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Abstract

The classical orthogonal polynomials are given as the polynomial solutions p,(x) of
the differential equation

()" (x) + t(x)y' (x) + Zuy(x) = 0,

where a(x) is a polynomial of at most second degree and 7(x) is a polynomial of first
degree.

In this paper a general method to express the coefficients 4,, B, and C, of the re-
currence equation

p,,H(X) = (Anx + B,,)p,,(x) - Cnpn—l(x)

in terms of the given polynomials o(x) and (x) is used to present an algorithm to de-
termine the classical orthogonal polynomial solutions of any given holonomic three-
term recurrence equation, i.e., a homogeneous linear three-term recurrence equation
with polynomial coefficients.

In a similar way, classical discrete orthogonal polynomial solutions of holonomic
three-term recurrence equations can be determined by considering their corresponding
difference equation

a(x)AVy(x) + t(x)Ay(x) + Zy(x) = 0,

where Ay(x) =y(x+ 1) — y(x) and Vy(x) = y(x) —y(x — 1) denote the forward and
backward difference operators, respectively, and a similar approach applies to classical
g-orthogonal polynomials, being solutions of the g-difference equation
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0(x)DyD1 gy (x) + T(x)Dyy(x) + Agay(x) =0,

where

Dyf(x) flgx) = f(x)

(g—Dx ~’

denotes the g-difference operator. © 2002 Elsevier Science Inc. All rights reserved.

q#1,

Keywords: Computer algebra; Maple; Differential equation; Q-difference equation; Structure
formula

1. Introduction

Families of orthogonal polynomials p,(x) (corresponding to a positive-def-
inite measure) satisfy a three-term recurrence equation of the form

Pur1(x) = (Ax + B,)pa(x) — Cypui(x)  (n € No,p_1 =0) (1)

with C,4,4, 1 > 0, see e.g. [5, p. 20]. Moreover, Favard’s theorem states that
the converse is also true.

On the other hand, in practice one is often interested in an explicit solution
of a given recurrence equation. Therefore it is an interesting question to ask
whether a given recurrence equation has classical orthogonal polynomial so-
lutions.

In this paper an algorithm is developed which answers this question for a
large class of classical orthogonal polynomial systems. Furthermore, we pre-
sent results of our corresponding Maple implementation retode and compare
these with the Maple implementation rec2ortho of Koornwinder and
Swarttouw [12]. These programs overlap, but rec2ortho does not cover
Bessel, Hahn and g¢-polynomials, whereas retode does not include the
Meixner—Pollaczek case.

2. Classical orthogonal polynomials
A family
yx) =pu(x) = kX" KX+ (neNg:i={0,1,2,...}, k, #0) (2)

of polynomials of degree exactly n is a family of classical continuous orthogonal
polynomials if it is the solution of a differential equation of the type

a(x)y" (x) + 1(x)y (x) + Ay(x) =0, (3)
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where o(x) = ax> + bx + ¢ is a polynomial of at most second-order and
7(x) = dx + e (d # 0) is a polynomial of first-order ([3,13]). Since one demands
that p,(x) has exact degree n, by equating the coefficients of x" in (3) one gets

Jn = —(an(n — 1) + dn). 4)

Similarly, a family p,(x) of polynomials of degree exactly n, given by (2), is a
family of classical discrete orthogonal polynomials if it is the solution of a
difference equation of the type

a(x)AVy(x) + (x)Ay(x) + Z,y(x) = 0, (5)
where
Ay(x) =y(x+1) —y(x) and Vy(x)=p(x) —y(x—1)

denote the forward and backward difference operators, respectively, and
o(x) = ax? 4+ bx + ¢ and t(x) = dx + e are again polynomials of at most second-
and of first-order, respectively, see e.g. [18]. Again, (4) follows.

Finally, a family p,(x) of polynomials of degree exactly n, given by (2), is a
family of classical g-orthogonal polynomials if it is the solution of a g-difference
equation of the type

U(-X)DqDl/qy(x) + T(X)qu(x) + /lq,ny<x) = 07 (6)
where
_ flgx) — f(x)
Dyf (x) RSP q#1,

denotes the g-difference operator [6], and ¢(x) = ax? + bx + c and t(x) = dx + e
are again polynomials of at most second- and of first-order, respectively. By
equating the coefficients of x” in (6) one gets

Agn = _a[”]uq[”’ —1]q — dn]q, (7)
where the abbreviation
1 — qn
R

denotes the so-called g-brackets. Note that lim,_[n], = n.

It can be shown (see e.g. [14]) that any solution p,(x) of either (3), (5) or (6)
satisfies a recurrence equation (1).

The following is a general procedure to find the coefficients of the recurrence
equation (as well as of similar structural formulas for classical orthogonal
polynomials, see [10]) in terms of the coefficients a, b, ¢,d and e of (x) and t(x):

1. Substitute p,(x) = kx" +kx""' +k/x"*+--- in the differential equation
(3), in the difference equation (5) or in the ¢-difference equation (6), respec-
tively.
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2. Equating the coefficients of x” yields 4,, given by (4) and (7), respectively.

3. Equating the coefficients of x"~! and x"~? gives &, and k, respectively, as ra-
tional multiples of k,.

4. Substitute p,(x) in the proposed equation, and equate again the three highest
coefficients. In the case of the recurrence equation (1), this yields

k, ~ k, k K
—An = 17 Bn = Bn =l _n
kn+l kn+1 kn+1 kn
and
& b K KL (RN Rk
! kn+1 ! kn kn+l kn kn kn+l ’

by linear algebra.
5. Substituting the values of &/ and & given in step 3 in these equations yields
the three unknowns in terms of a,b,c,d,e,n, k,_1,k,, and k,,;.

With regard to the recurrence equation coefficients, we collect these results in
the following theorem.

Theorem 1. Let p,(x) = k,x" + -+ (n € Ny) be a family of polynomial solutions
of the differential equation (3). Then the recurrence equation (1) is valid with

ka

A,=1, 8
Kt (8)
ky _ 2bn(an+d —a) — e(—d + 2a) )
kor " (d+2an)(d — 2a + 2an)
and
ko c - gan—i—d—Za)n -((an+d—2a)
kns1 (d —2a+2an)"(2an — 3a+d)(2an —a + d)
x n(4ca — b*) + 4a’c — ab® + ae’* — 4acd + db* — bed + d’c)
(10)

in terms of the coefficients a, b, ¢, d and e of the given differential equation.
Let p,(x) =k X"+ ---(n € Ny) be a family of polynomial solutions of the
difference equation (5). Then the recurrence equation (1) is valid with

k,
—nAn:17
kn+l
2 — -2
k, B,,—n(d+ b)(d + an — a) + e(d — 2a) (an

kwir " (2an — 2a + d)(d + 2an)
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and
_ -2
knlCn:_ (an+d —2a)n (=)
ki1 (d —a+2an)(d + 2an — 3a)(2an — 2a + d)
x (d +an — a)(and — db — ad + a*n* — 2a’n
+4ca + a* + 2ea — b*) — dbe + d’c + ae®) (12)

in terms of the coefficients a, b, ¢, d and e of the given difference equation.
Let p,(x) = kx"+---(n € Ny) be a family of polynomial solutions of the
g-difference equation (6). Then the recurrence equation (1) is valid with

ky

anAn =1,
" - N
%Bﬂ =[n+ 1}qm "qa[zb(Ej_ 11)]f;ei,z<n1> .
and (N = q")
11: C, = ((N —1)(—Nd + Na + Nqd — aq®)

x (—a*cN* — N*d*c + N*beqd — abeNgq® — 2adcN*¢*
+ 2aN’¢*be — aN’beq + beN>q*d — 2beN>¢*d
+2deN*¢a — 2beN*qa — 2dcN*qa + beNg*a
+ beN3ag* — b*¢*dN? — d*cq* + N*b*q*d — Nb*qd
+ aNg*h* — 2ab*N*¢* — ae*N*q* + aN*b*q + 2aN*dc
+2d%cq®N? 4+ 2d°cN*q — d*cN*q* + B*N3¢*d
+2*N*¢*a — &N*q*a)Nq)/((dN*q — aq + aN* — dN?)
x (dN*q — dN?* + aN* — ag®)*(dN*q — dN? 4+ aN* — aq®)) (14)

in terms of the coefficients a, b, ¢, d and e of the given g-difference equation.

3. The inverse characterization problem

It is well-known (]3], see also [4,13]) that polynomial solutions of (3) can be
classified according to the zeros of a(x), leading to the normal forms of Table 1
besides linear transformations x — Ax + B. The type of differential equation
that we consider is invariant under such a transformation.

This shows that the only orthogonal polynomial solutions are linear
transforms of the Hermite, Laguerre, Bessel and Jacobi polynomials (for de-
tails see e.g. [10]), hence using a mathematical dictionary one can always de-
duce the recurrence equation. Note, however, that this approach except than
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Table 1
Normal forms of polynomial solutions
o) ) ) Family
l X n
2 1 —2x H,(x) Hermite polynomials
3 X —x+oa+1 LY (x) Laguerre polynomials
4a x? 0 x"
4b x? (4 2)x+2 BY(x) Bessel polynomials
5 x+1D@Ex—1) (04 B+2)x+a—p PP (x) Jacobi polynomials

being tedious may require the work with radicals, namely the zeros of the
quadratic polynomial ¢(x), whereas our approach is completely rational: Given
kuy1/k, € Q(n), the recurrence equation is given rationally by Theorem 1.

Moreover, Theorem 1 represents the recurrence equation by a unique for-
mula. It is valid also in the cases of Table 1(1) and (4a), with the trivial solution
pa(x) =x". In both cases we have the recurrence equation p,,(x) = xp,(x).

Now, we will use the fact that these equations are given explicitly to solve an
inverse problem.

Assume one knows that a polynomial system satisfies a differential equation
(3). Then by the classification of Table 1 it is easy to identify the system. On the
other hand, given an arbitrary holonomic three-term recurrence equation

qn(x)PnJrZ(x) + 7 (x)Pn+1 ()C) =+ Su (x)Pﬂ (x) = 07 (15)

(¢ (x),74(x),8,(x) € Q[n,x]), it is less obvious to find out whether there is a
polynomial system

Pn(x) = r1xn+"' (l’l S N07kn #0)

satisfying (15), being a linear transform of one of the classical systems
(Hermite, Laguerre, Jacobi, Bessel), and to identify the system in the affir-
mative case. In this section we present an algorithm for this purpose. Note that
Koornwinder and Swarttouw [12] have also considered this question and in
their Maple implementation rec2ortho propose a solution based on the
careful ad hoc analysis of the input polynomials (actually, they start with Eq.
(19)). Their Maple implementation deals with the following families: Hermite,
Charlier, Laguerre, Meixner—Pollaczek, Meixner, Krawtchouk, and Jacobi.
Let us start with a recurrence equation of type (15). Without loss of generality
we assume that neither ¢,_; (x) nor s, (x) has a nonnegative integer zero w.r.t. n.
Otherwise, a suitable shift can be applied, see Algorithm 1 and Example 1.
Therefore, in the sequel we assume that the recurrence equation

G (X)Pui2 (x) + 72 (X)pui1 (x) + 5, (x)pa(x) = 0, (16)
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(¢ (x),74(x), 8,(x) € Q[n,x]), is valid, but neither ¢, ;(x) nor s,(x) have non-
negative integer zeros. We search for solutions

pu(x) = kX" + kX" 4o (n € Ny, k, #0). (17)

Next, we divide (16) by ¢,(x), and replace n by n — 1. This brings (16) into the
form

Prin(X) = 6()pa(x) + un ()P (x) - (8a(x), ua(x) € Q(n,)). (18)

For p,(x) being a linear transform of a classical orthogonal system, there is a
recurrence equation (1)

pn+l(x) = (Anx +Bn) ,,()C) - Cnpn—l(x) (A,,,B,,, C, € @(n)vAﬂ 7£ 0)7 (19)

therefore (18) and (19) must agree. We would like to conclude that #,(x) =
A,x+ B,, and u,(x) = —C,. This follows if we can show that p,(x)/p._|
(x) € Q(n,x). For a proof of this assertion, see [9].

Therefore we can conclude that #,(x) = 4,x + B,, and u,(x) = —C,. Hence if
(18) does not have this form, i.e., if either #,(x) is not linear in x or u,(x) is not a
constant with respect to x, we see that p,(x) cannot be a linear transform of a
classical orthogonal polynomial system. In the positive case, we can assume the
form (19).

Since we propose solutions (17), equating the coefficients of x"*! in (19) we
get

=4,=— (v, w, € Qn)). (20)

Hence the given 4, = v,/w, € Q(n) generates the term ratio k,.,/k,. In par-
ticular &, turns out to be a hypergeometric term, (i.e., k,.1/k, is rational) and is
uniquely determined by (20) up to a normalization constant ky = py(x). Since
the zeros of w, are a subset of the zeros of ¢, (x), &, is defined by (20) for all
n € N from k.

In the next step we can eliminate the dependency of k, by generating a re-
currence equation for the corresponding monic polynomials p,(x) = p,(x)/k,.
For p,(x), we get by (20)

o) = (345 )0 = 5 B0 = (54 B)Bulo) — G0

with
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Then our formulas (9) and (10) read in terms of B, and C,

5 2bn(a(n — 1) +d) + e(d — 2a)

" (a(n—1)+d)(2an +d) @)
and
¢ —n(a(n —2)+d)
" (a(2n—1)+d)(a(2n —3) +d)
x <c b= Dre e pay— ab(n - 1))) (22)
(2a(n — 1) +d)* ’

and these are independent of &, by construction.

Now we would like to deduce a, b, ¢, d and e from (21) and (22). Note that as
soon as we have found these five values, we can apply a linear transform
(according to the zeros of o(x)) to bring the differential equation in one of the
normal forms of Table 1 which finally gives us the desired information.

We can assume that B, and C, are in lowest terms. If the degree of either the
numerator or the denominator of B, is larger than 2, then by (21) p,(x) is not a
classical system. Similarly, if the degree of either the numerator or the de-
nominator of C, is larger than 4, by (22) the same conclusion follows.

Otherwise we can multiply (21) and (22) by their common denominators,
and bring them therefore in polynomial form. Both resulting equations must be
polynomial identities in the variable n, hence all of their coefficients must
vanish. This gives a nonlinear system of equations for the unknowns a, b, c,d
and e. Any solution of this system with not both ¢ and d being zero yields a
differential equation (3), and hence given such a solution one can characterize it
via Table 1. Therefore our question can be resolved in this case. In particular, if
one of the cases Table 1(1) or (1.4a) applies, then there are no orthogonal
polynomial solutions.

If the nonlinear system does not have such a solution, we deduce that no
such values a, b, c,d and e exist, hence no such differential equation is satisfied
by p.(x), implying that the system is not a linear transformation of a classical
orthogonal polynomial system.

Hence the whole question boils down to decide whether the given nonlinear
system has nontrivial solutions, and to find these solutions in the affirmative
case. As a matter of fact, with Grobner bases methods, this question can be
decided algorithmically [15-17]. Such an algorithm is implemented, e.g., in the
computer algebra system REDUCE [16], and Maple’s solve command can
also solve such a system.

Note that the solution of the nonlinear system is not necessarily unique. For
example, the Chebyshev polynomials of the first and second kind 7,(x) and
U, (x) satisfy the same recurrence equation, but a different differential equation.
We will consider this example in more detail later.
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If we apply this algorithm to the recurrence equation p,»(x) — xp,;1(x) of
the power p,(x) = x", it generates the complete solution set, given by Table 1(1)
and (4a).

The following statement summarizes the above considerations:

Algorithm 1. This algorithm decides whether a given holonomic three-term
recurrence equation has shifted, linear transforms of classical orthogonal
polynomial solutions, and returns their data if applicable.

1. Input: A holonomic three-term recurrence equation

Gn(X)Pn2(X) + 1a(X)Pu1 (%) + 52 (X)pu(x) = 0 (gn(x), 7 (x), 50(x) € Q[n, x]).
2. Shift: Shift by
0 if ¢,_1(x) and s,(x) have no nonnegative integer zero,
| max{n € Ny | nis a zero of g, (x) or s,(x)} +1 otherwise.
(23)
3. Rewriting: Rewrite the recurrence equation in the form
Pt (%) = ()P (x) + 4y (X)pu1(x)  (ta(x), ua(x) € Q(n,x)).

If either ¢,(x) is not a polynomial of degree one in x or u,(x) is not constant
with respect to x, then return “no orthogonal polynomial solution
exists”; exit.

4. Standardization: Given now 4,,B, and C, by

Pt (x) = (Ax + B)pu(x) — Copu1(x) (4, By, Cy € Q(n), 4, # 0),
define

k, ’
1; — A, = v”v_ (0, Wy € Q[n])

according to (20).
5. Make monic: Set
B

5 n -~ Cn
B, = € Q(n) and C,:= AA € Q(n)

and bring these rational functions in lowest terms. If the degree of either the
numerator or the denominator of B, is larger than 2, or if the degree of
either the numerator or the denominator of C, is larger than 4, return “no
classical orthogonal polynomial solution exists’; exit.

6. Polynomial identities: Set

3 - 2bn(a(n — 1) +d) + e(d — 2a)
" (2a(n—1) +d)(2an +d)
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and
o —n(a(n —2)+d)
" (a(2n—1)+d)(a(2n—3) +d)

bn—1)+e
X <C+W((a€ — bd) —ab(n — l))),

using the as yet unknowns a, b, ¢,d and e. Multiply these identities by their
common denominators, and bring them therefore in polynomial form.

7. Equating coefficients: Equate the coefficients of the powers of n in the two
resulting equations. This results in a nonlinear system in the unknowns
a,b,c,d and e. Solve this system by Grobner bases methods. If the system
has no solution or only one with a = d = 0, then return “no classical
orthogonal polynomial solution exists”; exit.

8. Output: Return the classical orthogonal polynomial solutions of the differen-
tial equations (3) given by the solution vectors (a, b, ¢, d, e) of the last step, ac-
cording to the classification of Table 1, together with the information about
the standardization given by (20). This information includes the density

f_ Loy [0 g,

C  alx) exp

a(x)

(see e.g. [13]), and the supporting interval through the zeros of o(x). '

Remark. Assume that a given recurrence equation contains parameters. Then
our implementation determines for which values of the parameters there are
orthogonal polynomial solutions, by solving not only for a,b,¢,d and e, but
moreover for those parameters.

Example 1. As a first example, we consider the recurrence equation

(n+2)Pa(x) —x(n+ 1)P,y1 (x) + nP,(x) = 0.

Since so(x) = 0, we see that the shift p,(x) := P,.(x) is necessary, i.e., N = 1 by
(23). For p,(x), we have the recurrence equation

(1 + 3)puia(x) = x(n + 2)pas1 (x) + (n + 1)p,(x) = 0. (24)
In the first steps this recurrence equation is brought into the form

n+1 n
Pn+1(x> = nt 2xpn(x) - mpm()f),

! If the zeros of a(x) are not real, then these orthogonal polynomials are not positive-definite. The
Bessel system is never positive-definite [2].
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hence

kn+l_n+1_vn
k, n+2 w,’

A, =

and therefore

1
T n+1

ko.

n

Moreover, for monic p,(x) = p,(x)/k, we get
ﬁn+1 (X) = xﬁn(x) +ﬁn71 (X),

hence E,, =0 and E’,, = 1. The polynomial identities concerning E,, and Z’n of
step 5 of the algorithm yield b = 0, ¢ = —4a, and either

d=a, ord =2a, or d =3a.
At this point we have already determined
o(x) = ax* + bx +c = a(x* — 4).

Hence possible classical orthogonal polynomial solutions of (24) are defined in
the interval [-2,2].

In the first of the above cases, i.e., for d = a, one gets e = 0 and the dif-
ferential equation

(¥ = 4)y"(x) +x/(x) — n(n — 2)y(x) = 0 (25)
corresponding to the density
B 1 tx) .1

The corresponding orthogonal polynomials are multiples of translated
Chebyshev polynomials of the first kind

) =i Col) = 2 €)= nzf)l L(x/2) (n30) (26)

(see e.g. [1], Table 22.2, and (22.5.11); C,(x) are monic, but Cy = 2, see also
Table 22.7), hence finally

B = prs(6) = T (6/2) (03 1)

In the second of the above cases, i.e., for d = 2a, one gets the equation

(e —2a)(e+2a) =0
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with two possible solutions e = +2a that give the differential equations

(% = 4)y"(x) +2(x + 1)y (x) = n(n = 3)y(x) =0, (27)
and

(¥ = 4)y"(x) + 2(x = 1)y (x) = n(n = 3)y(x) = 0. (28)

They correspond to the densities

4+x 4 —x
p) =[5 and o) = /3

respectively, hence the orthogonal polynomials are multiples of the Jacobi
polynomials P{'/271/2)(x/2) and P=1/21/2)(x/2).

Finally, in the third of the above cases, i.e., for d = 3a, we get again e =0
and

(¥ = 4)y"(x) + 30y (x) = n(n = 4)y(x) = 0 (29)

corresponding to the density

I R B
p(x) = J(x)ep/o_(x)dx 4 .

The corresponding orthogonal polynomials are multiples of translated
Chebyshev polynomials of the second kind

D D
) =Sy (x) = P8, = P U (x/2) (12 0) (30)

(see e.g. [1], Table 22.2, and (22.5.13); S,(x) are monic, see also Table 22.8),
hence

B =P () =" U, (5/2) (> 1),

We see that the recurrence equation (24) has four different (shifted) linearly
transformed classical orthogonal polynomial solutions!
Using our implementation, these results are obtained by
> strict: = true:
>RE:=(n+3)*pn+2)—x*(n+2)xp(n+1)+(n+1)*pn) =0;

RE := (n+3)p(n+2) —x(n+2)p(n+ 1)+ (n+ 1)p(n) =0
> REtoDE(RE,p(n), x);
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Warning: several solutions found

[1+26- 1) (5000 ) o+ V) =0,

= (-220 =22 |

:%1 o+ 1) (%p(n,x)) —n(n+ Dp(n,x) = 0,

- (= 2,2, p(x) = @ et —l—x(%p(n,x)) — p(n,x) =0,
:1=[—2,21,p<x>:(x_“’2“2)(712) ,

el + 3x<%p(n,x)> — n(n + 2)p(n,x) = 0,

1= [-22p0) = Vi | B

2

%l = (x —2)(x + 2) <%p(n,x))

which gives the corresponding differential equations, the intervals and densi-
ties, as well as the term ratio &, /k, = (n+1)/(n+2).

With Koornwinder—Swarttouw’s rec2ortho, these results are obtained by
the statements rec2ortho((n+2)/(n+1),0,n/(n+1)), reclortho
(n+2)/(n+1),0,n/(n+1),4,0), reclortho((n+2)/(n+1),0,n/(n+1),
2,—1), and reclortho((n+2)/(n+1),0,n/(n+1),2,1), respectively.
Note that here the user must know the initial values to determine possible
orthogonal polynomial solutions, whereas our approach finds all possible so-
lutions at once.

Example 2. As a second example, we consider the recurrence equation

P2 (%) = (¥ = 1 = 1)pasr(x) +a(n + 1)p,(x) = 0 (31)

depending on the parameter o € R. Here obviously the question arises whether
or not there are any instances of this parameter for which there are classical
orthogonal polynomial solutions. In step 6 of Algorithm 1 we therefore solve
also for this unknown parameter. This gives a slightly more complicated
nonlinear system, with the unique solution

L

{szC,c:c,d: —4c,e=0,a=0,0 =
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Hence the only possible value for o with classical orthogonal polynomial so-
lutions is « = 1/4, in which case one gets the differential equation

(x " ;)p;'(x) — 249} (%) — 20y () = 0

with density

p(x) =2e ™™
in the interval [—1/2,00], corresponding to linearly transformed Laguerre
polynomials.

Using our implementation, these results are obtained by

> strict: =false:

> REtoDE(RE,p(n),x);

Warning: parameters have the values,
1
{d: —4c,b:2c,c:c,e:0,a:0,a=Z}

e 0 Sp0n)) 25 ) + 20000 =0,

-1 k
= —_— = (72)6) ntl =
[1 [ 5 7oo],p(x) 2e }, A 1}

With Koornwinder—-Swarttouw’s rec2ortho, this result can also be obtained.
On the other hand, the Bessel polynomials are not accessible with Koorn-
winder-Swarttouw’s rec2ortho.

4. Classical discrete orthogonal polynomials

In this section, we give similar results for classical orthogonal polynomials
of a discrete variable (see [18, Chapter 2]). The classical discrete orthogonal
polynomials are given by a difference equation (5).

These polynomials can be classified similarly as in the continuous case
according to the functions o(x) and t(x); up to linear transformations
the classical discrete orthogonal polynomials are classified according to
Table 2 (compare [18, Chapter 2]). In particular, case (2a) corresponds to
the non-orthogonal solution x” in Table 1. Similarly as for the
powers

—x" =",

dx



Table 2
Normal forms of discrete polynomials
a(x) o(x) + t(x) pa(x) Family
1 1 ox+1+p (—1)"cl=1 <u> Translated Charlier
2a X 0 pe b Falling factorial
2b x u(p #0) ¥ (x) Charlier polynomials
3 x u(y +x) m#) (x) Meixner polynomials
4 x 1L (N —x) k¥ (x,N) Krawtchouk polynomials
-p
5 x(N +o—x) (x+B+1)(N-1-x) hP) (x, N) Hahn polynomials
6 (x4 ) (v+N—-1-x)(N—1-x) 24 (x, N) Hahn-Eberlein polynomials

LTE-E0€ (200Z) 8¢ mdwo) yopy 1ddy | nosiouyds q fdooy M

L1E



318 W. Koepf, D. Schmersau | Appl. Math. Comput. 128 (2002) 303-327

the falling factorials x* .= x(x — 1) -+ (x — n + 1) satisfy

At = px=L,
It turns out that they are connected with the Charlier polynomials by the
limiting process

: 1\, () — i _ . -
lim(—1)"p"e,"(x) = lim(x —n +1), 1Fl(x—n+1"“>

= (1) —n+1), =,

where we used the hypergeometric representation given in [18, (2.7.9)].

Note, however, that other than in the differential equation case the above
type of difference equation is not invariant under general linear transforma-
tions, but only under integer shifts. We will have to take this under consider-
ation.

The classical discrete orthogonal polynomials satisfy a recurrence equation
(1)

Pt (x) = (4x + B,)pa(x) — Coppi(x)

with 4,, B, and C, given by Theorem 1.

Similarly as in the continuous case, this information can be used to generate
an algorithm to test whether or not a given holonomic recurrence equation has
classical discrete orthogonal polynomial solutions. Obviously the first three
steps of this algorithm agree with those given in Algorithm 1.

Algorithm 2. This algorithm decides whether a given holonomic three-term
recurrence equation has classical discrete orthogonal polynomial solutions, and
returns their data if applicable.

1. Input: A holonomic three-term recurrence equation

qn(X)Pa2(X) + 72 (X)Pas1 (x) + 5, (X)pu(x) = 0 (ga(x),7(x), 5, (x) € Q[n,x]).

2. Shift: Shift by max{n € Ny | n is zero of either g, (x) or s,(x)} + 1 if nec-
essary.
3. Rewriting: Rewrite the recurrence equation in the form

Doy1 (X)) = t,(0)pa(x) + u, (0)pu1 (%) (2,(x), u,(x) € Q(n,x)).

If either ¢,(x) is not a polynomial of degree one in x or u,(x) is not constant
with respect to x, return “no orthogonal polynomial solution
exists”; exit.

4. Linear transformation: Rewrite the recurrence equation by the linear trans-
formation x — (x — g)/f with (as yet) unknowns f and g.

5. Standardization: Given now 4,, B, and C, by

pn+1(x) = (A,,X +Bn) ,,()C) - Cnpn—l(x) (An;an Cn € @(n)vAn 7£ 0)7
define
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—:=4,=— (v,,w, € Q[n))
according to (8).

6. Make monic: Set

~ B C
B, =-" d C, -
1 € Q(n) an = TA

€ Q(n)

and bring these rational functions in lowest terms. If the degree of either the
numerator or the denominator of B, is larger than 2, if the degree of the
numerator of C, is larger than 6, or if the degree of the denominator of C, is
larger than 4, then return “no classical discrete orthogonal
polynomial solution exists”; exit.
7. Polynomial identities: Set
ky

B, =B
kn-H !

according to (11), and

knfl

kn+1

Cy=7—C,
according to (12), in terms of the unknowns a,b,c,d, e, f and g. Multiply
these identities by their common denominators, and bring them therefore in
polynomial form.

8. Equating coefficients: Equate the coefficients of the powers of n in the two
resulting equations. This results in a nonlinear system in the unknowns
a,b,c,d,e, f and g. Solve this system by Grobner bases methods. If the sys-
tem has no solution, then return “no classical discrete orthogo-
nal polynomial solution exists”; exit.

9. Output: Return the classical orthogonal polynomial solutions of the differ-
ence equations (5) given by the solution vectors (a,b,c,d, e, f,g) of the last
step, according to the classification given in Table 2, together with the infor-
mation about the standardization given by (8). This information includes the
necessary linear transformation y = fx + g, as well as the discrete weight
function p(x) given by

plrt1) _ o) +1(x)
o) ol 1)

(see e.g. [18)]).

Proof. The proof is an obvious modification of Algorithm 1. The only differ-
ence is that we have to take a possible linear transformation fx + g into con-
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sideration since the difference equation (5) is not invariant under those trans-
formations. This leads to step 4 of the algorithm. O

Note that an application of Algorithm 2 to the recurrence equation
Doi2(x) = (x —=n—1)p,;1(x) =0 which is valid for the falling factorial
Pa(x) = X2, generates the difference equation xAVp,(x) — xAp,(x) + np,(x) =0
of Table 2(2a).

Example 3. We consider again the recurrence equation (31)

P2 (%) = (¥ =1 = D)pusr(x) +e(n + 1)py(x) = 0

depending on the parameter o € R. This time, we are interested in classical
discrete orthogonal polynomial solutions.

According to step 4 of Algorithm 2, we rewrite (31) using the linear trans-
formation x — (x — g)/f with as yet unknowns f and g. Step 5 yields the
standardization

kn+1 1

ke S
In step 8, we solve the resulting nonlinear system for the variables
{a,b,c,d,e, f,g, 0}, resulting in

{a—O,b—b,c— _w7d:d7e:e’
d
d+2b e b(d+b)
:——7 :—_,OC: . 32
/ a7 4 (d+2b)2} 32

This is a rational representation of the solution. However, since we assume o to
be arbitrary, we solve the last equation for . This yields

d 1
b=—=(1+— |,
2( \/149()

which cannot be represented without radicals. Substituting this into (32) yields
the solution

{ 0b d(l:t 1 ) 4oce—e—2fxdie 1
a = s = — — ’C: — ;
2 V1= 4g 2(1—4a) 21— 4da

f=7 —1 = e}

1 4“ag d ’
d and e being arbitrary. It turns out that for o < 1/4 this corresponds to
Meixner or Krawtchouk polynomials.
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With Koornwinder—Swarttouw’s rec2ortho, this result can be also ob-
tained. Moreover, rec2ortho determines that for « > 1/4 one gets Meixner—
Pollaczek polynomials. These polynomials are not accessible by our approach.

Example 4. Here we want to discuss the possibility that a given recurrence
equation might have several classical discrete orthogonal solutions. Whereas
the recurrence equation of the Hahn polynomials 4*# (x, N) has (besides sev-
eral linear transformations) only this single classical discrete orthogonal so-
lution, the case ff = —a results in two essentially different solutions.

Here one has the recurrence equation

(n+2+oc)(2+n)(2n+2)(n—N+l)p,,+2(x)+(3+2n)(—6noc—2n20c
— 4n’x — 12nx + 2n*N + 6nN + 4N — 4o — 8x>p,,+1(x)
—(1+n)n+1—-0)2n+4)(n+N+2)p,(x) =0.

An application of Algorithm 2 shows that this recurrence equation corresponds
to the two different difference equations

x(—x+1—0a+ N)AVp,(x) + (—=2x + N + aN)Ap,(x) + n(n — 3)p,(x) =0
and
(x+a)(—x+1+N)AVp,(x) — (2x — N 4 2004 oaN)Ap,(x)
+n(n — 3)p,(x) = 0.
Using our implementation, these results are obtained by
> strict: =true:
>RE:=(n+2+alpha)*x(2+n)*x(2*xn+2)x(n—N+1)*p(n+2)+
(3+2x%n)x
> (—6+n*xalpha —2xn"2xalpha —4+«n"2xx—2%n+x+2xn"2x%
N+6xn«N+4+«N—4xalpha—8+x)*xp(n+1)
>—(14n)*x(n+1—alpha)*x(2xn+4)*x(n+N+2)*xp(n)=0;
RE:=(n+2+a)(n+2)2n+2)(n—N+ 1)p(n+2) + (3 +2n)
x (—6no — 20m* — 4n’x — 12nx + 2n*N + 6nN + 4N — 4o — 8x)p(n + 1)
—(m+1)n+1—-a)2n+4)(n+N+2)p(n) =0

> REtodiscreteDE(RE, p(n), x);

Warning: parameters have the values,

{b=—-a+aa— Na,e =20aa — Na+ aaN,c = —oaN — aa,a = a,d = 2a}
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Warning: parameters have the values,
{b=—-a+aa—Na,c=0,e =—Na—o0aN,a =a,d = 2a}

Warning: several solutions found
[(x + oc)(x -1- N)A(Nabla(p(n,x),x),x)

+ (2x = N + 20+ aN)A(p(n,x),x) — n(n + 1)p(n,x) =0,
[o(x) = (x +a)(x =1 = N),0(x) +2(x) = (x + Dx + o = N)],
p(x) = Hyperterm([1, =N + o, 1], [1 4+ o, —=N], 1, x)],

[x(x — 1 — N + a)A(Nabla(p(n,x),x),x)

+ (2x = N — aN)A(p(n,x),x) —n(n + 1)p(n,x) = 0,

[o(x) =x(x—1=N+a),6(x)+1(x) = (x+1+a)(x—N)|,
p(x) = Hyperterm([1 + o, —=N], [-N + o], 1,x)],

kit 2+ 1

ki,  “(n+1+a)(n—N)

Note that Hyperterm(upper, lower, z,x) denotes the hypergeometric
term (=summand) of the hypergeometric function hypergeom(up-
per, lower, z) with summation variable x, see [§].

Hahn polynomials are not accessible with Koornwinder—Swarttouw’s
rec2ortho.

5. Classical g-orthogonal polynomials

In this section, we consider the same problem for classical g-orthogonal
polynomials ([6,11], see e.g. [7]). The classical g-orthogonal polynomials are
given by a g-difference equation (6).

These polynomials can be classified similarly as in the continuous and dis-
crete cases according to the functions o(x) and t(x); up to linear transforma-
tions the classical g-orthogonal polynomials are classified according to Table 3.

For the sake of completeness we have included all families from [7], Chapter
3, although they overlap in several instances. The non-orthogonal polynomial
solutions are the powers x” and the ¢g-Pochhammer functions

(x;9), = (1 =x)(1 —xq) -~ (1 = xq"™").
The classical g-orthogonal polynomials satisfy a recurrence equation (1)
Por1(X) = (Ax + B,)pa(x) — Copp-1(x)
with 4,, B, and C, given by Theorem 1.
Similarly as in the continuous and discrete cases, this information can be

used to generate an algorithm to test whether or not a given holonomic re-
currence equation has classical g-orthogonal polynomial solutions.



Table 3

Normal forms of g-polynomials

a(x) 7(x) () family
1 0 X X"
2 0 I—x (x:9),
3 1 1—x R, (x;q) Discrete g-Hermite II polynomials
4 1 % 7@ (x; q) Al-Salam-Carlitz IT polynomials
alqg —
5 x % C,(x;a;9) ¢-Charlier polynomials
alq —
o+l 1
6 x —q*x + 1 I LY (x; q) g-Laguerre polynomials
q—
—1
7 X kit 7 Sa(x;9) Stieltjes-Wigert polynomials
q—
8 x —bq )%cl-&)-qbc M, (x;b,¢;9) g-Meixner polynomials
clg—
x—14aq . .
9 x(x—1) 1 pa(x;alq) Little ¢g-Laguerre polynomials
q—
x+agx—1 . . .
10 x(x—1) ? K, (x;a;q) alternative ¢-Charlier polynomials
1 — aq — x + xabq® . . .
11 x(x—1) I E— pa(x;a,b|q) Little g-Jacobi polynomials
q—
12 x=Dx+1) - ﬁ ha(x;9) discrete g-Hermite I polynomials
a+1—x . .
13 (x—1D(x—a) — 1 U9 (x;q) Al-Salam-Carlitz I polynomials
q—
bq — abg® — . .
14 (x — aq)(x — bq) w P,(x;a,b;q) Big g-Laguerre polynomials
q-
N+2 —1 N+1, 1 — N
15 (g¥x — 1) (x — agq) ¢ "ol —1) +57 1(1 wq 1= xq O.(x;0, B, N |q) g-Hahn polynomials
. _ _ 2
16 (x —aq)(x — bq) gla+c—abq aclq) X+ abgx P.(x;a,b,¢;q) Big g-Jacobi polynomials
q—

LZ6-€0€ (200Z) §TI ndwio) yivpy jddy | nosiouyds q fdaoy M
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Algorithm 3. This algorithm decides whether a given holonomic three-term
recurrence equation has classical g-orthogonal polynomial solutions, and re-
turns their data if applicable.

1. Input: A holonomic three-term recurrence equation

Gn(X)Pus2(X) + 7 (X) st (x) + 84 (x)pa(x) = 0
(qn(x),7a(x), 5x(x) € Qlg", g, x]).

2. Shift: Shift by max{n € Ny | n is zero of either g, (x) or s,(x)} + 1 if nec-
essary.
3. Rewriting: Rewrite the recurrence equation in the form

pn+l(x) = tn(x)pn(x) + un(x)pn—l(x) (tn(x)v uﬂ(x) € @(qn7Q7x))'

If either #,(x) is not a polynomial of degree one in x or u,(x) is not constant
with respect to x, return “no g-orthogonal polynomial solution
exists”; exit.

4. Linear transformation: Rewrite the recurrence equation by the linear trans-
formation x — (x — g)/f with (as yet) unknowns f'and g.

5. Standardization: Given now 4,,B, and C, by

Pt (x) = (Apx + B)pa(x) — Copui(x) (44, Bay G, € Q(q",q), 4, # 0),
define

kn+l . _ Uy

k, W,

6. Make monic: Set

~ B,
B, ::A—G@(q”,q) and C

AAMEQ(q .q)

and bring these rational functions in lowest terms. If the degree (w.r.t

N :=¢") of the numerator of B, is larger than 3, the degree of the denom-

inator of B, is larger than 4, the degree of the numerator of C, is larger than

7, or the degree of the denominator of Cn is larger than 8, then return *

classical g-orthogonal polynomial solution exists”; exit.
7. Polynomial identities: Set

kﬂ
kn+1

B, =—"B8,

according to (13), and
kn—l

Cn =
kr1+1

Gy
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according to (14), in terms of the unknowns a,b,c,d, e, f and g. Multiply
these identities by their common denominators, and bring them therefore in
polynomial form.

8. Equating coefficients: Equate the coefficients of the powers of N = ¢" in the
two resulting equations. This results in a nonlinear system in the unknowns
a,b,c,d,e, f and g. Solve this system by Grobner bases methods. If the sys-
tem has no solution, then return “no classical g-orthogonal poly-
nomial solution exists”; exit.

9. Output: Return the g-classical orthogonal polynomial solutions of the g-dif-
ference equations (6) given by the solution vectors (a,b,c,d,e, f,g) of the
last step, according to the classification given in Table 3, together with the
information about the standardization given by (8). This information in-
cludes the necessary linear transformation y = fx + g, as well as the g-dis-
crete weight function p(x) given by

plgx) _ o(x) + (g — Dxt(x)

p(x) a(gx)
Proof. The proof is an obvious modification of Algorithms 1 and 2. O

Example 5. We consider the recurrence equation

Pni2 (x) - xpn+l(x) + Can<qn+l - l)pn(x) =0

depending on the parameter o € R. This time, we are interested in classical ¢-
orthogonal polynomial solutions.

According to step 4 of Algorithm 3, we rewrite (31) using the linear trans-
formation x +— (x — g)/f with as yet unknowns f and g. Step 5 yields the
standardization

kn+1 1

ke f
In step 8, we solve the resulting nonlinear system for the variables
{a,b,c,d,e, f,g, 0}, resulting in the following nontrivial solution

{a=—dg+d,b=0,c= —ocfzd(q—1),d:d,e:0,f:f,g:0,oc:oc}
that corresponds — for f = 1 — to the g-difference equation

(D) + () = 0.

X

(> 4+ 00)DyDy gy (x) — =
Hence for every o € R and every scale factor fthere is a ¢-classical solution that
corresponds to g-Hermite I polynomials, see Table 3, which have real support
for o < 0.



326 W. Koepf, D. Schmersau | Appl. Math. Comput. 128 (2002) 303-327

Using our implementation, these results are obtained by
> RE:=p(n+2)—x*p(n+1)+alphaxq’n*(q"(n+1)—1)*p(n)=0;

RE :=p(n+2) —xp(n+1) + ag"(¢"™" — )p(n) = 0
> REtogDE(RE, p(n), q, x),
Warning: parameters have the values

{e=0,a=—-dg+d,c=—agd +oad,d =d,b =0}

(o +O‘)DQ<Dq<p(n,x),é,x),q,x) _*Da(p(n,x), g,%)

q—1
A1+ gp(nx) _ooplex) o ke
(g —1)q" To(x)  gxr+oal k,

Note that g-polynomials are not accessible with Koornwinder—Swarttouw’s
rec2ortho.

Note: The Maple implementation retode, and a worksheet retode. mws
with the examples of this paper can be obtained from http://www.mathematik.
uni-kassel.de/~koepf/Publikationen.
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