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We derive and factorize the fourth-order difference equations satisfied by orthogonal polynomials obtained from
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associated, the general co-recursive, co-recursive associated, co-dilated and the general co-modified classical
orthogonal polynomials. Moreover, we find four linearly independent solutions of these fourth-order difference
equations, and show how the results obtained for modified classical discrete orthogonal polynomials can be extended
to modified semi-classical discrete orthogonal polynomials. Finally, we extend the validity of the results obtained for
the associated classical discrete orthogonal polynomials with integer order of association from integers to reals.
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1. INTRODUCTION

Let U be a regular linear functional [3] on the linear space P of polynomials with real

coefficient and (Pn )n a sequence of monic polynomials, orthogonal with respect to U, i.e.

(i) PnðxÞ ¼ xn þ lower degree terms;

(ii) kU;Pn Pml ¼ kndn;m; kn – 0; n [ N;

where N ¼ {0; 1; . . .} denotes the set of non-negative integers. Here, k·,·l means the duality

bracket and dn;m the Kronecker symbol.

(Pn )n satisfies a three-term recurrence equation

Pnþ1ðxÞ ¼ ðx 2 bnÞPnðxÞ2 gnPn21ðxÞ; n $ 0; ð1Þ
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with the initial conditions

P21ðxÞ ¼ 0; P0ðxÞ ¼ 1; ð2Þ

where bn and gn are real numbers with gn – 0; ;n [ N.0 and N.0 denotes the set

N.0 ¼ {1,2,. . .}.

When the polynomial sequence (Pn)n is classical discrete [28,29], i.e. orthogonal with

respect to a positive weight function r defined on the set I ¼ {a; a þ 1; . . .; b 2 1} and

satisfying the first-order difference equation (called Pearson-type difference equation):

DðsrÞ ¼ tr; ð3Þ

with

xns ðxÞrðxÞj
x¼b
x¼a ¼ 0; ;n [ N; ð4Þ

each Pn satisfies the difference equation

LnðyðxÞÞ ¼ s ðxÞD7yðxÞ þ t ðxÞDyðxÞ þ lnyðxÞ ¼ 0;

where

ln ¼ 2
n

2
ððn 2 1Þs 00 þ 2t 0Þ:

s is a polynomial of degree at most two and t a first degree polynomial; the operators D and

7 are forward and backward difference operators defined by

DPðxÞ ¼ Pðx þ 1Þ2 PðxÞ; 7PðxÞ ¼ PðxÞ2 Pðx 2 1Þ ;P [ P:

The previous difference equation written in terms of forward and backward operators can

be rewritten in terms of the shift operators as

Dnð yðxÞÞ ¼ ðTLnÞð yðxÞÞ ¼ ððs ðx þ 1Þ þ t ðx þ 1ÞÞT2 2 ð2s ðx þ 1Þ

þ t ðx þ 1Þ2 lnÞTþ s ðx þ 1ÞIÞyðxÞ ¼ 0; n $ 0 ð5Þ

where T and I are the shift and the identity operators defined, respectively, by

TPðxÞ ¼ Pðx þ 1Þ; IPðxÞ ¼ PðxÞ ;P [ P:

The orthogonality condition (ii) reads as

Xb21

s¼a

r ðsÞPnðsÞPmðsÞ ¼ kndn;m; kn – 0; ;n [ N:

The coefficients bn, gn and ln are given in Refs. [28,29] for any family of classical

discrete orthogonal polynomials and in Refs. [12,16,18,34] in the generic case.

The classical discrete families are Hahn, Kravchuk, Meixner and Charlier orthogonal

polynomials [28].

Some modification of the recurrence coefficients (bn)n and (gn)n of the Eq. (1) lead to new

families of orthogonal polynomials (see Refs. [23,24,33] and references therein) such as the

associated, the general co-recursive, co-recursive associated, co-dilated and the general

co-modified classical discrete orthogonal polynomials [23]. Each of these new families of

orthogonal polynomials satisfy a common fourth-order linear homogeneous difference
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equation with polynomial coefficients of bounded degree. In general, they cannot satisfy a

common second-order linear homogeneous difference equation with polynomial coefficients

of bounded degree. Therefore, these new polynomials are not semi-classical but belong to the

discrete Laguerre–Hahn class (see “Preliminaries and notations” section). Many works have

been devoted to the derivation of these fourth-order difference equations. Their polynomial

coefficients have been given explicitly in Refs. [1,7,8,10,19,32,36] for the rth associated

classical discrete orthogonal polynomials.

In 1999, using symmetry properties inside the three-term recurrence relation,

hypergeometric representation and symbolic computation, the coefficients of the fourth-

order difference equation for the co-recursive associated Meixner and Charlier orthogonal

polynomials were given [20].

Despite the fact that the coefficients of the fourth-order difference equation satisfied by the

perturbed classical discrete orthogonal polynomials require heavy computations for being

very large, we have succeeded in deriving and factorizing these fourth-order difference

equations and also finding a basis of four linearly independent solutions of all the difference

equations satisfied by perturbed systems of the classical discrete orthogonal polynomials

considered. Moreover, we have given explicitly the coefficients of the fourth-order difference

equation satisfied by the rth associated classical discrete orthogonal polynomials in terms of

the polynomials s and t appearing in Eq. (3). Also, we have found interesting relations

between the perturbed polynomials, the starting ones and the functions of the second kind (see

the next section for the definition). Therefore, the results obtained in the framework of this

paper are more general and complete the known results in this area. In fact, we deal not only

with the derivation of the fourth-order difference equation for the associated and the co-

recursive associated classical discrete orthogonal polynomials but with the derivation, the

factorization and the solution basis of the fourth-order difference equations satisfied by the

orthogonal polynomials obtained from some modifications of the recurrence coefficients of

classical discrete orthogonal polynomials as was done for the continuous case [9]. Some

examples of these families are the rth associated, the generalized co-recursive, the generalized

co-dilated, the generalized co-recursive associated and the generalized co-modified classical

discrete orthogonal polynomials.

In the second section, we recall definitions and known results needed for this work. The third

section is devoted to the derivation and the factorization of the fourth-order difference

equation. In the fourth section, we solve difference equations and represent the perturbed

classical orthogonal polynomials in terms of solutions of second-order difference equations.

In the fifth section, we first give hypergeometric representation of solutions of Eq. (5) and

difference operators FðrÞ; SðrÞ and TðrÞ for the rth associated Charlier and Meixner orthogonal

polynomials; secondly, we extend the results obtained for the associated orthogonal

polynomials with integer order of association from integers to reals. Finally, we show how the

results obtained for modified classical discrete orthogonal polynomials can be extended to

modified semi-classical discrete orthogonal polynomials (see the next section for the

definition).

2. PRELIMINARIES AND NOTATIONS

In this section, we first define the semi-classical and the Laguerre–Hahn class of a given

family of orthogonal polynomials of a discrete variable. Next, we present the families of
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associated, generalized co-recursive, generalized co-recursive associated, generalized

co-dilated and generalized co-modified orthogonal polynomials, and give relations between

the new sequences and the starting ones.

Each linear functional U generates a so-called Stieltjes function S of U defined by

SðzÞ ¼ 2
n$0

X kU; xnl
znþ1

; ð6Þ

where kU; xnl are the moments of the functional U. The linear functional U satisfies in

general a simple functional equation living in P0, the dual space of P. Appropriate

definitions of DðUÞ and PU, where P is a polynomial that allows building a simple difference

equation for the functional, which generalizes in some way the Pearson-type difference

equation for the weight r [7,10,13,34].

If the Stieltjes function S(x) satisfies a first-order linear difference equation of the form

fðxÞ Sðx þ 1Þ ¼ CðxÞ SðxÞ þ DðxÞ; ð7Þ

where f, C and D are polynomials, the functional U satisfies in P0 a first-order difference

equation with polynomial coefficients. In this case, the functional U and the corresponding

orthogonal polynomial sequence (Pn)n belong to the discrete semi-classical class (and are

therefore called semi-classical discrete) which includes the classical discrete families

[7,10,13,14,25,26,34].

Each semi-classical discrete orthogonal polynomials sequence (Pn)n satisfies a common

second-order difference equation [7,10,13,14,22,25,26,34]

Mnð yðxÞÞ ¼ ðI2ðx; nÞT2 þ I1ðx; nÞTþ I0ðx; nÞIÞ yðxÞ ¼ 0; ð8Þ

where Ii(x, n) are polynomials in x of degree not depending on n. Notice that this second-

order difference equation for the semi-classical discrete orthogonal polynomials appears in

Ref. [10] as D0;n ðyÞ ¼ 0 (using Equations 3.16 and 3.20).

An important class, larger than the semi-classical discrete one, appears when the Stieltjes

function satisfies a D-Riccati difference equation [7,10,13]

fðx þ 1ÞDSðxÞ ¼ GðxÞ SðxÞ Sðx þ 1Þ þ EðxÞSðxÞ þ FðxÞ Sðx þ 1Þ þ HðxÞ; ð9Þ

where f – 0; G, E, F and H are polynomials fulfilling a certain conditions (see Ref. [11],

Eq. 15). The corresponding functional U satisfies then a complicated quadratic difference

equation in P0:U and the corresponding orthogonal polynomial families are said to belong to

the discrete Laguerre–Hahn class [7,10,13], denoted as D-Laguerre–Hahn class.

It is well known that any D-Laguerre–Hahn orthogonal polynomial sequence satisfies a

common fourth-order difference equation of the form [7,10]

ðJ4ðx; nÞT4 þ J3ðx; nÞT3 þ J2ðx; nÞT2 þ J1ðx; nÞTþ J0ðx; nÞIÞyðxÞ ¼ 0;

where Ji(x,n) are polynomials of degree not depending on n.

Furthermore, it is known that many perturbations of the recurrence coefficients of any

Laguerre–Hahn family generate orthogonal polynomials belonging to the Laguerre–Hahn

class and, therefore, satisfy a fourth-order differential or difference equation [7,10,13,21,34].
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2.1. Perturbation of Recurrence Coefficients

Now we consider a sequence of polynomials (Pn)n, orthogonal with respect to a regular linear

functional U, satisfying Eq. (1). Orthogonal families we will deal with are the associated

orthogonal polynomials and those obtained from finite modification of the recurrence

coefficients in Eq. (1). Some examples of these families are:

2.1.1. The Associated Orthogonal Polynomials ðP ðr Þ
n Þn

Given r [ N; the rth associated of the polynomials (Pn)n, is a polynomial sequence denoted

by ðPðrÞ
n Þn and defined by the recurrence equation (1) in which bn and gn are replaced by bnþr

and gnþr, respectively

PðrÞ
nþ1ðxÞ ¼ ðx 2 bnþrÞPðrÞ

n ðxÞ2 gnþr PðrÞ
n21ðxÞ; n $ 1 ð10Þ

with the initial conditions

PðrÞ
21ðxÞ ¼ 0; PðrÞ

0 ðxÞ ¼ 1: ð11Þ

The family ðPðrÞ
n Þn; thanks to Favard’s theorem [6] (see also Ref. [3]), is orthogonal.

It is related to the starting polynomials and its first associated by the relation [4]

PðrÞ
n ðxÞ ¼

Pr21ðxÞ

Gr21

Pð1Þ
nþr21ðxÞ2

Pð1Þ
r22ðxÞ

Gr21

PnþrðxÞ; n $ 0; r $ 1; ð12Þ

where the sequence (Gn)n is defined by

Gn ¼
Yn

i¼1

gi; n $ 1; G0 ; 1: ð13Þ

2.1.2. The Co-recursive ðP ½m�
n Þn and the Generalized Co-recursive Orthogonal

Polynomials ðP ½k ;m�
n Þn

The co-recursive of the orthogonal polynomial (Pn)n, denoted by ðP½m�
n Þn; was introduced for

the first time by Chihara [2], as the family of polynomials generated by the recursion formula

(1) in which b0 is replaced by b0 þ m :

P
½m�
nþ1ðxÞ ¼ ðx 2 bnÞP

½m�
n ðxÞ2 gnP

½m�
n21ðxÞ; n $ 1; ð14Þ

with the initial conditions

P
½m�
0 ðxÞ ¼ 1; P

½m�
1 ðxÞ ¼ x 2 b0 2 m; ð15Þ

where m denotes a real number.

This notion was extended to the generalized co-recursive orthogonal polynomials in

Refs. [4,5,31] by modifying the sequence (bn)n at the level k. This yields an orthogonal

polynomial sequence denoted by ðP½k;m�
n Þn and generated by the recursion formula

P
½k;m�
nþ1 ðxÞ ¼ ðx 2 b*

n ÞP
½k;m�
n ðxÞ2 gnP

½k;m�
n21 ðxÞ; n $ 1; ð16Þ
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with the initial conditions

P
½k;m�
0 ðxÞ ¼ 1; P

½k;m�
1 ðxÞ ¼ x 2 b*

0 ; ð17Þ

where b*
n ¼ bn for n – k and b*

k ¼ bk þ m:

The orthogonal polynomial sequence ðP½k;m�
n Þn is related to (Pn)n and is associated by

Ref. [23]

P½k;m�
n ðxÞ ¼ PnðxÞ2 mPkðxÞP

ðkþ1Þ
n2ðkþ1ÞðxÞ; n $ k þ 1;

P½k;m�
n ðxÞ ¼ PnðxÞ; n # k: ð18Þ

Use of Eq. (12) transforms the previous equations in

P½k;m�
n ðxÞ ¼ 2

mP2
kðxÞ

Gk

Pð1Þ
n21ðxÞ þ 1 þ

mPkðxÞP
ð1Þ
k21

Gk

 !
PnðxÞ; n $ k þ 1;

P½k;m�
n ðxÞ ¼ PnðxÞ; n # k: ð19Þ

Obviously, we have the relations P½0;m�
n ¼ P½m�

n and P½0�
n ðxÞ ¼ Pn:

2.1.3. The Co-recursive Associated ðP {r ;m}
n Þn and the Generalized Co-recursive

Associated Orthogonal Polynomials ðP {r ;k ;m}
n Þn

The co-recursive associated as well as the generalized co-recursive associated of the

orthogonal polynomial sequence (Pn)n, denoted by ðP{r;m}
n Þn and ðP{r;k;m}

n Þn; respectively, are,

the co-recursive and the generalized co-recursive (with modification on bk) of the associated

ðPðrÞ
n Þn of (Pn)n, respectively. Thanks to Eq. (18), they are related with (Pn)n and is associated by

P{r;0;m}
n ¼ P{r;m}

n ;

and

P{r;k;m}
n ðxÞ ¼ PðrÞ

n ðxÞ2 mPðrÞ
k ðxÞPðrþkþ1Þ

n2ðkþ1ÞðxÞ; n $ k þ 1;

P{r;k;m}
n ðxÞ ¼ PðrÞ

n ðxÞ; n # k: ð20Þ

The generalized co-recursive associated orthogonal polynomials can also be expressed

using Eqs. (12) and (20) by

P{r;k;m}
n ðxÞ ¼

Pr21ðxÞ

Gr21

2
mPkþrðxÞP

ðrÞ
k ðxÞ

Grþk

 !
Pð1Þ

nþr21ðxÞ

2
Pð1Þ

r22ðxÞ

Gr21

2
mPð1Þ

kþr21ðxÞP
ðrÞ
k ðxÞ

Grþk

 !
PnþrðxÞ; n $ k þ 1;

P{r;k;m}
n ðxÞ ¼ PðrÞ

n ðxÞ; n # k: ð21Þ
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2.1.4. The Co-dilated ðP jlj
n Þn and the Generalized Co-dilated Orthogonal

Polynomials ðP jk ;lj
n Þn

The co-dilated of the orthogonal polynomial sequence (Pn)n, denoted by ðPjlj
n Þn; was

introduced by Dini [4], as the family of polynomials generated by the recursion formula (1)

in which g1, is replaced by l g1, i.e.

Pjlj
nþ1ðxÞ ¼ ðx 2 bnÞP

jlj
n ðxÞ2 gnPjlj

n21ðxÞ; n $ 2 ð22Þ

with the initial conditions

Pjlj
0 ðxÞ ¼ 1; Pjlj

1 ðxÞ ¼ x 2 b0; Pjlj
2 ðxÞ ¼ ðx 2 b0Þðx 2 b1Þ2 lg1; ð23Þ

where l is a non-zero real number.

This notion was extended to the generalized co-dilated polynomials in Refs. [5,31] by

modifying the sequence (gn)n at the level k. This yields an orthogonal polynomial sequence

denoted by ðPjk;lj
n Þn and generated by the recurrence equation

P
jk;lj
nþ1 ðxÞ ¼ ðx 2 bnÞP

jk;lj
n ðxÞ2 g*

n P
jk;lj
n21ðxÞ; n $ 1; ð24Þ

with the initial conditions

P
jk;lj
0 ðxÞ ¼ 1; P

jk;lj
1 ðxÞ ¼ x 2 b0; ð25Þ

where g*
n ¼ gn for n – k and g*

k ¼ lgk:

The orthogonal polynomial sequence ðPjk;lj
n Þn is related to (Pn)n and is associated by

Ref. [23]

Pjk;lj
n ðxÞ ¼ PnðxÞ þ ð1 2 lÞgkPk21ðxÞP

ðkþ1Þ
n2ðkþ1ÞðxÞ; n $ k þ 1;

Pjk;lj
n ðxÞ ¼ PnðxÞ; n # k:

ð26Þ

Use of Eq. (12) transforms the previous equation in

Pjk;lj
n ðxÞ ¼ 1 2

ð1 2 lÞPk21ðxÞP
ð1Þ
k21

Gk21

 !
PnðxÞ þ

ð1 2 lÞPk21ðxÞPkðxÞ

Gk21

Pð1Þ
n21ðxÞ; n $ k þ 1;

Pjk;lj
n ðxÞ ¼ PnðxÞ; n # k: ð27Þ

For k ¼ 1 or l ¼ 1; we have

Pj1;lj
n ¼ Pjlj

n ; Pjk;1j
n ¼ Pn:

2.1.5. The Generalized Co-modified Orthogonal Polynomials ðP ½k ;m;l�
n Þn

New families of orthogonal polynomials can also be generated by modifying at the same time

the sequences (bn)n and (gn)n at the levels k and k0, respectively. When k ¼ k0; the new family

obtained [23], denoted by ðP½k;m;l�
n Þn is generated by the three-term recurrence relation

P
½k;m;l�
nþ1 ðxÞ ¼ ðx 2 b*

n ÞP
½k;m;l�
n ðxÞ2 g*

n P
½k;m;l�
n21 ðxÞ; n $ 1; ð28Þ
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with the initial conditions

P
½k;m;l�
0 ðxÞ ¼ 1; P

½k;m;l�
1 ðxÞ ¼ x 2 b*

0 ; ð29Þ

where b*
n ¼ bn; g

*
n ¼ gn for n – k and b*

k ¼ bk þ m; g*
k ¼ lgk: This family is represented

in terms of the starting polynomials and their associated by Ref. [23]

P½k;m;l�
n ðxÞ ¼ PnðxÞ þ ðð1 2 lÞgkPk21ðxÞ2 mPkðxÞÞP

ðkþ1Þ
n2ðkþ1ÞðxÞ; n $ k þ 1;

Pjk;lj
n ðxÞ ¼ PnðxÞ; n # k: ð30Þ

The latter relation can also be written as

P½k;m;l�
n ðxÞ ¼ 1 2

ð1 2 lÞPk21ðxÞP
ð1Þ
k21

Gk21

þ
mPkðxÞP

ð1Þ
k21ðxÞ

Gk

 !
PnðxÞ

þ
ð1 2 lÞPk21ðxÞPkðxÞ

Gk21

2
mP2

kðxÞ

Gk

� �
Pð1Þ

n21ðxÞ; n $ k þ 1;

P½k;l�
n ðxÞ ¼ PnðxÞ; n # k: ð31Þ

2.2. Results on Classical Discrete Orthogonal Polynomials

Next, we state the following lemmas which are essential for this work. The first one is due to

Atakishiyev, Ronveaux and Wolf [1] but the representation with the shift operator given by

Eq. (32) is taken from Ref. [10] (see also Ref. [32]).

Lemma 1 [1] Given a classical discrete orthogonal polynomial sequence (Pn)n satisfying

Eq. (5), the following relation holds

D*
n Pð1Þ

n21ðxÞ
� �

¼
s 00

2
2 t 0

� �
ðð2sð1Þ þ tð1Þ 2 lnÞT2 ð2sð1Þ þ tð1ÞÞIÞPnðxÞ; ð32Þ

where the operator D*
n is given by

D*
n ¼ ðsð1Þ þ tð1ÞÞ ðsð2ÞT

2 2 ð2sð1Þ þ tð1Þ 2 lnÞTþ ðsþ tÞIÞ ð33Þ

and

s ; s ðxÞ; t ; t ðxÞ; sð1Þ ; s ðx þ 1Þ; tð1Þ ; t ðx þ 1Þ; sð2Þ ; s ðx þ 2Þ: ð34Þ

It should be noticed that Dn and D*
n are related by

sð1ÞD
*
n ðryÞ ¼ r ðsþ tÞðsð1Þ þ tð1ÞÞDnð yÞ; ;y; ð35Þ

where r is the weight function satisfying Eqs. (3) and (4).

Lemma 2 [28]

1. Two linearly independent solutions of the difference equation

LnðyðxÞÞ ¼ s ðxÞD7 yðxÞ þ tðxÞDyðxÞ þ lnyðxÞ ¼ 0;
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are Pn and Qn, where (Pn)n is a polynomial sequence, orthogonal with respect to the

weight function r defined on the set I ¼ {a; a þ 1; . . .; b 2 1}; satisfying Eqs. (3) and (4).

The constants ln is given by

ln ¼ 2
n

2
ððn 2 1Þs 00 þ 2t 0Þ;

while Qn is the function of the second kind, defined by

QnðxÞ ¼
1

rðxÞ

Xb21

s¼a

rðsÞPnðsÞ

s 2 x
; x � {a; a þ 1; . . .; b 2 1}: ð36Þ

When x ¼ t [ {a; a þ 1; . . .; b 2 1}; then Qn(t) is defined by

QnðtÞ ¼
1

rðtÞ

Xb21

a#s#b21; s–t

rðsÞPnðsÞ

s 2 t
: ð37Þ

2. The polynomials Pn and the function Qn are two linearly independent solutions of

the recurrence equation (1).

3. FACTORIZATION OF FOURTH-ORDER DIFFERENCE OPERATORS

Given (Pn)n a classical discrete orthogonal polynomial sequence, we consider in general

all transformations which lead to new families of orthogonal polynomials denoted by ð �PnÞn
and are related to the starting sequence by

�PnðxÞ ¼ AnðxÞP
ð1Þ
nþk21 þ BnðxÞPnþk; n $ k0; ð38Þ

where An and Bn are polynomials of degree not depending on n, and k, k0 [ N: (Among

these transformations are the associated orthogonal polynomials and those obtained from

finite modification of the recurrence coefficients of Eq. (1). Some examples are listed in

Subsection 2.1).

We have the following:

Theorem 1

1. The orthogonal polynomials ð �PnÞn$k0 satisfy a common fourth-order linear difference

equation

FnðyðxÞÞ¼ ðJ4ðx;nÞT
4 þ J3ðx;nÞT

3 þ J2ðx;nÞT
2 þ J1ðx;nÞTþ J0ðx;nÞIÞyðxÞ ¼ 0; ð39Þ

where the coefficients Ji are polynomials in x, with degree not depending on n.

2. The operator Fn can be factored as product of two-second order linear difference

operators Sn and Tn :

XnFn ¼SnTn; n$ k ð40Þ

where Xn is a polynomial of fixed degree, depending on Pr21, s and t, and the coefficients

in Sn and Tn are polynomials of degree not depending on n.
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Proof In the first step, we solve Eq. (38) in terms of Pð1Þ
nþk21

Pð1Þ
nþk21ðxÞ ¼

�PnðxÞ2 BnðxÞPnþkðxÞ

AnðxÞ
ð41Þ

and substitute the previous relation in Eq. (32) in which n is replaced by n þ k. Then we use

Eq. (5) (for Pnþk) to eliminate the term T2Pnþk and get

Mnþkð �PnÞ ¼ b1TPnþk þ b0Pnþk; ð42Þ

where bi are rational functions and Mnþk a second-order linear difference operator given in

terms of operator D*
nþk (see Eq. (32)) by

Mnþkð yÞ ¼ AnðTAnÞðT
2AnÞD

*
nþk

y

An

� �
: ð43Þ

Next, we shift Eq. (42) and use again Eq. (5) to eliminate T2Pnþk; and get

TMnþkð �PnÞ ¼ c1TPnþk þ c0Pnþk: ð44Þ

We reiterate the same process using the previous equation and get

T2Mnþkð �PnÞ ¼ d1TPnþk þ d0Pnþk; ð45Þ

where ci and di are again rational functions.

The fourth-order difference equation is given in determinantal form from Eqs. (42), (44)

and (45)

Fnð �PnÞ ¼

b1 b0 Mnþkð �PnÞ

c1 c0 TMnþkð �PnÞ

d1 d0 T2Mnþkð �PnÞ

								

								
¼ 0: ð46Þ

The previous equation can be written as

Fnð �PnÞ ¼ e2T
2Mnþkð �PnÞ þ e1TMnþkð �PnÞ þ e0Mnþkð �PnÞ ¼ ½SnTn�ð �PnÞ ¼ 0; ð47Þ

where the second-order difference operators Sn and Tn are given by

Sn ¼ e2T
2 þ e1Tþ e0I; Tn ¼ Mnþk: ð48Þ

We conclude the proof by noticing that after cancellation of the denominator in Eq. (46), the

coefficients ei are polynomials of degree not depending on n. A

We would like to mention that the factorization pointed out in the previous theorem

(except the case of the first associated classical discrete orthogonal polynomials already

treated in Ref. [1] (see, also Ref. [10], equation 4.16 for more details) seems to be a new

results and has lots of applications as will be shown later.

In what follows, we will denote, respectively, by FðrÞn ; F½k;m�n ; F{r;k;m}
n ; Fjk;ljn and F½k;m;l�n the

fourth-order difference operators for the rth associated, the generalized co-recursive, the

generalized co-recursive associated, the generalized co-dilated, and the generalized

co-modified orthogonal polynomials.
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3.1. Some Consequences

For the rth associated classical discrete orthogonal polynomials ðPðrÞ
n Þn; we have used the

previous theorem and the representation given in Eq. (12) to compute the operators Sn and

Tn using Maple 8 [27].

Proposition 1 The two difference operator factors of the fourth-order difference operator

for the rth associated classical discrete orthogonal polynomials are

SðrÞ
n ¼ sð2ÞPr21ðx þ 1Þðtð1Þ þ sð1ÞÞ

2 ð2tð1Þ 2 tþ sð2ÞÞ ð23s2 þ 3s1 2 sÞ

£ ð22tð1Þ þ 8sð1Þ þ z2 6sð2Þ 2 2sþ 2tÞT2 þ ð2sð2Þð8sð1Þ 2 6sð2Þ 2 3sÞ

£ ðtð1Þ þ sð1ÞÞsð1Þzð2z2 lr21 2 8sð1Þ 2 3tþ 2sþ 8sð2Þ þ 4tð1ÞÞPr21ðxÞ2 sð2Þ

£ ð8sð1Þ 2 6sð2Þ 2 3sÞðtð1Þ þ sð1ÞÞð6s
2
ð2Þsð1Þ þ 2sð2Þt

2
ð1Þ 2 6s2sð1Þtð1Þ 2 8sð2Þs

2
1

þ 6s 2
ð2Þtð1Þ þ 2sð2Þstð1Þ 2 2sð2Þttð1Þ 2 2sð2Þtsð1Þ þ 2sð2Þsð1Þsþ 3tztð1Þ þ 6tzsð1Þ

2 3tzlr21 2 2sztð1Þ 2 4szsð1Þ þ 2szlr21 þ 5tð1Þlr21z2 6lr21sð1Þz2 zl2
r21

þ 16zs 2
ð1Þ 2 4zt 2

ð1Þ þ z2tð1Þ þ 2z2sð1Þ 2 z2lr21 þ 8lr21sð2Þz2 16sð2Þsð1Þz

2 8sð2Þtð1ÞzÞPr21ðx þ 1ÞÞT2 sð1Þð8sð1Þ 2 6sð2Þ 2 3sÞ ð23sð2Þ þ 3sð1Þ 2 sÞ

£ ð2Pr21ðx þ 1Þt2
1 2 3Pr21ðx þ 1Þlr21tð1Þ þ t1Pr21ðx þ 1Þsð2Þ 2 tð1ÞPr21ðx þ 1Þt

þ 4tð1Þsð1Þ Pr21ðx þ 1Þ2 2tð1Þsð1ÞPr21ðxÞ þ 3sð1ÞPr21ðx þ 1Þsð2Þ

2 2Pr21ðx þ 1Þsð2Þlr21 2 2Pr21ðx þ 1Þsð1Þt2 2sð1Þlr21Pr21ðx þ 1Þ

þ Pr21ðx þ 1Þlr21tþ l2
r21Pr21ðx þ 1Þ2 2s1sð2ÞPr21ðxÞ þ sð1Þlr21Pr21ðxÞ

þ sð1ÞPr21ðxÞ þ sð1ÞPr21ðxÞtÞz I; ð49Þ

TðrÞ
n ¼ s2

ð2Þ Pr21ðx þ 1ÞPr21ðxÞðtð1Þ þ sð1ÞÞT
2 2 sð2ÞPr21ðxÞð2tð1ÞPr21ðx þ 1Þ

2 2sð1ÞPr21ðx þ 1Þ þ sð1ÞPr 2 1ðxÞ þ lr21Pr21ðx þ 1ÞÞ ð22sð1Þ þ lnþr 2 tð1ÞÞÞT

2 sð2ÞPr21ðx þ 1Þðsþ tÞð2tð1ÞPr21ðx þ 1Þ2 2sð1ÞPr21ðx þ 1Þ

þ sð1ÞPr21ðxÞ þ lr21Pr21ðx þ 1ÞÞI; ð50Þ

where (Pn)n is the sequence of classical orthogonal satisfying Eq. (5), r [ N.0 and

z ¼ 5tð1Þ 2 6sð1Þ þ 8sð2Þ þ 2s2 3t2 lr21 2 lnþr:

Moreover, we have

SðrÞ
n TðrÞ

n ¼ Xnðs; t;Pr21; lr21ÞF
ðrÞ
n ; ð51Þ

FOURTH-ORDER DIFFERENCE EQUATIONS 787



where

Xn ; Xnðs;t;Pr21;lr21Þ ¼ sð2ÞPr21ðxþ 1Þ ð23s2 þ 3sð1Þ2sÞðtð1ÞPr21ðxþ 1Þ

þ 2sð1ÞPr21ðxþ 1Þ2sð1ÞPr21ðxÞ2lr21Pr21ðxþ 1ÞÞ ð8sð1Þ2 6sð2Þ2 3sÞ

£ ð2Pr21ðxþ 1Þt2
ð1Þ2 3Pr21ðxþ 1Þlr21t1 þ tð1ÞPr21ðxþ 1Þsð2Þ2 tð1ÞPr21ðxþ 1Þt

þ 4tð1Þsð1ÞPr21ðxþ 1Þ2 2tð1Þsð1ÞPr21ðxÞþ 3sð1ÞPr21ðxþ 1Þsð2Þ2 2Pr21ðxþ 1Þsð2Þlr21

2 2Pr21ðxþ 1Þsð1Þt2 2sð1Þlr21Pr21ðxþ 1ÞþPr21ðxþ 1Þlr21tþl2
r21Pr21ðxþ 1Þ

2 2sð1Þsð2ÞPr21ðxÞþsð1Þlr21Pr21ðxÞþsð1ÞPr21ðxÞtÞ

and

FðrÞn ¼ I4ðx;nÞT
4 þ I3ðx;nÞT

3 þ I2ðx;nÞT
2 þ I1ðx;nÞTþ I0ðx;nÞI; ð52Þ

with

I0ðx;n; rÞ ¼2sð1Þðsþ tÞz;

I1ðx;n; rÞ ¼ 6s2
ð2Þs1 þ 2sð2Þt

2
ð1Þ2 6sð2Þsð1Þtð1Þ2 8sð2Þs

2
ð1Þ þ 6s2

ð2Þtð1Þ þ 2sð2Þstð1Þ

2 2sð2Þttð1Þ2 2sð2Þtsð1Þ þ 2s2sð1Þsþ 3tztð1Þ þ 6tzsð1Þ2 3tzlr21 2 2sztð1Þ

2 4szsð1Þ þ 2szlr21 þ 5tð1Þlr21z2 6lr21s1z2 zl2
r21

þ 16zs2
1 2 4zt2

ð1Þ þ z2tð1Þ

þ 2z2sð1Þ2 z2lr21 þ 8lr21sð2Þz2 16sð2Þsð1Þz2 8sð2Þt1z;

I2ðx;n; rÞ ¼2z3 þð25tþ 14sð2Þ2 2lr21 þ 4sþ 7t1 2 14sð1ÞÞz
2 þð257s2

ð2Þ2 4s2

þ 12tð1Þlr21 2 20lr21sð1Þ2 8t2 þ 11stþ 24ttð1Þ þ 41sð2Þt2 37sð1Þt2 8lr21t

2 16stð1Þ2 31sð2Þsþ 28sð1Þsþ 6lr21s2 2l2
r21 2 48s2

ð1Þ2 18t2
ð1Þ þ 54sð1Þtð1Þ

2 59sð2Þtð1Þ þ 22lr21sð2Þ þ 106s2sð1ÞÞzþ 2ð24sð1Þ2 tþsþ 3sð2Þ

þ tð1ÞÞ ð3sð1Þtþ 6lr21sð1Þ2 9sð2Þsð1Þ2 6sð1Þtð1Þ þ 2t2 þ 3lr21tþ 3sð2Þs

2 7sð2Þt2stþ 2stð1Þ2 7ttð1Þ2 2lr21s2 8lr21sð2Þ þ 12sð2Þtð1Þ2 5tð1Þlr21

þ 9s2
ð2Þ þl2

r21 þ 6t2
1Þ;

I3ðx;n; rÞ ¼ ð22tþ 6sð2Þ2lr21 þ 2sþ 3tð1Þ2 6s1Þz
2 2 ð2lr21 2 8sð1Þ2 3tþ 2sþ 8sð2Þ

þ 4tð1ÞÞ ð22tþ 6s2 2lr21 þ 2sþ 3tð1Þ2 6sð1ÞÞzþ 2ð24sð1Þ2 tþsþ 3sð2Þ

þ tð1ÞÞ ð3sð1Þtþ 6lr21sð1Þ2 9sð2Þsð1Þ2 6sð1Þtð1Þ þ 2t2 þ 3lr21tþ 3sð2Þs

2 7sð2Þt2stþ 2st1 2 7ttð1Þ2 2lr21s2 8lr21sð2Þ þ 12sð2Þtð1Þ2 5tð1Þlr21

þ 9s2
ð2Þ þl2

r21 þ 6t2
ð1ÞÞ;
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I4ðx;n; rÞ ¼2ð8sð1Þ2 6sð2Þ2 3sÞ ð3sð2Þ þs2 3sð1Þ þ 3tð1Þ2 2tÞ ð28sð1Þ þ 2s2 2tþ 2tð1Þ

þ 6sð2Þ2 zÞ:

Corollary 1 The fourth-order difference operator can also be factorized as

~S
ðrÞ

n
~T
ðrÞ

n ¼ Xðs; t;Qr21; lr21ÞF
ðrÞ
n ; ð53Þ

where the expression Xðs; t;Qr21; lr21Þ and the operators ~S
ðrÞ

n and ~T
ðrÞ

n are obtained from

the expression Xðs; t;Pr21; lr21Þ and operators SðrÞ
n and TðrÞ

n ; respectively by replacing the

polynomials Pr21 with the function Qr21.

The proof is obtained by a direct computation using that Pn and Qn satisfies Eq. (5).

Proposition 2 The operator Tn for the generalized co-recursive and co-dilated classical

discrete orthogonal polynomials ðP½k;m�
n Þn and ðPjk;lj

n Þn (with k $ 1), denoted, respectively by

T½k;m�
n ;Tjk;lj

n are obtained in the same way:

T½k;m�
n ¼ sð2ÞP

2
kðxÞP

2
kðx þ 1Þðtð1Þ þ sð1ÞÞ

2T2 2 P2
kðxÞðtð1Þ 2 ln þ 2s1Þ ð2sð1ÞPkðxÞ

þ 2sð1ÞPkðx þ 1Þ2 lkPkðx þ 1Þ þ tð1ÞPkðx þ 1ÞÞ2Tþ P2
kðx þ 1Þðsþ tÞ

	 ð2tð1ÞPkðx þ 1Þ2 2sð1ÞPkðx þ 1Þ þ sð1ÞPkðxÞ þ lkPkðx þ 1ÞÞ2I; ð54Þ

Tjk;lj
n ¼sð2ÞPk21ðx þ 1ÞPkðx þ 1ÞPk21ðxÞPkðxÞðtð1Þ þ sð1ÞÞ

2T2 2 Pk21ðxÞPkðxÞ

£ ðtð1Þ 2 ln þ 2s1Þ £ ð2tð1ÞPkðx þ 1Þ2 2sð1ÞPkðx þ 1Þ þ s1PkðxÞ þ lkPkðx þ 1ÞÞ

£ ð22sð1ÞPk21ðx þ 1Þ þ sð1ÞPk21ðxÞ2 Pk21ðx þ 1Þtð1Þ þ lk21Pk21ðx þ 1ÞÞT

þ Pk21ðx þ 1ÞPkðx þ 1Þðsþ tÞð2tð1ÞPkðx þ 1Þ2 2sð1ÞPkðx þ 1Þ þ sð1ÞPkðxÞ

þ lkPkðx þ 1ÞÞð22sð1ÞPk21ðx þ 1Þ þ sð1ÞPk21ðxÞ2 Pk21ðx þ 1Þtð1Þ

þ lk21Pk21ðx þ 1ÞÞI: ð55Þ

The operators Sn for the generalized co-recursive and co-dilated classical orthogonal

polynomials are very large expressions; however, they can be obtained using the previous

theorem and Eqs. (21) and (31). The same remark applies for the factors Sn and Tn of the

fourth-order difference equation satisfied by the generalized co-recursive associated and

generalized co-modified classical orthogonal polynomials.

4. SOLUTIONS OF THE FOURTH-ORDER DIFFERENCE EQUATIONS

In the following, we solve the fourth-order difference equation satisfied by the five

perturbations listed in the second section and represent the new families of orthogonal

polynomials in terms of solutions of second-order difference equations.

Theorem 2 Let (Pn)n be a classical discrete orthogonal polynomial sequence, r [ N.0

and ðPðrÞ
n Þn the rth associated of (Pn)n. Four linearly independent solutions of the difference
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equation

FðrÞn ðyÞ ¼ 0 ð56Þ

satisfied by ðPðrÞ
n Þn; where FðrÞn is given by Eq. (52), are

AðrÞ
n ðxÞ ¼ rðxÞPr21ðxÞPnþrðxÞ;

BðrÞ
n ðxÞ ¼ rðxÞPr21ðxÞQnþrðxÞ;

CðrÞ
n ðxÞ ¼ rðxÞQr21ðxÞPnþrðxÞ;

DðrÞ
n ðxÞ ¼ rðxÞQr21ðxÞQnþrðxÞ;

ð57Þ

Qn denoting the function of second kind associated to (Pn)n which is defined by Eqs. (36)

and (37).

Moreover, PðrÞ
n is related to these solutions by

PðrÞ
n ðxÞ ¼

BðrÞ
n ðxÞ2 CðrÞ

n ðxÞ

g0Gr21

¼
rðxÞðPr21ðxÞQnþrðxÞ2 Qr21ðxÞPnþrðxÞÞ

g0Gr21

; ;n [ N;

;r [ N.0;

ð58Þ

where Gk is given by Eq. (13) and g0 defined as

g0 ¼
Xb21

s¼a

rðsÞ: ð59Þ

Proof In the first step, we solve the difference equation

TðrÞ
n ðyÞ ¼ 0:

To do this, we use Eqs. (12), (35), (38), (43) and (48) to get

TðrÞ
n ðyÞ ¼ MnþrðyÞ

¼ Pr21ðxÞPr21ðx þ 1ÞPr21ðx þ 2ÞD*
nþr

� y

Pr21

�
¼ Pr21ðxÞPr21ðx þ 1ÞPr21ðx þ 2ÞrðxÞðs ðxÞ þ t ðxÞÞ ðsð1Þ þ tð1ÞÞDnþrðzÞ=sð1Þ;

ð60Þ

where the functions y and z are related by y ¼ zrPr21: Since the two linearly independent

solutions of DnþrðzÞ ¼ 0 are Pnþr and Qnþr (see Lemma 2), the two linearly independent

solutions of TðrÞ
n ðyÞ ¼ 0 (which are also solutions of Eq. (56) thanks to Eq. (51)) are

AðrÞ
n ðxÞ ¼ rðxÞPr21ðxÞPnþrðxÞ; BðrÞ

n ðxÞ ¼ rðxÞPr21ðxÞQnþrðxÞ: ð61Þ

Use of Eqs. (50) and (53) taking care that the weight function r and the function Qn satisfy

Eqs. (3) and (5), respectively, leads to

~T
ðrÞ

n ðyÞ ¼ Qr21ðxÞQr21ðx þ 1ÞQr21ðx þ 2Þr ðxÞ ðs ðxÞ þ tðxÞÞðsð1Þ þ tð1ÞÞDnþrðzÞ=sð1Þ; ð62Þ

where the functions y and z are related by y ¼ zrQr21: Equation (62) permits us to conclude

that the two independent solutions of ~T
ðrÞ

n ðyÞ ¼ 0 (which are also solutions of Eq. (56) thanks
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to Eq. (53)) are given by

CðrÞ
n ðxÞ ¼ rðxÞQr21ðxÞQnþrðxÞ; DðrÞ

n ðxÞ ¼ rðxÞQr21ðxÞQnþrðxÞ:

The four solutions of Eq. (56) obtained are linearly independent since Pn and Qn are two

linearly independent solutions of Eq. (5) and have different asymptotic behavior (see

Remark 1).

The proof of Eq. (58) already given in Ref. [9] uses the fact that since ðPnÞn and ðQnÞn
satisfy Eq. (1), each solution given in Eq. (57) satisfies the recurrence equation

Xnþ1 ¼ ðx 2 bnþrÞXn 2 gnþrXn21; n $ 1: ð63Þ

A

Remark 1 Following the method used in Ref. [28] (see p. 98), we get the asymptotic

formula for QnðzÞ in the discrete case

QnðzÞ ¼ 2

Qn
i¼0

gi

rðzÞznþ1
1 þ O

1

z

� �� �
;

provided that when z !1; the shortest distance from z to (a,b) is bounded away from zero.

The previous asymptotic formula can be used to deduce the asymptotic formula for the

solutions of the fourth-order difference equation give in Eq. (57).

If we replace the function of second kind Qn in Eqs. (57) and (58) by �Qn such that Pn and
�Qn are two linearly independent solutions of Eq. (1) (with the initial condition �Q21ðxÞ ¼

2ð1=rðxÞÞ and �Q0ðxÞ fixed) and Eq. (5), then the four linearly independent solutions of

Eq. (56) are obtained just by replacing Qn in Eq. (57) by �Qn: Also, the relation between PðrÞ
n ;

Pn and �Qn is obtained by replacing Qn in Eq. (58) by �Qn; however, the denominator g0Gr of

Eq. (58) is to be replaced by the term rðxÞðPr21ðxÞ �QrðxÞ2 �Qr21ðxÞPrðxÞÞ which is constant

with respect to x. This remark applies also for Theorems 3–6.

Theorem 3 Let (Pn)n be a classical discrete orthogonal polynomial sequence, k [ N and

ðP½k;m�
n Þn the generalized co-recursive of (Pn)n. Four linearly independent solutions of the

difference equation

F½k;m�n ð yÞ ¼ 0; n $ k þ 1; ð64Þ

satisfied by ðP½k;m�
n Þn; are (with n $ k þ 1)

A½k;m�
n ðxÞ ¼ rðxÞP2

kðxÞPnðxÞ;

B½k;m�
n ðxÞ ¼ rðxÞP2

kðxÞQnðxÞ;

C½k;m�
n ðxÞ ¼ ½g0Gk þ mrðxÞPkðxÞQkðxÞ�PnðxÞ;

D½k;m�
n ðxÞ ¼ ½g0Gk þ mrðxÞPkðxÞQkðxÞ�Qn ðxÞ;

ð65Þ

where Qn is the function of second kind associated to (Pn)n defined by Eqs. (36) and (37).
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Moreover, P½k;m�
n is related to these solutions by

P½k;m�
n ¼

½g0Gk þ mrðxÞPkðxÞQkðxÞ�PnðxÞ2 mrðxÞP2
kðxÞQnðxÞ

g0Gk

; k $ 0; n $ k þ 1: ð66Þ

Proof By analogy with the proof of Theorem 2, we show using Eqs. (19), (43) and (48) that

T½k;m�
n ðyÞ ¼ rðsþ tÞðsð1Þ þ tð1ÞÞP

2
kðxÞP2

kðx þ 1ÞP2
kðx þ 2ÞDnðzÞ=sð1Þ;

where T½k;m�
n is given by Eq. (50) and yðxÞ ¼ zðxÞrðxÞP2

kðxÞ: Therefore, A½k;m�
n and B½k;m�

n given

by

A½k;m�
n ðxÞ ¼ rðxÞP2

kðxÞPnðxÞ; B½k;m�
n ðxÞ ¼ rðxÞP2

kðxÞQnðxÞ;

are two linearly independent solutions of

T½k;m�
n ðyÞ ¼ 0:

Next, straightforward computation using Eqs. (19), (58) and (65) leads to

P½k;m�
n ¼

C½k;m�
n 2 mB½k;m�

n

g0Gk

; n $ k þ 1: ð67Þ

Since the generalized co-dilated polynomials P½k;m�
n and the function B½k;m�

n given by Eq. (65),

are both solutions of the linear homogenous difference equation

F½k;m�n ð yÞ ¼ 0; n $ k þ 1;

it follows from Eq. (67) that the function C½k;m�
n ; given by Eq. (65), is also a solution of the

previous equation.

To prove that the function D½k;m�
n is solution of Eq. (68), we proceed as follows:

In the first step, we write the expression F½k;m�n ðC½k;m�
n Þ in terms of Pn(x) and Pn(x þ 1) using

the first-order difference equation satisfied by the weight (see Eq. (3)) and the second-order

difference equation satisfied by Pn (see Eq. (5))

F½k;m�n ðC½k;m�
n ðxÞÞ ¼ G½k;m�

n ðxÞPnðxÞ þ H½k;m�
n ðxÞPnðx þ 1Þ; n $ k þ 1;

where G½k;m�
n and H½k;m�

n are functions depending on r, s, t, Pk , Qk and ln.

In the second step, we use the fact that C½k;m�
n is a solution of Eq. (64) and also the fact that

Pn(x) and Pn(x þ 1) are linearly independent to deduce that

G½k;m�
n ¼ H½k;m�

n ¼ 0; for n $ k þ 1:

In fact, assuming that G½k;m�
n ðxÞ – 0; we get:

G½k;m�
n ðxÞPnðxÞ þ H½k;m�

n ðxÞPnðx þ 1Þ ¼ 0¼)PnðxÞ ¼ 2
H½k;m�

n ðxÞ

G½k;m�
n ðxÞ

Pnðx þ 1Þ:

We deduce that G½k;m�
n ðxÞ ¼ 2H½k;m�

n ðxÞ (since Pn is a monic polynomial of degree n).

We conclude that

0 ¼ G½k;m�
n ðxÞPnðxÞ þ H½k;m�

n ðxÞPnðx þ 1Þ ¼ 2G½k;m�
n ðxÞDðPnÞ; n $ k þ 1:
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The previous equation gives a contradiction because G½k;m�
n – 0 and DðPnÞ – 0 (since

(D(Pn))n is orthogonal with respect to sðx þ 1Þrðx þ 1Þ [29]).

Finally, we use the fact that C½k;m�
n and D½k;m�

n are multiples of Pn and Qn, respectively, with

the same multiplier factor namely g0Gk þ mrPkQk (see Eq. (65)), and the fact that Pn and Qn,

satisfy the same second-order difference equation (5) to get

F½k;m�n ðD½k;m�
n ðxÞÞ ¼ G½k;m�

n ðxÞQnðxÞ þ H½k;m�
n ðxÞQnðx þ 1Þ ¼ 0; n $ k þ 1:

Therefore, D½k;m�
n is also a solution of Eq. (64).

To complete the proof, we notice that A½k;m�
n ; B½k;m�

n ; C½k;m�
n and D½k;m�

n are four linearly

independent solutions of F½k;m�n ðyÞ ¼ 0 since Pn and Qn are two linearly independent solutions

of Eq. (5) enjoying different asymptotic properties. A

In the following, we give the equivalent of the previous theorem for the co-dilated classical

discrete orthogonal polynomials. The proof is similar to the one of the previous theorem by

using relations (26), (27), (43), (48) and (58).

Theorem 4 Let (Pn)n be a classical discrete orthogonal polynomial sequence, k [ N and

ðPjk;lj
n Þn the generalized co-dilated of (Pn)n. Four linearly independent solutions of the

difference equation

Fjk;mjn ð yÞ ¼ 0; n $ k þ 1; ð68Þ

satisfied by ðPjk;lj
n Þn are (with n $ k þ 1)

Ajk;lj
n ðxÞ ¼ rðxÞPk21ðxÞPkðxÞPnðxÞ;

Bjk;lj
n ðxÞ ¼ rðxÞPk21ðxÞPkðxÞQnðxÞ;

Cjk;lj
n ðxÞ ¼ ½g0Gk þ ðl2 1ÞgkrðxÞPk21ðxÞQkðxÞ�PnðxÞ;

Djk;lj
n ðxÞ ¼ ½g0Gk þ ðl2 1ÞgkrðxÞPk21ðxÞQkðxÞ�QnðxÞ:

ð69Þ

The co-dilated Pjk;lj
n is related to these solutions by

Pjk;lj
n ¼

½g0Gk þ ðl2 1ÞgkrðxÞPk21ðxÞQkðxÞ�PnðxÞ2 ðl2 1ÞgkrðxÞPk21ðxÞPkðxÞQnðxÞ

g0Gk

;

n $ k þ 1: ð70Þ

We furthermore, give the solutions for the generalized co-recursive associated and the

generalized co-modified classical orthogonal polynomials. The proofs are similar to the

previous ones.

Theorem 5 Let (Pn)n be a classical discrete orthogonal polynomial sequence, k [ N;

r [ N.0 and ðP{r;k;m}
n Þn the generalized co-recursive associated with (Pn)n. Four linearly

independent solutions of the difference equation

F{r;k;m}
n ðyÞ ¼ 0; n $ k þ 1; ð71Þ
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satisfied by ðP{r;k;m}
n Þn are (with n $ k þ 1)

A{r;k;m}
n ðxÞ¼ ðg0GkþrPr21ðxÞ2mrðxÞPkþrðxÞ½Pr21ðxÞQkþrðxÞ2Qr21ðxÞPkþrðxÞ�ÞrðxÞPnþrðxÞ;

B{r;k;m}
n ðxÞ¼ ðg0GkþrPr21ðxÞ2mrðxÞPkþrðxÞ½Pr1ðxÞQkþrðxÞ2Qr21ðxÞPkþrðxÞ�ÞrðxÞQnþrðxÞ;

C{r;k;m}
n ðxÞ ¼ ðg0GkþrQr21ðxÞ2mrðxÞQkþrðxÞ½Pr21ðxÞQkþrðxÞ2Qr21ðxÞPkþrðxÞ�ÞrðxÞPnþrðxÞ;

D{r;k;m}
n ðxÞ ¼ ðg0GkþrQr21ðxÞ2mrðxÞQkþrðxÞ½Pr21ðxÞQkþrðxÞ2Qr21ðxÞPkþrðxÞ�ÞrðxÞQnþrðxÞ:

Moreover, P{r;k;m}
n is related to these solutions by

P{r;k;m}
n ¼

Pr21ðxÞ

g0Gr21

2
mrðxÞPkþrðxÞ ½Pr21ðxÞQkþrðxÞ2 Qr21ðxÞPkþrðxÞ�

g2
0Gr21Gkþr

� �
rðxÞQnþrðxÞ

2
Qr21ðxÞ

g0Gr21

2
mrðxÞQkþrðxÞ ½Pr21ðxÞQkþrðxÞ2 Qr21ðxÞPkþrðxÞ�

g2
0Gr21Gkþr

� �
rðxÞPnþrðxÞ;

r $ 1; n $ k þ 1: ð72Þ

Theorem 6 Let (Pn)n be a classical orthogonal polynomial sequence, k [ N; and

ðP½k;m;l�
n Þn the generalized co-modified of (Pn)n. Four linearly independent solutions of the

difference equation

F½k;m;l�n ð yÞ ¼ 0; n $ k þ 1; ð73Þ

satisfied by ðP½k;m;l�
n Þn are (with n $ k þ 1)

A½k;m;l�
n ðxÞ ¼ ½ðl2 1ÞgkPk21ðxÞPkðxÞ þ mP2

kðxÞ�rðxÞPnðxÞ;

B½k;m;l�
n ðxÞ ¼ ½ðl2 1ÞgkPk21ðxÞPkðxÞ þ mP2

kðxÞ�rðxÞQnðxÞ;

C½k;m;l�
n ðxÞ ¼ ½g0Gk þ ðl2 1ÞgkrðxÞPk21ðxÞQkðxÞ þ mrðxÞPkðxÞQkðxÞ�PnðxÞ;

D½k;m;l�
n ðxÞ ¼ ½g0Gk þ ðl2 1ÞgkrðxÞPk21ðxÞQkðxÞ þ mrðxÞPkðxÞQkðxÞ�QnðxÞ:

ð74Þ

The co-dilated P½k;m;l�
n is related to these solutions by

P½k;m;l�
n ¼ 1 þ

ðl2 1ÞgkrðxÞPk21ðxÞQkðxÞ þ mrðxÞPkðxÞQkðxÞ

g0Gk

� �
PnðxÞ

2
ðl2 1ÞgkrðxÞPk21ðxÞPkðxÞ þ mrðxÞP2

kðxÞ

g0Gk

QnðxÞ; n $ k þ 1: ð75Þ

5. APPLICATIONS

5.1. On the rth Associated Charlier and Meixner Polynomials

For Charlier and Meixner polynomials, we give explicitly the operators SðrÞ
n ; TðrÞ

n ; FðrÞn and the

coefficient Xðs; t;Pr21; lr21Þ: We also give the hypergeometric representation of the two
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linearly independent solutions of Eq. (5) from which the hypergeometric representation of

the four solutions of the four-order difference equation FðrÞn ðyÞ ¼ 0 can be deduced.

5.1.1. The Charlier Case

The data for the Charlier polynomials cðaÞn ðxÞ (denoted in this paper by Cnðx; aÞ) involved in

Eqs. (1)–(5) are [17]:

sðxÞ ¼ x; tðxÞ ¼ a2 x; ln ¼ n; rðxÞ ¼
ax

x!
; x [N; bn ¼ nþ a; gn ¼ na; a . 0:

The recurrence equation as well as the difference equation (see Eqs. (1) and (5)) satisfied

by the Charlier polynomials are given, respectively, by

aCnþ1ðx;aÞ¼ ðnþa2xÞCnðx;aÞ2nCn21ðx;aÞ; n$1; C21ðx;aÞ¼0; C0ðx;aÞ¼1; ð76Þ

aCnðxþ1;aÞþðn2x2aÞCnðx;aÞþxCnðx21;aÞ¼0 ð77Þ

The monic Charlier polynomial Pn(x) is related to the Charlier polynomial by

PnðxÞ¼ ð2aÞnCnðx;aÞ;

and satisfies the following normalized recurrence equation (see Eq. (1))

Pnþ1ðxÞ¼ ðx2n2aÞPnðxÞ2anPn21ðxÞ; n$1; P21ðxÞ¼0; P0ðxÞ¼1: ð78Þ

The hypergeometeric representation of two linearly independent solutions of the

recurrence equations (76) and (77) are given by

Cnðx; aÞ ¼2 F0

2n;2x

2

					2 1

a

 !
; ð79Þ

�Cnðx; aÞ ¼
1

ðx þ 1Þðn þ 1Þ
2F2

1; 1

n þ 2; x þ 2

					 a

 !
: ð80Þ

Remark 2

The polynomial Cnðx; aÞ given by Eq. (79) is the Charlier polynomial and satisfies

therefore Eqs. (76) and (77).

The function �Cnðx; aÞ given by Eq. (80) satisfies also Eqs. (76) and (77). This can be

verified by using the command sumrecursion [15] which gives the recurrence

equation for sums of hypergeometric type.

Cnðx; aÞ and �Cnðx; aÞ are linearly independent solutions of Eq. (76) because the

Casorati determinant of these solutions of the second-order difference equation (76) given
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by (r(x) here is the Charlier weight)

Wnðx; aÞ ¼ Cn21ðx; aÞ �Cnðx; aÞ2 Cnðx; aÞ �Cn21ðx; aÞ

¼ GðnÞGðx þ 1Þ221axþn21

¼
GðnÞa12n

2rðxÞ

is different from zero.

Cnðx; aÞ and �Cnðx; aÞ are linearly independent solutions of Eq. (77) because they remain

unchanged when we permutate the role of x and n, and the difference equation (77) is

obtained from Eq. (76) by permutation of x and n.

The difference operators are given by

FðrÞ ¼ aðn þ 2zÞ ðx þ 4ÞT4 þ ð22ax 2 4z2 2z3 þ 2n2 2 6a þ 6z2 2 3nz2 2 n2z

þ 7nz2 2nÞT3 þ ð2ax 2 5an þ 2zþ 4z3 2 n2 2 4zax 2 10za þ n3 þ 4a 2 6z2

þ 6nz2 þ 4n2z2 4nz2 2axnÞT2 þ ð2ax þ 2z2 2z3 þ 4a 2 3nz2 2 n2zþ nzÞT

þ aðn 2 2 þ 2zÞðx þ 1ÞI;

SðrÞ
¼2a2ðxþ 2ÞPr21ðxþ 1Þð2n2 2zÞðxþ 3ÞT2 þ ð2ðxþ 2Þðxþ 4Þðn2 2þ 2zÞ

£ ðnþ zþ 1Þðxþ 1ÞPr21ðxÞ þ ðxþ 2Þðxþ 4Þð2axþ 2z2 2z3 þ 4a2 3nz2 2 n2zþ nzÞ

£Pr21ðxþ 1ÞÞTþ a2ðxþ 2Þðnþ 2zÞðxþ 3ÞPr21ðxþ 1ÞI;

TðrÞ ¼Pr21ðxþ 1ÞPr21ðxÞðxþ 2Þ2aT2 þ ð2ðxþ 1Þðnþ zþ 1Þðxþ 2ÞPr21ðxÞ
2 2 z

£ ðnþ zþ 1Þðxþ 2ÞPr21ðxþ 1ÞPr21ðxÞÞTþ ð2aðxþ 1Þðxþ 2ÞPr21ðxþ 1ÞPr21ðxÞ

2 zaðxþ 2ÞPr21ðxþ 1Þ2ÞI:

Here, z is given by

z ¼ r 2 x 2 a 2 2;

and Pr21 represents the monic Charlier polynomial of degree r 2 1: The factor Xn is given by

Xnðs; t;Pr21; lr21Þ ¼ 2ðx þ 2Þðx þ 3Þðx þ 1Þ2ðx þ 4Þðz2 1ÞPr21ðx þ 1ÞP2
r21ðxÞ þ ðx þ 4Þ

	 ðx þ 3Þðx þ 2Þðx þ 1Þðax þ 2zþ 2a 2 2z2ÞP2
r21ðx þ 1ÞPr21ðxÞ

þ ðx þ 2Þðx þ 3Þzðx þ 4Þðzþ 2a þ ax 2 z2ÞP3
r21ðx þ 1Þ:
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5.1.2. The Monic Meixner Case

The data for the Meixner polynomials mðb;cÞ
n ðxÞ (denoted in this paper by Mnðx; b; cÞÞ are

[17]:

s ðxÞ ¼ x; t ðxÞ ¼ ðc 2 1Þx þ bc; ln ¼ ð1 2 cÞn; rðxÞ ¼
ðbÞxcx

x!
; x [ N;

bn ¼
n þ ðn þ bÞc

1 2 c
; gn ¼

nðn þ b 2 1Þc

ð1 2 cÞ2
; b . 0; 0 , c , 1;

where (b)x represents the Pochhammer symbol defined by

ðbÞx ¼ bðb þ 1Þ . . . ðb þ x 2 1Þ; x [ N; ðbÞ0 ; 1:

The recurrence equation as well as the difference equation (see Eqs. (1) and (5)) satisfied

by the Meixner polynomials are given, respectively, by

cðn þ bÞMnþ1ðx; b; cÞ ¼ ðnðc þ 1Þ þ bc þ ðc 2 1ÞxÞMnðx; b; cÞ2 nMn21ðx; b; cÞ; n $ 1;

M21ðx; b; cÞ ¼ 0; M0ðx; b; cÞ ¼ 1; ð81Þ

cðxþbÞMnðxþ1;b;cÞ2 ðð1þ cÞxþbcþnðc21ÞÞMnðx;b;cÞþ xMnðx21;b;cÞ ¼ 0: ð82Þ

The monic Meixner polynomial Pn(x) is related to the Meixner polynomial Mnðx;b;cÞ by

PnðxÞ ¼ ðbÞn
c

c21

� �n

Mnðx;b;cÞ;

and satisfies the following normalized recurrence equation (see Eq. (1))

Pnþ1ðxÞ ¼ x2
nþðnþbÞc

12 c

� �
PnðxÞ2

nðnþb21Þc

ð12 cÞ2
Pn21ðxÞ;

n$ 1; P21ðxÞ ¼ 0; P0ðxÞ ¼ 1: ð83Þ

Hypergeometric representations of two linearly independent solutions of Eqs. (81) and

(82) are (with b – 1)

Mnðx; b; cÞ ¼2 F1

2n;2x

b

						1 2
1

c

0
@

1
A;

�Mnðx; b; cÞ ¼
Gðx þ n þ b þ 1ÞGðbÞ

bðx þ 1Þðn þ 1ÞGðx þ bÞGðn þ bÞ
3F2

1; 1; x þ n þ b þ 1

x þ 2; n þ 2

						 c
0
@

1
A:

ð84Þ

Remark 3 The proof of the fact that Mnðx; b; cÞ and �Mnðx; b; cÞ are linearly independent

solutions of Eqs. (81) and (82) (for b – 1) is obtained following the way indicated in

Remark 2. In this case, the Casorati determinant of the solutions Mnðx; b; cÞ and �Mnðx; b; cÞ

FOURTH-ORDER DIFFERENCE EQUATIONS 797



given by

Znðx; b; cÞ ¼ Mn21ðx; b; cÞ �Mnðx; b; cÞ2 Mnðx; b; cÞ �Mn21ðx; b; cÞ

¼
c12x2nðb 2 1ÞGðbÞ2GðnÞGðx þ 1Þ

2Gðn þ bÞGðx þ bÞ
¼

ðb 2 1ÞGðnÞc12n

2ðbÞnrðxÞ
;

where r is the Meixner weight, vanishes only for b ¼ 1: Notice that the Casorati

determinants Wnðx; aÞ for Charlier and Znðx; b; cÞ for Meixner cases were computed using

the relations they satisfy

Wnþ1ðx; aÞ ¼
n

a
Wnðx; aÞ; Znþ1ðx; b; cÞ ¼

n

cðn þ bÞ
Znðx; b; cÞ;

and the Maple command sumrecursion [15] in order to find the first-order difference

equations satisfied by W1ðx; aÞ and Z1ðx; b; cÞ:

The function �Cnðx; aÞ given by Eq. (80) can also be derived from �Mnðx; b; cÞ (see Eq. (84))

using the following relation linking the Charlier and Meixner polynomials [17]

�Cnðx; aÞ ¼
b!1
lim �Mn x; b;

a

a þ b

� �
:

Remark 4 The second solutions �Cnðx; aÞ and �Mnðx; b; cÞ of Eqs. (76) and (77) (for Charlier)

and Eqs. (81) and (82) (for Meixner) given, respectively, by Eqs. (80) and (84) seem to be

new results. These hypergeometric representations are covergent and were obtained in the

following way: First, we neglect the first x þ 1 terms in the expression of QnðxÞ given by

Eq. (36) and get
�QnðxÞ ¼

1

rðxÞ

X1
s¼xþ1

rðsÞPnðsÞ

s þ x
:

Then we use the Maple command sumtohyper [15] to get the hypergeometric

representation of �QnðxÞ for the Charlier and Meixner polynomials. Finally, we remark that
�QnðxÞ satisfies Eq. (1) and multiply it by an appropriate factor in order to ensure the

symmetry �QnðxÞ ¼ �QxðnÞ:

The difference operators are given by

FðrÞ ¼ cð2zþN 2 c2 1Þðxþ 4Þðbþ xþ 3ÞT4 2 ð42 2bcxþ 2cN 2 þ 2N 2 2 24zc2 2z3

2 10xcþ 9z2 þ 4c3 þ 9zcN þ 9zN 2 zN 2 2 12zc2 þ 9z2c2 3z2N 2 2x2c2

2 2bc2x2 10xc2 2 2x2c2 6bc2 2 6bc2 6N 2 6c 2N 2 12cN 2 12zÞT3

2 ð22þ 4bcx2 8xcN 2 5bcN 2 4cN 2 2 4N 2 þN 3 þ 4zcþ 4z3 þ 14xc2 12z2

2 10zbc2 4zx2c2 16zxc2 4zbcx2 2c3 þ 6c2 2 12zcN 2 12zN þ 4zN 2 þ 10zc2

2 12z2cþ 6z2N þ 4x2c2 þ 4bc2xþ 14xc 2 þ 4x2cþ 9bc2 þ 6cþ 9bcþ 5N 2 2Nbcx

2 2Nx2cþ 5c2N þ 2cN þ 10zÞT2 2 ð4c 2 þ 6xc2 þ 2x2c2 þ 2bc2xþ 4bc 2

þ 3zcN þ 3z2cþ 4cþ 6xcþ 2x2cþ 2bcxþ 4bcþ 3zN þ 3z2 2 3z2N

2 zN 2 2 2z3ÞTþ cð2zþN 2 3c2 3Þðxþ 1Þðbþ xÞI;
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SðrÞ
¼ ðxþ2Þðxþ3Þð122zþ c2NÞðbþ xþ2Þ ðbþ xþ1Þ2c3Pr21ðxþ1ÞT2

2 ððxþ2Þðxþ4Þcðbþ xþ1Þðxþ1ÞðN þ zÞð2N þ322zþ3cÞPr21ðxÞþ ðxþ2Þðxþ4Þ

£cðbþ xþ1Þð4c2 þ6xc 2 þ2x2c2 þ2bc2xþ4bc2 þ3zcN þ3z2cþ4cþ6xcþ2x2c

þ2bcxþ4bcþ3zN þ3z2 23z2N 2 zN 2 22z3ÞPr21ðxþ1ÞÞTþðxþ2Þðxþ3Þ

£ ð122zþ c2NÞðbþ xþ2Þðbþ xþ1Þ2c3Pr21ðxþ1ÞI;

TðrÞ ¼ cðxþ2Þ2ðbþ xþ1ÞPr21ðxþ1ÞPr21ðxÞT
2 þð2ðxþ2ÞðN þ zÞðxþ1ÞPr21ðxÞ

2

2 zðN þ zÞðxþ2ÞPr21ðxþ1ÞPr21ðxÞÞTþð2cðbþ xÞðxþ1Þðxþ2ÞPr21ðxþ1ÞPr21ðxÞ

2 ðxþ2Þzcðbþ xÞPr21ðxþ1Þ2ÞI:

Here N and z are given by

N ¼ ðn þ 1Þð1 2 cÞ; z ¼ r 2 x 2 2 2 cðr þ x þ bÞ

and Pr21 is the monic Meixner polynomial of degree r 2 1: The expression Xn in this case is

given by

Xn ; Xnðs; t;Pr21;lr21Þ

¼ ðc 2 zþ 1Þðx þ 1Þ2ðx þ 2Þðx þ 3Þðx þ 4ÞPr21ðx þ 1ÞP2
r21ðxÞ þ ðx þ 1Þðx þ 2Þðx þ 3Þ

£ ðx þ 4Þðx2c þ 2zc þ bcx þ 3xc þ 2c þ 2bc þ 2zþ 2z2ÞP2
r21ðx þ 1ÞPr21ðxÞ þ zðx þ 2Þ

£ ðx þ 3Þðx þ 4Þðx2c þ zc þ bcx þ 3xc þ 2c þ 2bc þ z2 z2ÞP3
r21ðx þ 1Þ:

Notice that the difference operators FðrÞn given for the rth associated

Charlier and Meixner polynomials coincide with those given in Ref. [19] with the

notations z ¼ R; r ¼ g:

5.2. Extension of Results to Real Order of Association

Let n be a real number with n $ 0 and ðPðrÞ
n Þn the family of polynomials defined by

PðnÞ
nþ1ðxÞ ¼ ðx 2 bnþnÞP

ðnÞ
n ðxÞ2 gnþnP

ðnÞ
n21ðxÞ; n $ 1 ð85Þ

with the initial conditions

PðnÞ
0 ðxÞ ¼ 1; PðnÞ

1 ðxÞ ¼ x 2 bv;

where bnþn and gnþn are the coefficients bn and gn of Eq. (1) with n replaced by n þ n:

We assume that the starting family (Pn)n defined in (1) is classical discrete. The

coefficients bn and gn are therefore rational function in the variable n [16,18,28] and the

coefficients bnþn and gnþn well-defined. When gnþn – 0; ;n $ 1; the family ðPðrÞ
n Þn; thanks

to Favard’s theorem [3,6] is orthogonal and represents the associated of the family ðPnÞn with

real order of association.
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Theorem 7 Let (Pn)n be a family of classical discrete orthogonal polynomial, n $ 0 a real

number and ðPðnÞ
n Þn the n-associated of (Pn)n. We have:

1. ðPðnÞ
n Þn satisfies

FðnÞn ðyÞ ¼ 0; ð86Þ

where FðnÞn is the operator given in Eq. (52) with r replaced by n.

2. The difference operator FðnÞn factorizes as

SðnÞ
n TðnÞ

n ¼ Xðs; t;Un21; ln21ÞF
ðnÞ
n ; ~S

ðnÞ

n
~T
ðnÞ

n ¼ Xðs; t;Vn21; ln21ÞF
ðnÞ
n ; ð87Þ

where the operators SðnÞ
n ; TðnÞ

n ; ~S
ðnÞ

n ; ~T
ðnÞ

n and the factor X are those given in

Eqs. (49)–(53) with r replaced by n, Pr and Qr are replaced by Un and Vn, respectively.

Un and Vn are the two linearly independent solutions of the difference equation

(see Ref. [28,29])

sðxÞD7yðxÞ þ tðxÞDyðxÞ þ ln yðxÞ ¼ 0; ð88Þ

with Ur ¼ Pr; Vr ¼ Qr for n ¼ r [ N and

ln ¼ 2
n

2
ððn2 1Þs00 þ 2t0Þ: ð89Þ

Four linearly independent solutions of difference equation (86) are given by

AðnÞ
n ðxÞ ¼ rðxÞUn21ðxÞUnþnðxÞ;

BðnÞ
n ðxÞ ¼ rðxÞUn21ðxÞVnþnðxÞ;

CðnÞ
n ðxÞ ¼ rðxÞVn21ðxÞUnþnðxÞ;

DðnÞ
n ðxÞ ¼ rðxÞVn21ðxÞVnþnðxÞ;

ð90Þ

where r(x) is the weight function given by Eq. (3).

Proof

1. Let n be a fixed integer number and define the function F by

F : Rþ ! R n! FðnÞn ðPðnÞ
n ðxÞÞ;

where Rþ is the set of positive real numbers. Using relation (85) for fixed x, F(n) can be

written as rational function in n. In fact, for the classical discrete orthogonal

polynomials, the three-term recurrence relation coefficients bn and gn are rational

functions in the variable n. Using Eq. (56) we get

FðrÞ ¼ FðrÞn ðPðrÞ
n ðxÞÞ ¼ 0; ;r [ N:

We then conclude that FðnÞ is a rational function with an infinite number of zeros.

Therefore, FðnÞ ¼ 0; ;n [ Rþ and ðPðnÞ
n Þn satisfies Eq. (86).

2. Equation (87) is proved by a straightforward computation using Un and Un which

satisfies Eq. (88).
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3. The functions given in Eq. (90) are represented as products of functions satisfying

homogeneous difference equation of order 1 (for r) and 2 (for U and V). These functions,

therefore satisfy a difference equation of order 4 ð¼ 1 £ 2 £ 2Þ which is identical to

Eq. (86). Notice that by linear algebra one can deduce the difference equation of the

product (90), given the difference equations of the factors, since they have polynomial

coefficients. This can be done, e.g. by Maple command “rec*rec” [35] of the gfun

package.

We conclude the proof by noticing that the results of the previous theorem can be used

to extend Theorem 5 to the generalized co-recursive associated of classical discrete

orthogonal polynomials with real order of association as was done for classical continuous

in Ref. [9]. A

5.3. Solution of Some Second-order Difference Equations

The factorization pointed out in Eq. (51) can be used to prove the following:

Proposition 3 Two linearly independent solutions of the difference equation

SðrÞ
n ðyÞ ¼ 0;

are

EðrÞ
n ðxÞ ¼ TðrÞ

n ðCðrÞ
n ðxÞÞ; FðrÞ

n ðxÞ ¼ TðrÞ
n ðDðrÞ

n ðxÞÞ;

where the operators SðrÞ
n and TðrÞ

n are given by Eqs. (49) and (50), respectively, and the

functions CðrÞ
n ðxÞ and DðrÞ

n ðxÞ given by Eq. (57).

Proposition 4 Two linearly independent solutions of the difference equation

SðnÞ
n ðyÞ ¼ 0;

are

EðnÞ
n ðxÞ ¼ TðnÞ

n ðCðnÞ
n ðxÞÞ; FðnÞ

n ðxÞ ¼ TðnÞ
n ðDðnÞ

n ðxÞÞ;

where the operators SðnÞ
n and TðnÞ

n are given by Eq. (87), and the functions CðnÞ
n ðxÞ and DðnÞ

n ðxÞ

given by Eq. (90).

Proof Since the functions CðrÞ
n and DðrÞ

n are solutions of equation FðrÞn ðyÞ ¼ 0 (see Theorem 2),

we use the factorization given by Eq. (51) and get

SðrÞ
n ðTðrÞ

n ðyÞÞ ¼ Xðs; t;Pr21; lr21ÞF
ðrÞ
n ðyÞ ¼ 0

for y [ {CðrÞ
n ;DðrÞ

n }: We therefore, conclude that the functions EðrÞ
n and FðrÞ

n satisfy SðrÞ
n ðyÞ ¼ 0:

The proof of Proposition 4 is similar to the one of Proposition 3 by using Theorem 7. A

Remark 5 The previous propositions give solutions to families of second-order difference

equations. In particular, Proposition 3 solves a family of second-order difference equations

with polynomial coefficients. The two previous propositions, given for the associated

classical discrete orthogonal polynomials can be used to solve the difference equation

SnðyÞ ¼ 0 where Sn is the left factor of the factored form of the fourth-order difference
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operator FnðFn ¼ SnTnÞ for other modifications of classical discrete orthogonal polynomials

(see “Perturbation of recurrence coefficients” section).

5.4. Extension of Results to Semi-classical Cases

The proof of Theorem 1, which is the starting point of this paper, uses merely the second-

order difference equation (5) and the relation (32). Now we suppose that the family (Pn)n is

semi-classical discrete [7,14,22,25,26,34]. This implies that (Pn)n is orthogonal satisfying a

second-order difference equation of the form

�MnðyðxÞÞ ¼ I2ðx; nÞyðx þ 2Þ þ I1ðx; nÞyðx þ 1Þ þ I0ðx; nÞyðxÞ ¼ 0; ð91Þ

where the coefficients Ii(x,n)are polynomials in x of degree not depending on n.

For semi-classical orthogonal polynomials an equation of type (32) is known and can be

stated as [7,10]

~MnðP
ð1Þ
n21ðxÞÞ ¼ a1ðxÞPnðx þ 1Þ þ a0ðxÞPnðxÞ; ð92Þ

where ai are polynomials and ~Mn a second-order linear difference operator with polynomial

coefficients. Use of the two previous equations leads to the following extension.

Theorem 8 Given (Pn)n a sequence of semi-classical orthogonal polynomials satisfying

Eq. (91) and ð �PnÞn a family of orthogonal polynomials obtained by modifying (Pn)n and

satisfying

�PnðxÞ ¼ AnðxÞP
ð1Þ
nþk21 þ BnðxÞPnþk; n $ k0; ð93Þ

where An and Bn are polynomials of degree not depending on n, and k, k0 [ N; we have the

following:

1. The orthogonal polynomials ð �PnÞn$k0 satisfy a common fourth-order linear difference

equation

�FnðyðxÞÞ ¼ K4ðx; nÞyðx þ 4Þ þ K3ðx; nÞyðx þ 3Þ þ K2ðx; nÞyðx þ 2Þ þ K1ðx; nÞyðx þ 1Þ

þ K0ðx; nÞyðxÞ

¼ 0;

where the coefficients Ki are polynomials in x, with degree not depending on n.

2. The operator �Fn can be factored as product of two second-order linear difference

operators

�Fn ¼ �Sn
�Tn;

where the coefficients of �Sn and �Tn are polynomials of degree not depending on n.

The proof is similar to the one of Theorem 1 but with Eqs. (91) and (92) playing the role of

Eqs. (5) and (32), respectively.

The previous theorem covers many modifications of the recurrence coefficients of the

semi-classical discrete orthogonal polynomials, and in particular, the modifications such as
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the associated, the general co-recursive, the general co-dilated, the general co-recursive

associated and the general co-modified semi-classical discrete orthogonal polynomials.

When the orthogonal polynomial sequence (Pn)n is semi-classical discrete, it is difficult in

general to represent the coefficients of the difference operators, �Mn; ~Mn; �Fn; �Sn and �Tn in

terms of polynomials f and c, the coefficients of the functional equation (see Refs.

[7,13,22,34]) satisfied by the regular functional with respect to which ð �PnÞn is orthogonal.

However, for particular cases (for example if the degrees of polynomials f and c are

small), it is possible after huge computations to give the coefficients of the difference

operators �Mn; ~Mn; �Fn; �Sn and �Tn explicitly, and therefore look for functions annihilating

these difference operators.
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Pierre et Marie Curie, Paris VI, 1988.
[5] J. Dini, P. Maroni and A. Ronveaux, Sur une perturbation de la récurrence vérifée par une suite de polynômes
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