order manipulative skills).

Students will demand the use of CA because it provides a “better” tool to
do the tedious algebraic manipulations common in “mathematics” today. To do
otherwise is a waste of valuable teaching time and learning opportunities. We
have wonderful examples of innovative curricula from Austria “better mathe-
matics better” using CA [34]. Use of hand-held CA together with a recognition
that some of what we once did is now obsolete can provide the time to spend in
the classroom on more worthwhile topics!

What is needed today and in the future is a school and university mathe-
matics curriculum that takes advantage of computer algebra technology to as-
sist students in gaining mathematical understanding, in becoming powerful and
thoughtful “thinkers,” communicators, and problem solvers. There should be a
balanced approach to the use of computer algebra technology in mathematics
teaching and learning. Some of us in mathematics education have an apprecia-
tion of the deeper and richer understanding of mathematics that is possible when
technology is used effectively. The great challenge for mathematics educators in
the future is to make clear to the “public” that such good mathematics is both
possible and desirable [17].

Bert K. Waits (Columbus)

3.8.2 The Dutch Perspective

Computer algebra has been an issue in mathematics education in the Nether-
lands for some years already. This does not imply that the discussion on this
phenomenon has resulted in an agreement; no consensus on the role of computer
algebra in the mathematics classroom has emerged so far.
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Below, I describe some recent developments in my country from a personal
perspective. I confine myself to mathematics education at upper secondary, pre-
university level. As far as the university level is concerned, I refer to the Internet
site of Computer Algebra Netherlands (www.can.nl), that provides information
on the use of computer algebra in academic education.

Firstly, I describe the Dutch situation concerning curriculum and assessment.
Secondly, I briefly consider the first educational experiments with computer alge-
bra. Thirdly, the rise of the graphics calculator is discussed. In the end, computer
algebra comes into the picture again, but now in a hand-held format. I conclude
with an imaginary jump into future.

Understanding the developments in my country requires some knowledge of
the organisation of the curriculum and assessment.

As far as the curriculum is concerned, it is important to notice that there
is no detailed curriculum that prescribes which topic should be taught when.
The curriculum is defined by a description of skills and concepts that will be
assessed by the end of secondary school; the schools are free to choose how they
get there. They can also decide on the textbooks they want their students to use.
It is because of this relative freedom that the final assessment is so important.

The final assessment at upper secondary level consists of two parts: a school
set assessment and a final national examination that is externally set and in-
ternally graded. This national examination is very important for the implemen-
tation of technology; if a certain technology device is not allowed at the final
examination, it will not easily become popular in the classroom. The current
regulation is that the graphics calculator is required at the final examination,
whereas computer algebra is excluded. Two arguments guided this legislation.
Firstly, it would be hard to organize a national examination throughout the
country with computer access for all the candidates; hand-held computer alge-
bra was not yet available. Secondly, the financial aspect was important. If com-
puter access was required at the final examination, schools would need money
to buy them, whereas hand-held technology devices are supplied by the students
themselves.

For the school assessment, the authorities recommend the use or partial use of
a computer, but again, the schools are free to decide. I have the impression that
the number of schools that use a computer in their examination is increasing.
The computer is often used in combination with investigation tasks where a
written or oral report forms the assessment.

Obviously, the Dutch policy on technology is a careful one. Information about
the different strategies concerning technology use and assessment in other coun-
tries can be found in [23].

The first project on computer algebra at upper secondary level started in
1990. The idea of this two-year project was to develop short instructional units
that were tested in pilot schools. Although the production of these materials was
useful, the project as a whole was not very successful. This was caused by the
lack of computer facilities at schools and by the difficulties students had with
the user friendliness: they had little ‘computer literacy’ and a windows interface
was not available. Obviously, the time was not yet ripe for the implementation
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of computer algebra at this level.

By the end of this project, a group of volunteering teachers decided to con-
tinue the work. This group, called CAVO, existed until 1998 and was a lively
and important platform for further development and discussion (see [25]). In the
mean time, however, the graphics calculator came on the market, and attracted
much attention.

The development of the graphics calculator elicited discussion on which tech-
nology platform should be used in secondary education (see [20]). The Dutch
authorities decided that the implementation of the graphics calculator would be
the first step to take. Therefore, they supported a research project on this issue in
1992. This project was carried out by the Freudenthal Institute, a research group
on mathematics education. Later it became an integrated part of a larger cur-
riculum development project called Profi. Results of the Profi-project included
student textbooks that integrated the use of the graphics calculator, and ex-
perimental examinations that required the availability of a hand-held graphing
device. The role of the graphics calculator in this project is summarized in [24].

Some educators and teachers were, however, opposed to the implementation
of the graphics calculator. Their arguments were that computer algebra is a
much more sophisticated mathematical tool, and that a graphics calculator is
only a temporary step backwards compared to the possibilities that PC’s offer.
In 1996, however, a questionnaire revealed that PC’s were hardly ever used dur-
ing mathematics lessons, although they were available in schools. This supports
the idea that real implementation of technology requires that the student has
direct access to the device. The limited mathematical power of the graphics cal-
culator is not an important disadvantage: it allows teachers, textbook authors
and examination boards to have sufficient time to carefully integrate a graphical
and numerical tool without having to cope with computer algebra in the mean
time.

The choice of the graphics calculator may be a temporary preference indeed:
the symbolic calculator raises the issue again. Nowadays, computer algebra is
also available in a hand-held format. A first pilot experiment using the TI-92
revealed that the students appreciated this machine as an ‘algebraic calculator’,
but not so much as a dynamic geometry tool [22].

When the Dutch Association of Mathematics Teachers became aware of the
possible impact of symbolic calculators on secondary mathematics education, an
Advisory Board on Computer Algebra and Symbolic Calculator was formed. In
May, 1998, this Board concluded that:

– computer algebra should be implemented in upper secondary education;

– research was needed in order to find answers to the pedagogical and curricu-
lum issues that will be raised by this;

– as a computer algebra platform, the PC would be preferred to the symbolic
calculator, at least in the long term.

For the full report of the Board (in Dutch!) I refer to the Dutch Association of
Mathematics Teachers site: www.nvvw.nl.
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In the fall of 1998, the Freudenthal Institute conducted an explorative case
study using the symbolic calculator. This machine turned out to be quite useful in
investigation tasks. The sophisticated use of variables and parameters, however,
was not always clear to the students. Furthermore, some students were reluctant
to use computer algebra for the application of techniques that they had not yet
mastered manually.

At present, many research questions concerning the role of computer algebra
in secondary education are still unanswered (see [21]). No decisions on its im-
plementation in the Netherlands have been made so far. In the next few years,
I expect three developments to take place.

Firstly, teachers, examination boards and school book authors will get used
to the graphics calculator and will take advantage of the pedagogical possibilities
that these devices offer.

Secondly, research will be carried out concerning the role of computer algebra
in the learning of mathematics and, more specifically, in the learning of algebraic
concepts. Such a study was started recently by the Freudenthal Institute.

Thirdly, research will be carried out on the possibilities of computer algebra
as a wide-range technology tool. A project that focuses on the use of a computer
algebra environment in combination with a text editor (to write mathematical
reports) and an Internet browser has been started at the Algemeen Pedagogisch
Studiecentrum, an institute for improvement of (mathematics) education.

It is my hope that these developments will lead to a carefully considered
implementation of computer algebra in secondary education.

Paul Drijvers (Utrecht)

3.8.3 Computer Algebra in Teaching and Learning Mathematics: Ex-

periences at the University of Plymouth, UK

There are many ways of using computer algebra systems in the teaching and
learning of mathematics. Research in the literature shows that student learning
can be enhanced when CAS is used as an add-on through ‘laboratory activities’
(see for example the work of Mayes [43] and Heid et al. [33]) and when more
fully integrated into the curriculum (see for example the report of the Austrian
Experiment [4]).

Our experience of using the computer algebra system DERIVE in some of our
courses in Plymouth began in the late 1980s with some experimental research
work with engineering students. Encouraged by the outcomes of this research we
have increased the use of CAS to the mathematics degree programmes. Inevitably
we have experienced resistance along the way from many of our colleagues. Their
concern is that students may become too dependent on CAS and will not de-
velop appropriate mental mathematics skills. These concerns have encouraged
the team of CAS enthusiasts at Plymouth to develop ways of using CAS to
enhance learning through investigational activities that develop concepts and
understanding.

Recruitment of students to engineering degrees in the United Kingdom has
been falling steadily over the past decade. Among the many reasons for this



Computer Algebra in Education 7

phenomenon is the perception among school students that mathematics and
science, physics in particular, are hard and unglamorous subjects of study, and
that to be an engineer is a low status occupation. Attempts to redress this
perception through the National Curriculum in secondary schools have led to
a widening gap between a student’s knowledge of mathematics and physics at
the age of eighteen and the traditional starting points of degrees in engineering
subjects.

At the same time access to higher education in the United Kingdom has
widened considerably to admit far more mature students (aged 21 or over) than
hitherto. This widening of access has enriched the undergraduate population in
many ways but has usually meant that the mathematical and scientific back-
ground of such students is weak.

An alternative approach is to broaden the curriculum by developing under-
graduate engineering degree courses that are focused more on Design, Com-
munications or Technology Management rather than the more traditional and
mathematically more demanding areas of Mechanical or Electrical Engineering.
As a consequence the customary entry requirements of Advanced level Mathe-
matics (or equivalent) (Advanced level is a school leaving public examination in
England and Wales taken at 18 years of age) has been removed and about one
third of the intake to these new courses has not studied any mathematics beyond
the age of 16 years. Consequently they begin their undergraduate studies lacking
much of the mathematical ability, thinking and confidence which earlier cohorts
have displayed.

How then can such students be taught an appropriate mathematics course
given their weak knowledge base? Fortunately the great majority of today’s new
undergraduates possess significant IT skills. It was therefore decided to exploit
the fact that they are comfortable with IT and use it in a central role to support
the teaching and learning of their mathematics.

We encourage the use of graphics calculators, particularly the TI-83, and the
computer algebra package DERIVE. Once their prices have become competitive,
we intend to use the TI-92 and TI-89 as well. We have a dedicated computer
laboratory with 16 PCs and students will usually spend two hours a week in the
laboratory for the mathematical methods modules. In this time they normally
follow guided investigations which either follow up some work introduced in a
lecture or prepare for work which will then be followed up in a subsequent lecture.
We regard this approach as a modification of Buchberger’s white-box/black-box
principle [12]. Our work with DERIVE has been ongoing for some years now
and may be read about elsewhere ([51], [6], [52]). In lectures we may often use
a laptop computer and overhead viewscreen for demonstrations with DERIVE
and likewise with the graphics calculators.

The various topics of the module syllabus in the Design, Communications and
Technology Programme are introduced via integrated case studies whose origins
are based either in the student’s previous experience or engineering knowledge.
The case studies are integrated in the sense that a scenario is presented, requiring
a model and/or solution, and the students identify mathematics that they feel
appropriate. The solution is then progressed until further support is required.
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Given the academic background described above this often means some sort of
support with the implementation of a piece of mathematics (e.g. solution of an
equation, differentiation of an expression). This is where the IT comes in—at
this stage the students make use of a CAS (currently DERIVE) to provide the
support and help them to progress their solution. The strategy of ‘identify the
relevant mathematics, progress the solution, seek CAS assistance, progress the
solution,. . . ’ is continued until a satisfactory solution is obtained. En route the
tutor notes any pieces of mathematics which will need to be revisited for ex-
pansion in order that the overall learning experience is mathematically coherent
and not just a jumble of techniques.

The use of DERIVE with a group of students enrolled on building courses
at the University of Plymouth is discussed now. As with the students discussed
earlier these students have also rarely studied mathematics beyond the age of
16 and often have weak mathematical backgrounds. The mathematics module
that they take covers mathematics and some statistics and is designed to prepare
them for the mathematics that they need in their science and surveying modules,
as well as introducing them to the statistics that they need for subjects like
economics.

DERIVE is employed as a tool to help them develop a graphical understand-
ing of some of the mathematics that they meet in the module. The ideas of
transformations of graphs provide a theme that the sessions use in the context
of different functions. The students have six computer lab sessions (once every
two weeks), of which four make use of DERIVE and the other two a statistics
package.

Computer Algebra has been less readily accepted into the mathematics degree
programme because of the need to develop a different view of mathematics and
the associated knowledge and skills and the more traditional curriculum. We
would also suggest that for engineers, mathematics is seen as more of a tool
for solving problems than in a mathematics programme in which understanding
the concepts is a more important outcome. However we are encouraged that the
situation is changing. Our experiences of using DERIVE and the move to a more
student centred learning culture is encouraging colleagues in the Department to
investigate the use of Maple across the programmes.

The first year calculus course is designed to explore the fundamental concepts
of calculus and to introduce some of the applications. Students on the course
are in the first semester of their first year at university and so have not usually
met any type of computer algebra system before. DERIVE is used extensively
as a problem solving tool and in investigations to introduce new mathematical
concepts to the students.

The topic on boundary layers is part of an introductory course on non-linear
systems. This course covers three broad topics: the use of geometric methods to
study the solution of first and second order differential equations; the study of
discrete systems (recurrence relations) including ideas of bifurcations and chaos;
and asymptotic methods of solving differential equations. Computer algebra in
the form of DERIVE or the TI-92 is used to draw direction fields for the geomet-
ric approach and to explore iterations on the discrete systems. The asymptotic
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methods part of the course is more algebraic in approach.
In describing these examples there has been an implicit assumption that the

students still need to learn to do the same mathematics that was required in a
pre-computer algebra age. In the short term computer algebra has revolutionised
the way that we teach mathematics but not what is taught, with the assumption
that computer algebra is a desirable but not an essential ingredient. In the longer
term there is the need to change the mathematics that is taught as well as the
way that we teach it. If this does happen then computer algebra will be an
essential ingredient of any new style course.

To return to the present situation, where it is possible to enhance our teach-
ing with computer algebra, students who have followed such courses soon realise
what an asset computer algebra can be to their learning. They also expect to see
it forming part of their other mathematical studies and are clearly disappointed
if more traditional approaches are taken. Students once exposed to Maple, DE-
RIVE or the TI-92 will place pressure on their teachers, now and in the future,
to make full use of such technology in their teaching.

For further details of these examples visit www.tech.plym.ac.uk/maths/

ctmhome/ctm.html

John Berry, Ted Graham, Jenny Sharp, Stewart Townend, Anthony Watkins
(Plymouth)

3.8.4 The Educational Use of Computer Algebra Systems at the Uni-

versity of Illinois

This is a report on the development of computer algebra courses at the University
of Illinois at Urbana-Champaign. It describes the changes in the curriculum that
have been taking place and the reasons for these.

In the fall of 1991, I offered a course on computational group theory to
graduate students. This was a hands-on course, with students sitting at Sun
workstations attempting problems and me roaming around giving them math-
ematical and computational suggestions as the need arose. The students were
highly motivated to learn the material, often stayed on long after class finished,
and ultimately solved one of the unsolved problems resulting in [9] being pub-
lished. Further details on this course are given in [8].

No further computer algebra course was offered until the fall of 1994, when
I gave a course on elliptic curves by computer for graduate students. This did
not lead as before to a publication by a large proportion of the class. Instead,
some of the students came out with individual papers. It was in fact becoming
increasingly standard for graduate students in algebra at UIUC to use software
packages in their learning and research. Computers allowed a much wider class of
examples to be investigated, giving students a more solid grounding in their area
and sometimes allowing them to make discoveries that earlier researchers had
overlooked. I had to be careful to avoid them using these systems as crutches.
The right attitude to cultivate seemed to be one of partnership between human
and computer.
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The next step was to institutionalize these sporadic topics courses. We ap-
plied for a course number and Math 420, Computer Algebra Systems, was cre-
ated. Together with Math 321 (on Groebner bases) and four other courses this
formed the mathematics department’s part of the campus-wide Computational
Science and Engineering Option. We set up a web page (http://www.math.
uiuc.edu/~boston/math420.html) with links to documentation on many soft-
ware packages and the students learned how to pick the right system for the
problem at hand, obtain on-line help or web help, and avoid various pitfalls.
It was a very practical hands-on training with students learning how to use
many advanced computer algebra systems, such as MAGMA, PARI-GP, KASH,
Macaulay2, . . .

Math 420 has been offered twice so far, in the spring of 1997 and of 1998.
It will be given again in spring 2000. Enrolment suggests that it should be
offered once every two years. Computer algebra seems to be very popular with
graduate students, who use it routinely in their work. Many other graduate
courses now include short visits to the computer lab to supplement with examples
the more theoretical approach usually used in lecture/discussion. Math 321,
mentioned above, is an undergraduate course, intended for bright math majors.
All indications are that the trends described above will continue and that in
future computer algebra courses will be required parts of both the graduate and
undergraduate curriculum.

Nigel Boston (Urbana-Champaign)

3.8.5 Mathematics Education from a Mathematica Perspective

aindexFowler@ David Fowler (Lincoln)
In this section I would like to speak about changes in educational practice

resulting from the availability of computer algebra systems, using Mathematica
as an exemplar of such systems. Clearly, the practice of mathematics itself has
changed radically during the past twenty years, as we exploit our increasing abil-
ity to shift the burden of algorithmic processing from humans to machines. The
expanding capacity of computer systems for graphically representing complex
mathematical concepts and processes, and the possibilities offered by electronic
communication have significantly altered traditional mathematical discourse. In
the words of one mathematician active in the “calculus reform” movement, “The
most visible force for change in the mathematics curriculum is the computer, a
mathematics-speaking device that has totally transformed science and society”
[48].

All of the above capabilities are embodied in Mathematica, a fully integrated
environment for technical computing. Definitive quantitative studies showing
the effects of using Mathematica in education are relatively sparse. Qualitative
information, on the other hand, is abundant, and one can infer that there is
considerable impact on educational practice resulting from the availability of
Mathematica and other computer algebra applications.

An early and reportedly successful application of computer algebra systems
to calculus instruction is the Calculus&Mathematica project [50], developed at
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the University of Illinois at Urbana-Champaign and the Ohio State University
and tested at thirty other sites for about six years. The project has received
high praise in a US National Research Council report [37]. The mathematics
department at the University of Missouri-Columbia has adopted a variation of
Calculus&Mathematica, in which all undergraduate calculus is taught through
Mathematica-based instruction, and they report equally successful results [46].

The journal Mathematica in Education and Research, begun as a newsletter
in 1991, just three years after the introduction of Mathematica, provides a useful
guide to the evolving uses of computer algebra in education. In an editorial
introduction to Volume 1, Number 1, Wellin [53] described four components of
Mathematica’s potential for changing education:

1. Active involvement of students in learning;
2. Experimentation as a means of understanding mathematical concepts;
3. Visualization of mathematical processes;
4. Access of students to real-world problems.

These themes have continued as the principle set of arguments for using computer
algebra systems, particularly in the teaching of calculus. Wellin also raised the
salient issues regarding the uses of computer algebra-based instruction; namely,
the establishment of labs, the role of an instructor in a lab rather than a lecture
setting, and the articulation of Mathematica-taught courses with conventionally-
taught courses in the university curriculum. Again, these issues have continued
to be raised in any analysis of computer algebra-based instruction. In subsequent
issues of the journal, authors describe specific calculus concepts that can be ef-
fectively taught with Mathematica. In some cases, these authors temper their
enthusiasm for computer algebra with cautionary advice. Cohen [14] provides
suggestions for effectively using Mathematica in a “new calculus” course, using
arclength as a prototypical example. Among Cohen’s suggestions for successful
instruction is the need to provide coding templates, since students have problems
with accurately entering correct Mathematica syntax. A related difficulty is de-
scribed by DeJong [16] in an article on symbolic algebra computer laboratories.
DeJong describes an “empowerment problem”: Students do not easily acquire
confidence and ability to use Mathematica.

Other authors concentrate on the advantages of using Mathematica without
mention of lab-based difficulties. For example, Prevost [45] extols the virtues
of using Mathematica graphics to reinforce the limit concept. From this and
other articles in later volumes of the journal, one might infer that the peda-
gogical questions related to using Mathematica in calculus instruction have been
solved. However, Holdener [35], in 1997, reported that “continuing controversies”
still existed concerning the use of Calculus&Mathematica. She cited “Gadgetry
over Intellect,” “Proof-abuse,” and “Lack of Necessary Hand Skills” as concerns
raised by opponents of computer-based calculus courses in general and Calcu-
lus&Mathematica in particular. Although there were rebuttals to each of these
concerns by proponents of computer-based calculus, one can see that in the last
third of the 1990s, computer algebra systems are still far from being in universal
use for calculus instruction.
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The range of educational articles in Mathematica in Education and Research
extends far beyond calculus instruction. In physics, for example, Gilfoyle [29] de-
scribes the use of the transfer matrix method to present an approach to quantum
tunneling for undergraduate physics students. In engineering, Sipcic [47] argues
for a large-scale revision of the traditional approach to teaching mechanics, and
offers numerous Mathematica examples for instruction. Benninga and Wiener
[5] present a series of six articles from a graduate course in financial engineer-
ing. Akritas and Bavel [1] describe the use of Mathematica to teach historical
topics in a college liberal arts course. Although Mathematica was designed pri-
marily for advanced technical computing, innovative teachers have explored its
use in pre-college mathematics instruction. A comprehensive collection of vi-
sualizations for classroom use on CD-ROM is described by Gloor in the next
subsection 3.8.6. Mathews and McCallister [42] present a study that found a
statistically significant difference in the problem-solving performance between
groups of algebra students that did not use Mathematica and those that did.
Peckman [44] suggests that Mathematica could be used to give high school stu-
dents in the USA a deeper understanding of the concept of function and provides
numerous examples. Holzinger [36] discusses research to test the motivation of
students using Mathematica at Handelsakademie, a high school in Graz-Austria,
using 35 different Mathematica 3.0 notebooks. Holzinger found higher motivation
and greater interest in problem-solving among students who used Mathematica.
He also found that the solution of mathematical problems did not become easier
for the student after exposure to computer-aided math instruction.

Computer algebra systems are beginning to be used for introducing students
to a new set of mathematical concepts. For example, a set of notebooks by this
author includes novel visualization of very large and very small numbers, fractal
dimension, cellular automata-generated music and other topics formerly outside
the mainstream pre-college curriculum [28].

During the first decade of use, Mathematica has had a steadily growing influ-
ence on education. Some university instructors continue to express doubts about
using symbolic algebra systems to teach basic subjects such as calculus and lin-
ear algebra. Consider, however, that an emerging group of students who learned
these subjects using computers and advanced symbolic calculators are now be-
coming university professors. These instructors will organize their courses with
the computer as an implicit tool, rather than as an add-on device for displaying
an isolated animation or performing a few specialized computations. Simulta-
neously, computing machinery that can easily handle Mathematica continues to
become more widely available, so that students need not be limited to labs for
their instruction.

Finally, the emergence of a web-based language, most probably MathML,
will further blur the division between journal, textbook and universal elec-
tronic communication [27]. It is highly likely that symbolic algebra will provide
computational power, and eventually inferential power—on-line proof-generating
applications—that will be a standard resource for mathematical cognition.

David Fowler (Lincoln)
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3.8.6 Visualization: Courseware for Mathematics Education

We report on the projects Analysis Alive and Illustrated Mathematics, which
both deal with the application of computer algebra systems on mathematics
education. In both projects, computer algebra is not the object to be taught but
serves as an aid in the process of teaching and learning mathematics. Thus, the
focus entirely lies on mathematics, and the computer algebra systems, on which
our software relies, are mainly a tool.

Visualization in Mathematics

The importance of visualization can hardly be overestimated in general cogni-
tive skill acquisition and problem solving processes (see [3, 18]). Pictures activate
mental processes such as the perception of spatial relationships, intuitive com-
prehension of complex processes, or the observation of patterns and, therefore,
aid the process of understanding. Looking at a picture, we use it as a vehicle of
thinking, but intend to understand processes and behaviors of the real world.

Learning can be achieved through the translation between representations at
different levels of abstraction. Visualization can be seen as providing the relevant
representations to assist the learner in carrying out this cognitive process. The
useful aspects of visualization are the translation from representations which are
more abstract to those which are less abstract. Therefore, current techniques of
scientific visualization can bring invaluable insight to students.

In particular in mathematics we deal with abstract structures, which vi-
sual representation helps to enlighten. This is important, particularly for those
students who have difficulty understanding abstract mathematical objects. The
objects we have in mind are not primarily geometric figures, but arbitrary mathe-
matical objects such as infinite sequences, complex functions, or conformal map-
pings. For beginners, these terms are most difficult to grasp. Therefore, their
visualization is a key to understanding these complex topics.

Computer Algebra Systems in Mathematics Education

Computer algebra systems (CAS) provide the necessary algorithms needed to
compute mathematics visualizations. CAS give teachers and students also an-
other and more direct approach to using the computer. Applying a CAS, much
less effort to treat a simple practical problem with the computer is needed than
is with the classical approach, learning a full programming language first. So the
focus moves from computer handling to the application. This enables the pos-
sibility of applying the computer in education not as a teaching object but as
a tool to solve problems in other disciplines. Therefore, an introduction to CAS
belongs to a modern curriculum in the education of scientists and engineers.

These two reasons—using CAS for visualizations and introducing CAS in
education—make it natural to choose visualizations for the first contact of stu-
dents with CAS.

Therefore, it is not surprising that many mathematicians have already com-
bined the teaching of mathematics with a course on a computer algebra system
(see e.g. [32, 26, 10, 19, 41, 15, 11, 7, 49]). However, this approach leads to addi-
tional difficulties for the students as they have to acquire not only one but two
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skills: the understanding of mathematics together with the understanding of the
special computer algebra system which has a priori nothing to do with mathe-
matics itself. Thus, this approach might even produce negative interferences.

The Grey Box Approach

Both in Illustrated Mathematics and in Analysis Alive, we tried to avoid over-
loading students (and teachers) by the issues to be taught (mathematics) and the
technology (CAS). For that, we shielded the user as much as possible from the
intricacies of both operating system and computer algebra system, by providing
a grey box1 consisting of the following parts.

– Electronic documents containing the ready-made visualizations (graphics
and animations) of mathematical objects.

– Programs providing commands for the creation of new visualizations accord-
ing to user-specified parameters.

As the documents already contain the commands to compute the graphics con-
tained therein, the user only has to change the parameters and to process the
command in order to obtain his own visualizations. In particular, users do not
need to learn the subtleties of the input syntax let alone to write programs in a
CAS. They merely need to handle the basic functionalities of its user interface
such as opening and browsing documents and evaluating a command. (For a
more detailed discussion of the advantages of the use of a CAS for such a grey
box, see [2].)

Numerous authors chose similar approaches and provide programs which
allow the user to perform experiments. The resulting packages usually treat only
a few issues and do not cover an entire course. A notable exception is [13], which
consists of a black box built on a limited version of Mathematica.

Illustrated Mathematics

The goal of this project (cf. [30, 31]) was to provide a comprehensive collec-
tion of graphics and animations for topics in mathematics at the high-school
and undergraduate and graduate college level. The visualizations are inteded
for classroom use and can be used for demonstration during class, printed as
hardcopy, or included in other documents.

The collection (provided as Mathematica notebooks) is organized by math-
ematical topic and is not intended to replace textbooks. Teachers can select the
examples that fit their syllabus and incorporate them into their lectures and
class notes.

The programs (written in Mathematica’s own programming language) allow
users to experiment by seeing the effects of changing parameters on the objects
they are studying.

The topics range from basics such as sequences and series and end up with
complex functions and minimal surfaces.

1 We use the term grey box like black box for indicating that it is not necessary to
know the inside process but merely the functionality. However, the entire software is
user readable, but unlike a white box its internals are not discussed.
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For further information on Illustrated Mathematics please consult the world
wide web at http://www.amrhein.ch/IM.

Analysis Alive

This project (cf. [54]) addresses students of mathematics as well as of sciences
and engineers. It offers a new complete interactive approach to “Analysis” as it
is taught at German universities.2 It connects the concept of a modern textbook
on this field and the opportunities of a modern computer algebra system in such
a way that the user can profit from the advantages of both systems for knowledge
acquisition without being obliged to master secondary skills.

Analysis Alive comprises a textbook and a CD–ROM jointly forming a com-
plex unit. First of all, the book itself can be used as a common modern textbook
combining the representation of the material, hundreds of illustrated examples
and exercises presented directly within the current text. The text, however, is
tightly linked to the electronic documents on the CD–ROM. For almost all rel-
evant issues, the user can find visualizations in electronic form. These graphics
and animations are presented in a similar way as in Illustrated Mathematics.
They are presented in the form of Maple worksheets, and the software providing
the commands for the creation of user-chosen examples relies only on Maple.

The text, however, is tightly linked to the electronic documents on the CD–
ROM. Icons and background shading show which parts of the book are repre-
sented as visualizations on the CD–ROM. This direct relation offers now easy
creation of visualization examples for the hundreds of examples listed in the
text. Moreover, and much more important, it provides a great opportunity for
experiments.

The following graphics show the effect of the transformation from cartesian
to polar coordinates for the integral approximation.
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2 This course roughly corresponds to a course in higher calculus.
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For further information on Analysis Alive please consult the world wide web
at http://WWW.amrhein.ch/AA.

Oliver Gloor (Bern)
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