
https://doi.org/10.1007/s11042-022-12368-3

An 8-bit precision cipher for fast image encryption

J. S. Armand Eyebe Fouda1,2 ·Wolfram Koepf2

Received: 3 January 2021 / Revised: 26 April 2021 / Accepted: 18 January 2022 /

© The Author(s) 2022

Abstract
Implementing chaos based ciphers usually involves 32-bit floating-point arithmetics that
is hardware resources costly. The limitation of the computational precision is hardware
imposed and transforms chaotic orbits into limit cycles with short periods, hence alters their
randomness. In cryptographic applications, short period dynamics and weak randomness
result in security issues. In order to address this concern, we propose an 8-bit precision
cipher that can be implemented with low-end microprocessors running 8-bit integer arith-
metics. The cipher includes a quantized pseudo-random number generator (QPRNG) based
on a 16-dimensional quantized Arnold’s cat map (QACM). We used entropy measure,
statistical, sensitivity and key space analyses to evaluate its security level under limited com-
putational precision. Simulation results attest that it is as highly secure as those involving
real-number arithmetics, even for only 8-bit precision. We also showed that the period of
the proposed QACM can be chosen such that Tx > 1027, which is very large as compared to
existing QACM. Such a large period implies a high randomness of the derived QPRNG that
is confirmed by statistical NIST tests. Contrary to existing ciphers that include other chaotic
systems than the QACM for strengthening the security level, ours is exclusively based on
the QACM and is fast, despite the included high-dimensional QACM.

Keywords Chaos · Multimedia encryption · Information security

1 Introduction

Chaos based ciphers mostly include permutation and diffusion operations [16, 22, 25, 36].
The permutation operation allows to shuffle the plaintext characters while the diffusion pro-
cess changes the character values. For the generation of permutation and diffusion keys
that are necessary for these two operations, a random number generator is required. Mostly,
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random numbers are derived from chaotic systems due to their ergodicity and sensitivity
to initial conditions [16, 30]. These chaotic systems usually involve real-number arith-
metic, while data to be encrypted usually are integer encoded characters (image pixels,
text characters. . .). Moreover, in some special cases, the target hardware implementing the
chaotic system is precision limited [7, 20]. Although there is no need for converting real-
numbers into integers in some chaos based ciphers to generated permutation keys [15, 16],
the generation of the diffusion keys inevitably imposes the chaotic numbers to fit the phase
space and the precision of the plaintext. For ASCII symbols for example, the values used
for the diffusion operation need to be 8-bit encoded for the ciphertext to remain an ASCII
symbol. In the case of a gray-level image, the diffusion values should be 8-bit encoded for
the encrypted image to preserve its initial format.

The orbits generated from a chaotic system using finite precision are no longer chaotic,
but limit cycles with a finite period length [2, 4, 5, 13, 14, 20, 27, 34]. Thus, the randomness
of the discrete chaotic sequence is altered by the limited computational precision [12, 19,
20, 28], which seriously affects the security level of the cipher. Some investigations have
been made to evaluate the impact of the data precision on the randomness of some well-
known chaotic systems [32]. Indeed, using finite computational precision transforms chaotic
sequences into periodic orbits with short period lengths, which does not meet requirements
of cryptography. It is well known that longer periods and flat period distribution allow to
overcome the limited range in the number representation of digital systems, which is very
important in constructing high quality PRNGs [39]. Therefore, most of the algorithms pro-
posed in the literature have been implemented under more than 8-bit precision condition.
Wafaa et al. in [37] presented a fixed-point hardware realization of the logistic map expe-
riencing a trade-off between computational efficiency and accuracy. They showed that the
minimum bus size for the pseudo-random number generator (PRNG) to pass all the NIST
tests is 45. Nagaraj et al. in [32] proposed a PRNG in which the average period length is
increased by switching between robust chaotic maps. There are several works in the liter-
ature that have been carried out in order to increase the period of digital chaotic systems
realized under limited precision conditions. Chunlei et al. recently investigated the effects
of limited computational precision on discrete chaotic sequences [14]. They proposed a new
PRNG that exhibits random sequences with period lengths longer than those of the logis-
tic and tent maps under the same precision, but they didn’t give an estimate of this period.
As it is the case for many digital PRNG, the period of the exhibited orbits is usually much
smaller than the number of non-trivial points of the system.

Arnold’s cat map (ACM) is known to be chaotic, area-preserving, ergodic and mixing,
and invertible [9, 23, 28]. It has a unique hyperbolic fixed point and the linear transfor-
mation defining it is hyperbolic. Its quantized version also forms short limit cycles whose
lengths do not exceed 3m,m being the modulo value. In the case of n-bit precision (m = 2n)
which is convenient for digital applications, the period of the quantized Arnold cat map
(QACM) is only equal to 3 · 2n−2, n ≥ 2, which is effectively smaller than 3m. There-
fore, for the security level of ciphers including the QACM to be enhanced, its period needs
to be increased [3, 13, 39]. The other properties of this interesting map can be found in
the literature [3, 9, 13, 23, 28]. The ACM is used in cryptography, in digital tattoo appli-
cations, in watermarking and for random number generation to cite a few [9, 10, 29]. The
QACM is particularly used for image scrambling due to its periodic nature [8]. In such a
case, it is combined with another chaotic map to increase the security level of the cipher [6,
31, 31], which involves floating-point arithmethics. The QACM has been also used for the
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implementation of public key ciphers [24], but the latter are not secure when dealing with
QACM with weak periods [26]. When the QACM is not combined with another chaotic
map, to overcome the security issue caused by its weak period, most ciphers are based on its
continuous phase space version that corresponds to m = 1 and which also involves floating-
point arithmetics [18, 41]. As floating-point arithmetics is hardware resource costly, another
alternative is to increase the dimensionality of the QACM, as high dimensional maps pro-
vide more complicated dynamics than lower ones for some appropriate parameter setting. In
addition, highly complex dynamics enhance the confusion and diffusion properties in cryp-
tographic applications [38]. In [39], Ta et al. proposed an approach to extend the dimension
of the basic 2-dimensional (2D) QACM by using the fast pseudo-Hadamard transform. The
resulted Cat-Hadamard map presents a period that is not so large for enhancing diffusion
and confusion properties in cryptographic applications.

In this paper, we propose an 8-bit precision cipher that can be implemented with low-
end microprocessors running 8-bit integer arithmetics. The cipher includes exclusively a
quantized pseudo-random number generator (QPRNG) based on a 16-dimensional (16D)
QACM that exhibits a large period. In order to considerably increase both the period and
the complexity of the proposed QPRNG, we suggest to switch between different 2D QACM
by defining coupling methods that allow to easily extend the dimension of the system as
the number of switches increases. As the period of the set of switches is the least common
multiple (LCM) of the periods of the individual switches, the switching instants are chosen
as distinct prime numbers for the period of the switches set to be the product of all the indi-
vidual periods. For the QPRNG to include both initial conditions and control parameters,
we suggest to control an 8D time switching based QACM by another 8D time switching
based QACM with amplitude-controlled switching instants. Thus, the first 8D QACM is
time-controlled using prime numbers, while the second one is space-controlled. We verify
that the period and the complexity of the proposed PRNG is strongly related to the number
of 2D QACM and switches under interplay. Considering the large period and the complex-
ity of the resulting QPRNG, the proposed 8-bit precision cipher involves exclusively integer
arithmetics, and combines the confusion and diffusion operations in a single loop.

The rest of the paper is organized as follows: Section 2 is devoted to the generation of
random integers, Section 3 presents the new cipher, Section 4 is devoted to the performance
analysis of the proposed cipher, while Section 5 summarizes the paper.

2 Generation of random integers

Our purpose is to design a PRNG exhibiting as much as possible complex dynamics for
multimedia encryption. In practice, chaotic systems are complex as their dynamics is nearby
brownian. The particularity of the system we are going to propose is that it generates
integers, instead of real numbers as it is the case for many chaotic systems.

2.1 Systemmodeling

We consider the basic model of the QACM, which is known to be chaotic and reversible. It
is also known to be periodic, according to its finite state space, and that its period depends
on the initial conditions [3, 11]. The basic 2D QACM is modeled by

{
x1(t + 1) = x1(t) + x2(t)

x2(t + 1) = x1(t + 1) + x2(t)
mod m, (1)
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where m ∈ N>1, xi ∈ N, i = 1, 2, and t ∈ N. While taking m = 2p , p ∈ N, the minimal
period of the corresponding QACM is

�(p) = 3 × 2p−2, p > 2, (2)

with �(1) = �(2) = 3, while its upper bound is 3m [3, 9, 13]. For relatively small values
of m, such a short period needs to be increased to improve the performance of QACM based
ciphers [17]. Working in this direction, we propose to couple four two-dimensional (2D)
QACM to obtain an 8D QACM. The proposed 8D QACM is supposed to provide a large
key space for data encryption .

We assume that variables x1 and x2 in (1) describe respectively the momentum and the
position of a particle. For extending this assumption to the 8D system, let us assume that
xi , 1 ≤ i ≤ 4, are the momenta of four particles and xi , 5 ≤ i ≤ 8 the corresponding
positions. Then the behavior of the first particle (or first QACM) is described by (x1, x5),
the second one by (x2, x6), the third particle by (x3, x7) and the fourth one by (x4, x8).
The state of the system is described by x = (x1, x2, x3, x4, x5, x6, x7, x8)

T , where (·)T
is the transpose of (·). In order to increase the basic period of the 8D QACM, one can
switch between different configurations, i.e., systems with different initial conditions. Such
a switching process can be seen as shock occurrences between particles. We assume that
there are two shock occurrences that can suddenly change the behavior of each variable
xi (four shocks per particle) and that these shocks periodically occur in time. Therefore,
there are 16 shock occurrences or shock instants di that influence the behavior of the whole
system. The corresponding shock instants vector is noted as d = (d1, d2, · · · , d16)

T . We
can also consider more than four shocks per particle without modifying the dimension of
the phase space of the system: the dimension of the shock space is independently chosen
of that of the system state space. Now considering a linear coupling between particles for
describing interactions and including shocks between particles, we define the following
general coupling term:

xi(t + 1) = xi(t) + ai · xj (t + τj ) + ai+8(1 − ai) · xk(t + τk)

+(1 − ai − ai+8 + aiai+8) · xl(t + τl) mod 2p (3)

where 1 ≤ i �= j �= k �= l ≤ 8, ai = δ (t mod di), τj = 0 (resp. τk = 0, τl = 0) if i < j ,
(resp. i < k, i < l), and τj = 1 (resp. τk = 1, τl = 1) if i > j (resp. i > k, i > l). δ(t) is
the Dirac function and the coefficients ai(t) are defined such that

ai(t) =
{
1, if 0 ≡ t mod di;
0, otherwise.

. (4)

There are many coupling possibilities and we set the following

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1(t+1)=x1(t)+a1x5(t)+(1 − a1)a9x8(t)+(1 − a1 − a9+a1a9)x7(t)
x2(t+1)=x2(t)+a2x6(t)+(1 − a2)a10x7(t)+(1 − a2 − a10+a2a10)x5(t)
x3(t+1)=x3(t)+a3x7(t)+(1 − a3)a11x6(t)+(1 − a3 − a11+a3a11)x8(t)
x4(t+1)=x4(t)+a4x8(t)+(1 − a4)a12x5(t)+(1 − a4 − a12+a4a12)x6(t)
x5(t+1)=x5(t)+a5x1(t+1)+(1 − a5)a13x3(t+1)+(1 − a5 − a13+a5a13)x2(t+1)
x6(t+1)=x6(t)+a6x4(t+1)+(1 − a6)a14x2(t+1)+(1 − a6 − a14+a6a14)x3(t+1)
x7(t+1)=x7(t)+a7x2(t+1)+(1 − a7)a15x1(t+1)+(1 − a7 − a15+a7a15)x4(t+1)
x8(t+1)=x8(t)+a8x3(t+1)+(1 − a8)a16x4(t+1) + (1 − a8 − a16 + a8a16)x1(t + 1)

mod 2p, (5)

which can be put into matrix form as

x(t + 1) = A(t)x(t) mod 2p, (6)
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where the matrix A(t) is defined as

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 m15 0 m17 m18
0 1 0 0 m25 m26 m27 0
0 0 1 0 0 m36 m37 m38
0 0 0 1 m45 m46 0 m48

m51 m52 m53 0 m55 m56 m57 m58
0 m62 m63 m64 m65 m66 m67 m68

m71 m72 0 m74 m75 m76 m77 m78
m81 0 m83 m84 m85 m86 m87 m88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

with m15 = a1; m17 = 1 − a1 − a9 + a1a9; m18 = (1 − a1)a9;
m25 = 1 − a2 − a10 + a2a10; m26 = a2; m27 = (1 − a2)a10;
m36 = (1 − a3)a11; m37 = a3; m38 = 1 − a3 − a11 + a3a11;
m45 = (1 − a4)a12; m46 = 1 − a4 − a12 + a4a12; m48 = a4;
m51 = a5; m52 = 1 − a5 − a13 + a5a13; m53 = (1 − a5)a13;
m55 = 1 + a5a1 + (1 − a5 − a13 + a5a13)(1 − a2 − a10 + a2a10);
m56 = (1 − a5 − a13 + a5a13)a2 + (1 − a5)a13(1 − a3)a11;
m57 = (1 − a5 − a13 + a5a13)(1 − a2)a10 + a5(1 − a1 − a9 + a1a9) + (1 − a5)a13a3;
m58 = a5(1 − a1)a9 + (1 − a5)a13(1 − a3 − a11 + a3a11);
m62 = (1 − a6)a14; m63 = 1 − a6 − a14 + a6a14; m64 = a6;
m65 = a6(1 − a4)a12 + (1 − a6)a14(1 − a2 − a10 + a2a10)

m66 = 1+a6(1−a4−a12+a4a12)+ (1−a6)a14a2+ (1−a6−a14+a6a14)(1−a3)a11;
m67 = (1 − a6)a14(1 − a2)a10 + (1 − a6 − a14 + a6a14)a3;
m68 = a6a4 + (1 − a6 − a14 + a6a14)(1 − a3 − a11 + a3a11);
m71 = (1 − a7)a15; m72 = a7; m74 = 1 − a7 − a15 + a7a15;
m75 = a7(1− a2 − a10 + a2a10) + (1− a7)a15a1 + (1− a7 − a15 + a7a15)(1− a4)a12;
m76 = a7a2 + (1 − a7 − a15 + a7a15)(1 − a4 − a12 + a4a12);
m77 = 1 + a7(1 − a2)a10 + a15(1 − a7)(1 − a1 − a9 + a1a9);
m78 = (1 − a7 − a15 + a7a15)a4 + (1 − a7)a15(1 − a1)a9;
m81 = 1 − a8 − a16 + a8a16; m83 = a8; m84 = (1 − a8)a16;
m85 = (1 − a8)a16(1 − a4)a12 + (1 − a8 − a16 + a8a16)a1
m86 = a8(1 − a3)a11 + (1 − a8)a16(1 − a4 − a12 + a4a12);
m87 = a8a3 + (1 − a8 − a16 + a8a16)(1 − a1 − a9 + a1a9);
m88 = 1+a8(1−a3 −a11 +a3a11)+ (1−a8)a16a4 + (1−a8 −a16 +a8a16)(1−a1)a9.
The matrix of the system at iteration t is equal to the product of the first t matrices of

occurring shocks. As each coefficient ak , 1 ≤ k ≤ 16, can either be 0 or 1, the maximum
number of distinct matrices is NA = 216. The distribution of the matrices is periodic and its
period TA is equal to the least common multiple (LCM) of {dk}k=1,2,...,16. While setting dk

as distinct prime numbers, TA takes its maximum value, that is

TA =
16∏

k=1

dk . (8)

The behavior of the whole system is thus the modulation of the behaviors of the
individual 2D QACM. Therefore, the period Tx of the system is then

Tx = �(p)TA, (9)

This period depends on the choice of dk once p has been fixed. We choose d =
(5, 7, 11, 13, 17, 19, 23, 29, 211, 223, 227, 229, 233, 239, 241, 251)T , which corresponds
to the minimal period Tx = 8.8844 × 1027 · �(p). Such a period is sufficiently large, as
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compared to the basic period of the QACMs. The particular case p = 0, hence m = 1,
corresponds to the ACM that exhibits chaotic behaviors in a continuous phase space.

Although the QACM period �(p) is multiplied by the TA factor in the proposed system,
the orbit length still depends on the initial conditions, and it could be too small for some
initial condition values. For the system to be used as a pseudo-random number generator, it
is better to get full length orbits. Such a requirement is satisfied by considering an external
force temporarily acting on the system as

x(t + 1) = A(t)x(t) + ux(t) mod 2p, (10)

where
ux(t) = (a1(t), 0, 0, 0, 0, 0, 0, 0)

T (11)

for example. By this approach, the system does no longer present a steady state within
the interval [0, 2p − 1], and the number of non-trivial points that an orbit may contain is
Np = 28p . For p = 2 and x(0) = (0, 0, 0, 0, 2, 0, 0, 2)T for example, the orbit lengths
are respectively 252 for the unforced system and 65536 for the forced one, which clearly
corresponds to Np = 216. Forcing the system thus considerably increases the orbit length,
hence acts as a pseudo-random number generator. Figure 1 shows the corresponding first
return maps of the system state x = 27px8 + 26px7 + 25px6 + 24px5 + 23px4 + 22px3 +
2px2 + x1. One can observe that the unforced system presents a fractal aspect while the
forced one is behaving like brownian motion.

2.2 Key space extension: inclusion of control parameters

The period of the system typically depends on the number of particles and the choice of
the shock instants. The shock instants, while chosen as prime numbers, need to be all dis-
tinct, otherwise the period factor does no longer follow the rule in (8). Indeed, a redundant
shock instant appears only once in the computation of TA as it corresponds to the LCM of
{dk}, which contributes to reduce the predicted period. In order to extend the key space, we
modify the architecture of the system by considering amplitude-dependent shock instants,
that could be used as control parameters for the generation of random numbers. Therefore,
we adopt a piece-wise coupling principle interacting two distinct systems, the controlling
system with time-dependent shock instants and the controlled one with phase space-related
shock instants. Indeed, particular phase space values of the controlling system are used as
shock instants for another system of the same type (controlled system). We agree that the
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Fig. 1 (Color online) Normalized first return map of the (a) unforced and (b) forced system, p = 2, x(0) =
(0, 0, 0, 0, 2, 0, 0, 2)T
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Fig. 2 (Color online) Entropy valuesH in terms of the number of rounds R and the block lengthN . From left
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to the solid line, R = 2 the dashed line and R = 3 the dash-dotted line

second system is amplitude-controlled by the first one, which itself is time-controlled (due
to time-dependent shock instants).

Similarly to the time-controlled system, we define {sk}k=1,2,...,16 the set of control param-
eters or shock amplitudes. The dynamics of the amplitude-controlled system thus depends
on the values of control parameters sk . The general coupling term of such a system can thus
be written as

yi(t + 1) = yi(t) + bi · yj (t + τj ) + bi+8(1 − bi) · yk(t + τk)

+(1 − bi − bi+8 + bibi+8) · yl(t + τl) mod 2q, (12)

where i �= j �= k �= l, τj = 0 (resp. τk = 0, τl = 0) if i < j , (resp. i < k, i < l), and
τj = 1 (resp. τk = 1, τl = 1) if i > j (resp. i > k, i > l). The coefficients bi are defined as

bi(t) =
{
1, if xi < si;
0, otherwise,

. (13)

and

bi+8(t) =
{
1, if xi < si+8;
0, otherwise,

. (14)

with 1 ≤ i ≤ 8, q ∈ N≥1 and si < si+8.
For the system to exhibit full range orbits, we also consider a forcing term uy . The

corresponding amplitude-controlled system can thus be put into the following form

y(t + 1) = B(t)y(t) + uy(t) mod 2q . (15)

The elements of the matrix B(t) are similar to those of matrix A(t), except that the coeffi-
cients ai are replaced by bi . The main advantage of this approach is that the two systems can
be run in parallel, which can easily allow to speed up the generation of random numbers.
Moreover, the precision of the two systems are completely independent, which also means
that the amplitude-controlled system can be seen as a converter of the time-controlled sys-
tem. Indeed, in the case the phase space of the time-controlled system is continuous, that of
the amplitude-controlled one can be seen as its digitized version: it acts like an analogue-
to-digital converter. In the case p > 1 and q > 1, the complete system is a 16-dimensional
time varying QACM, and can be written as

z(t + 1) =
(

A(t) 0
0 B(t)

)
z(t) + u(t) mod 2r , (16)
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where r = (p, q)T , p being the precision of the controlling system and q that of the con-
trolled system. This system thus contains 48 key parameters, namely 16 initial conditions
and 16 control parameters, 8 forcing parameters for the forcing system, and 8 other forc-
ing parameters for the controlled system. Such a key length is large enough for designing
secure ciphers. As the controlling system is periodic, the controlled system also is periodic,
knowing that it is quantized.

2.3 Evaluation of the randomness of the system

The NIST-800-22 test suite is useful for evaluating statistical properties and conclude on the
randomness of our system. Such an evaluation is required for the system to be used as PRNG
for data encryption. Therefore, we applied the NIST test to our time varying QACM for
various initial conditions, control parameters and precisions r . For simplification purposes,

we set si =
⌊
2p

3

⌋
and si+8 = 2

⌊
2p

3

⌋
, 1 ≤ i ≤ 8, ux , uy as in (11).

Table 1 shows the results obtained with 21 different initial conditions (x = 0 to x = 20,
y = x), where

x =
8∑

k=1

28(k−1)xk, (17)

and

y =
8∑

k=1

28(k−1)yk . (18)

The sequence length is set asN = 106 for each initial condition. The results are presented
for p = 8 and various values of q. It then appears that the controlling system passes all the

Table 1 P-values [35] of the NIST-800-22 suite test in terms of the number of encoding bits p = 8

x y

Statistical test p = 8 q = 1 q = 2 q = 4 q = 8

Frequency 0.7887 0.3925 0.1866 0.5852 0.1866

Block Frequency 0.9411 0.0000 0.5852 0.2430 0.6890

Cumulative Sums 0.0151 0.4846 0.6890 0.2430 0.5852

Runs 0.9411 0.0000 0.2236 0.9411 0.4846

Longest Run 0.1866 0.6890 0.7887 0.0571 0.7887

Rank 0.6890 0.4846 0.3115 0.3115 0.0414

FFT 0.6890 0.0781 0.2430 0.9411 0.4846

Non-Overlapping Template 0.5852 0.0000 0.5852 0.0298 0.6890

Overlapping Template 0.6890 0.1056 0.3925 0.4846 0.3115

Universal 0.4846 0.6890 0.5852 0.4846 0.2430

Approximate Entropy 0.2430 0.0000 0.3115 0.0414 0.7887

Random Excursions 0.4373 0.9114 0.9763 0.0127 0.5341

Random Excursions Variant 0.1626 0.7399 0.3799 0.0909 0.7399

Serial-1 0.6890 0.0000 0.3115 0.8755 0.9809

Serial-2 0.3115 0.4846 0.3115 0.2430 0.4846

Linear Complexity 0.6890 0.3115 0.5852 0.6890 0.0781
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statistical tests. Five tests (Block Frequency Test, Runs Test, the Non-overlapping Template
Test, Approximate Entropy Test, and the Serial Test-1) were not successful for the controlled
system in the case q = 1, while it successfully passes all the statistical tests for q > 1.

We recall that in our case, a given test is successful as the corresponding P-value is
greater than 0.01. The other tests that are not successful fail for some initial values, but not
for all. Such results were observed only for q = 1. For the rest of the paper, we are going to
consider both systems (controlling and controlled) in the proposed cipher, with p = q = 8.

3 Proposed encryption algorithm

The algorithm we are proposing includes the QACM above presented as PRNG. It combines
the confusion and diffusion steps in a single loop. Both permutation and diffusion keys are
image dependent, which contribute to reinforce the security level of the cipher. We imple-
mented it for color images for a more general use. The Algorithmic steps of the proposed
cipher are given below in Algorithm 1.

3.1 Generating permutation and diffusion keys

The permutation and diffusion keys are directly derived from the QACM using the exter-
nal key. In this paper, we used a 256-bit key S, hence a set of 32 ASCII symbols S =
S1S2 . . . S32 to derive initial conditions and control parameters. The corresponding deci-
mal values are set as K = (K1, K2, . . . K32). There are sixteen initial conditions to be
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derived from the external key. For the time-controlled sub-system, these initial conditions
are determined as

xi(0) =
i+24∑
k=i

k · Kk mod 2p, (19)

while those of the amplitude-controlled sub-system are determined as

yi(0) =
4i∑

k=4(i−1)+1

k · Kk mod 2q, (20)

where 1 ≤ i ≤ 8. Kk is the decimal value of the k-th ASCII symbol Sk of the external key.
Similarly to the initial conditions, the control parameters also are set from the external key.
For this purpose, we first sort into ascending order values K17 to K32 and obtain a sorted
vector Q of sixteen values ranged from 0 to 255. Thereafter, the control parameters are set
as ⎧⎨

⎩
sj = 6 +

⌊
Q(j)
3

⌋
, if 1 ≤ j ≤ 8;

sj = 6 + 2
⌊
Q(j)
3

⌋
, if 9 ≤ j ≤ 16.

(21)

The above initial conditions and control parameters are then included in the QACM to
generate the permutation and diffusion keys. For this purpose, we remove the first t = 100
iterates for transient die out and consider the following N ones to form N -length random
sequences. Sequence X = (x1(t + 1), x1(t + 2), . . . , x1(t + N))T is sorted into ascending
order and the corresponding time index sequence is considered as our initial permutation
key Ix . Similarly, sequence Y = (y1(t +1), y1(t +2), . . . , y1(t +N))T is used as the initial
diffusion key. The generation of the permutation and diffusion keys includes steps 2 to 4 of
our algorithm, and combines only integer operations. The confusion and diffusion processes
are respectively realized by applying the permutation key to the plaintext sequence U as

Us = U(Ix), (22)

and XOR-ing the diffusion key with the shuffled sequence Us as

Uc = Us ⊕ Dy . (23)

Uc is a one-round encrypted sub-image and ⊕ is the bitwise XOR operation. Once a sub-
image has been confused and diffused, the permutation and diffusion keys need to be
updated before encrypting the following sub-image.

3.2 Updating permutation and diffusion keys

From a sub-image to another one are used different permutation and diffusion keys. How-
ever, all of them are related and the process to move from the previous key to the new one
is called updating. For the updating of the permutation key, eight random integers are gen-
erated; in the previous sequence X′, the first eight values are discarded, then the sequence
is eight steps left shifted while the eight newly generated integers are placed at the end of
the sequence. Indeed, let X′ = (X′(1),X′(2), . . . , X′(N))T be the previous sequence, then
the updated sequence is X = (

X′(9),X′(10), . . . , X′(N), x1(1), x2(1), . . . , x8(1)
)T , where

xi(1), 1 ≤ i ≤ 8 are the newly generated integers. Note that only one iteration of the PRNG
is necessary for generating the 8 integers. The updated sequence X is thereafter sorted into
ascending order and the corresponding time index sequence is considered as the updated
permutation key.
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For the generation of the eight new random integers, updated initial conditions also are
required. These initial conditions are image dependent. We set the first fifteen updated initial
conditions as {

xi(0) = K(1 + (Uc(i) mod 32)), if 1 ≤ i ≤ 8;
yi−8(0) = K(1 + (Uc(i) mod 32)), if 9 ≤ i ≤ 15.

(24)

The last initial condition completely depends on the image and is set as

y8(0) =
N∑

j=1

Uc(j) mod 2q . (25)

According to this updating process, the initial conditions change with the sub-image.
The diffusion key also needs to be updated for the cipher to be secure. Thus,

we consider the previous diffusion key D′
y and set Y′ = D′

y ; then update eight
values in Y′ as it was the case for X′. The updated sequence is then Y =
(Y ′(9), Y ′(10), . . . , Y ′(N), y1(1), y2(1), . . . , y8(1))T , and the updated diffusion key is
obtained as

Dy = D′
y + Y(Ix) mod 256, (26)

where Ix is the updated permutation key.

4 Results and security analysis

The performance of the algorithm is evaluated with RGB test images of size 512 × 512
and 256 gray levels to show the color image encryption ability of the algorithm. We also
consider as sub-image length N = 2n, n ∈ {4, 5, 6, 7, 8, 9, 10}. The encryption scheme
should resist all kinds of known attacks: known-plaintext, ciphertext-only, statistical, differ-
ential and brute-force attacks. We present in this section some security analysis results for
the proposed cipher, including: key-space analysis, statistical analysis, differential analysis,
number of pixel change rate (NPCR) and unified average changing intensity (UACI ) for
one pixel difference in the plain-text image. The 256-bit external encryption key used for
our simulation is set as S = azertyuiopqsdfgjazertyuiopqsdfg0.

4.1 Statistical analysis

The statistical analysis concerns the histogram, the correlation of adjacent pixels and the
information entropy of the ciphered image. The statistical analysis of several 256 gray-
scale color images having different contents were evaluated and we present here the results
obtained for the image of Lena (Fig. 7(a)). We evaluate the statistical parameters for differ-
ent values of N . We first evaluate the entropy of image encryption using our algorithm. The
entropy is determined as

H = −
255∑
i=0

p(vi) log2(p(vi)), (27)

where 0 ≤ vi ≤ 255 are pixel values and p(vi) the probability of vi . Figure 2 shows the
behavior of the entropy H in terms of N and the number of rounds R. It is observed from
this figure that the entropy does not depend on N and R. The entropy values of the ciphered
image remain satisfactory for all the simulated block lengths as H > 7.9992, ∀N ≥ 16.
For N = 16 for example, the entropy of the red component of the image passes from
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H
p
Red = 7.253 for the plain-image to HRed = 7.9993 for the ciphered image with R = 1, 2

or 3.
Similarly, the correlation of horizontally, vertically and diagonally adjacent pixels is

evaluated. For this purpose, we used Pearson’s correlation coefficient defined as

ρA,B = E((A − μA)(B − μB))

σA · σB

, (28)

where E(·) is the expectation value; μ and σ are mean value and standard deviation,
respectively; A and B are images to be compared.

Figure 3 shows the behavior of the correlation coefficients of horizontally adjacent pixels
as a function of N for various values of R. This figure also shows that the correlation
coefficients of adjacent pixels do not depend on N and R. The correlation coefficients of
adjacent pixels in the plain-image are, respectively, ρRed = 0.9798, ρGreen = 0.9691 and
ρBlue = 0.9327, while the corresponding values for one round ciphered image are ρRed =
−0.0045, ρGreen = 0.0008 and ρBlue = −0.0004 with N = 16; and ρRed = 0.0002,
ρGreen = 0.0030 and ρBlue = 0.0019 with N = 1024. Similar results were obtained
with vertically and diagonally adjacent pixels. This result proves that the proposed cipher
satisfies the zero co-correlation property that is necessary to resist statistical attacks even
for N = 16 only.

Figure 4 shows the histograms of one round ciphered image of Lena with N = 16. It
appears that the histogram of each component of the ciphered image is fairly uniform and
significantly different from that of the corresponding plain-image component. According to
this result, deducing the secret key from the cipher-text during the known/chosen plaintext
attacks is a hard task.

4.2 Differential attack

The sensitivity of the cipher to small changes in the plain-image (single pixel change)
is required for the cipher to resist differential attacks. The metrics commonly used to

Fig. 3 (Color online) Correlation coefficient ρ of horizontally adjacent pixels in terms of the number of
roundsR and the block lengthN . From left to right are presented, respectively, the ρ values of the Red, Green
and Blue colors. R = 1 corresponds to the solid line, R = 2 the dashed line and R = 3 the dash-dotted line

34038 Multimedia Tools and Applications (2022) 81:34027–34046



0 100 200

D
is

tr
ib

ut
io

n

0

2000

4000

Gray level
0 100 200

0

1000

2000

0 100 200
0

1000

2000

3000

0 100 200

D
is

tr
ib

ut
io

n

0

500

1000

Gray level
0 100 200

0

500

1000

0 100 200
0

500

1000

Fig. 4 (Color online) Histograms of the image of Lena. In the first line, from left to right, are shown the
original histograms of the red, green and blue components, respectively; while the second line is showing the
histograms of the corresponding ciphered image components

evaluate the robustness against the differential attacks are the NPCR and UACI . The
NPCR between two ciphered images A and B of size m × n is defined by:

NPCRA,B =
∑m

i=1
∑n

j=1D(i, j)

m × n
× 100 (29)

where

D(i, j) =
{
1, if A(i, j) �= B(i, j);
0, otherwise.

(30)

Similarly, the UACI is defined as:

UACIA,B = 100

255

∑m
i=1

∑n
j=1|A(i, j) − B(i, j)|

m × n
(31)

The result in Fig. 5 shows that the cipher is sensitive to one pixel change for R > 1.
Indeed, the cipher is secure as NPCR > 99.5810 and 33.3445 ≤ UACI ≤ 33.5826
(α = 0.01 significance level) for gray images of size 512× 512 [21]. In the case R = 1, the
maximal values of NPCR and UACI were obtained for N = 16. We found NPCRRed =
97.8458, NPCRGreen = 97.8394 and NPCRBlue = 97.8325; and UACIRed = 32.8434,
UACIGreen = 32.8836 and UACIBlue = 32.8228, thus attesting that the cipher is not
secure for R = 1. All these values are far less than the target values that are necessary for
the cipher to be secure. When R > 1, the cipher becomes much more secure as observed
in Fig. 5. The number of rounds that are necessary for the cipher to be secure increases
with N . We observed that the minimal number of rounds required is Rmin = 2 for N = 24

and that the system is secure with Rmin = 3 for all the values of N chosen on simulation.
The dependency of the security level on N and R is justified by the fact that during the
first round, the impact of the single changed pixel value does not affect the overall image;
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Fig. 5 (Color online) NPCR and UACI of one pixel change ciphered image of Lena in terms of N . In the first
line, from left to right, are shown the NPCR of the red, green and blue components, respectively, for R = 1
(solid line), R = 2 (dashed line) and R = 3 (dash-dotted line). The corresponding UACI values are shown
in the second line

starting from the second round, the influence of the pixel change propagates in the other sub-
images, depending on N , which contributes to enhance the NPCR and UACI . The values
obtained for R = 3 and N = 24 are respectively NPCRRed = 99.6010, NPCRGreen =
99.6086 and NPCRBlue = 99.6174; and UACIRed = 33.4559, UACIGreen = 33.4164
and UACIBlue = 33.4373. This ability of the cipher to encrypt small block sizes with high
security level is advantageous when implementing it with low-end processors under limited
memory space constraints.

We also evaluated the impact of the step size δ (used to perform a right circular shift) on
the security level. Figure 6 shows the behavior of the NPCR and UACI of the red component
of the image of Lena in terms of δ. We set N = 128 and R = 3 for this experiment. It
appears that the NPCR approaches its reference value as δ → N .

4.3 Key space analysis

4.3.1 The key space

We designed the cipher with a 256-bit key corresponding to 32 ASCII symbols, as such a
key length is known to be sufficiently large for resisting all presently known kinds of brute-
force attacks. The key space is the number of effective combinations of 32 symbols that can
be built from the set of ASCII symbols, i.e 2256 while using the whole set of ASCII symbols.
This key space can easily be extended to 2384 (48 ASCII symbols) by also considering
the forcing terms ux and uy as parameters of the 16D QACM. The key space can also be
extended by increasing the dimension of the PRNG.
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Fig. 6 (Color online) Impact of δ on the sensitivity of the cipher with respect to the plain-image. From top
to bottom are shown, respectively, the behaviors the NPCR and UACI of one pixel change ciphered red
component of the image Lena, with R = 3 and N = 128

4.3.2 Sensitivity of the key

A high key sensitivity allows to prevent adaptive chosen-plaintext attacks and linear
cryptanalysis. In order to evaluate the sensitivity of our cipher to the external key, we
considered two slightly different keys S1 = azertyuiopqsdfghazertyuiopqsdfg0 and S2 =
azertyuiopqsdfghazertyuiopqsdfg1 to encrypt the same image. Table 2 summarizes the sen-
sitivity of the key of the proposed cipher, for various test images. Values of NPCR and
UACI confirm the high sensitivity of the proposed scheme to one bit change in the external
key.

In Fig. 7 is presented an example of ciphering/deciphering. The ciphered image is suc-
cessfully deciphered when using the same key for both the encryption and decryption
processes, whilst the decryption fails for a different key.

4.4 Speed performance analysis

The running speed of the algorithm is evaluated using Matlab 14b. The algorithm was not
optimized and its performances were measured on a computer with Windows 10 operat-
ing system, Intel(R) Core(TM) i5-8250U CPU @ 1.60 GHz, and 8GB RAM. The average
running time, for R = 3 and N = 1024, is about 146 ms for 512 × 512 gray-scale
images. The corresponding average security parameters evaluated with 512 × 512 gray-
scale images of Lena, Baboon, Airplane, and Peppers are, respectively, NPCR = 99.6023,
UACI = 33.4690 ρh = −0.0003, ρv = −0.0009 and ρd = −0.0007, thus attesting that
the algorithm is secure for the chosen parameter setting. ρh, ρv and ρd are, respectively, the
horizontal, vertical and diagonal correlation coefficients. Table 3 shows the average running
time and security parameters for 3 ≤ R ≤ 8 and N = 1024.
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Table 2 Detailed statistical properties of images encrypted with two slightly different keys

Image Color NPCR UACI Entropy Correlation

Lena Red 99.5895 33.5155 7.9993 − 0.0032

Green 99.6208 33.4007 7.9992 0.0054

Blue 99.5983 33.3896 7.9993 0.0024

Baboon Red 99.6136 33.4619 7.9993 − 0.0003

Green 99.6090 33.4378 7.9993 0.0005

Blue 99.6120 33.5040 7.9993 − 0.0007

Airplane Red 99.6223 33.5334 7.9993 − 0.0015

Green 99.5975 33.4402 7.9993 − 0.0001

Blue 99.5674 33.4904 7.9994 − 0.0011

Peppers Red 99.6029 33.4945 7.9993 − 0.0012

Green 99.6094 33.4660 7.9993 0.0003

Blue 99.6258 33.5040 7.9993 − 0.0010

NPCR(%), UACI (%) and entropy are to be compared with reference values 99.6093%, 33.4621% and 8,
respectively

4.5 Comparison with existing ciphers

Table 4 shows comparison results with existing algorithms. We used the color image of Lena
for the comparison of the average NPCR, UACI and correlation coefficients. It appears

(a) (b)

(c) (d)

Fig. 7 (Color online) Sensitivity of the key to one-bit change: (a) Original image, (b) ciphered image
with S1 = azertyuiopqsdfgjazertyuiopqsdfg0, (c) successfully deciphered image with S1 and (d)
unsuccessfully deciphered image with S2 = azertyuiopqsdfgjazertyuiopqsdfg1, N = 32, R = 2
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Table 3 Average running speed and corresponding security parameters for 3 ≤ R ≤ 8, N = 1024 and S1 as
encryption key

R 3 4 5 6 7 8

t (s) 0.1461 0.1909 0.2394 0.2833 0.3310 0.3774

NPCR 99.6023 99.6132 99.6018 99.6133 99.6136 99.6020

UACI 33.4690 33.4267 33.4488 33.4571 33.4567 33.4555

ρh − 0.0003 − 0.0005 − 0.0018 − 0.0005 − 0.0008 0.0009

ρv − 0.0009 − 0.0005 0.0003 0.0009 0.0007 − 0.0007

ρd − 0.0007 − 0.0001 0.0009 − 0.0020 0.0009 0.0013

The NPCR(%) and UACI (%) are to be compared with their corresponding reference values 99.6093% and
33.4621%, respectively

that the proposed cipher and Ref. [16] are those presenting both a largeNPCR and aUACI

close to the ideal value. In the proposed cipher, all the permutation and diffusion keys used
are N -length sequences, thus easy to implement, which is not the case for the cipher in Ref.
[16]. The circular shift of the image is also performed by sequentially shifting N -length
blocks, which allows all the shifting, permutation and diffusion operations to be combined
in a single loop. This architecture also allows to reduce the memory space that is necessary
for encrypting the entire image.

Table 5 compares the running speed of the proposed algorithm with other chaos based
ciphers. We used the gray-scale images of cameraman (256 × 256) and Lena (512 × 512)
for this experiment. It appears that the running speed of the proposed algorithm can allow
real-time data encryption.

From the overall comparison, it appears that the proposed cipher is faster compared to
those in Ref. [1] and Ref. [40]. The one in Ref. [16] is 2.5 times faster than the proposed
one, but it requires floating point arithmetics, which is more constraining than using 8-bit
integer arithmetics. The proposed algorithm offers the advantage to combine only 8-bit inte-
ger operations, which is much better for its implementation with low-end microprocessors,
without loss of security properties.

Table 4 Comparison of the proposed cipher with existing chaos based image ciphers

Tests Proposed cipher∗ Ref. [33] Ref. [1] Ref. [16]∗ Ref. [40]

NPCR 99.6081 99.6200 99.6000 99.6126 99.5900

UACI 33.4864 33.5300 33.5000 33.4483 33.4700

ρ − 0.0002 0.0040 0.0030 0.0002 0.0040

H 7.9998 7.9994 7.9994 7.9998 7.9993

The ∗ symbol indicates references compared in the same environment. The average security parameters of
the proposed cipher are obtained with R = 3, N = 1024 and S1 as encryption key
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Table 5 Comparison of encryption time of different algorithms

File name Image size Proposed cipher∗ Ref. [16]∗ Ref. [1] Ref. [40]

cameraman.tif 256 × 256 0.0570 0.0202 0.1789 0.1950

Lena.png 512 × 512 0.1461 0.0708 0.6639 0.6500

The ∗ symbol is used for algorithms compared in the same environment. The average running speeds of the
proposed cipher are obtained with R = 3, N = 1024 and S1 as encryption key

5 Conclusion

We presented in this paper an 8-bit precision cipher involving exclusively integer arithmetics
and that can be implemented with low-end microprocessors. Our cipher includes a PRNG
that was obtained by coupling an 8D time varying with an 8D amplitude varying QACM to
achieve a 16D system. Eight dimensional QACM themselves were obtained by considering
a linear coupling between 2D QACM with shock occurrences to model interactions. Such
a coupling method allowed us to considerably increase both the period and the complexity
of the resulting system, thus achieving a minimal period Tx > 1027, which is sufficiently
large to predict the behavior of the QPRNG. Although it is a 16D system, the proposed
PRNG runs fast as it combines only 8-bit integer operations. Its randomness was evaluated
using the NIST suite tests. We particularly set the precision of the PRNG to 8 bits for the
generated sequences of integers to be directly used for image encryption, without need of
data conversion. We therefore evaluated the performance of the proposed cipher under 8-bit
precision condition and verified that it runs fast and presents a high security level as com-
pared to existing 32-bit precision chaos based ciphers. However, we need to consider a 16D
QACM to achieve periods greater than 1027. Our intent in prospect is to reduce the dimen-
sionality of the system while increasing its period. Such a reduction of the dimensionality
will allow to gain computation time while reducing the hardware requirements. We also
intend to develop a new confusion approach that does not imply the data sorting and which
is much faster than the sorting process.
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