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Abstract. Classical orthogonal polynomials are known to satisfy seven
equivalent properties, namely the Pearson equation for the linear func-
tional, the second-order differential/difference/q-differential/ divided-
difference equation, the orthogonality of the derivatives, the Rodrigues
formula, two types of structure relations, and the Riccati equation for
the formal Stieltjes function. In this work, following previous work by Kil
et al. (J Differ Equ Appl 4:145-162, 1998a; Kyungpook Math J 38:259—
281, 1998b), we state and prove a non-linear characterization result for
classical orthogonal polynomials on non-uniform lattices. Next, we give
explicit relations for some families of these classes.
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1. Introduction

Univariate orthogonal polynomials (or orthogonal polynomials for short) are
systems of polynomials (p,,), with deg(p,) = n, satisfying a certain orthogo-
nality relation. They are very useful in practice in various domains of mathe-
matics, physics, engineering, image processing and so on, because of the many
properties and relations they satisfy. As examples of areas where orthogonal
polynomials play important roles, we could cite approximation theory (see
for example [6,31]) and also numerical analysis (see [14,15]).

It is known that any family of orthogonal polynomials (p;,),>0 satisfies
a three-term recurrence relation of the form

p7z+1($) = (An-r + Bn)pn(x) - Cnpn—l(m)v p—l(m) = 0. (11)

If h, = (L,p2), where L is the corresponding linear functional with
respect to the sequence (py,)n>0 and k,, is the leading coefficient of p,, () (see
[17]), then
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An:kn+1; Cn= A hn7n21
kn, Api1 bt

and we set Cy = 1.

The systems of orthogonal polynomials associated with the names of
Hermite, Laguerre, Jacobi and Bessel (including the special cases named after
Tchebychev, Legendre, and Gegenbauer) are the most extensively and widely
applied systems.

An orthogonal polynomial system (p, ), >0 with respect to a weight func-
tion p(x) is called classical if it satisfies one of the equivalent assertions (see
[17]):

o (pn)n>o satisfies a second-order linear differential equation of the Sturm-—

Liouville type

o(@)y" () + ¥ (2)y'(z) + Any(z) = 0, (1.2)
where ¢(x) is a polynomial of degree < 2 and (z) is a polynomial of
exact degree 1, both independent on n and A, is independent on x.

e The derivatives (p;, ;)n>0 form an orthogonal polynomial system.
e The p,s have the Rodrigues representation

D, (n)

=——(¢" > 0. 1.3
Pn(2) @) (@"(x)p(x))™, n= (1.3)

e The weight function p(x) satisfies a Pearson-type equation
(¢(x)p(x))" = (x)p(x). (1.4)
e The p,s satisfy a difference-differential equation (or structure relation)

of the form

m(2)py, () = (an + Bn)pn(2) + pn—1(). (1.5)

In his paper [2], Al-Salam has obtained an expression for the derivative
of the product of two consecutive Bessel polynomials and has shown that
this expression does, in fact, characterize the Bessel polynomials. Based on
this paper, McCarthy in [25] proved that there is an analogous characteriza-
tion for very classical orthogonal polynomials (Hermite, Laguerre and Jacobi
polynomials). This characterization can be stated as

o (pn)n>0 satisfies a non-linear equation of the form:

¢(fﬂ)%(pn (@)Pn—1(2)) = (an + Ba)pn(@)pn—1(2) + Y5 (x) + 6051 (z),
(1.6)

where a,,, On, 7 and 4, are independent on x.

Note that several other characterizations of classical orthogonal poly-
nomials with respect to the derivative operator can be found in [23].

Very close to the very classical orthogonal polynomials (classical or-
thogonal polynomials of a continuous variable) are the classical orthogonal
polynomials of a discrete variable. An orthogonal polynomial system (py,)n>0
of a discrete variable with respect to a weight function p(x) is called classical
if it satisfies one of the equivalent assertions (see [1,8,13]):
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o (pn)n>0 satisfies a second-order linear difference equation of the Sturm-—
Liouville type

¢(2)AVy () + ¢ (x) Ay () + Any(z) = 0, (L.7)

where ¢(x) is a polynomial of degree < 2 and 9 (z) is a polynomial of
exact degree 1, both independent on n and )\, is independent on x.

e The sequence of difference polynomials (Ap;,11),>0 form an orthogonal
polynomial system of discrete variable.

e The p,s have the Rodrigues representation

Dy

pn(z) = A" (¢"(x)p(z)), n>0. 1.8
(x) () (¢" (x)p(x)) (1.8)

e The weight function p(x) satisfies a Pearson-type equation
Alp(z)p(z)] = ¥(x)p(). (1.9)
e The p,s satisfy a difference equation (or structure relation) of the form
W(m)v}?n(x) = (anx + ﬁn)pn(x) + 'Vnpnfl(x)v (110)

or otherwise stated (see [19])

¢($)Vpn(f€) = dnpn+1(x) + @an(w) + :)/npnfl(x) (]—]—1)

e For each n > 1, p, and p,_; satisfy a relation of the form (see [21,
Theorem 5.2])
7(2) [P (2)VPn-1(2) + pn-1(x) Vpn ()]
= npi(x) + Vnpgz—l(x) + (an + Yn)pn(x)pn—l(x)a

where the coefficients U,,, V,,, W,, and Y,, are independent on x and 7
is a polynomial of degree less or equal to 2.

It should be noted that the operators A and V are respectively defined

Af(x) = flz+1) = f(x),
Vi(x) = flz) - flz—1).

Close to the classical discrete orthogonal polynomials are classical or-
thogonal polynomials of a g-discrete variable. An orthogonal polynomial sys-
tem (pn)n>o of a g-discrete variable with respect to a weight function p(x) is
called classical if it satisfies one of the equivalent assertions (see [8,18,19]):

o (pn)n>0 satisfies a second-order linear g-difference equation of the Sturm-—
Liouville type

¢()DyD1y(x) + ¢ (2)Dyy(x) + Any(z) = 0, (1.12)

where ¢(x) is a polynomial of degree less than or equal to 2 and ¥ (z)
is a polynomial of exact degree 1, both independent on n and A, is
independent on z.

e The sequence of g-difference polynomials (Dypy+1)n>0 form an orthog-
onal polynomial system of a g-discrete variable.
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e The p,s have the Rodrigues representation
D,

p(z)DZ} (¢"(x)p(x)), n=0. (1.13)

pn(T) =

e The weight function p(x) satisfies a Pearson-type equation

Dylp(x)p(x)] = () p(x). (1.14)

e The p,s satisfy a ¢-difference equation (or structure relation) of the form
(see [19])

QS(CC)D%pn (55) = &npn—&-l(x) + Bnpn(x) + :ann—l(x)- (115)

e For each n > 1, p, and p,_; satisfy a relation of the form (see [22,
Theorem 3.5])

#(@) [pa(®)D1pa-1(2) + Pu-a(@)D1pa(a)|

= npi(x) + Vnpiil(x) + (an + f/n)pn(x)pn—l(x)7

where the coefficients Un, Vn, Wn and f’n are independent on x and 7
is a polynomial of degree less than or equal to 2.

It should be noted that the g-derivative D, is defined as

f(z) = flgz) .
D, f(x) = W 1fq7é1andx7é0.
£(0) ifz=0

The difference operator A and the g-derivative D, are both special cases
of the Hahn’s operator D, ., (see [7]) which is defined as

flgz +w) — f(2)
(gz+w)—z =

Dq,wf(m) =

More precisely, Dy = Dg0 and A = Dy ;.

In this paper, we prove equivalent non-linear characterization results
similar to (1.6) for classical orthogonal polynomials on non-uniform lat-
tices (including Wilson and Askey—Wilson polynomials). Also, we prove such
a non-linear characterization for Meixner—Pollaczek and Continuous Hahn
polynomials. Indeed, we give explicitly the coefficients of these relations for
some families of classical orthogonal polynomials on non-uniform lattices.

2. Preliminaries

This section contains some preliminary definitions and results that are useful
for a better reading of this article. The g-hypergeometric series, a fractional
g-derivative and fractional g-integral are defined. The reader will consult the
reference [18] for more informations about these concepts.
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2.1. The Hypergeometric Series

In what follows, the symbol (a),, denotes the so-called Pochhammer symbol
and is defined by
(@) = 1 if m=0
™ lala+1) - (a+m—1) if m=12,...
and the hypergeometric series is defined as

aly...,0Q
F b )P
p-q

bi,. .., b,

n

= (@) () 2
x) a nZ:O (bl)n"'(bq)n n!’

2.2. The g-Hypergeometric Series
The basic hypergeometric or ¢-hypergeometric series ,.¢, is defined by the

series
A1y vny Ay > (al,_,,7ar;q)n N (k) 14s—r N
() o 3 st (e 2
brs. ... bs ;)(bl,...,bs;q)n =1) (a:0)n
where
(a1, e @Qn = (a15Q)n - (r; Qn,
with
n—1 .
1—a;¢) if n=1,2,3,...
(ai; q)n = jl;lo( “’) .
1 if n=0
For n = oo, we set
(a;q)oo = H(]- - aqn)’ |Q‘ <1
n=0

The notation (a;q)y, is the so-called g-Pochhammer symbol.

2.3. Difference and Divided-Difference Operators

2.3.1. The Operators D and S. We define the difference operator D (see
[26,28]) and its companion operator S as follows:

prw =1 (1) -1 (s-3). srio-Leriltieod

2 2 ’

with i? = —1.

The operator D transforms a polynomial of degree n (n > 1) in x into
a polynomial of degree n — 1 in x and a polynomial of degree 0 into the zero
polynomial. The operator S transforms a polynomial of degree n in z into a
polynomial of degree n in x.

The operators D and S fulfill the following properties.
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Proposition 2.1. (See [26,30]) The operators D and S satisfy the following
product rules

D(fg) = DfSg +S/Dy, (21)
§(f9) = {DIDg + §£Sg, (22)
DS = SD, (2.3)
S? = izﬂ +1, (2.4)

where If = f.

2.3.2. The Operators D and S. We define the difference operator D (see [27])
and its companion operator S as follows:

Fl@+3)?) - f(@—5)?)

2ix

Df(a®) = 5

with 2 = —1. The operator D transforms a polynomial of degree n (n > 1)
in 22 into a polynomial of degree n — 1 in x? and a polynomial of degree 0
into the zero polynomial. The operator S transforms a polynomial of degree
n in 2?2 into a polynomial of degree n in x2.

The operators D and S fulfill the following properties.

Proposition 2.2. (See [27]) The operators D and S satisfy the following prod-
uct rules

D(fg) = DfSg +SfDy, (2.5)
S(fg9) = —2°DfDg + SfSg, (2.6)
DS =SD - %DZ, (2.7)
S? = —2?D? — %SD +1, (2.8)

where If = f.

2.3.3. The Operators D, and S,,. We define the operator I, (called divided-
difference operator) and its companion operator S, (called mean operator)
as [5,9,11,29]

C fas+3) — flals —3))
P flee) = x(s —&-2%) —x(s — %)2 :
Sz flz(s)) = f(x(s+3)) ‘; (x(s — 5))’

where z(s) is a non-uniform lattice (see [9]). The operator D, transforms a
polynomial of degree n (n > 1) in z(s) into a polynomial of degree n — 1 in
x(s) and a polynomial of degree 0 into the zero polynomial. The operator S,
transforms a polynomial of degree n in z(s) into a polynomial of degree n in

x(s).
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The operators D, and S, satisfy the product rules

Dy (f(2(s))g(x(5))) = Su f(x(s)) Deg(x(s)) + Do f(2(s5)) Seg(x(s)),  (2.9)
Se (f(2(s))g(2(s))) = Uz(2(s)) Da f(2(s)) Deg(2(s)) + Sa f(2(s)) Seg(2(s)),

(2.10)
S2f =UsS, Dof +alUs D2f + f, (2.12)

where U, is a polynomial of degree 2
Us(x(s)) = (o — 1) 2%(s) + 28 (v + 1) x(5) + 6, (2.13)

and ¢, is a constant depending on «, @ and the initial values x(0) and z(1)
of z(s):

22(0) +2%(1) (2% —1)
402 T 202

Bla+1)

o2

B* (a+1)°
a2

5y =

z(0) z(1) — (#(0) + (1)) +

and
Ui(s) == Ui(z(s)) = (a* = 1) z(s) + B(a+1), Us(s):=Us(z(s)). (2.14)
Note that

Dy Fn(2(s)) = mFn1(2(s)),
S Fo(@(s)) = n Frula(s)) + - Vitn 1 () Faa (a(s)),
where F,(x(s)) is a function defined in [24]. More properties of the non-

uniform lattices z(s), the properties of the divided-difference operator D, and
its companion S, can be found in [10-12,16,24] : x(s) satisfies the conditions

x(s+ k) —x(s) = i Varyi(s), (2.15)

w = aprr(s) + Bk, (2.16)

for k=0,1,..., with
Qo = 1,0&1 = aaﬁo = O7ﬁ1 = ﬁa’yo = Oa'yl = 17
and the sequences («y), (Br), (&) satisfy the following relations

Q41 — 200 + a1 =0,
Brt1 — 2Bk + Br—1 = 2Pay,
Vht1 — V-1 = 20,

for k=0,1,....
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3. Non-linear Characterization for Meixner—Pollaczek and
Continuous Hahn Polynomials

The Meixner—Pollaczek polynomials pM (z;¢) and the Continuous Hahn
polynomials p,(z;a,b, ¢, d), respectively, have the hypergeometric represen-
tation (see [18]):

2)\n m - 7)\+
PT(l)\)(‘T;SD)Zi( n') e wzFl( n2)\ “

pn(z;a,b, ¢, d) —ﬁF —n,n+a+b+c+d—1,a+ix
(a+dn(a+c), n*? a+ca+d

1e2w>, (3.1)
1) |
They are known to satisfy the second-order difference equation (see [30])

¢(2)D?y(w) + 9 (2)SDy(x) + Any(z) = 0, (3.3)

where ¢ and 1 are polynomials of degree 2 and 1, respectively, and A is a con-
stant depending on the degree of the polynomial solution and the parameters
involved in the polynomials.

Note that for the Meixner—Pollaczek polynomials, we have (see [30])

(3.2)

¢(z) = i(Asing — x cos ), (3.4)
P(x) = 2(Acos @ + xsinp), (3.5)
and
Ap = —2insin g,

and for the Continuous Hahn polynomials we have (see [30])

d)(;p):—x2+%(a+b_c_d)x+%(ab+0d)’
P(x) = —i(a+b+c+d)x+cd— ab,
and
A=\, =-nn+a+b+c+d—1).

Theorem 3.1. (Non-linear characterization) Let (P,)n>0 be a sequence of
classical orthogonal polynomials on non-uniform lattice. Then, for n > 1,
P, (z) and P,_1(x) satisfy

9(2) [ Pa(@)SDPa-1(2) + Pa1 (2)SDP (a)]
() [Pn(x)SZPn,l(x) n Pn,l(x)SQPn(x)}

Bn _ anl
24, 24,1

= |:('¢1 + 2ig2)x + Yo + Y1 (

i (n% —(n-2) ]j:j )} Po(2)Poei ()

Cn (1 + (2n = 1)ig) P21 (). (3.6)

+ (11 + (2n — 3)ig2) Py (x) — A—:

1
Anfl
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Furthermore, if (Qn)nen is a sequence of polynomials such that Qo(x) =
Py(z) and, forn > 1, Qn(z) and Qn_1(x) satisfy (3.6). Then Qn(x) = Py(z),
for alln > 0.

Proof. Using the fact that the sequence (P,),>0 is a classical orthogonal
polynomial sequence, for all non-negative integer n, P,1(x) satisfies (3.3),
namely:
O(8)D2Pos1 (2) + $(@)SDPs(2) + Aup1 Pai(2) =0, (3.7)
with
¢(x) = o’ + 1 + do; Y(x) = Y1z +1o; An = n(n — 1)¢o — inihr.
In (1.1), using the relations (2.1), (2.2), (2.3) and (2.4), we obtain:
D?*P,1(z) = 2iA,SDP,(2) + (Apz + B,)D*P,(z) — C,D*P,_1(z) (3.8)

and

SDP,y1(z) = 2iAnS? Po(2) — iAn Po(2) + (Ap + Bp)SDPy (2) — CnSDPy—1 ().

(3.9)
Using (1.1), (3.8) and (3.9) to replace D?P, (), SDP,41(x) and P, 1 ()
in (3.7), we obtain:

#(2)SDP,(x) + Y(x)S? Py () = —%(An,l — Ant1)Poi(z)

1 1 B,
For n > 2, we replace n by n — 1 in (3.10) and obtain:

(2)SDP,_1(x) + 1(2)S* Py —1 ()

C_
— _2@4,:1 (A2 — An)Po_a(x)
1 1 B,
+ {21/)(96) + <2i9:+ 22‘An11) (An_1 — )\n)] P,_i(z). (3.11)

We replace again n by n — 1 in (1.1) and use the resulting relation to
replace P,_o(z) in (3.11) to obtain:

H(x)SDP,_1(x) + ¢(2)S*P,_1 ()
1
= —m()\n—2 = ) P ()

1 1 Bn—l
+ [’(/)(Z‘) + (ix+ 5iA. .

2 2 ) (An—1— A71—2)} P, 1(z). (3.12)



10 Page 10 of 32 P. Njionou Sadiang et al. MJOM

If we multiply (3.10) by P,_1(z), (3.12) by P,(x) and add the resulting
expression, we get:

6(2) [Pa(@)SDPy—1 (2) + Paa (@
+19(a) [Pa(@)S* o () +

{(% + 2i¢2)x + Yo + Y1 2

SDP, ()]

1 (x)San(:r)}
anl
o)
anl

Bos } Pa(@) o (2)

%(wl +(2n — 1)ig2) Pi_1 (x).

+ico (ni—: —(n—2)

+ (1 + (2n — 3)ig) P2 ()

Anfl

This proves the first part of Theorem 3.1.
Now, we prove the second part.

Let (Qn)nen be a sequence of polynomials of a quadratic variable such
that Qo(z) = Py(z) and, for n > 1, Q,(x) and Q,_1(x) satisfy

¢(@) [Qn(2)5DQn—1(7) + Qn—1(2)SDQn ()]
+(z) [Qn(w)San—l(w) + Qn—l(w)San(fv)]

Q'ﬂ(w)anl(iE)
(1 + (2n — 3)iga) Q2 () —

Cn

+ A7n

Arilfl (Y1 + (20— 1)ig2) Qi1 (z).  (3.13)

Let b, be the leading coefficient of @, (x). We shall firstly show by
induction that k, = b,, for all n > 0. We have by = ky and we assume that
n>1and b, 1 = k,_1. If we compare the coefficients of 22" in (3.13), we
find that we must consider two cases according as the degree of ¢ is less than
two or equal to two.

e If the degree of ¢ is less than two then we have
Y1
An—l

and b, # 0 implies that for the quadratic or g-quadratic variable, we
have b, = Ap_1kn_1 = kn.
e If the degree of ¢ is equal to two, then we have

¢2 ((TL - l)lbnknfl + nlbnk/’nfl) + 2w1bnkn71

= (Y1 + 2i¢2)bpkn_1 + Al (1 + (2n — 3)ig) b2

n—1

W bpkn_1 = Prbpkn_1 + (bn)?

and the regularity of the corresponding linear functional with respect
to the sequence (Qn)n>0 implies that ¢ + (2n — 3)i¢y # 0 and b, # 0
we have b, = A,,_1kn—1 = k.

We have by assumption Qq(z) = Py(z). Assume further that n > 1 and
Qn-1(z) = Pp_1(z) but Qn(z) # Po(z).
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Then Qn(x) = P,(x) + g(x) where g(z) = ¢(x” 4+ --+), ¢ # 0. Since
Qn(z) and P,(z) have the same degree and the same leading coefficient, we
must have r < n. From (3.13), we get

¢(@) [(Pa(2) + 9(2))SDP, 1 (2) + Po1 (2)SD(Pa(2) + g())]
+9(@) [(Pa(2) + 9(2))8® Paz1(2) + Poo1(2)S*(Pa(@) + g(2))]

= [(% + 2igo)x + o + U1 (2BAnn - 23;17;_11)

ion (w2 - 2= WL | (Rufo) + g0 Pacal)

o (U1 + (20 = 3)iga) (Pa(e) + 9(2)?
Cn .
_ /Tn(d)l + (2n — 1)igg) P2 (x).

Using the fact that P, (x) and P,,_1(x) satisfy (3.6) we obtain
¢(z) [9(x)SDPy—1 () + Po-1(2)SDg()]
+(x) [9(2)S® Pui(x) + Poa(2)S%g(2)]

+ipo (n% —(2—n) i:: )] g(x)Pr—1()
+Anlfl (1 + (2n = 3)id2) (2Pn(2)g(x) + 9(2)*). (3.14)

We compare the coefficients of 2" in (3.14). Let us consider two cases:
1. If the degree of ¢ is less than two, then we get

bn
A, cr

29p1¢by 1 = P1cby 1 + 2

which is equivalent to
291cby—1 = Picby_1 + 2ctP1by_y.

Then, the fact that ¥1b,_1 # 0 implies that this is impossible if ¢ # 0.
2. If the degree of ¢ is equal to two, then we get

o2 (ci(n — 1)by—1 + richb,—1) + 2ct1b,—1

= (Y1 + 2i¢2)cbp—1 + (11 + (2n — 3)iga) cby,

An—1
which is equivalent to
o2 (ci(n — 1)bp—1 + richb,—1) + 2ct1b,—1
= (1 + 2i¢2)cbp—1 + 2 (V1 + (2n — 3)iga) cby—1.

The regularity of the corresponding linear functional with respect to the
sequence (P,) implies that 11 + (3n — 3 — r)igo # 0 and the previous
equation is impossible if ¢ # 0.
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The proof is therefore completed. O

The following corollaries give explicit coefficients for the non-linear char-
acterization of the Meixner—Pollaczek and the Continuous Dual Hahn poly-
nomials.

Corollary 3.2. The Meizner—Pollaczek polynomials are characterized by the
following non-linear difference equation

i(Asing — xcos @) [P (2)SDP,—1(x) + Py—1(x)SDP, ()]
+2(Acos g + asing) [Py(2)S* Py () + Pyo1(2)S? Py ()]
= [2sin px + 3\ cos @] P, (z)P,_1(x) + nP2(x) — (n 42\ — 1)P2_, ().

Corollary 3.3. The Continuous Hahn polynomials are characterized by the
following non-linear difference equation

(f:c2 + %(a +b—c—d)xz+ %(ab + cd)) [Pn(z)SDP—1(x) + Pa—1(x)SDP, ()]
+(—i(a+b+c+d+2)x+ cd — ab) [Pn(:c)S2Pn,1(x) + Pnfl(m)S2Pn(x)}
_ nb+ect+n-1(b+d+n-1)
2n+a+b+c+d—2
+ (—ila+b+c+d+2)x+ Dy) Po(z)Pr1(x)
n m=2+a+b+c+d)(n—14+a+c)(n—14+a+d)
2n+a+b+c+d—2

Pf,l(:c)

P(x),

where D,, depends onn, a, b, ¢ and d.

4. Non-linear Characterization for Wilson and Continuous
Dual Hahn Polynomials

The Wilson polynomials W,,(z?;a,b,c,d) and Continuous Dual Hahn poly-
nomials S, (z%;a,b,c), respectively, have the hypergeometric representation

(see [18]):
1) ,

(4.1)
1) . (4.2)

Wa(z?;a,b, ¢, d) R —-n,n+a+b+c+d—1a+ir,a— iz
(a+b,a+c,a+d)n74 3 a+ba+ca+d

Sn(z?;a,b,¢) _ —n,a —ix,a + iz
(a+batec), °° a+ba+ec

They are known to satisfy the second-order divided-difference equation
(see [27])

¢(a*)D?y(2?) + 9 (2*)SDy(2?) + Any(a?) = 0, (4.3)
and these two families satisfy the three-term recurrence relation

Poy1(2?) = (Ap2® + B,)Py(2?) — CpPy_1(2%), P_q1(2?) =0. (4.4)
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Theorem 4.1. (Non-linear characterization) Let (P, )nen be a sequence of
classical orthogonal polynomials on a mon-uniform lattice. Then, for n > 1,
P, (z?) and P,,_1(x?) satisfy

o(z?) [Pn(xQ)Dspn,l(ﬁ) + P,_y(*)DSP, (m2)]
+(@%) [ Pa(@?)S Paci (27) + Pai (2)S° P () |

[(w1+2¢z)az + o + ¥ (%—ﬁ: 1)”52( %“*mijﬂ

XP(e?)Paca(a®) + (1 + (20 3)6)PE(a?)
S+ (2n - D) PEa () (45)

Furthermore, if (Qn(2))nen is a sequence of polynomials such that
Qo(x ) = Py(z?) and, for n > 1, Qu(z) and Q,—1(x) satisfy (4.5). Then
Qn(2?) = P, (%), for alln > 0.

Proof. For all integers n, P, 1 (2?) satisfies (4.3), namely:
¢(2*)D*Poy1(2%) + ¢(2*)SD Py 1 (2°) 4+ A1 Poy1(2?) = 0, (4.6)

with

$(2?) = dox’ + 127 + do; Y(?) = 12" + o3 An = —n(n — 1)z —nhr.
From (4.4), using the relations (2.5), (2.6), (2.7) and (2.8), we obtain:

D?P, 1 (2%) = 2A4,DSP,(2*) + (A,2% + B,)D*P,(2%) — C,D*P,_;(z?)
(4.7)
and

SDP, .1 (z%) = 24,8 P, (2*)— A, Py (2*)+(An2°+B,,)SD P, (2*)—C,SDP,_, ().
(4.8)

We use (4.4), (4.7) and (4.8) to replace D?P,, 1 (2?), SDP,;1(2?) and
P,+1(2?) in (4.6); we obtain:

$(a*)DS Py (a) + P(2?)S? Py (2?)

Cn
== 7214 (An—l - /\n+1)Pn—1(1:2)

+ Bw(ﬁ) + (;mQ + 2617;) (An — )\n+1)] Py (a?). (4.9)

For n > 2, we replace n by n — 1 in (4.9) and we obtain:

H(z2)DSP,_1(z?) + ¥ (2*)S?P,_1(2?)

_ Cn—l 2
- _2An—1 ()\n—Q - )\n)Pn—2(-r )

1 o (1, Ba,
* {2“33 )+ (29” oA,

) A1 — )\n)] P,_1(2?%). (4.10)
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We replace again n by n — 1 in (4.4) and we use the resulting relation
to replace P,_2(z?) in (4.10) to obtain:

¢(2*)DSPy-1(2?) + 9 (2?)S* Py 1 (2?)

1
— m(An_z — M) Py (2?)
+ BW?) + (;ﬁ + 2’?4"”_1) (Aot — AH)} Po_y(2%). (4.11)

If we multiply (4.9) by P,_1(z?), (4.11) by P, (2?) and add the resulting
expressions, we obtain:

(%) [Pn(a:Q)DSPn_1(1:2) + Pn_1(x2)DSPn(x2)}
() [Pn<x2>52pm(m2> Pt (5782 Pa(a?)]

[t (- 22) e o o)

n

X Po(a®)Poo1(2®) + (%1 + (2n = 3)¢2) P (a)

1
Anfl
Ch 2 2
_ Tn(¢l + (2n—1)p2)Pr_1(z7).

This proves the first part of Theorem 4.1.

Now, we prove the second part.

Let (Qn)nen be a sequence of polynomials of a quadratic variable such
that Qo(z?) = Py(z?) and, for n > 1, Q,(2?) and Q,_1(2?) satisfy (4.5).
Let b,, be the leading coefficient of Q,,(2%). We shall first show by induction
that k,, = b,, for all n > 0. We have by = kg and we assume that n > 1 and
bn_1 = k,_1. If we compare the coefficients of 24" in (4.5), we find that we
must consider two cases whether the degree of ¢ is less than two or equal to
two.

o If the degree of ¢ is less than two then, we have

1

2
An—l (bn)

lebnknfl = wlbnknfl +

and b, # 0 implies that for the quadratic or g-quadratic variable, we
have bn = An_1k'n_1 = k‘n
o If the degree of ¢ is equal to two then, we have

¢2 ((?’L - ]-)bnknfl + nbnknfl) + 2¢1bnk5n71

= (Y1 + 29k + o (1 + (20— 3)6) B2,

n—1

and the regularity of the corresponding linear functional with respect
to the sequence (Q,,)n>0 implies that ¥1 + (2n — 3)¢2 # 0 and b, # 0
we have b, = A,,_1kn—1 = k.

We have by assumption Qq(x ) = (a:2) Assume further that n > 1
and Q,—1(2?) = P,_1(2?) but Q,,(2?) # P,(z?).
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Then Q,, (%) = P,(2?) + g(2?) where g(2?) = c¢(2?" +--+), ¢ # 0. Since
Qn(2?) and P, (z?) have the same degree and the same leading coefficient,
we must have r < n. From (4.5), we get

(b(xQ) [(Pn(xZ) + g(xQ))DSPn_l(.r2) + Pn—l(x2)DS(Pn(x2) + g($2))]
+ (@) [(Pa(a?) + g(22))S* Pyo1 (¢2) + P (2®)S*(Pa(2®) + g(2?))]

= {(% + 2¢9) 2 4 o + Y1 (i: - iZi)

+on (052 4 Q=0 )] () + 962 s 02)

o (o (20 = 3)02) (Pu(a?) + (a)?
Cn
- W+ 20— Do) P ().

Using the fact that P,(x) and P,_1(x) satisfy (4.5), we obtain
6(2%) [9(2”)DSPa-1(5?) + Pu—i(a”)DSg (") |

+(2%) [9(?)S* Pacr (%) + Paca (27)8%g(2”)|

= [ szona s o (B2 - Bt o (B2 s - w2

1
xg(2®) Pa-1 (%) +

n—1

(%1 + (2n — 3)¢2) (2Pu (2)g(2) + g(2)*).  (4.12)

We compare the coefficients of #2"+2" in (4.12) and consider two cases:
1. If the degree of ¢ is less than two, then

bn
241¢by—1 = P1cby 1 +2 e
An—l

which is equivalent to
241¢by—1 = Y1cby 1 + 2cP1by 1.

Then, the fact that 1b,_1 # 0 implies that this is impossible if ¢ # 0.
2. If the degree of ¢ is equal to two, then

¢2 (c(n —1)bp—1 + reby—1) 4+ 2¢p1by, 1

= (Y1 + 2¢2)cbp—1 + (Y1 + (2n — 3)¢2) cby

An—1
which is equivalent to
o2 (c(n — D)by—1 + rcbp—1) + 2¢01by 1
= (Y1 + 2¢2)cbp—1 + 2 (Y1 + (2n — 3)¢2) cby—1.

The regularity of the corresponding linear functional with respect to the
sequence (P,,)n>0 implies that ¢ + (3n —3 —r)¢2 # 0 and the previous
equality is impossible if ¢ # 0.

O
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Corollary 4.2. The Wilson polynomials are characterized by the following
non-linear difference equation

¢(@?) [P (2®)DSPn_1(2®) + Pr_1(z®)DS P, (a?)]
+ (22) [Pn(2®)S2 Pp—1(22) + Po_1(2?)S% P, (22)]
. nb+c+n—-1)b+d+n—-1)(c+d+n—-1)] , 5
- Pnfl(x )
a+b+c+d+2n—-2
{(a+b+c+d+n—2)(a+b+n—1)(a+c+n—1)(a+d+n—1)
+
a+b+c+d+2n—-2
+ [(@+b+c+d+2)2% + D] Pa(2?)Pa_1(z?),

P (z?)

where D,, depends on n, a, b, ¢ and d.

Corollary 4.3. The Continuous Dual Hahn polynomials are characterized by
the following non-linear difference equation

(—=(a+b+ c)z* + abe) [P, (z*)DSP,_1(2°) + Po—1(2*)DSP, (27)]
+ (2® — ab — ac — be) [Pn(xz)SQPn_l(:c2) + Pn_l(xz)Szpn(xQ)]
= (2> 4+ Dy,) Po(2*)Poo1(2®) — (a+ b+ n—1)(a+ c+n—1)P2(z?)
+nb+ctn—1)P(a?),

where D,, depends on n, a, b, ¢ and d.

5. Non-linear Characterization for Orthogonal Polynomials on
g-Quadratic Lattices

A family p,(x) of polynomials of degree n is a family of classical ¢-quadratic
orthogonal polynomials (also known as orthogonal polynomials on non-uniform
lattices) if it is the solution of a divided-difference equation of the type (see
[8,9])

¢((5))D3y(a(s)) +(a()S:Day(@(s)) + Any(a(s)) =0, (5.1)

where ¢ is a polynomial of maximal degree two and v is a polynomial of
exact degree one, \, is a constant depending on the integer n and the leading
coefficients ¢ and ¥, of ¢ and :

A = = Tn(Yn—102 + an—191)
and z(s) is a non-uniform lattice defined by
2(s) =c1q° +c2q” " + ¢35, c1e2 # 0, (5.2)
and the sequences () and (,) are given explicitly by :

9> —4q 2
_q_

D= 3
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5.1. General Theorem

In this section, we state and prove a non-linear characterization result for
classical orthogonal polynomials on non-uniform lattices. The result is stated
in the following theorem.

Theorem 5.1. Let (P,),>0 be a sequence of classical orthogonal polynomials
on a non-uniform lattice. Then, for n > 1, P,(x(s)) and P,_1(x(s)) satisfy

Bl (5)) [ Pa(@()S2 P01 (2(5)) + P (w(5))S2Pa (2(5))|
+6(2()) [ Pa((5))DuS0 Paci (2(5)) + P (w(5) DS, Pa((s)) |
= |:(Dn_1 -+ Dn — Gn_lAn_l)iﬂ(S) + En—l

~GutBuot + By Pa(w(s)) Paca (a(5))

+Gn—1 (Pn(x(s)))2 - CnGy (Pnfl(x(‘g)))z ) (5.3)
where
By,
D, = %(/\n — A1 +1), En= % <()\n - An+1)fn JF7/10> )
1
Gn = 2An ()\nfl - )\n+1)' (54)

Furthermore, if (Qn)nen is a sequence of polynomials a on non-uniform
lattice such that Qo(x) = Py(x) and, for n > 1, Q,(x(s)) and Qn—1(x(s))
satisfy (5.3). Then Qn(x(s)) = P,(x(s)), for alln > 0.

Proof. Using the fact that (P, (z(s))n>0 is a classical g-orthogonal polynomial
sequence on non-uniform lattice, substituting n by n + 1 in (5.1) we obtain

$(2(5))D7 Prg1 (2(s)) +9(2(5))SeDa Prt1 (2(5)) +Ans1 Posa(2(s)) = 0. (5.5)

In (1.1), using the product rules given in [12, page 407], in [11, pages 741-
742] or in [10, page4], we obtain:

DiPn+1(x(5)) = [Anoz2x(s) + Apfla+1) + Bn] ]D)ipn(x(s))
+24,D,8, Po(2(s)) — AnUn (2(5))D3 Po(2(s))
—CpD2 P, (2(s)) (5.6)

and

SeDy Pt (z(s)) = [AnaQ:c( )+ A f(a+1) Bn] S.D, P, (2(s))
+2A,8% Pp((s)) — AnUi(2(s))Se Dy Po(2(5))
—A,P,(x(s)) — Cr,Sy D, Pp_1(x(s)). (5.7)
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Using (1.1), (5.6) and (5.7) to replace D2 P, 1(x(s)) , SpDyPoi1(z(s))
and P,y1(x(s)) in (5.5), we obtain:

(2 (5))S5Pu(2(5)) + d(2(3))DaSs Pa((s))

C,
= 72An [/\n—l - /\n+1] Pn—l(w(s))
£ 5 | O = Aea +0)2(5) + O = M) 52 + | Pala(s)), Vo > 1,

which is equivalent to

D(2(3))S3 Pa(2(s)) + ¢(a(5))DuSy Py ((s))
= [Dpx(s) + E,) Po(x(s)) — ChGrPr—1(x(s)), ¥Yn > 1, (5.8)
where D,,, F,, and G,, are defined in (5.4). For n > 2, we replace n by n — 1
in (5.8) and we obtain:
D(@(5))S3 Pa—1(2(s)) + d(2(8))DaSy Pr—r (2(5))
= [Dyp_12(s) + Ep_1] Pho—1(x(s)) — Crm1Gp_1Pr—2(x(s)), ¥Yn > 2.
(5.9)
We also replace n by n — 1 in (1.1) and use the resulting relation to
replace P,_o(z(s)) in (5.9) to obtain:
¢($(8))Sipn,1(x(s)) + ¢(2(8))D2Sy Po—1(2(8)) = Gno1Pa(z(s))
+ [(Dn—l - Gn—lAn—l)x(S) + En—l - Gn—an—l] Pn—l(x(s))a n 2 1.
(5.10)
If we multiply (5.8) by P,—1(z(s)) and (5.10) by P,(z(s)) and add the
resulting expressions, we obtain:
U(@(5)) [P(z(8)SEPa1(2(5)) + P (2(s))S3 Pa(2(s))]
+ ¢(2(8)) [Pr(2(8))DeSe Pr1(2(5)) + Pu—1(2(8))D2Sy Po(2(5))]
= [(anl - anlAnfl + Dn)x(s) + Enfl
_Gn—an—l + En] Pn(JZ(S))Pn_l(l'(S))
+ Gn1 (Pn<$<s>))2 - CnGyp, (Pn,l(a?(s)))2 .

This proves the first part of Theorem 5.1.

Now, we prove the second part.

Let (Qn(x(s)))nen be a sequence of polynomials of a ¢-quadratic vari-
able such that Qg (z(s)) = Py(z(s)) and, for n > 1, Q,(x(s)) and Q,,—1(x(s))
satisfy

W (@(s)) [Qn(z(8)SEQn-1(2(5)) + Qu-1(2(5))S7Qn(2(5))]
+¢((5)) [@n(2(5))D2Se Qn—1(2(s)) + @n-1(x(5))DeS2Qn ((s))]

= [(Dn—l —Gp1An_1 + Dn)x(s) +E, 1 —Gp 1By + En]

X Qn(2(8))Qn-1(2(5)) + Gn1 (Qn(2(5)))* = CuGr (Qn-1(x(s)))*.
(5.11)
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Let ay, be the leading coefficient of @, (z(s)). We shall firstly show by
induction that k,, = a, for all n > 0. We have ag = kg and we assume that
n > 1and ap_1 = ky_1. If we compare the coeflicients of F,(z(s)) in (5.11),
we find that we must consider two cases whether the degree of ¢ is less than
two or equal to two.

e If the degree of ¢(x(s)) is less than two then, we have
1,[)1((047171)2 + (an)2)ank’n71 = (Dn + Dp—1 — Anflanfl)anknfl + anl(an)2
and a, # 0 implies that for the g-quadratic variable, we have a, =
Anflknfl = ky.
e If the degree of ¢(x(s)) is equal to two then we get
1/11((047171)2 + (an)Q)anknfl + ¢2(an717n71 + an/Yn)anknfl
= (Dn +Dp_1 — An—lGn—l)ankn—l + Gn—l(an)2

and a, # 0 implies that for the quadratic case or the g-quadratic case,

we have a,, = A, _1kn_1 = ky,.

We have by assumption Qo(x(s)) = Po(x(s)). Assume further that n > 1
and we Qu_1(2()) = Po_1(2(5)) bt Qu((s)) 7 Pa(a(s)).

Then Qn(x(s)) = Pu(2(s)) +9(2(s)), where g(x(s)) = c(Fr(2(s))+---),
¢ # 0. Since Q,(x(s)) and P,(x(s)) have the same degree and the same
leading coefficient, we must have r < n. From (5.11), we get

¥((s)) [(Pa((3)) + 9(2(5)))S% Pa1(2(s))
+Po1(2(3))(S2 Pa(2(s)) + Sig(a(s)))]
+ ¢(x(5)) [(Pu(2(s)) + 9((5)))DeSe Po—1(x(s))

+Pn—1(2(5))(DeSe Pr(2(s)) + DaSeg(x(s)))]
= [(Dn—l —Gp_14,-1+ D, )x( ) +FE,1—Gp_1B,-1 —l—En}
g(x

X (Pn((5)) Poo1(2(5)) + g(2(s)) Pa-1(2(s))) + Gna ((Pn(ff(S)))2

+29(2(5)) Pa(@(s)) + (9(2(5)))%) = CuGo (Pa-1(2(s)))”.
Using the fact that P,(x(s)) and P,_1(z(s)) satisfy (5.3), we obtain
U(@(s)) [9(2()SEPa-r(2(5)) + Paoi1((s))S3g(z(s))]
+¢(x(5)) [9(2(5))DeSe Pr1((s)) + Pr1(2(s))DeS2g(z(s))]
= [(Dn-1— Gn-1An_1+ Dp)x(s) + En_1
—Gp—1Bp—1 + Ey] g(2(5)) Po-1(2(5)))
+Ghn-1 (29(2(5)) Pa(2(5)) + (9(2(5)))?) - (5.12)

We compare the coefficients of F,y,.(x(s)) in (5.12). Two cases arise:
1. If the degree of ¢(x(s)) is less than two, then we get

U1 ((atn-1)? + (e)?) ckn—1 = (Dy + D1 — Gn_1An_1)ckn_1 + 2ckyGyp_1,
which is equivalent to

¥1 ((an-1)?+ ()?) ckp—1 = (Dy + Dyt — Gpo1An_1)ckn—1 + 2¢ky_1Gn_1A,_1.
Then, for the g-quadratic variable, this is impossible if ¢ # 0.
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2. If the degree of ¢(x(s)) is equal to two, then we get

wl ((0471—1)2 + (ar)z) Ckn—l + ¢2 (Oén—lf)/n—l + O‘r’)/r) Ckn—l
= (Dn +Dp1 — anlAnfl)Cknfl + 2CknGn71a

which is equivalent to

flpl ((O[nfl)2 + (ar)2) Cknfl + ¢2 (Oln—17nf1 + 047”77“) Cknfl
= (Dn +D, 1 — anlAnfl)Cknfl +2¢kn 1Gr_1An_1.

Again this is impossible if ¢ # 0.

5.2. Special Cases

We can specialize the above result to the various classical orthogonal poly-
nomials on non-uniform lattice, namely Askey—Wilson, g-Racah, Continu-
ous dual g-Hahn, Continuous ¢-Hahn, Dual ¢g-Hahn, Al-Salam Chihara, g-
Meixner—Pollaczek, Continuous g-Jacobi, Dual ¢-Krawtchouk, Continuous
big ¢g-Hermite, Continuous g-Laguerre and Continuous g-Hermite polynomi-
als. Note that the results for the Askey—Wilson and the ¢g-Racah polynomials
would be enough since the other families can be obtained by some limit tran-
sitions. But here, we would like to provide a complete database for all these
polynomials orthogonal on a g-quadratic lattices.

5.2.1. Askey—Wilson Polynomials. The Askey—Wilson polynomials have the
g-hypergeometric representation [18, P. 415]

a"pn(x;a,b,c,dlg) 4. q ", abedg" ', e’ ae="
(ab, ac, ad; q)p A ab, ac, ad

q;q) , x =cosf.

They satisfy the divided-difference equation (5.1) with

¢ (x(s)) = 2 (deba + 1) 2% (s) — (a 4+ b+ ¢ + d + abe + abd + acd + bed) x (s)
+ab+ ac+ ad + bec + bd + c¢d — abed — 1,
4(abcd71)q%x(s) n 2(a+b+c+d— abc — abd — acd — bed) q?

b (a(s) = S -

The monic Askey—Wilson polynomials are characterized by the following
non-linear recurrence relation

(@ (s)) [Pa(@(5))S3Pa-1(2(s)) + Pa1(2(s))S5Pn(2(5))]
+ ¢(2(s)) [Pn(2(5))DaSs Po—1(2(5)) + Poo1(2(s))DeSa P (2(s))]
= [Knz(s) + Mn] Po(x(s)) Pr1(2(s))

q—1
2(q +1)(abedg™ % — g3 ") 2
_ = 1 Cn (Pn—l(x(s))) ’

where
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K o 2/qlabed (" 2(q + 1)% +2¢") — (2¢™ + (¢ + 1)?)]

(¢ = 1)g"
o = L —g")(1 —abg" 1)1 — acq" )(1 — adg"~")(1 — abedg" ")
"4 (1 = abedg®=3)(1 — abedg®n—1)
(1 —beg" ")(1 —bdg"")(1 — cdg" )
X K
(1 — abedg®n—2)2
2/q(¢*™ — abed) N~
M,=—"—————"F(at+a — (4. +Cn
q"(q—1) ( ( )>
N { 2,/ql¢*" ' — abedg + (q + 1)(¢*" 2 — abedq))] }
q"(q—1)
X (a +a = (/Tn,l + CN'n,l))
+2(a—|—b—|—c—|—d—abc—abd—acd—bcd)q%
q—1 ’
with
T (1 — abg™)(1 — acg™)(1 — adq™)(1 — abedg™ 1)
" a(l — abedg® 1) (1 — abedg?™) ’
o ol —q")(1 —beg")(1 — bdg"1)(1 — cdg™ )
" a(1 — abedg?—1)(1 — abedg?"—2) '

5.2.2. g-Racah Polynomials. The ¢g-Racah polynomials have the ¢g-hypergeometric
representation [18, P. 422]

— afq Tt g, 6ygt Tt

. B q
Ry (u(x); e, B, 7, 0]q) = adhs ( aq, 809, vq

q;q) ,n=0,1,2,...,N
where
p(x) = q~" + dyg™

and

ag=q N or Big=q N or yg=q ",

with N a non-negative integer. They satisfy (5.1) with

d(x(s) = (Bag® +1)x(s)®> —q(vqa+vqB8 + qaBd+qa B+ B5+v5+ v+ a)x(s)
+2¢q(—®aBdv+vqo+~2q5 +va6*B+qaBs+qysa+vqB5—v9),

2 _
wla(e) =2va (P20 )
P (g +7aB8 78—y +gaBi+gaf—a—p9)
qg—1
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The monic g-Racah polynomials are characterized by the following re-
lation

P(2(5)) [P (2())S3Pu-1(2(5)) + Po1(x(5))S3 Pu(2(s))]
+ ¢(2(8)) [Pa(2(5))DaSe Pa—1(2(8)) + Pr-1(z(5))DaSs Pn(z(s))]
(@ + 1)vq(aBq™™ — q) (Po(2(5)))?

= [Knz(s) + M) Po(2(8)) Pu—1(z(s)) — e
(g4 )ygaBe ! = 1) .
(q — 1)q” Cn (Pn—l(x(s))) )
where
. OBVAW @+ 1)’ +2¢°)  Va(la+ 1)’ +29")

g—1 q"(qg—1)
q(1 —ag™)(1 —aBq™)(1 — Bog™)(1 —v¢")(1 — ¢™)(1 — Bg™)(y — afg™) (s — aq™)
(1 —aBg?~1)(1 — afg?"+1)(1 — aBg?")?

)

Cp =

M, = ValeBa" —1) = )(A +C, —q‘y&—l)

qr
(aBg®™ — 1) + alg + 1) (aBg®™ — q) =
( (g = 1) ) <An 1+C’n_1*Q’Y5*1)

+

3
2

(gva +qyB6 — v6 — v + qa3d + qaf — a — $d) q

-2
qg—1
with
T~ (—ag" (1 —afg™ (1 = Bog" (1 = yg" ")
" (1 —afg> 1) (1 — afg®+?) ’
41 —=¢")(1-5q")(y —aBg")(6 — ag”)

(1 —afg®)(1 — afg**1)
5.2.3. Continuous Dual g-Hahn Polynomials. The Continuous Dual ¢-Hahn
polynomials have the ¢-hypergeometric representation [18, P. 429]
a"pn(x;a,b,clg) g, ae?, ae=" B
(abacq)n ®2 ab, ac q¢,q), x=-cosb.
They satisfy (5.1) with
(xz(s)) = 2(x(s))? — (a + b+ c+ abc)x(s) — 1 + be + ab + ac,
4,/q 2(a+b+c—abc)\/q
Y(s(s)) = —ﬁf(s) + 1 :
The monic continuous dual ¢-Hahn polynomials are characterized by
the following non-linear recurrence relation

(- a4 HEEREEZ NI [ (o(6))82 P (0()) + P (als))52 P (a()]
qg—1 qg—1

+ (2(m(s))2 —(a+b+c+ abc)z(s) — 1+ bc+ ab + ac)
X [Pn(@(8))DeSe Pr—1(2(5)) + Pr—1(2(s))DeSa Pr (2(s))]

[ (2(@+1*+24") va 2(s) - 2 (Bn + (¢ + 2¢)Br_1) L Aatbtc—abe)yq
q"(¢—1) q"(q—1) g-1

M(P"(w(b))) +MC,L (Pn_1(x(s)))?,

X Pp(8)Pn_1(s) + -1 n(g—1)
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where

1

By =—5(a+a™ —a (1 —abg")(1 - acq") = a(l = ¢")(1 = beg" ™))
1

Cp = 7(1=¢")(1 = abg")(1 = acg"")(1 = beg" ™).

5.2.4. Continuous g-Hahn Polynomials. The Continuous ¢g-Hahn polynomi-
als have the g-hypergeometric representation [18, P. 415] or [8, P. 75]

(J§Q)7

here x = cos(0 + ¢). They satisfy the divided-difference equation (5.1) with

(ae™)" P, (z;a,b,c,d;q) p q ", abedg" ", ael0129) qem
(ab, ac,ad; q)n, AT abe?¥ ac, ad

d+ deb + at? + bt?ad + abet? d + bt?
¢(x(s)):2(dcba+1)x2(s)—( +debt al” + ba +ZC +etacd+bt)o(s)

N cat? 4 bt?d — t2cbad + cbt? + cd + t? + bt'a + t2ad

12 ’
1
4 (abed — 1) q2 x (s —c —d+ cda — bt? — at? + deb + cbat? + bt?
olato = L= Deb20) _y 1 o o)

where t = ¢!,
The monic Continuous g-Hahn polynomials are characterized by the
following non-linear recurrence relation

P(x(5)) [Pa(2(5))S2 Po1(2(s)) + Po1(2(s))S3 Pa((s))]
+ ¢(2(5)) [Pr(2(5))DaSe Po-1(2(s)) + Pn-1(z(s))DaSs Pr(2(s))]
= [Kna(s) + My] Pa((s)) Po—1(2(s))
2(q 4+ 1)(—abedg® " + ¢%) 2
NCEG (Pn(2(s)))
2(q + 1)(abedg® — q)
V(g — Lg»

+ Cn (Pn—l(x(s)))Qv

o _ 2abed(@(a+ 1" +2¢")]  2v4((a+1)° +24")
! 3 (q—1)q (¢ —1)g" ’
1(1-q¢"(1 - beg™ ™M) (1 — bdg" 1) (1 — cdg" e %) (1 — abedg™™?)
4 (1 — abedg?=1)(1 — abedg?™—3)
1 —abg"'e**) (1 — acg™ M) (1 — adg™™")
(1 — abedg?n—2)2 ’

_ \/@(1 - adeQQn) io -1 ie (A4~

M, = —q”(q ) (ae +a e (A, + C’n)>
(q2 - q%_lade) } ip —1 g T ~
— +2)—= ae’” +a €7 —(Apn_1+Ch_
{2 2 1 (Anes + Go)

o 122 2 2
*2\/5( c—d+cda—bt (qitl;trdchrcbat + bt7q)

Cn =

o
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with t = e,
T (1 — abg™e**?)(1 — acq™)(1 — adq™)(1 — abedq™ ")
" aet? (1 — abedq?»=1)(1 — abedg®™) '
o ae™ (1 —¢")(1 — beg™ M) (1 — bdg" ) (1 — cdg™ te 2?)
" (1 — abedg?»—1)(1 — abedg?7—2) '

5.2.5. Dual g-Hahn Polynomials. The Dual ¢-Hahn polynomials have the g¢-
hypergeometric representation ([18, P. 450] or [8, P. 76]

s+1

—n7 _Sv 0

’yq,q q;q)7 n:0717“‘7N7

where z(s) = ¢~° + y0¢°T! and N a non-negative integer. They satisfy (5.1) with
Y g

(va+ ¢V 0 + gV 4+ Da(s)

p(a(s)) = (x(s))® - g%
+7(qN+1v5 —6q" +0+1)q
2N ’
2,4 (@S + gt —7q+1)\/ﬁ_

U(s() = = Yhw(s) + CERTE

The monic Dual g-Hahn polynomials are characterized by the following non-
linear recurrence relation

1/1(93(8)) [P (2(5))S% Pa1(2(5)) + Pa—1(2(s))S7 Pa(a(s))]
¢(x(5)) [Pn(2(5))DaSs Pr—1(2(5)) + Pr—1(2(5))DuSs Pr(2(s))]

:WM@+Mﬂmmmaamm+%%%3mM@w
+ UV b (a(s))?,
(1-q)q
where
_Va(2" " +1)
T e
o VA~ +296q — @y + 2vq — 2 VT y + g Ny — VT +2¢7Y)

q—1
Cn=74(1—q" """ (1 =7g")(1 = ¢")(E —¢" 7).

5.2.6. Al-Salam—Chihara Polynomials. The Al-Salam—Chihara polynomials have the
g-hypergeometric representation [18, P. 455] or [8, P.77]
—if

. (ab Q) ,aeie,ae ) _
Qn(z;a,blq) = 302 ab. 0 q;q ),z = cosé.

They satisfy the divided-difference equation (5.1) with

d(z(s)) = 2(z(s))* — (a + b)x(s) +ab—1,
W(s(s)) = _4\(]/@(5) L 2atb)ya

—1 qg—1
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The monic Al-Salam—Chihara polynomials are characterized by the following
non-linear recurrence relation

W ((5)) [Pa((5))S3 Pa1(2(s)) + Pao1 (2(5))S2 Pa((s))]
+ ¢(2(s)) [P (2(5))DeSe Pr—1(2(s)) + Po-1(2(s))DaSz Po (z(s))]

= (s (s 1(x(s M (s 2
= [n(s) + Ma] Pa(@(s)) Pa-1(2(s)) + = (Pa(a(s))

T Pn_1(x(s 2,
T (Peaa)
where
_24(2¢" — ¢’ +1)
Fon = (1—q)
M, — (a+b)\/§(q73).
1—gq

5.2.7. g-Meixner—Pollaczek Polynomials. The g-Meixner—Pollaczek polynomials [18,
P. 460] or [8, P. 78]

. 2. —n i(0+2¢) —i0
P (2 _ -n —ing (@73 @)n g ", ae ,ae
(@ialg) = e (g, 2.0

q, q) ,x =cos(0+ ).

They satisfy (5.1) with

d(x(s)) = 2(z(s))* — 2acos pz(s) + a® — 1,

_4q 4a./q cos @
U(s(s)) = = as) + =TT

The monic g-Meixner—Pollaczek polynomials are characterized by the follow-
ing non-linear recurrence relation

(—%x(s) N 4aﬁc$s 90) [pn (2())S2 Po_1(x(s)) + Pn,l(m(s))Sipn(I(S))]
—+ (2(3:(8)) — 2acos px(s) + a® — 1)
X [Pa(2(3))DaSe Pt (2(5)) + Pa1 (2(5))DsSe Pa(2(5))]

2 ((q+1)* +2¢" )ﬁ) o(s) + 22200890+ 5)

q"(q—1) —1 Pr(a(8)) Pn-1(x(s))

2q+1)a? o, (Va1 —g")(1—a’g"
ra—1 ) +( 2q"(q — 1)

1)) (Pa-1(a(s))*.

5.2.8. Continuous g-Jacobi Polynomials. The Continuous g-Jacobi polynomials have
the g-hypergeometric representation [18, P. 463] or [8, P. 78]

P (]q)

B O (Y Y LT L
T @ P gty gretsn) _iarst)

q;q) ,x = cosf.
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They satisfy the divided-difference equation (5.1) with

1 1
6 (x(s)) = (p2o2P+4 4 1) 22 (s) + §(p+ 1)ps (p2oF20+2 _po _ pot 2642 4 18) 4 (5)

1
-5 (p2ot2P+4 | patB+3 _ p2a42 4 pakBt2 2642 4 patftl | )

4p (p2a+2ﬁ+4 _ 1) z(s) (7p2a+ﬁ+2 —po f pat26+2 +p6) p

e = T T ey p—1

with p = ¢°.
The monic Continuous g-Jacobi polynomials are characterized by the follow-
ing non-linear recurrence relation

w(x(s)) [P (2(5))S% Pa1(2(5)) + Pa—1(2(s))S7 Pa(2(s))]
¢(x(5)) [P (2(5))DaSs Pr—1(2(5)) + Pr—1(2(5))DsSs Pr(z(s))]
= [an(8)+Mn} P ((5)) Pa-1((s))

g2 (g + 1)(g" P21

Y (Pu(a(s)))?

(¢—1)g"
qlq+1)(g* TPt — 1)
B f (q _ 1)qn Cn (Pn,1(x(s)))2 )
where
i Val(l@+ 1) (14977%) + (2¢" (<1 +¢H2))]
" (q _ 1)qn )
1ot f—
1 (L= a") (1 =g ) (1= g ) (1 = g oth) (1= grrdets)
Cn = 4 (1 — gZn—1H+atB)(1 — g2ntitath)
(1 +qn+é(a+ﬁ+1)> (1 _ qn+%(a+5))2
X (1 _ q2n+a+ﬁ)2 )
a+pB+4+2n+2
My = f(q+1)( D) (q%‘”% g T (A, + Gy ))
2(q — g~
g 1t (g D (g )
2q"(q—1)
X <q%a+% ST - (Anﬂ + C~'n71))
e @ 3
( _pRatite _ e +p 2642 4 p0) 3
— 1 ’
with
1 - (1 — gtatly(1 — gatBtntlyq — qn+%(a+ﬁ+1))(1 _ qn+%(a+5+2))
e q%a% (1 — gotB+2n+1)(1 — gatB+2n+2) ’
o gRti(l— g1 — g™t <1 + qn+%(a+ﬁ)) (1 + qn+%(a+ﬁ+1)>
Cn = .

(1 _ qa+6+2n)(1 _ qa+5+2n+1)

5.2.9. Dual g-Krawtchouk Polynomials. The Dual g-Krawtchouk polynomials [18,
P. 505] or [8, P.80]

s—N

7’”7 7576
Ko(a(s)ie,Nlg) =i (108

q7q)7 TL:071’"'>N7
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where x(s) = ¢~° 4+ ¢¢°~". They satisfy (5.1) with

d(x(s)) = (2(5))* = (c+ 1)g Va(s) = 2c(g” " —¢*"),
2\/q 2(c+1)/q
x(s) + .
(#) (q—1)g"
The monic Dual ¢-Krawtchouk polynomials are characterized by the following
non-linear recurrence relation

2\/q 2(c+ 1)\/6 9 9
(= 2% + ZE ) [Pulalo)BE s (0(6) + Pacr(ae)8E P ()

+ ((@()” = (e+ 1)aVa(s) — 2e(aN = q*N))
X [Pa(a <>>D8Pn 106) + Facs (@68 o)

| (" + ) va C+1)f(q+5) ” "
a ( q—l ) (¢ — 1)g¥ Pr(x(8)) Pr-1(2(s))
(q+1)q? Valg+1)(1—¢")(1 — g N1 ,
g FrEE)’ +< = 1) )(Pn_l(a:(s))) .

5.2.10. Continuous Big g-Hermite Polynomials. The continuous big ¢g-Hermite poly-
nomials [18, P. 509]
—n7 aei97 ae—ig

Hy(r;a,]q) = a” "362 (q 0.0

q7q) , x =cosb.

They satisfy (5.1) with

B(a() = 2e(s))* — ass) ~ 1,
wls(s) = Y a(s) + 2.

The Continuous big ¢-Hermite polynomials are characterized by the following
non-linear recurrence relation

(=L a(e) + 22 [P(alo)B2Par ((6) + P (0(6))SE P a5)]
+ (2((5))” — az(s) — 1) [Pa(2())DaSa Pa-i(2(5)) + Pa1(2(5))DaSe Pa ((5))]
C(2(@+1)*+2¢") V3 (s) 2 MA@ +5) s
2(q + 1)g°
q"(g—1)

[SI[)

(q+1)(¢" —1)ya
2¢"(q — 1)

X Pr1(x(s)) + (Pa(2(s)))* — (Pa—1(z(s)))*.

5.2.11. Continuous g-Laguerre Polynomials. The Continuous ¢-Laguerre polynomi-
als have the g-hypergeometric representation [18, P. 514] or [8, P. 81]
—i0

q;q) ,x = cosf.

N (qa+1;q)n —n 3ot il oFati,
piot) = e (7
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They satisfy the divided-difference equation (5.1) with
1
_p(p+Da(s)
2qN
a+%

+ p2a+2 _ 17

with p = ¢°.
The monic Continuous g-Laguerre polynomials are characterized by the fol-
lowing non-linear recurrence relation

1/1(1’(5)) [P ((5))S% Pa—1(2(5)) + Pa—1(2(5))S% P (2(s))]
¢(x(s)) [Pr(2(5))DeSe Pr—1(2(s)) + Po-1(2(s))DaSs Po(z(s))]
= [an( )+ My] P ((s)) Pr-1(2(s))
— Gn-a ( n(x(s))) — GO ( n—l(x(s)))Q:

where
n? n2+5 15 13 n? 2
nKn=q""T —¢"+¢" +¢" T +¢" —pg? +2pg2 —q" T - ¢® —2pg>
n 3 3 n
—pg" TR T gt P~ g g

2
+qn +8 +pqn +% +4pqn+% _ 2pqn +§ _Spqn+§

_|_qn2+7 +4pqn+§ +2pqn2+%7

with &, = — (g — 1)%(p* — 1)¢"* 3,

VnMn:q2n+%a+%+q2n+§a+1+q2n+%a+%+q2n+%a+2+q2a+2 +q2a+4
2n+%a+3 2n+%a+% a+% 171 a+% 17 2n+§a+3 2 2n+%a+g 2
+gq +gq 47" 2p* +4¢""2pt —¢q P —q P
gttt Ty g gPrtantap o ety _ grtaety?
_q2n+%a+%p2_q2n+%a+1p2_q2n+2ap q2 +gp q2a+4p2
—gEtp — qEOtEp? 4 gt 4 gty
with v, = 2(p* — 1)qT,
n24 1 9 n2+32 z n2+7 n243 5 5
TaGn=q" "5 4 q3p—pg" 3 —pgd — g T —pg" TE —pgt 4> +pgt T
n2 s n241 3 n?
+q" P+ pd" T 4 pe2 — " ¢+ g T

where 7, = —(q — 1)%(p? — 1)q"+%7
1 n n-rao
Cn=1(1=g")1—=q"").

5.2.12. Continuous g-Hermite Polynomials. The Continuous ¢g-Hermite polynomials
have the ¢-hypergeometric representation [18, P. 540] or [8, P. 82]

) -n s
Hn(1:|q) — ezn92¢0 (q 77 q; qne 2zn0) T = cos 0.

They satisty the divided-difference equation (5.1) with

d(x(s)) = 2(z(s))” — 1,
NG
P(s(s)) = R
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The monic Continuous g-Hermite polynomials are characterized by the fol-
lowing non-linear recurrence relation

W (x(5)) [Pa(2(5))S; Pac1(2(8)) + Pa1(2(5))S3 Pu((s))]
+ ¢(2(5)) [P (2(5))DeSe Pr1((s)) + Pr1(2(s))DaSs P (2(s))]

- RSN o) + SEDL (b (a(ey))?

q"(1—q) (I-aq)q
. (1 + Q)\/a ()2
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