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Abstract. Classical orthogonal polynomials are known to satisfy seven
equivalent properties, namely the Pearson equation for the linear func-
tional, the second-order differential/difference/q-differential/ divided-
difference equation, the orthogonality of the derivatives, the Rodrigues
formula, two types of structure relations, and the Riccati equation for
the formal Stieltjes function. In this work, following previous work by Kil
et al. (J Differ Equ Appl 4:145–162, 1998a; Kyungpook Math J 38:259–
281, 1998b), we state and prove a non-linear characterization result for
classical orthogonal polynomials on non-uniform lattices. Next, we give
explicit relations for some families of these classes.
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1. Introduction

Univariate orthogonal polynomials (or orthogonal polynomials for short) are
systems of polynomials (pn)n with deg(pn) = n, satisfying a certain orthogo-
nality relation. They are very useful in practice in various domains of mathe-
matics, physics, engineering, image processing and so on, because of the many
properties and relations they satisfy. As examples of areas where orthogonal
polynomials play important roles, we could cite approximation theory (see
for example [6,31]) and also numerical analysis (see [14,15]).

It is known that any family of orthogonal polynomials (pn)n≥0 satisfies
a three-term recurrence relation of the form

pn+1(x) = (Anx + Bn)pn(x) − Cnpn−1(x), p−1(x) = 0. (1.1)

If hn = 〈L, p2n〉, where L is the corresponding linear functional with
respect to the sequence (pn)n≥0 and kn is the leading coefficient of pn(x) (see
[17]), then
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An =
kn+1

kn
, Cn =

An

An+1

hn

hn+1
, n ≥ 1

and we set C0 = 1.
The systems of orthogonal polynomials associated with the names of

Hermite, Laguerre, Jacobi and Bessel (including the special cases named after
Tchebychev, Legendre, and Gegenbauer) are the most extensively and widely
applied systems.

An orthogonal polynomial system (pn)n≥0 with respect to a weight func-
tion ρ(x) is called classical if it satisfies one of the equivalent assertions (see
[17]):

• (pn)n≥0 satisfies a second-order linear differential equation of the Sturm–
Liouville type

φ(x)y′′(x) + ψ(x)y′(x) + λny(x) = 0, (1.2)

where φ(x) is a polynomial of degree ≤ 2 and ψ(x) is a polynomial of
exact degree 1, both independent on n and λn is independent on x.

• The derivatives (p′
n+1)n≥0 form an orthogonal polynomial system.

• The pns have the Rodrigues representation

pn(x) =
Dn

ρ(x)
(φn(x)ρ(x))(n) , n ≥ 0. (1.3)

• The weight function ρ(x) satisfies a Pearson-type equation

(φ(x)ρ(x))′ = ψ(x)ρ(x). (1.4)

• The pns satisfy a difference-differential equation (or structure relation)
of the form

π(x)p′
n(x) = (αnx + βn)pn(x) + γnpn−1(x). (1.5)

In his paper [2], Al-Salam has obtained an expression for the derivative
of the product of two consecutive Bessel polynomials and has shown that
this expression does, in fact, characterize the Bessel polynomials. Based on
this paper, McCarthy in [25] proved that there is an analogous characteriza-
tion for very classical orthogonal polynomials (Hermite, Laguerre and Jacobi
polynomials). This characterization can be stated as

• (pn)n≥0 satisfies a non-linear equation of the form:

φ(x)
d
dx

(pn(x)pn−1(x)) = (αnx + βn)pn(x)pn−1(x) + γnp2n(x) + δnp2n−1(x),

(1.6)
where αn, βn, γn and δn are independent on x.

Note that several other characterizations of classical orthogonal poly-
nomials with respect to the derivative operator can be found in [23].

Very close to the very classical orthogonal polynomials (classical or-
thogonal polynomials of a continuous variable) are the classical orthogonal
polynomials of a discrete variable. An orthogonal polynomial system (pn)n≥0

of a discrete variable with respect to a weight function ρ(x) is called classical
if it satisfies one of the equivalent assertions (see [1,8,13]):
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• (pn)n≥0 satisfies a second-order linear difference equation of the Sturm–
Liouville type

φ(x)Δ∇y(x) + ψ(x)Δy(x) + λny(x) = 0, (1.7)

where φ(x) is a polynomial of degree ≤ 2 and ψ(x) is a polynomial of
exact degree 1, both independent on n and λn is independent on x.

• The sequence of difference polynomials (Δpn+1)n≥0 form an orthogonal
polynomial system of discrete variable.

• The pns have the Rodrigues representation

pn(x) =
Dn

ρ(x)
Δn (φn(x)ρ(x)) , n ≥ 0. (1.8)

• The weight function ρ(x) satisfies a Pearson-type equation

Δ[φ(x)ρ(x)] = ψ(x)ρ(x). (1.9)

• The pns satisfy a difference equation (or structure relation) of the form

π(x)∇pn(x) = (αnx + βn)pn(x) + γnpn−1(x), (1.10)

or otherwise stated (see [19])

φ(x)∇pn(x) = α̃npn+1(x) + β̃npn(x) + γ̃npn−1(x). (1.11)

• For each n ≥ 1, pn and pn−1 satisfy a relation of the form (see [21,
Theorem 5.2])

π(x) [pn(x)∇pn−1(x) + pn−1(x)∇pn(x)]
= Unp2n(x) + Vnp2n−1(x) + (Wnx + Yn)pn(x)pn−1(x),

where the coefficients Un, Vn, Wn and Yn are independent on x and π
is a polynomial of degree less or equal to 2.

It should be noted that the operators Δ and ∇ are respectively defined
by

Δf(x) = f(x + 1) − f(x),

∇f(x) = f(x) − f(x − 1).

Close to the classical discrete orthogonal polynomials are classical or-
thogonal polynomials of a q-discrete variable. An orthogonal polynomial sys-
tem (pn)n≥0 of a q-discrete variable with respect to a weight function ρ(x) is
called classical if it satisfies one of the equivalent assertions (see [8,18,19]):

• (pn)n≥0 satisfies a second-order linear q-difference equation of the Sturm–
Liouville type

φ(x)DqD 1
q
y(x) + ψ(x)Dqy(x) + λny(x) = 0, (1.12)

where φ(x) is a polynomial of degree less than or equal to 2 and ψ(x)
is a polynomial of exact degree 1, both independent on n and λn is
independent on x.

• The sequence of q-difference polynomials (Dqpn+1)n≥0 form an orthog-
onal polynomial system of a q-discrete variable.
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• The pns have the Rodrigues representation

pn(x) =
Dn

ρ(x)
Dn

q (φn(x)ρ(x)) , n ≥ 0. (1.13)

• The weight function ρ(x) satisfies a Pearson-type equation

Dq[φ(x)ρ(x)] = ψ(x)ρ(x). (1.14)

• The pns satisfy a q-difference equation (or structure relation) of the form
(see [19])

φ(x)D 1
q
pn(x) = α̃npn+1(x) + β̃npn(x) + γ̃npn−1(x). (1.15)

• For each n ≥ 1, pn and pn−1 satisfy a relation of the form (see [22,
Theorem 3.5])

π̃(x)
[
pn(x)D 1

q
pn−1(x) + pn−1(x)D 1

q
pn(x)

]

= Ũnp2n(x) + Ṽnp2n−1(x) + (W̃nx + Ỹn)pn(x)pn−1(x),

where the coefficients Ũn, Ṽn, W̃n and Ỹn are independent on x and π̃
is a polynomial of degree less than or equal to 2.

It should be noted that the q-derivative Dq is defined as

Dqf(x) =

⎧
⎨
⎩

f(x) − f(qx)
(1 − q)x

if q �= 1 and x �= 0

f ′(0) if x = 0
.

The difference operator Δ and the q-derivative Dq are both special cases
of the Hahn’s operator Dq,ω (see [7]) which is defined as

Dq,ωf(x) =
f(qx + ω) − f(x)

(qx + ω) − x
.

More precisely, Dq = Dq,0 and Δ = D1,1.
In this paper, we prove equivalent non-linear characterization results

similar to (1.6) for classical orthogonal polynomials on non-uniform lat-
tices (including Wilson and Askey–Wilson polynomials). Also, we prove such
a non-linear characterization for Meixner–Pollaczek and Continuous Hahn
polynomials. Indeed, we give explicitly the coefficients of these relations for
some families of classical orthogonal polynomials on non-uniform lattices.

2. Preliminaries

This section contains some preliminary definitions and results that are useful
for a better reading of this article. The q-hypergeometric series, a fractional
q-derivative and fractional q-integral are defined. The reader will consult the
reference [18] for more informations about these concepts.
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2.1. The Hypergeometric Series

In what follows, the symbol (a)n denotes the so-called Pochhammer symbol
and is defined by

(a)m =
{

1 if m = 0
a(a + 1) · · · (a + m − 1) if m = 1, 2, . . .

and the hypergeometric series is defined as

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ x

)
=

∞∑
n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

xn

n!
.

2.2. The q-Hypergeometric Series

The basic hypergeometric or q-hypergeometric series rφs is defined by the
series

rφs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣ q; z
)

:=
∞∑

n=0

(a1, . . . , ar; q)n

(b1, . . . , bs; q)n

(
(−1)nq(

k
2)

)1+s−r zn

(q; q)n
,

where

(a1, . . . , ar; q)n := (a1; q)n · · · (ar; q)n,

with

(ai; q)n =

⎧
⎨
⎩

n−1∏
j=0

(1 − aiq
j) if n = 1, 2, 3, . . .

1 if n = 0
.

For n = ∞, we set

(a; q)∞ =
∞∏

n=0

(1 − aqn), |q| < 1.

The notation (a; q)n is the so-called q-Pochhammer symbol.

2.3. Difference and Divided-Difference Operators

2.3.1. The Operators D and S. We define the difference operator D (see
[26,28]) and its companion operator S as follows:

Df(x) = f

(
x +

i

2

)
− f

(
x − i

2

)
, Sf(x) =

f
(
x + i

2

)
+ f

(
x − i

2

)
2

,

with i2 = −1.
The operator D transforms a polynomial of degree n (n ≥ 1) in x into

a polynomial of degree n − 1 in x and a polynomial of degree 0 into the zero
polynomial. The operator S transforms a polynomial of degree n in x into a
polynomial of degree n in x.

The operators D and S fulfill the following properties.
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Proposition 2.1. (See [26,30]) The operators D and S satisfy the following
product rules

D(fg) = DfSg + SfDg, (2.1)

S(fg) =
1
4
DfDg + SfSg, (2.2)

DS = SD, (2.3)

S2 =
1
4
D2 + I, (2.4)

where If = f .

2.3.2. The Operators D and S. We define the difference operator D (see [27])
and its companion operator S as follows:

Df(x2) =
f

(
(x + i

2 )2
) − f

(
(x − i

2 )2
)

2ix
, Sf(x2) =

f
(
(x + i

2 )2
)

+ f
(
(x − i

2 )2
)

2
,

with i2 = −1. The operator D transforms a polynomial of degree n (n ≥ 1)
in x2 into a polynomial of degree n − 1 in x2 and a polynomial of degree 0
into the zero polynomial. The operator S transforms a polynomial of degree
n in x2 into a polynomial of degree n in x2.

The operators D and S fulfill the following properties.

Proposition 2.2. (See [27]) The operators D and S satisfy the following prod-
uct rules

D(fg) = DfSg + SfDg, (2.5)
S(fg) = −x2DfDg + SfSg, (2.6)

DS = SD − 1
2
D2, (2.7)

S2 = −x2D2 − 1
2
SD + I, (2.8)

where If = f .

2.3.3. The Operators Dx and Sx . We define the operator Dx (called divided-
difference operator) and its companion operator Sx (called mean operator)
as [5,9,11,29]

Dx f(x(s)) =
f(x(s + 1

2 )) − f(x(s − 1
2 ))

x(s + 1
2 ) − x(s − 1

2 )
,

Sx f(x(s)) =
f(x(s + 1

2 )) + f(x(s − 1
2 ))

2
,

where x(s) is a non-uniform lattice (see [9]). The operator Dx transforms a
polynomial of degree n (n ≥ 1) in x(s) into a polynomial of degree n − 1 in
x(s) and a polynomial of degree 0 into the zero polynomial. The operator Sx

transforms a polynomial of degree n in x(s) into a polynomial of degree n in
x(s).
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The operators Dx and Sx satisfy the product rules

Dx (f(x(s))g(x(s))) = Sxf(x(s))Dxg(x(s)) + Dxf(x(s))Sxg(x(s)), (2.9)
Sx (f(x(s))g(x(s))) = U2(x(s))Dxf(x(s))Dxg(x(s)) + Sxf(x(s))Sxg(x(s)),

(2.10)
DxSxf = α SxDxf + U1 D

2
xf, (2.11)

S
2
xf = U1Sx Dxf + αU2 D

2
xf + f, (2.12)

where U2 is a polynomial of degree 2

U2(x(s)) = (α2 − 1)x2(s) + 2β (α + 1)x(s) + δx, (2.13)

and δx is a constant depending on α, β and the initial values x(0) and x(1)
of x(s):

δx =
x2(0) + x2(1)

4α2
− (2α2 − 1)

2α2
x(0) x(1) − β (α + 1)

α2
(x(0) + x(1)) +

β2 (α + 1)2

α2
,

and

U1(s) := U1(x(s)) = (α2 − 1)x(s) + β (α + 1), U2(s) := U2(x(s)). (2.14)

Note that

DxFn(x(s)) = γnFn−1(x(s)),

SxFn(x(s)) = αnFn(x(s)) +
γn

2
∇xn+1(ε)Fn−1(x(s)),

where Fn(x(s)) is a function defined in [24]. More properties of the non-
uniform lattices x(s), the properties of the divided-difference operator Dx and
its companion Sx can be found in [10–12,16,24] : x(s) satisfies the conditions

x(s + k) − x(s) = γk∇xk+1(s), (2.15)
x(s + k) − x(s)

2
= αkxk(s) + βk, (2.16)

for k = 0, 1, . . ., with

α0 = 1, α1 = α, β0 = 0, β1 = β, γ0 = 0, γ1 = 1,

and the sequences (αk), (βk), (γk) satisfy the following relations

αk+1 − 2ααk + αk−1 = 0,

βk+1 − 2βk + βk−1 = 2βαk,

γk+1 − γk−1 = 2αk,

for k = 0, 1, . . ..
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3. Non-linear Characterization for Meixner–Pollaczek and
Continuous Hahn Polynomials

The Meixner–Pollaczek polynomials P
(λ)
n (x;ϕ) and the Continuous Hahn

polynomials pn(x; a, b, c, d), respectively, have the hypergeometric represen-
tation (see [18]):

P (λ)
n (x;ϕ) =

(2λ)n

n!
einϕ

2F1

( −n, λ + ix
2λ

∣∣∣∣ 1 − e−2iϕ

)
, (3.1)

pn(x; a, b, c, d)
(a + d)n(a + c)n

=
in

n! 3
F2

( −n, n + a + b + c + d − 1, a + ix
a + c, a + d

∣∣∣∣ 1
)

.

(3.2)

They are known to satisfy the second-order difference equation (see [30])

φ(x)D2y(x) + ψ(x)SDy(x) + λny(x) = 0, (3.3)

where φ and ψ are polynomials of degree 2 and 1, respectively, and λ is a con-
stant depending on the degree of the polynomial solution and the parameters
involved in the polynomials.

Note that for the Meixner–Pollaczek polynomials, we have (see [30])

φ(x) = i(λ sin ϕ − x cos ϕ), (3.4)
ψ(x) = 2(λ cos ϕ + x sin ϕ), (3.5)

and

λn = −2in sin ϕ,

and for the Continuous Hahn polynomials we have (see [30])

φ(x) = −x2 +
i

2
(a + b − c − d) x +

1
2
(ab + cd),

ψ(x) = −i (a + b + c + d) x + cd − ab,

and

λ = λn = −n(n + a + b + c + d − 1).

Theorem 3.1. (Non-linear characterization) Let (Pn)n≥0 be a sequence of
classical orthogonal polynomials on non-uniform lattice. Then, for n ≥ 1,
Pn(x) and Pn−1(x) satisfy

φ(x)
[
Pn(x)SDPn−1(x) + Pn−1(x)SDPn(x)

]

+ψ(x)
[
Pn(x)S2Pn−1(x) + Pn−1(x)S2Pn(x)

]

=

[
(ψ1 + 2iφ2)x + ψ0 + ψ1

(
Bn

2An
− Bn−1

2An−1

)

+iφ2

(
n

Bn

An
− (n − 2)

Bn−1

An−1

)]
Pn(x)Pn−1(x)

+
1

An−1
(ψ1 + (2n − 3)iφ2)P

2
n(x) − Cn

An
(ψ1 + (2n − 1)iφ2)P

2
n−1(x). (3.6)
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Furthermore, if (Qn)n∈N is a sequence of polynomials such that Q0(x) =
P0(x) and, for n ≥ 1, Qn(x) and Qn−1(x) satisfy (3.6). Then Qn(x) = Pn(x),
for all n ≥ 0.

Proof. Using the fact that the sequence (Pn)n≥0 is a classical orthogonal
polynomial sequence, for all non-negative integer n, Pn+1(x) satisfies (3.3),
namely:

φ(x)D2Pn+1(x) + ψ(x)SDPn+1(x) + λn+1Pn+1(x) = 0, (3.7)

with

φ(x) = φ2x
2 + φ1x + φ0; ψ(x) = ψ1x + ψ0; λn = n(n − 1)φ2 − inψ1.

In (1.1), using the relations (2.1), (2.2), (2.3) and (2.4), we obtain:

D2Pn+1(x) = 2iAnSDPn(x) + (Anx + Bn)D2Pn(x) − CnD2Pn−1(x) (3.8)

and

SDPn+1(x) = 2iAnS2Pn(x)− iAnPn(x)+ (Anx+Bn)SDPn(x)−CnSDPn−1(x).
(3.9)

Using (1.1), (3.8) and (3.9) to replace D2Pn+1(x), SDPn+1(x) and Pn+1(x)
in (3.7), we obtain:

φ(x)SDPn(x) + ψ(x)S2Pn(x) = − Cn

2iAn
(λn−1 − λn+1)Pn−1(x)

+
[
1
2
ψ(x) +

(
1
2i

x +
Bn

2iAn

)
(λn − λn+1)

]
Pn(x). (3.10)

For n ≥ 2, we replace n by n − 1 in (3.10) and obtain:

φ(x)SDPn−1(x) + ψ(x)S2Pn−1(x)

= − Cn−1

2iAn−1
(λn−2 − λn)Pn−2(x)

+
[
1
2
ψ(x) +

(
1
2i

x +
Bn−1

2iAn−1

)
(λn−1 − λn)

]
Pn−1(x). (3.11)

We replace again n by n − 1 in (1.1) and use the resulting relation to
replace Pn−2(x) in (3.11) to obtain:

φ(x)SDPn−1(x) + ψ(x)S2Pn−1(x)

= − 1
2iAn−1

(λn−2 − λn)Pn(x)

+
[
1
2
ψ(x) +

(
1
2i

x +
Bn−1

2iAn−1

)
(λn−1 − λn−2)

]
Pn−1(x). (3.12)
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If we multiply (3.10) by Pn−1(x), (3.12) by Pn(x) and add the resulting
expression, we get:

φ(x) [Pn(x)SDPn−1(x) + Pn−1(x)SDPn(x)]

+ ψ(x)
[
Pn(x)S2Pn−1(x) + Pn−1(x)S2Pn(x)

]

=

[
(ψ1 + 2iφ2)x + ψ0 + ψ1

(
Bn

2An
− Bn−1

2An−1

)

+iφ2

(
n

Bn

An
− (n − 2)

Bn−1

An−1

)]
Pn(x)Pn−1(x)

+
1

An−1
(ψ1 + (2n − 3)iφ2)P

2
n(x) − Cn

An
(ψ1 + (2n − 1)iφ2)P

2
n−1(x).

This proves the first part of Theorem 3.1.
Now, we prove the second part.
Let (Qn)n∈N be a sequence of polynomials of a quadratic variable such

that Q0(x) = P0(x) and, for n ≥ 1, Qn(x) and Qn−1(x) satisfy

φ(x) [Qn(x)SDQn−1(x) + Qn−1(x)SDQn(x)]

+ψ(x)
[
Qn(x)S2Qn−1(x) + Qn−1(x)S2Qn(x)

]

=

[
(ψ1 + 2iφ2)x + ψ0 + ψ1

(
Bn

2An
− Bn−1

2An−1

)
+ iφ2

(
n

Bn

An
− (2 − n)

Bn−1

An−1

)]

Qn(x)Qn−1(x)

+
1

An−1
(ψ1 + (2n − 3)iφ2)Q

2
n(x) − Cn

An
(ψ1 + (2n − 1)iφ2)Q

2
n−1(x). (3.13)

Let bn be the leading coefficient of Qn(x). We shall firstly show by
induction that kn = bn for all n ≥ 0. We have b0 = k0 and we assume that
n ≥ 1 and bn−1 = kn−1. If we compare the coefficients of x2n in (3.13), we
find that we must consider two cases according as the degree of φ is less than
two or equal to two.

• If the degree of φ is less than two then we have

2ψ1bnkn−1 = ψ1bnkn−1 +
ψ1

An−1
(bn)2

and bn �= 0 implies that for the quadratic or q-quadratic variable, we
have bn = An−1kn−1 = kn.

• If the degree of φ is equal to two, then we have

φ2 ((n − 1)ibnkn−1 + nibnkn−1) + 2ψ1bnkn−1

= (ψ1 + 2iφ2)bnkn−1 +
1

An−1
(ψ1 + (2n − 3)iφ2) b2n,

and the regularity of the corresponding linear functional with respect
to the sequence (Qn)n≥0 implies that ψ1 + (2n − 3)iφ2 �= 0 and bn �= 0
we have bn = An−1kn−1 = kn.

We have by assumption Q0(x) = P0(x). Assume further that n ≥ 1 and
Qn−1(x) = Pn−1(x) but Qn(x) �= Pn(x).
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Then Qn(x) = Pn(x) + g(x) where g(x) = c(xr + · · · ), c �= 0. Since
Qn(x) and Pn(x) have the same degree and the same leading coefficient, we
must have r < n. From (3.13), we get

φ(x) [(Pn(x) + g(x))SDPn−1(x) + Pn−1(x)SD(Pn(x) + g(x))]

+ ψ(x)
[
(Pn(x) + g(x))S2Pn−1(x) + Pn−1(x)S2(Pn(x) + g(x))

]

=
[
(ψ1 + 2iφ2)x + ψ0 + ψ1

(
Bn

2An
− Bn−1

2An−1

)

+iφ2

(
n

Bn

An
− (2 − n)

Bn−1

An−1

)]
(Pn(x) + g(x))Pn−1(x)

+
1

An−1
(ψ1 + (2n − 3)iφ2)(Pn(x) + g(x))2

− Cn

An
(ψ1 + (2n − 1)iφ2)P 2

n−1(x).

Using the fact that Pn(x) and Pn−1(x) satisfy (3.6) we obtain

φ(x) [g(x)SDPn−1(x) + Pn−1(x)SDg(x)]

+ψ(x)
[
g(x)S2Pn−1(x) + Pn−1(x)S2g(x)

]

=

[
(ψ1 + 2iφ2)x + ψ0 + ψ1

(
Bn

2An
− Bn−1

2An−1

)

+iφ2

(
n

Bn

An
− (2 − n)

Bn−1

An−1

)]
g(x)Pn−1(x)

+
1

An−1
(ψ1 + (2n − 3)iφ2)(2Pn(x)g(x) + g(x)2). (3.14)

We compare the coefficients of xn+r in (3.14). Let us consider two cases:
1. If the degree of φ is less than two, then we get

2ψ1cbn−1 = ψ1cbn−1 + 2
bn

An−1
cψ1

which is equivalent to

2ψ1cbn−1 = ψ1cbn−1 + 2cψ1bn−1.

Then, the fact that ψ1bn−1 �= 0 implies that this is impossible if c �= 0.
2. If the degree of φ is equal to two, then we get

φ2 (ci(n − 1)bn−1 + ricbn−1) + 2cψ1bn−1

= (ψ1 + 2iφ2)cbn−1 +
2

An−1
(ψ1 + (2n − 3)iφ2) cbn,

which is equivalent to

φ2 (ci(n − 1)bn−1 + ricbn−1) + 2cψ1bn−1

= (ψ1 + 2iφ2)cbn−1 + 2 (ψ1 + (2n − 3)iφ2) cbn−1.

The regularity of the corresponding linear functional with respect to the
sequence (Pn) implies that ψ1 + (3n − 3 − r)iφ2 �= 0 and the previous
equation is impossible if c �= 0.
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The proof is therefore completed. �

The following corollaries give explicit coefficients for the non-linear char-
acterization of the Meixner–Pollaczek and the Continuous Dual Hahn poly-
nomials.

Corollary 3.2. The Meixner–Pollaczek polynomials are characterized by the
following non-linear difference equation

i(λ sin ϕ − x cos ϕ) [Pn(x)SDPn−1(x) + Pn−1(x)SDPn(x)]

+ 2(λ cos ϕ + x sinϕ)
[
Pn(x)S2Pn−1(x) + Pn−1(x)S2Pn(x)

]

= [2 sin ϕx + 3λ cos ϕ] Pn(x)Pn−1(x) + nP 2
n(x) − (n + 2λ − 1)P 2

n−1(x).

Corollary 3.3. The Continuous Hahn polynomials are characterized by the
following non-linear difference equation
(

−x2 +
i

2
(a + b − c − d)x +

1

2
(ab + cd)

)
[Pn(x)SDPn−1(x) + Pn−1(x)SDPn(x)]

+ (−i(a + b + c + d + 2)x + cd − ab)
[
Pn(x)S2Pn−1(x) + Pn−1(x)S2Pn(x)

]

= −n(b + c + n − 1)(b + d + n − 1)

2n + a + b + c + d − 2
P 2

n−1(x)

+ (−i(a + b + c + d + 2)x + Dn) Pn(x)Pn−1(x)

+
(n − 2 + a + b + c + d)(n − 1 + a + c)(n − 1 + a + d)

2n + a + b + c + d − 2
P 2

n(x),

where Dn depends on n, a, b, c and d.

4. Non-linear Characterization for Wilson and Continuous
Dual Hahn Polynomials

The Wilson polynomials Wn(x2; a, b, c, d) and Continuous Dual Hahn poly-
nomials Sn(x2; a, b, c), respectively, have the hypergeometric representation
(see [18]):

Wn(x2; a, b, c, d)

(a + b, a + c, a + d)n
= 4F3

( −n, n + a + b + c + d − 1, a + ix, a − ix
a + b, a + c, a + d

∣∣∣∣ 1
)

,

(4.1)
Sn(x2; a, b, c)

(a + b, a + c)n
= 3F2

( −n, a − ix, a + ix
a + b, a + c

∣∣∣∣ 1
)

. (4.2)

They are known to satisfy the second-order divided-difference equation
(see [27])

φ(x2)D2y(x2) + ψ(x2)SDy(x2) + λny(x2) = 0, (4.3)

and these two families satisfy the three-term recurrence relation

Pn+1(x2) = (Anx2 + Bn)Pn(x2) − CnPn−1(x2), P−1(x2) = 0. (4.4)
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Theorem 4.1. (Non-linear characterization) Let (Pn)n∈N be a sequence of
classical orthogonal polynomials on a non-uniform lattice. Then, for n ≥ 1,
Pn(x2) and Pn−1(x2) satisfy

φ(x2)
[
Pn(x2)DSPn−1(x

2) + Pn−1(x
2)DSPn(x2)

]

+ψ(x2)
[
Pn(x2)S2Pn−1(x

2) + Pn−1(x
2)S2Pn(x2)

]

=

[
(ψ1 + 2φ2)x

2 + ψ0 + ψ1

(
Bn

An
− Bn−1

An−1

)
+ φ2

(
n

Bn

An
+ (2 − n)

Bn−1

An−1

)]

×Pn(x2)Pn−1(x
2) +

1

An−1
(ψ1 + (2n − 3)φ2)P

2
n(x2)

−Cn

An
(ψ1 + (2n − 1)φ2)P

2
n−1(x

2). (4.5)

Furthermore, if (Qn(x2))n∈N is a sequence of polynomials such that
Q0(x2) = P0(x2) and, for n ≥ 1, Qn(x) and Qn−1(x) satisfy (4.5). Then
Qn(x2) = Pn(x2), for all n ≥ 0.

Proof. For all integers n, Pn+1(x2) satisfies (4.3), namely:

φ(x2)D2Pn+1(x2) + ψ(x2)SDPn+1(x2) + λn+1Pn+1(x2) = 0, (4.6)

with

φ(x2) = φ2x
4 + φ1x

2 + φ0; ψ(x2) = ψ1x
2 + ψ0; λn = −n(n − 1)φ2 − nψ1.

From (4.4), using the relations (2.5), (2.6), (2.7) and (2.8), we obtain:

D2Pn+1(x2) = 2AnDSPn(x2) + (Anx2 + Bn)D2Pn(x2) − CnD2Pn−1(x2)
(4.7)

and

SDPn+1(x
2) = 2AnS

2Pn(x2)−AnPn(x2)+(Anx2+Bn)SDPn(x2)−CnSDPn−1(x
2).

(4.8)

We use (4.4), (4.7) and (4.8) to replace D2Pn+1(x2), SDPn+1(x2) and
Pn+1(x2) in (4.6); we obtain:

φ(x2)DSPn(x2) + ψ(x2)S2Pn(x2)

= − Cn

2An
(λn−1 − λn+1)Pn−1(x2)

+
[
1
2
ψ(x2) +

(
1
2
x2 +

Bn

2An

)
(λn − λn+1)

]
Pn(x2). (4.9)

For n ≥ 2, we replace n by n − 1 in (4.9) and we obtain:

φ(x2)DSPn−1(x2) + ψ(x2)S2Pn−1(x2)

= − Cn−1

2An−1
(λn−2 − λn)Pn−2(x2)

+
[
1
2
ψ(x2) +

(
1
2
x2 +

Bn−1

2An−1

)
(λn−1 − λn)

]
Pn−1(x2). (4.10)
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We replace again n by n − 1 in (4.4) and we use the resulting relation
to replace Pn−2(x2) in (4.10) to obtain:

φ(x2)DSPn−1(x2) + ψ(x2)S2Pn−1(x2)

=
1

2An−1
(λn−2 − λn)Pn(x2)

+
[
1
2
ψ(x2) +

(
1
2
x2 +

Bn−1

2An−1

)
(λn−1 − λn−2)

]
Pn−1(x2). (4.11)

If we multiply (4.9) by Pn−1(x2), (4.11) by Pn(x2) and add the resulting
expressions, we obtain:

φ(x2)
[
Pn(x2)DSPn−1(x

2) + Pn−1(x
2)DSPn(x2)

]

+ ψ(x2)
[
Pn(x2)S2Pn−1(x

2) + Pn−1(x
2)S2Pn(x2)

]

=

[
(ψ1 + 2φ2)x

2 + ψ0 + ψ1

(
Bn

An
− Bn−1

An−1

)
+ φ2

(
n

Bn

An
+ (2 − n)

Bn−1

An−1

)]

× Pn(x2)Pn−1(x
2) +

1

An−1
(ψ1 + (2n − 3)φ2)P

2
n(x2)

− Cn

An
(ψ1 + (2n − 1)φ2)P

2
n−1(x

2).

This proves the first part of Theorem 4.1.
Now, we prove the second part.
Let (Qn)n∈N be a sequence of polynomials of a quadratic variable such

that Q0(x2) = P0(x2) and, for n ≥ 1, Qn(x2) and Qn−1(x2) satisfy (4.5).
Let bn be the leading coefficient of Qn(x2). We shall first show by induction
that kn = bn for all n ≥ 0. We have b0 = k0 and we assume that n ≥ 1 and
bn−1 = kn−1. If we compare the coefficients of x4n in (4.5), we find that we
must consider two cases whether the degree of φ is less than two or equal to
two.

• If the degree of φ is less than two then, we have

2ψ1bnkn−1 = ψ1bnkn−1 +
ψ1

An−1
(bn)2

and bn �= 0 implies that for the quadratic or q-quadratic variable, we
have bn = An−1kn−1 = kn.

• If the degree of φ is equal to two then, we have

φ2 ((n − 1)bnkn−1 + nbnkn−1) + 2ψ1bnkn−1

= (ψ1 + 2φ2)bnkn−1 +
1

An−1
(ψ1 + (2n − 3)φ2) b2n,

and the regularity of the corresponding linear functional with respect
to the sequence (Qn)n≥0 implies that ψ1 + (2n − 3)φ2 �= 0 and bn �= 0
we have bn = An−1kn−1 = kn.

We have by assumption Q0(x2) = P0(x2). Assume further that n ≥ 1
and Qn−1(x2) = Pn−1(x2) but Qn(x2) �= Pn(x2).



MJOM On Non-linear Characterizations of Classical Page 15 of 32 10

Then Qn(x2) = Pn(x2)+ g(x2) where g(x2) = c(x2r + · · · ), c �= 0. Since
Qn(x2) and Pn(x2) have the same degree and the same leading coefficient,
we must have r < n. From (4.5), we get

φ(x2)
[
(Pn(x2) + g(x2))DSPn−1(x2) + Pn−1(x2)DS(Pn(x2) + g(x2))

]

+ ψ(x2)
[
(Pn(x2) + g(x2))S2Pn−1(x2) + Pn−1(x2)S2(Pn(x2) + g(x2))

]

=
[
(ψ1 + 2φ2)x2 + ψ0 + ψ1

(
Bn

An
− Bn−1

An−1

)

+φ2

(
n

Bn

An
+ (2 − n)

Bn−1

An−1

)]
(Pn(x2) + g(x2))Pn−1(x2)

+
1

An−1
(ψ1 + (2n − 3)φ2)(Pn(x2) + g(x2))2

− Cn

An
(ψ1 + (2n − 1)φ2)P 2

n−1(x
2).

Using the fact that Pn(x) and Pn−1(x) satisfy (4.5), we obtain

φ(x2)
[
g(x2)DSPn−1(x

2) + Pn−1(x
2)DSg(x2)

]

+ψ(x2)
[
g(x2)S2Pn−1(x

2) + Pn−1(x
2)S2g(x2)

]

=

[
(ψ1 + 2φ2)x

2 + ψ0 + ψ1

(
Bn

An
− Bn−1

An−1

)
+φ2

(
n

Bn

An
+ (2 − n)

Bn−1

An−1

)]

×g(x2)Pn−1(x
2) +

1

An−1
(ψ1 + (2n − 3)φ2)(2Pn(x)g(x) + g(x)2). (4.12)

We compare the coefficients of x2n+2r in (4.12) and consider two cases:
1. If the degree of φ is less than two, then

2ψ1cbn−1 = ψ1cbn−1 + 2
bn

An−1
cψ1

which is equivalent to

2ψ1cbn−1 = ψ1cbn−1 + 2cψ1bn−1.

Then, the fact that ψ1bn−1 �= 0 implies that this is impossible if c �= 0.
2. If the degree of φ is equal to two, then

φ2 (c(n − 1)bn−1 + rcbn−1) + 2cψ1bn−1

= (ψ1 + 2φ2)cbn−1 +
2

An−1
(ψ1 + (2n − 3)φ2) cbn

which is equivalent to

φ2 (c(n − 1)bn−1 + rcbn−1) + 2cψ1bn−1

= (ψ1 + 2φ2)cbn−1 + 2 (ψ1 + (2n − 3)φ2) cbn−1.

The regularity of the corresponding linear functional with respect to the
sequence (Pn)n≥0 implies that ψ1 +(3n−3− r)φ2 �= 0 and the previous
equality is impossible if c �= 0.

�
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Corollary 4.2. The Wilson polynomials are characterized by the following
non-linear difference equation

φ(x2)
[
Pn(x

2)DSPn−1(x
2) + Pn−1(x

2)DSPn(x
2)

]

+ ψ(x2)
[
Pn(x

2)S2Pn−1(x
2) + Pn−1(x

2)S2Pn(x
2)

]

= −
[

n(b + c + n − 1)(b + d + n − 1)(c + d + n − 1)

a + b + c + d + 2n − 2

]
P 2

n−1(x
2)

+

[
(a + b + c + d + n − 2)(a + b + n − 1)(a + c + n − 1)(a + d + n − 1)

a + b + c + d + 2n − 2

]
P 2

n(x2)

+
[
(a + b + c + d + 2)x2 + Dn

]
Pn(x

2)Pn−1(x
2),

where Dn depends on n, a, b, c and d.

Corollary 4.3. The Continuous Dual Hahn polynomials are characterized by
the following non-linear difference equation

(−(a + b + c)x2 + abc)
[
Pn(x2)DSPn−1(x2) + Pn−1(x2)DSPn(x2)

]

+ (x2 − ab − ac − bc)
[
Pn(x2)S2Pn−1(x2) + Pn−1(x2)S2Pn(x2)

]

=
(
x2 + Dn

)
Pn(x2)Pn−1(x2) − (a + b + n − 1)(a + c + n − 1)P 2

n(x2)

+ n(b + c + n − 1)P 2
n−1(x

2),

where Dn depends on n, a, b, c and d.

5. Non-linear Characterization for Orthogonal Polynomials on
q-Quadratic Lattices

A family pn(x) of polynomials of degree n is a family of classical q-quadratic
orthogonal polynomials (also known as orthogonal polynomials on non-uniform
lattices) if it is the solution of a divided-difference equation of the type (see
[8,9])

φ(x(s))D2
xy(x(s)) + ψ(x(s))SxDxy(x(s)) + λny(x(s)) = 0, (5.1)

where φ is a polynomial of maximal degree two and ψ is a polynomial of
exact degree one, λn is a constant depending on the integer n and the leading
coefficients φ2 and ψ1 of φ and ψ:

λn = −γn(γn−1φ2 + αn−1ψ1)

and x(s) is a non-uniform lattice defined by

x(s) = c1q
s + c2q

−s + c3, c1c2 �= 0, (5.2)

and the sequences (αn) and (γn) are given explicitly by :

αn =
1
2

(
q

n
2 + q− n

2
)
, γn =

q
n
2 − q− n

2

q
1
2 − q− 1

2
.
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5.1. General Theorem

In this section, we state and prove a non-linear characterization result for
classical orthogonal polynomials on non-uniform lattices. The result is stated
in the following theorem.

Theorem 5.1. Let (Pn)n≥0 be a sequence of classical orthogonal polynomials
on a non-uniform lattice. Then, for n ≥ 1, Pn(x(s)) and Pn−1(x(s)) satisfy

ψ(x(s))
[
Pn(x(s))S2xPn−1(x(s)) + Pn−1(x(s))S2xPn(x(s))

]

+φ(x(s))
[
Pn(x(s))DxSxPn−1(x(s)) + Pn−1(x(s))DxSxPn(x(s))

]

=
[
(Dn−1 + Dn − Gn−1An−1)x(s) + En−1

−Gn−1Bn−1 + En

]
Pn(x(s))Pn−1(x(s))

+Gn−1 (Pn(x(s)))2 − CnGn (Pn−1(x(s)))2 , (5.3)

where

Dn =
1
2
(λn − λn+1 + ψ1), En =

1
2

(
(λn − λn+1)

Bn

An
+ ψ0

)
,

Gn =
1

2An
(λn−1 − λn+1) . (5.4)

Furthermore, if (Qn)n∈N is a sequence of polynomials a on non-uniform
lattice such that Q0(x) = P0(x) and, for n ≥ 1, Qn(x(s)) and Qn−1(x(s))
satisfy (5.3). Then Qn(x(s)) = Pn(x(s)), for all n ≥ 0.

Proof. Using the fact that (Pn(x(s))n≥0 is a classical q-orthogonal polynomial
sequence on non-uniform lattice, substituting n by n + 1 in (5.1) we obtain

φ(x(s))D2
xPn+1(x(s))+ψ(x(s))SxDxPn+1(x(s))+λn+1Pn+1(x(s)) = 0. (5.5)

In (1.1), using the product rules given in [12, page 407], in [11, pages 741-
742] or in [10, page 4], we obtain:

D
2
xPn+1(x(s)) =

[
Anα2x(s) + Anβ(α + 1) + Bn

]
D

2
xPn(x(s))

+2AnDxSxPn(x(s)) − AnU1(x(s))D2
xPn(x(s))

−CnD
2
xPn−1(x(s)) (5.6)

and

SxDxPn+1(x(s)) =
[
Anα2x(s) + Anβ(α + 1) + Bn

]
SxDxPn(x(s))

+2AnS
2
xPn(x(s)) − AnU1(x(s))SxDxPn(x(s))

−AnPn(x(s)) − CnSxDxPn−1(x(s)). (5.7)
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Using (1.1), (5.6) and (5.7) to replace D
2
xPn+1(x(s)) , SxDxPn+1(x(s))

and Pn+1(x(s)) in (5.5), we obtain:

ψ(x(s))S2xPn(x(s)) + φ(x(s))DxSxPn(x(s))

= − Cn

2An
[λn−1 − λn+1] Pn−1(x(s))

+
1
2

[
(λn − λn+1 + ψ1)x(s) + (λn − λn+1)

Bn

An
+ ψ0

]
Pn(x(s)), ∀n ≥ 1,

which is equivalent to

ψ(x(s))S2xPn(x(s)) + φ(x(s))DxSxPn(x(s))
= [Dnx(s) + En] Pn(x(s)) − CnGnPn−1(x(s)), ∀n ≥ 1, (5.8)

where Dn, En and Gn are defined in (5.4). For n ≥ 2, we replace n by n − 1
in (5.8) and we obtain:

ψ(x(s))S2xPn−1(x(s)) + φ(x(s))DxSxPn−1(x(s))
= [Dn−1x(s) + En−1] Pn−1(x(s)) − Cn−1Gn−1Pn−2(x(s)), ∀n ≥ 2.

(5.9)

We also replace n by n − 1 in (1.1) and use the resulting relation to
replace Pn−2(x(s)) in (5.9) to obtain:

ψ(x(s))S2xPn−1(x(s)) + φ(x(s))DxSxPn−1(x(s)) = Gn−1Pn(x(s))
+ [(Dn−1 − Gn−1An−1)x(s) + En−1 − Gn−1Bn−1] Pn−1(x(s)), ∀n ≥ 1.

(5.10)

If we multiply (5.8) by Pn−1(x(s)) and (5.10) by Pn(x(s)) and add the
resulting expressions, we obtain:

ψ(x(s))
[
Pn(x(s))S2xPn−1(x(s)) + Pn−1(x(s))S2xPn(x(s))

]

+ φ(x(s)) [Pn(x(s))DxSxPn−1(x(s)) + Pn−1(x(s))DxSxPn(x(s))]

= [(Dn−1 − Gn−1An−1 + Dn)x(s) + En−1

−Gn−1Bn−1 + En] Pn(x(s))Pn−1(x(s))

+ Gn−1 (Pn(x(s)))2 − CnGn (Pn−1(x(s)))2 .

This proves the first part of Theorem 5.1.
Now, we prove the second part.
Let (Qn(x(s)))n∈N be a sequence of polynomials of a q-quadratic vari-

able such that Q0(x(s)) = P0(x(s)) and, for n ≥ 1, Qn(x(s)) and Qn−1(x(s))
satisfy

ψ(x(s))
[
Qn(x(s))S2xQn−1(x(s)) + Qn−1(x(s))S2xQn(x(s))

]

+φ(x(s)) [Qn(x(s))DxSxQn−1(x(s)) + Qn−1(x(s))DxSxQn(x(s))]
= [(Dn−1 − Gn−1An−1 + Dn)x(s) + En−1 − Gn−1Bn−1 + En]

×Qn(x(s))Qn−1(x(s)) + Gn−1 (Qn(x(s)))2 − CnGn (Qn−1(x(s)))2 .

(5.11)
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Let an be the leading coefficient of Qn(x(s)). We shall firstly show by
induction that kn = an for all n ≥ 0. We have a0 = k0 and we assume that
n ≥ 1 and an−1 = kn−1. If we compare the coefficients of F2n(x(s)) in (5.11),
we find that we must consider two cases whether the degree of φ is less than
two or equal to two.

• If the degree of φ(x(s)) is less than two then, we have

ψ1((αn−1)
2 + (αn)2)ankn−1 = (Dn + Dn−1 − An−1Gn−1)ankn−1 + Gn−1(an)2

and an �= 0 implies that for the q-quadratic variable, we have an =
An−1kn−1 = kn.

• If the degree of φ(x(s)) is equal to two then we get

ψ1((αn−1)2 + (αn)2)ankn−1 + φ2(αn−1γn−1 + αnγn)ankn−1

= (Dn + Dn−1 − An−1Gn−1)ankn−1 + Gn−1(an)2

and an �= 0 implies that for the quadratic case or the q-quadratic case,
we have an = An−1kn−1 = kn.

We have by assumption Q0(x(s)) = P0(x(s)). Assume further that n ≥ 1
and we Qn−1(x(s)) = Pn−1(x(s)) but Qn(x(s)) �= Pn(x(s)).

Then Qn(x(s)) = Pn(x(s))+g(x(s)), where g(x(s)) = c(Fr(x(s))+ · · · ),
c �= 0. Since Qn(x(s)) and Pn(x(s)) have the same degree and the same
leading coefficient, we must have r < n. From (5.11), we get

ψ(x(s))
[
(Pn(x(s)) + g(x(s)))S2xPn−1(x(s))

+Pn−1(x(s))(S2xPn(x(s)) + S
2
xg(x(s)))

]

+ φ(x(s)) [(Pn(x(s)) + g(x(s)))DxSxPn−1(x(s))

+Pn−1(x(s))(DxSxPn(x(s)) + DxSxg(x(s)))]

= [(Dn−1 − Gn−1An−1 + Dn)x(s) + En−1 − Gn−1Bn−1 + En]

× (Pn(x(s))Pn−1(x(s)) + g(x(s))Pn−1(x(s))) + Gn−1

(
(Pn(x(s)))2

+2g(x(s))Pn(x(s)) + (g(x(s)))2
) − CnGn (Pn−1(x(s)))2 .

Using the fact that Pn(x(s)) and Pn−1(x(s)) satisfy (5.3), we obtain

ψ(x(s))
[
g(x(s))S2xPn−1(x(s)) + Pn−1(x(s))S2xg(x(s))

]

+φ(x(s)) [g(x(s))DxSxPn−1(x(s)) + Pn−1(x(s))DxSxg(x(s))]
= [(Dn−1 − Gn−1An−1 + Dn)x(s) + En−1

−Gn−1Bn−1 + En] g(x(s))Pn−1(x(s)))
+Gn−1

(
2g(x(s))Pn(x(s)) + (g(x(s)))2

)
. (5.12)

We compare the coefficients of Fn+r(x(s)) in (5.12). Two cases arise:
1. If the degree of φ(x(s)) is less than two, then we get

ψ1

(
(αn−1)2 + (αr)2

)
ckn−1 = (Dn + Dn−1 − Gn−1An−1)ckn−1 + 2cknGn−1,

which is equivalent to

ψ1

(
(αn−1)2 + (αr)2

)
ckn−1 = (Dn + Dn−1 − Gn−1An−1)ckn−1 + 2ckn−1Gn−1An−1.

Then, for the q-quadratic variable, this is impossible if c �= 0.
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2. If the degree of φ(x(s)) is equal to two, then we get

ψ1

(
(αn−1)2 + (αr)2

)
ckn−1 + φ2 (αn−1γn−1 + αrγr) ckn−1

= (Dn + Dn−1 − Gn−1An−1)ckn−1 + 2cknGn−1,

which is equivalent to

ψ1

(
(αn−1)2 + (αr)2

)
ckn−1 + φ2 (αn−1γn−1 + αrγr) ckn−1

= (Dn + Dn−1 − Gn−1An−1)ckn−1 + 2ckn−1Gn−1An−1.

Again this is impossible if c �= 0.

�

5.2. Special Cases

We can specialize the above result to the various classical orthogonal poly-
nomials on non-uniform lattice, namely Askey–Wilson, q-Racah, Continu-
ous dual q-Hahn, Continuous q-Hahn, Dual q-Hahn, Al-Salam Chihara, q-
Meixner–Pollaczek, Continuous q-Jacobi, Dual q-Krawtchouk, Continuous
big q-Hermite, Continuous q-Laguerre and Continuous q-Hermite polynomi-
als. Note that the results for the Askey–Wilson and the q-Racah polynomials
would be enough since the other families can be obtained by some limit tran-
sitions. But here, we would like to provide a complete database for all these
polynomials orthogonal on a q-quadratic lattices.

5.2.1. Askey–Wilson Polynomials. The Askey–Wilson polynomials have the
q-hypergeometric representation [18, P. 415]

anpn(x; a, b, c, d|q)
(ab, ac, ad; q)n

= 4φ3

(
q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad

∣∣∣∣ q; q
)

, x = cos θ.

They satisfy the divided-difference equation (5.1) with

φ (x(s)) = 2 (dcba + 1) x2 (s) − (a + b + c + d + abc + abd + acd + bcd) x (s)

+ ab + ac + ad + bc + bd + cd − abcd − 1,

ψ (x(s)) =
4 (abcd − 1) q

1
2 x (s)

q − 1
+

2 (a + b + c + d − abc − abd − acd − bcd) q
1
2

q − 1
.

The monic Askey–Wilson polynomials are characterized by the following
non-linear recurrence relation

ψ(x(s))
[
Pn(x(s))S2xPn−1(x(s)) + Pn−1(x(s))S2xPn(x(s))

]

+ φ(x(s)) [Pn(x(s))DxSxPn−1(x(s)) + Pn−1(x(s))DxSxPn(x(s))]

= [Knx(s) + Mn] Pn(x(s))Pn−1(x(s))

− 2(q + 1)(abcdqn− 3
2 − q

3
2−n)

q − 1
(Pn(x(s)))2

− 2(q + 1)(abcdqn− 1
2 − q

1
2−n)

q − 1
Cn (Pn−1(x(s)))2 ,

where
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Kn =
2
√

q[abcd
(
q2n−2(q + 1)2 + 2qn

) − (
2qn + (q + 1)2

)
]

(q − 1)qn
,

Cn =
1
4

(1 − qn)(1 − abqn−1)(1 − acqn−1)(1 − adqn−1)(1 − abcdqn−1)
(1 − abcdq2n−3)(1 − abcdq2n−1)

× (1 − bcqn−1)(1 − bdqn−1)(1 − cdqn−1)
(1 − abcdq2n−2)2

,

Mn =
2
√

q(q2n − abcd)
qn(q − 1)

(
a + a−1 − (Ãn + C̃n)

)

+
{

2
√

q[q2n−1 − abcdq + (q + 1)(q2n−2 − abcdq)]
qn(q − 1)

}

×
(
a + a−1 − (Ãn−1 + C̃n−1)

)

+
2 (a + b + c + d − abc − abd − acd − bcd) q

1
2

q − 1
,

with

Ãn =
(1 − abqn)(1 − acqn)(1 − adqn)(1 − abcdqn−1)

a(1 − abcdq2n−1)(1 − abcdq2n)
,

C̃n =
a(1 − qn)(1 − bcqn−1)(1 − bdqn−1)(1 − cdqn−1)

a(1 − abcdq2n−1)(1 − abcdq2n−2)
.

5.2.2. q-Racah Polynomials. The q-Racah polynomials have the q-hypergeometric
representation [18, P. 422]

Rn(μ(x);α, β, γ, δ|q) = 4φ3

(
q−n, αβqn+1, q−x, δγqx+1

αq, βδq, γq

∣∣∣∣ q; q

)
, n = 0, 1, 2, . . . , N

where

μ(x) := q−x + δγqx+1

and

αq = q−N or βδq = q−N or γq = q−N ,

with N a non-negative integer. They satisfy (5.1) with

φ(x(s)) =
(
β α q2 + 1

)
x(s)2 − q (γ qα + γ qβ δ + qα β δ + qα β + β δ + γ δ + γ + α)x(s)

+2 q
(−q2α β δ γ + γ qα + γ2qδ + γ qδ2β + qα β δ + qγ δ α + γ qβ δ − γ δ

)
,

ψ(x(s)) = 2
√

q

(
(β α q2 − 1)

q − 1

)
x(s)

−2
q3/2 (γ qα + γ qβ δ − γ δ − γ + qα β δ + qα β − α − β δ)

q − 1
.
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The monic q-Racah polynomials are characterized by the following re-
lation

ψ(x(s))
[
Pn(x(s))S2

xPn−1(x(s)) + Pn−1(x(s))S2
xPn(x(s))

]

+ φ(x(s)) [Pn(x(s))DxSxPn−1(x(s)) + Pn−1(x(s))DxSxPn(x(s))]

= [Knx(s) + Mn] Pn(x(s))Pn−1(x(s)) − (q + 1)
√

q(αβq2n − q)

(q − 1)qn
(Pn(x(s)))2

− (q + 1)
√

q(αβq2n+1 − 1)

(q − 1)qn
Cn (Pn−1(x(s)))2 ,

where

Kn =
αβ

√
q (qn(q + 1)2 + 2q2)

q − 1
−

√
q ((q + 1)2 + 2qn)

qn(q − 1)
,

Cn =
q(1 − αqn)(1 − αβqn)(1 − βδqn)(1 − γqn)(1 − qn)(1 − βqn)(γ − αβqn)(δ − αqn)

(1 − αβq2n−1)(1 − αβq2n+1)(1 − αβq2n)2
,

Mn =

√
q(αβq2n − 1)

qn(q − 1)

(
Ãn + C̃n − qγδ − 1

)

+

(
q

3
2 (αβq2n − 1) +

√
q(q + 1)(αβq2n − q)

qn(q − 1)

) (
Ãn−1 + C̃n−1 − qγδ − 1

)

−2
(qγα + qγβδ − γδ − γ + qαβδ + qαβ − α − βδ) q

3
2

q − 1

with

Ãn =
(1 − αqn+1)(1 − αβqn+1)(1 − βδqn+1)(1 − γqn+1)

(1 − αβq2n+1)(1 − αβq2n+2)
,

C̃n =
q(1 − qn)(1 − βqn)(γ − αβqn)(δ − αqn)

(1 − αβq2n)(1 − αβq2n+1)
.

5.2.3. Continuous Dual q-Hahn Polynomials. The Continuous Dual q-Hahn
polynomials have the q-hypergeometric representation [18, P. 429]

anpn(x; a, b, c|q)
(ab, ac; q)n

= 3φ2

(
q−n, aeiθ, ae−iθ

ab, ac

∣∣∣∣ q, q

)
, x = cos θ.

They satisfy (5.1) with

φ(x(s)) = 2(x(s))2 − (a + b + c + abc)x(s) − 1 + bc + ab + ac,

ψ(s(s)) = − 4
√

q

q − 1
x(s) +

2(a + b + c − abc)
√

q

q − 1
.

The monic continuous dual q-Hahn polynomials are characterized by
the following non-linear recurrence relation(

− 4
√

q

q − 1
x(s) +

2(a + b + c − abc)
√

q

q − 1

) [
Pn(x(s))S

2
xPn−1(x(s)) + Pn−1(x(s))S

2
xPn(x(s))

]

+
(
2(x(s))

2 − (a + b + c + abc)x(s) − 1 + bc + ab + ac
)

× [Pn(x(s))DxSxPn−1(x(s)) + Pn−1(x(s))DxSxPn(x(s))]

=

[
−

(
2

(
(q + 1)2 + 2qn

) √
q

qn(q − 1)

)
x(s) − 2q

1
2 (Bn + (q2 + 2q)Bn−1)

qn(q − 1)
+

2(a + b + c − abc)
√

q

q − 1

]

× Pn(s)Pn−1(s) +
2(q + 1)q

3
2

qn(q − 1)
(Pn(x(s)))

2
+

2(q + 1)q
1
2

qn(q − 1)
Cn (Pn−1(x(s)))

2
,
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where

Bn = −1
2

(
a + a−1 − a−1(1 − abqn)(1 − acqn) − a(1 − qn)(1 − bcqn−1)

)

Cn =
1
4
(1 − qn)(1 − abqn−1)(1 − acqn−1)(1 − bcqn−1).

5.2.4. Continuous q-Hahn Polynomials. The Continuous q-Hahn polynomi-
als have the q-hypergeometric representation [18, P. 415] or [8, P. 75]

(aeiϕ)nPn(x; a, b, c, d; q)
(ab, ac, ad; q)n

= 4φ3

(
q−n, abcdqn−1, aei(θ+2ϕ), ae−iθ

abe2iϕ, ac, ad

∣∣∣∣ q; q
)

,

here x = cos(θ + ϕ). They satisfy the divided-difference equation (5.1) with

φ (x(s)) = 2 (dcba + 1)x2 (s) −
(
d + dcb + at2 + bt2ad + abct2 + c + acd + bt2

)
x (s)

t

+
cat2 + bt2d − t2cbad + cbt2 + cd + t2 + bt4a + t2ad

t2
,

ψ (x(s)) =
4 (abcd − 1) q

1
2 x (s)

q − 1
− 2

√
q
(−c − d + cda − bt2 − at2 + dcb + cbat2 + bt2q)

(q − 1)t
,

where t = eiϕ.
The monic Continuous q-Hahn polynomials are characterized by the

following non-linear recurrence relation

ψ(x(s))
[
Pn(x(s))S2

xPn−1(x(s)) + Pn−1(x(s))S2
xPn(x(s))

]

+ φ(x(s)) [Pn(x(s))DxSxPn−1(x(s)) + Pn−1(x(s))DxSxPn(x(s))]

= [Knx(s) + Mn] Pn(x(s))Pn−1(x(s))

+
2(q + 1)(−abcdq2n−1 + q2)√

q(q − 1)qn
(Pn(x(s)))2

+
2(q + 1)(abcdq2n − q)√

q(q − 1)qn
Cn (Pn−1(x(s)))2 ,

where

Kn =
2abcd[

(
q2n(q + 1)2 + 2qn+2

)
]

q
3
2 (q − 1)qn

− 2
√

q
(
(q + 1)2 + 2qn

)
(q − 1)qn

,

Cn =
1

4

(1 − qn)(1 − bcqn−1)(1 − bdqn−1)(1 − cdqn−1e−2iϕ)(1 − abcdqn−2)

(1 − abcdq2n−1)(1 − abcdq2n−3)

× (1 − abqn−1e2iϕ)(1 − acqn−1)(1 − adqn−1)

(1 − abcdq2n−2)2
,

Mn =

√
q(1 − abcdq2n)

qn(q − 1)

(
aeiϕ + a−1eiϕ − (Ãn + C̃n)

)

−
{

(q + 2)
(q2 − q2n−1abcd)√

q(q − 1)qn

} (
aeiϕ + a−1eiϕ − (Ãn−1 + C̃n−1)

)

−2
√

q
(−c − d + cda − bt2 − at2 + dcb + cbat2 + bt2q)

(q − 1)t
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with t = eiϕ,

Ãn =
(1 − abqne2iϕ)(1 − acqn)(1 − adqn)(1 − abcdqn−1)

aeiϕ(1 − abcdq2n−1)(1 − abcdq2n)
,

C̃n =
aeiϕ(1 − qn)(1 − bcqn−1)(1 − bdqn−1)(1 − cdqn−1e−2iϕ)

(1 − abcdq2n−1)(1 − abcdq2n−2)
.

5.2.5. Dual q -Hahn Polynomials. The Dual q-Hahn polynomials have the q-
hypergeometric representation ([18, P. 450] or [8, P. 76]

Rn(x(s); γ, δ, N |q) = 3φ2

(
q−n, q−s, γδqs+1

γq, q−N

∣∣∣∣ q; q

)
, n = 0, 1, . . . , N,

where x(s) = q−s + γδqs+1 and N a non-negative integer. They satisfy (5.1) with

φ(x(s)) = (x(s))2 − (γq + qN+1γδ + γqN+1 + 1)x(s)

2qN

+
γ(qN+1γδ − δqN + δ + 1)q

2qN
,

ψ(s(s)) = − 2
√

q

q − 1
x(s) +

(qN+1γδ + γqN+1 − γq + 1)
√

q

(q − 1)qN
.

The monic Dual q-Hahn polynomials are characterized by the following non-
linear recurrence relation

ψ(x(s))
[
Pn(x(s))S2

xPn−1(x(s)) + Pn−1(x(s))S2
xPn(x(s))

]

+ φ(x(s)) [Pn(x(s))DxSxPn−1(x(s)) + Pn−1(x(s))DxSxPn(x(s))]

= [Knx(s) + Mn] Pn(x(s))Pn−1(x(s)) +
(q + 1)q

3
2

(1 − q)qn
(Pn(x(s)))2

+
(1 + q)

√
q

(1 − q)qn
Cn (Pn−1(x(s)))2 ,

where

Kn =

√
q

(
2qn − q2 + 1

)
qn(1 − q)

,

Mn =

√
q(−q2γδ + 2γδq − q2γ + 2γq − 2q−N+1γ + q−Nγ − qN+1 + 2q−N )

q − 1
,

Cn = γq(1 − qn−N−1)(1 − γqn)(1 − qn)(δ − qn−N−1).

5.2.6. Al-Salam–Chihara Polynomials. The Al-Salam–Chihara polynomials have the
q-hypergeometric representation [18, P. 455] or [8, P. 77]

Qn(x; a, b|q) =
(ab; q)n

an 3φ2

(
q−n, aeiθ, ae−iθ

ab, 0

∣∣∣∣ q; q

)
, x = cos θ.

They satisfy the divided-difference equation (5.1) with

φ(x(s)) = 2(x(s))2 − (a + b)x(s) + ab − 1,

ψ(s(s)) = −4
√

qx(s)

q − 1
+

2(a + b)
√

q

q − 1
.
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The monic Al-Salam–Chihara polynomials are characterized by the following
non-linear recurrence relation

ψ(x(s))
[
Pn(x(s))S2

xPn−1(x(s)) + Pn−1(x(s))S2
xPn(x(s))

]

+ φ(x(s)) [Pn(x(s))DxSxPn−1(x(s)) + Pn−1(x(s))DxSxPn(x(s))]

= [Knx(s) + Mn] Pn(x(s))Pn−1(x(s)) +
2(q + 1)q

3
2

(1 − q)qn
(Pn(x(s)))2

+
(1 + q)(1 − qn)(1 − abqn−1)

2(1 − q)qn− 1
2

(Pn−1(x(s)))2 ,

where

Kn =
2
√

q
(
2qn − q2 + 1

)
qn(1 − q)

,

Mn =
(a + b)

√
q(q − 3)

1 − q
.

5.2.7. q -Meixner–Pollaczek Polynomials. The q-Meixner–Pollaczek polynomials [18,
P. 460] or [8, P. 78]

Pn(x; a|q) = a−ne−inϕ (a2; q)n

(q; q)n
3φ2

(
q−n, aei(θ+2ϕ), ae−iθ

a2, 0

∣∣∣∣ q, q

)
, x = cos(θ + ϕ).

They satisfy (5.1) with

φ(x(s)) = 2(x(s))2 − 2a cos ϕx(s) + a2 − 1,

ψ(s(s)) = − 4
√

q

q − 1
x(s) +

4a
√

q cos ϕ

q − 1
.

The monic q-Meixner–Pollaczek polynomials are characterized by the follow-
ing non-linear recurrence relation
(

− 4
√

q

q − 1
x(s) +

4a
√

q cos ϕ

q − 1

) [
Pn(x(s))S2

xPn−1(x(s)) + Pn−1(x(s))S2
xPn(x(s))

]

+
(
2(x(s))2 − 2a cos ϕx(s) + a2 − 1

)

× [Pn(x(s))DxSxPn−1(x(s)) + Pn−1(x(s))DxSxPn(x(s))]

=

[
−

(
2

(
(q + 1)2 + 2qn

) √
q

qn(q − 1)

)
x(s) +

2a
√

q cos ϕ(q + 5)

q − 1

]
Pn(x(s))Pn−1(x(s))

+
2(q + 1)q

3
2

qn(q − 1)
(Pn(x(s)))2 +

(√
q(q + 1)(1 − qn)(1 − a2qn−1)

2qn(q − 1)

)
(Pn−1(x(s)))2 .

5.2.8. Continuous q -Jacobi Polynomials. The Continuous q-Jacobi polynomials have
the q-hypergeometric representation [18, P. 463] or [8, P. 78]

P (α,β)
n (x|q)

=
(qα+1; q)n

(q; q)n
4φ3

(
q−n, qn+α+β+1, q

1
2 α+ 1

4 eiθ, q
1
2 α+ 1

4 e−iθ

qα+1, −q
1
2 (α+β+1), −q

1
2 (α+β+2)

∣∣∣∣∣ q; q

)
, x = cos θ.
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They satisfy the divided-difference equation (5.1) with

φ (x(s)) =
(
p2α+2β+4 + 1

)
x2 (s) +

1

2
(p + 1)p

1
2

(
p2α+2β+2 − pα − pα+2β+2 + pβ

)
x (s)

−1

2

(
p2α+2β+4 + pα+β+3 − p2α+2 + pα+β+2 − p2β+2 + pα+β+1 + 1

)
,

ψ (x(s)) =
4p

(
p2α+2β+4 − 1

)
x (s)

(p − 1)(p + 1)
−

(−p2α+β+2 − pα + pα+2β+2 + pβ
)

p
3
2

p − 1
,

with p = q2.

The monic Continuous q-Jacobi polynomials are characterized by the follow-
ing non-linear recurrence relation

ψ(x(s))
[
Pn(x(s))S2

xPn−1(x(s)) + Pn−1(x(s))S2
xPn(x(s))

]

+ φ(x(s)) [Pn(x(s))DxSxPn−1(x(s)) + Pn−1(x(s))DxSxPn(x(s))]

= [Knx(s) + Mn] Pn(x(s))Pn−1(x(s))

− q
3
2 (q + 1)(qα+β+2n−1 − 1)

(q − 1)qn
(Pn(x(s)))2

−
√

q(q + 1)(qα+β+2n+1 − 1)

(q − 1)qn
Cn (Pn−1(x(s)))2 ,

where

Kn =

√
q[

(
(q + 1)2

(−1 + qα+β+2
))

+
(
2qn

(−1 + qα+β+2
))

]

(q − 1)qn
,

Cn =
1

4

(1 − qn)(1 − qn+α)(1 − qn+β)(1 − qn+α+β)
(
1 − qn+ 1

2 (α+β−1)
)

(1 − q2n−1+α+β)(1 − q2n+1+α+β)

×
(
1 + qn+ 1

2 (α+β+1)
) (

1 − qn+ 1
2 (α+β)

)2

(1 − q2n+α+β)2
,

Mn = −
√

q(q + 1)(qα+β+2n+2 − 1)

2(q − 1)qn

(
q

1
2 α+ 1

4 + q−
1
2 α− 1

4 − (Ãn + C̃n)
)

−
{

q
3
2 [qα+β+2n − 1 + (q + 1)(qα+β+2n+−1 − 1)]

2qn(q − 1)

}

×
(
q

1
2 α+ 1

4 + q−
1
2 α− 1

4 − (Ãn−1 + C̃n−1)
)

+

(−p2α+β+2 − pα + pα+2β+2 + pβ
)

p
3
2

p − 1
,

with

Ãn =
(1 − qn+α+1)(1 − qα+β+n+1)(1 − qn+ 1

2 (α+β+1))(1 − qn+ 1
2 (α+β+2))

q
1
2 α+ 1

4 (1 − qα+β+2n+1)(1 − qα+β+2n+2)
,

C̃n =
q

1
2 α+ 1

4 (1 − qn)(1 − qn+β)
(
1 + qn+ 1

2 (α+β)
) (

1 + qn+ 1
2 (α+β+1)

)

(1 − qα+β+2n)(1 − qα+β+2n+1)
.

5.2.9. Dual q -Krawtchouk Polynomials. The Dual q-Krawtchouk polynomials [18,
P. 505] or [8, P. 80]

Kn(x(s); c, N |q) = 3φ2

(
q−n, q−s, cqs−N

q−N , 0

∣∣∣∣ q, q

)
, n = 0, 1, . . . , N,
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where x(s) = q−s + cqs−N . They satisfy (5.1) with

φ(x(s)) = (x(s))2 − (c + 1)q−Nx(s) − 2c(q−N − q−2N ),

ψ(s(s)) = − 2
√

q

q − 1
x(s) +

2(c + 1)
√

q

(q − 1)qN
.

The monic Dual q-Krawtchouk polynomials are characterized by the following
non-linear recurrence relation
(

− 2
√

q

q − 1
x(s) +

2(c + 1)
√

q

(q − 1)qN

) [
Pn(x(s))S2

xPn−1(x(s)) + Pn−1(x(s))S2
xPn(x(s))

]

+
(
(x(s))2 − (c + 1)q−Nx(s) − 2c(q−N − q−2N )

)

× [Pn(x(s))DxSxPn−1(x(s)) + Pn−1(x(s))DxSxPn(x(s))]

=

[
−

((
2qn + (1 + q)2

) √
q

qn(q − 1)

)
x(s) +

(c + 1)
√

q(q + 5)

(q − 1)qN

]
Pn(x(s))Pn−1(x(s))

+
(q + 1)q

3
2

qn(q − 1)
(Pn(x(s)))2 +

(
c
√

q(q + 1)(1 − qn)(1 − qn−N−1)

qn+N (q − 1)

)
(Pn−1(x(s)))2 .

5.2.10. Continuous Big q -Hermite Polynomials. The continuous big q-Hermite poly-
nomials [18, P. 509]

Hn(x; a, |q) = a−n
3φ2

(
q−n, aeiθ, ae−iθ

0, 0

∣∣∣∣ q, q

)
, x = cos θ.

They satisfy (5.1) with

φ(x(s)) = 2(x(s))2 − ax(s) − 1,

ψ(s(s)) = − 4
√

q

q − 1
x(s) +

2a
√

q

q − 1
.

The Continuous big q-Hermite polynomials are characterized by the following
non-linear recurrence relation
(

− 4
√

q

q − 1
x(s) +

2a
√

q

q − 1

) [
Pn(x(s))S2

xPn−1(x(s)) + Pn−1(x(s))S2
xPn(x(s))

]

+
(
2(x(s))2 − ax(s) − 1

)
[Pn(x(s))DxSxPn−1(x(s)) + Pn−1(x(s))DxSxPn(x(s))]

=

[
−

(
2

(
(q + 1)2 + 2qn

) √
q

qn(q − 1)

)
x(s) +

a
√

q(q + 5)

q − 1

]
Pn(x(s))

× Pn−1(x(s)) +
2(q + 1)q

3
2

qn(q − 1)
(Pn(x(s)))2 − (q + 1)(qn − 1)

√
q

2qn(q − 1)
(Pn−1(x(s)))2 .

5.2.11. Continuous q -Laguerre Polynomials. The Continuous q-Laguerre polynomi-
als have the q-hypergeometric representation [18, P. 514] or [8, P. 81]

P (α)
n (x|q) =

(qα+1; q)n

(q; q)n
3φ2

(
q−n, q

1
2 α+ 1

4 eiθ, q
1
2 α+ 1

4 e−iθ

qα+1, 0

∣∣∣∣ q; q

)
, x = cos θ.
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They satisfy the divided-difference equation (5.1) with

φ(x(s)) = 2(x(s))2 − pα+ 1
2 (p + 1)x(s)

2qN
+ p2α+2 − 1,

ψ(s(s)) = − 4p

p2 − 1
x(s) +

pα+ 3
2

(p − 1)
,

with p = q2.
The monic Continuous q-Laguerre polynomials are characterized by the fol-

lowing non-linear recurrence relation

ψ(x(s))
[
Pn(x(s))S2

xPn−1(x(s)) + Pn−1(x(s))S2
xPn(x(s))

]

+ φ(x(s)) [Pn(x(s))DxSxPn−1(x(s)) + Pn−1(x(s))DxSxPn(x(s))]

= [Knx(s) + Mn] Pn(x(s))Pn−1(x(s))

− Gn−1 (Pn(x(s)))2 − GnCn (Pn−1(x(s)))2 ,

where

ξnKn = qn2+2 − q11 + q10 + qn2+5 + q9 − pq
15
2 + 2pq

13
2 − qn2+4 − q8 − 2pq

9
2

− pqn2+ 3
2 − qn2+3 − qn2+6 + pq

7
2 + q7 − q5 − q6 + q4 − qn2+9

+ qn2+8 + pqn2+ 11
2 + 4pqn+ 11

2 − 2pqn2+ 9
2 − 8pqn+ 9

2

+ qn2+7 + 4pqn+ 7
2 + 2pqn2+ 5

2 ,

with ξn = −(q − 1)2(p2 − 1)qn+ 7
2 ,

νnMn = q2n+ 1
2 α+ 1

2 + q2n+ 1
2 α+1 + q2n+ 1

2 α+ 3
2 + q2n+ 1

2 α+2 + q
1
2 α+ 7

2 + q
1
2 α+4

+ q2n+ 1
2 α+3 + q2n+ 1

2 α+ 5
2 4qα+ 3

2 p
11
4 + 4qα+ 5

2 p
11
4 − q2n+ 1

2 α+3p2 − q2n+ 1
2 α+ 5

2 p2

− q2n+ 1
2 α+ 1

2 p2 − q2n+ 1
2 α+ 1

2 p + q2n+ 1
2 α+ 7

2 p + q2n+ 1
2 α+3p − q2n+ 1

2 α+2p2

− q2n+ 1
2 α+ 3

2 p2 − q2n+ 1
2 α+1p2 − q2n+ 1

2 αp − q
1
2 α+ 9

2 p − q
1
2 α+4p2

− q
1
2 α+4p − q

1
2 α+ 7

2 p2 + q
1
2 α+ 7

2 p + q
1
2 α+3p,

with νn = 2(p2 − 1)q
11
4 ,

τnGn = qn2+ 7
2 + q

9
2 p − pqn2+ 5

2 − pq
7
2 − qn2+7 − pqn2+ 3

2 − pq
5
2 + q8 + pqn2+5

+ qn2+3 + pqn2+ 1
2 + pq

3
2 − q6 − q4 + q2 − qn2+1,

where τn = −(q − 1)2(p2 − 1)qn+ 3
2 ,

Cn =
1

4
(1 − qn)(1 − qn+α).

5.2.12. Continuous q -Hermite Polynomials. The Continuous q-Hermite polynomials
have the q-hypergeometric representation [18, P. 540] or [8, P. 82]

Hn(x|q) = einθ
2φ0

(
q−n, 0

−
∣∣∣∣ q; qne−2inθ

)
, x = cos θ.

They satisfy the divided-difference equation (5.1) with

φ(x(s)) = 2(x(s))2 − 1,

ψ(s(s)) = − 4
√

q

q − 1
.



MJOM On Non-linear Characterizations of Classical Page 29 of 32 10

The monic Continuous q-Hermite polynomials are characterized by the fol-
lowing non-linear recurrence relation

ψ(x(s))
[
Pn(x(s))S2

xPn−1(x(s)) + Pn−1(x(s))S2
xPn(x(s))

]

+ φ(x(s)) [Pn(x(s))DxSxPn−1(x(s)) + Pn−1(x(s))DxSxPn(x(s))]

=

[√
q

(
2qn − q2 + 1

)
x(s)

qn(1 − q)

]
Pn(x(s))Pn−1(x(s)) +

(1 + q)q
3
2

(1 − q)qn
(Pn(x(s)))2

− (1 + q)
√

q

2(1 − q)qn
(Pn−1(x(s)))2 .
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