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Abstract
This paper presents a piece-wise linear cat map (PWLCM) obtained by perturbing the con-
ventional quantized Arnold cat map (QACM) with a nonlinear term. The effect of the
nonlinear term on the dynamics of the QACM is investigated. We show that the eigenvalues,
hence the Lyapunov exponents of the PWLCM depend on the initial conditions, which is
not the case for the QACM. As a result, the proposed PWLCM is a generalized form of the
QACM, whose the period exponentially increases with respect to the precision, thus taking
as value 1.09 × 10513 for only 10-bit precision; while that of the corresponding QACM is
only 768. The nonlinear term increases the sensitivity of the system to the initial conditions,
which contributes to increase its period, hence to enhance its complexity. An electronic
implementation of both the QACM and the PWLCM in the case of 4-bit precision using
Multisim is presented. The proposed architecture of both the QACM and the PWLCM are
implemented using Verilog and prototyped on the Zynq 7020 FPGA board. For 4-bit pre-
cision, the FPGA implementation performs 1.072 Gbps throughput at 134 MHz maximum
frequency. We verified that experimental and simulation behaviors of the proposed system
perfectly match, thus confirming the effectiveness of the proposed electronic circuit for
exhibiting the expected dynamics in real-time.

Keywords Dynamical system · Random number · Circuit theory · Digital circuits

1 Introduction

Random number generators are used in cryptography, in games of chance, in all computer
algebra systems or other programming languages and in numerical simulations, to cite a
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2 Institute of Mathematics, University of Kassel, Kassel, Germany

Published online: 26 April 2022

Multimedia Tools and Applications (2022) 81:39003–39020

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-13175-6&domain=pdf
mailto: koepf@mathematik.uni-kassel.de
mailto: efoudajsa@yahoo.fr


few. In order to achieve fast generation of random numbers, researchers have focused their
attention to chaotic systems that can be experimentally implemented [5, 15, 21]. Chaotic
systems are sensitive to initial conditions and present mixing properties that are necessary
for a good pseudo-random number generator [12]. Since then, various chaotic systems gen-
erating a large variety of complex dynamics have been modeled, but they are still suffering
from lack of reliable methods for their implementation [3, 24–26, 32]. Some of them are
realized with analogue circuits, while many others are more and more implemented using
numerical targets like the Field Programmable Gate Array (FPGA) [2, 16, 19, 26–28].

Chaotic systems have been shown efficient and convenient for modern cryptography,
although most experimental and commercial systems are using random number generators
(RNGs) based on modular algebra operations, as the digitization of chaotic orbits some-
times may reduce the key sensitivity [20, 26]. Such RNGs present the advantage to make
modular calculations in a finite field (the Galois field GF(2n) for example), hence to be eas-
ily implemented on hardware with a finite number of basic electronic logic gates without
loss of precision. An example is the RNG implemented by the RAND function in the MAT-
LAB software to generate uniformly distributed random numbers. Another example is the
Arnold cat map (ACM) which is often used for its ergodic and mixing properties [1, 30]. In
practical applications, the original cat map is generalized and discretized in the phase space
to obtain the quantized ACM (QACM).

Arnold’s cat map is known to be chaotic, area-preserving, ergodic and mixing, and invert-
ible [8, 10, 17]. It has a unique hyperbolic fixed point and the linear transformation defining
it is hyperbolic (it presents irrational eigenvalues, one with an absolute value greater than 1
and the other one less than 1). Its quantized version forms short limit cycles whose lengths
depend on the modulo value, although it preserves the properties of its continuous analogue
[4, 11]. The other properties of this interesting map can be found in the literature [4, 8, 10,
11, 17]. The ACM is used in cryptography, in digital tattoo applications, in watermarking
and for random number generation to cite a few [8, 9, 23]. The QACM is particularly used
for image scrambling due to its periodic nature [7]. It has been also used for the implemen-
tation of public key ciphers [18], but the latter are not secure when dealing with QACM
with weak periods [22].

Thus, the period of the QACM is an important parameter when using it in cryptography.
It has been shown that the period of the QACM does not exceed 3m, m being the modulo
value. In the case of n-bit precision (m = 2n) which is convenient for digital applications,
the period of the QACM is only equal to 3·2n−2, n ≥ 2, which is effectively smaller than 3m.
Therefore, for the security level of ciphers including the QACM to be enhanced, its period
needs to be increased. In order to overcome such a limitation of the period, the ACM (n = 0)
is preferred to the QACM in many applications. Some improvements including the increase
of the dimension of the map have been proposed. Guoscheng et al. [14] proposed to extend
the conventional 2D Arnold’s cat map into a 3D map by introducing six control parameters.
Although the resulting map allows to increase the key space for data encryption, the authors
did not investigate its period distribution, as well as the impact of the introduced control
parameters on dynamics of the system. To prevent the degradation of chaotic sequences into
periodic ones due to the finite computer precision, they just applied a slight perturbation on
the 3D map output without formally investigating its impact. In [33], the authors combined
the 2D cat map with an affine cipher to enhance the security level of their proposed cipher.
In order to efficiently apply Arnold’s cat map to data encryption, it is important to directly
investigate and increase its period in the discrete phase space, hence to significantly increase
the period of the QACM, even for small data precision.
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In this paper, we suggest to introduce a nonlinear perturbation to the linear QACM for
its period to increase. In order to preserve the simplicity of the QACM, we consider as
nonlinear element another modular algebra based module, such that the final system is a
piece-wise linear cat map (PWLCM). We thus investigate the dynamics of the so-called
PWLCM and verify that in the case of 4-bit precision, its period is more than 1011 times
greater than that of the conventional QACM. An equivalent electronic circuit is proposed in
the case of 4-bit precision to further confirm the simplicity of the proposed system that can
be used for the generation of pseudo-random numbers. Furthermore, an equivalent imple-
mentation on Zynq 7020 FPGA board is presented in order to confirm the effectiveness of
the proposed architecture.

The rest of the paper is organized as follows: in Section 2 the modeling system is
presented, Section 3 is devoted to the results analysis, Section 4 shows the electronic
implementation of the PWLCM while in Section 5 some concluding remarks are given.

2 Themodeling system

2.1 The conventional quantized Arnold cat map

The Arnold cat map has been widely described and investigated in the literature. The evo-
lution of the 2D system behavior, where the two variables (position and momentum) are
completely depending on each other is modeled as follows [17]:

{
x(t + 1) = x(t) + αy(t)

y(t + 1) = βx(t + 1) + y(t)
mod m. (1)

The system in (1) can be rewritten using matrix representation as

x(t + 1) = Ax(t) mod m (2)

where

A =
(
1 α

β α · β + 1

)
,

(α, β) ∈ N
2≥1, and x = (x, y)T ; (·)T is the transpose of (·). This discrete time system is

continuous in the phase space for (x, y) ∈ [0, 1)2 and m = 1. The QACM is obtained for
(x, y) ∈ [0, m)2 with m ∈ N>1. It is periodic and its period depends both on m and the
parity of α and β. For α = β = 1 and m = 2n, the period behaves like

�n = 2 · �n−1, n > 2 (3)

with �1 = �2 = 3 for the minimal period, as shown in [8, 11].

2.2 The piece-wise linear cat map

In order to increase the period of the QACM, we introduce a nonlinear perturbation term to
the conventional QACM. The modified system is written as

x(t + 1) = Ax(t) + xc(t) mod m, (4)
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where

xc(t) =

⎛
⎜⎜⎜⎝

M∑
i=1

(
ai + y(t)

)
mod ci

N∑
j=1

(
bj + x(t + 1)

)
mod dj

⎞
⎟⎟⎟⎠ (5)

with (i, j) ∈ N
2, ci and dj two natural numbers such that 0 ≤ ci < m + ai and 0 ≤ dj <

m + bj , 0 ≤ ai, bj < m if (ci, dj ) = (0, 0); 0 ≤ ai < ci if ci �= 0 and, 0 ≤ bj < dj if

dj �= 0. Let us consider xc(t) =
(
xc(t), yc(t)

)T

with

xc(t) =
M∑
i=1

xc,i(t), (6)

yc(t) =
N∑

j=1

yc,j (t). (7)

and
xc,i(t) =

(
ai + y(t)

)
mod ci, (8)

yc,j (t) =
(
bj + x(t + 1)

)
mod dj , (9)

Equations (8)-(9) can be written as piece-wise linear functions such that:

xc,i(t) =
{

ai + y(t), if ai + y(t) < ci;
ai + y(t) − qici, otherwise,

(10)

where qi = � ai+y(t)
ci

�; and

yc,j (t) =
{

bj + x(t + 1), if bj + x(t + 1) < dj ;
bj + x(t + 1) − qjdj , otherwise,

(11)

qj = � bj +x(t+1)
dj

�. By developing the whole set of equations, we obtain the PWLCM defined
as:

x(t + 1) = Bx(t) + C(t) mod m (12)

where

B =
(

1 α′
β ′ α′β ′ + 1

)
, (13)

with α′ = M + α, β ′ = N + β and,

C(t) =

⎛
⎜⎜⎜⎝

M∑
i=1

(
ai − qici · u

(
ai + y(t) − ci

))

β ′ M∑
i=1

(
ai − qici · u

(
ai + y(t) − ci

))
+

N∑
j=1

(
bj − qj dj · u

(
bj + x(t + 1) − dj

))
⎞
⎟⎟⎟⎠ .

(14)

u(t) is the Heaviside function defined as

u(t) =
{
0, if t < 0;
1, otherwise.

(15)

The PWLCM thus obtained presents a conservative linear term Bx(t) (det(B) = 1) that
exhibits the same behavior as a QACM, and a nonlinear term C(t) that contributes to
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increase the period of the linear term by modifying its trajectory for a given initial condition.
ai and bj , ci and dj are defined as perturbation parameters.

2.3 Stability analysis of the PWLCM

In this section, we investigate the stability of the PWLCM. While considering the system in
(12), we deduce the following Jacobian matrix:

J =
⎛
⎜⎝

1 α′ − ∑M
i=1 ciδ

(
y(t) − τ i

y

)

β ′ − ∑N
j=1 dj δ

(
x(t + 1)−τ

j
x

)
1+

(
α′−∑M

i=1 ciδ
(
y(t)−τ i

y

))(
β ′−∑N

j=1 dj δ
(
x(t+1)−τ

j
x

))
⎞
⎟⎠

(16)

where τ
j
x = dj − bj and τ i

y = ci − ai . Indeed, qi = 1 when δ
(
y(t) − τ i

y

)
= 1 and qj = 1

when δ
(
x(t + 1) − τ

j
x

)
= 1. From the above Jacobian matrix we deduce the eigenvalues

�1(t) = 1 + 1
2

(
α′ − ∑M

i=1 ciδ
(
y(t) − τ i

y

))(
β ′ − ∑N

j=1 dj δ
(
x(t + 1) − τ

j
x

))
⎛
⎜⎜⎜⎝1 +

√√√√1 + 4(
α′−∑M

i=1 ci δ

(
y(t)−τ i

y

))(
β ′−∑N

j=1 dj δ

(
x(t+1)−τ

j
x

))
⎞
⎟⎟⎟⎠

(17)

and

�2(t) = 1 + 1
2

(
α′ − ∑M

i=1 ciδ
(
y(t) − τ i

y

))(
β ′ − ∑N

j=1 dj δ
(
x(t + 1) − τ

j
x

))
⎛
⎜⎜⎜⎝1 −

√√√√1 + 4(
α′−∑M

i=1 ci δ

(
y(t)−τ i

y

))(
β ′−∑N

j=1 dj δ

(
x(t+1)−τ

j
x

))
⎞
⎟⎟⎟⎠

(18)

The determinant of J is equal to 1, which implies that the sum of the Lyapunov exponents
λ1(t) and λ2(t) is equal to 0, hence �1(t) ≥ 1 and 0 ≤ �2(t) ≤ 1. The PWLCM is thus a
conservative system as the generating ACM, independently to the choice of the parameters
ai , bi , ci and di . Depending on the choice of these parameters, it can be difficult to determine
the steady states of the system, whenever they exist. For ai = bj = 0, ∀i, j , (x = 0, y = 0)
is the single steady state of the system. Given that �1,2 > 0, all the existing steady states of
the PWLCM are unstable.

2.4 The reverse PWLCM

The generalized inverse PWLCM is obtained by determining x(t) and y(t) from (4) as:

{
x(t) = x(t + 1) − y(t) − ∑M

i=1(y(t) + ai) mod ci

y(t) = x(t + 1) − y(t + 1) − ∑N
j=1(x(t + 1) + bj ) mod dj .

mod 2n (19)
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Given that x(t + 1) and y(t+1) are the initial condition for the reverse system, x(t) and y(t)

are the iterates that are obtained from the initial conditions. By reversing the time evolution,
(19) can be rewritten as:{

y(t + 1) = x(t) − y(t) − ∑N
j=1(x(t) + bj ) mod dj

x(t + 1) = x(t) − y(t + 1) − ∑M
i=1(y(t + 1) + ai) mod ci .

mod 2n (20)

Equation (20) is the reverse PWLCM.

3 Results and discussion

In this section, we investigate the dynamics of the PWLCM period and largest Lyapunov
exponent with respect to the system control parameters and initial conditions. For a given
precision, the period of the PWLCM is equivalent to the least common multiple (lcm) of the
individual periods of the set of initial conditions [6, 13, 27, 29, 31]. Indeed, each possible
initial condition of the phase space generates its own dynamics whose period is determined.
The number of initial conditions is directly related to the precision n. For n = 1 for example,
there are four possible initial conditions that are (0, 0), (0, 1), (1, 0) and (1, 1).

3.1 Sensitivity to initial conditions

3.1.1 Sensitivity of the period

We evaluate the period of the system for various precisions n = 2 to n = 8. Table 1
illustrates the matrix T (x0, y0) of individual periods for the different initial conditions of
the PWLCM in the case of n = 2. We set for this example α = β = 1, M = N = 2,
c1 = 0, c2 = 3, d1 = 3, d2 = 5, a1 = 1, a2 = 1, b1 = 0 and b2 = 2. The period of
the PWLCM in that case is equal to � = lcm({T (x0, y0)}) = 105, 0 ≤ x0, y0 ≤ 2n − 1;
while the corresponding period for the QACM is 3. In order to estimate the impact of the
nonlinear term on the QACM, we evaluated the period of the QACM described by matrix
B, instead of matrix A. We obtained as period �B = 3 while �A = 3. It appears that
by adding the modulus terms, the system described by TA is both linearly and nonlinearly
modified, thus leading to a new QACM that is perturbed by the nonlinear term C(t). The
linear modification leads to the conventional QACM, whereas the nonlinear modification
leads to a completely different system with a large period that does not necessarily respect
the relation in (3).

Table 1 also shows that the system above described presents a single steady state that
is (x0 = 2, y0 = 3). While evaluating the impact of the perturbation on the QACM, we
observed that for some combinations of parameters ai , bi ci and di , the PWLCM may
present or not multiple steady states. For α = β = 1, M = N = 2, c1 = c2 = 0,

Table 1 Matrix of the individual
period of different initial
conditions of the PWLCM for
n = 2, α = β = 1, M = N = 2,
c1 = 0, c2 = 3, d1 = 3, d2 = 5,
a1 = 1, a2 = 1, b1 = 0 and
b2 = 2

x0\y0 0 1 2 3

0 7 5 7 5

1 7 3 5 7

2 7 3 5 1

3 3 5 7 7
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Table 2 Matrix of the individual
largest Lyapunov exponent of
different initial conditions of the
PWLCM for n = 2, α = β = 1,
M = N = 2, c1 = 0, c2 = 3,
d1 = 3, d2 = 5, a1 = 1, a2 = 1,
b1 = 0 and b2 = 2;
λ0(3, 3) = 2.3895

x0\y0 0 1 2 3

0 1.6777 1.2718 1.6778 1.2719

1 1.6778 2.4554 1.2721 1.6778

2 1.6778 2.4554 1.2720 2.3895

3 2.4554 1.2719 1.6777 1.6777

d1 = d2 = 0, a1 = 0, a2 = 0 and b1 = b2 = 0 for example, there is a single steady state,
that is (x0 = 0, y0 = 1) while the period of the system is � = 3. By just changing the
value of c2 as c2 = 3, the system now presents two steady states that are (x0 = 0, y0 = 1)
and (x0 = 0, y0 = 2) and a period � = 20.

3.1.2 Sensitivity of the Lyapunov exponent

We also evaluate the Lyapunov exponents of the above system for each initial condition with
the above three parameter settings and compare them to the largest Lyapunov exponent of
the corresponding QACM, that is

λ0(α
′, β ′) = log

(
1 + 1

2
α′β ′ + 1

2

√
α′2β ′2 + 4α′β ′

)
(21)

We considered 20 000 iterations of the PWLCM to evaluate the Lyapunov exponents.
For the first parameter setting, Table 2 shows the corresponding largest Lyapunov expo-

nents of the PWLCM that are to be compared to λ0(3, 3) = 2.3895. It appears from this
table that setting ci �= 0 and dj �= 0 contributes to reduce the Lyapunov exponent, while it
contributes to increase the period of the system.

The second parameter setting leads to Table 3, with values that are to be compared to
λ0(3, 3) = 2.3895. We can confirm that the Lyapunov exponent does not depend on ai and
bi in the case ci = dj = 0.

The third parameter setting leads to Table 4, with values that are also to be compared to
λ0(3, 3) = 2.3895. This table as compared to Table 3 shows that setting ci �= 0 or dj �= 0
reduces the value of the Lyapunov exponent, while increasing the period of the PWLCM.

The combination of the observations made from these three tables implies that there is
no direct relationship between the Lyapunov exponent and the period of the system. Fur-
thermore, a large Lyapunov exponent in that case does not induce a high complexity of the
PWLCM, as it corresponds to the smallest period. However, we observe that the period of
the system increases with the diversity or variability of the Lyapunov exponent. Indeed, a
high sensitivity of the Lyapunov exponent to the initial conditions contributes to increase
the period of the system. Figure 1 shows the behavior of the Lyapunov exponent in the
case of n = 4 for the above three parameter settings. In the first case (setting 1), there are

Table 3 Matrix of the individual
largest Lyapunov exponent of
different initial conditions of the
PWLCM for n = 2, α = β = 1,
M = N = 2, c1 = c2 = 0,
d1 = d2 = 0, a1 = 0, a2 = 1,
b1 = b2 = 0; λ0(3, 3) = 2.3895

x0\y0 0 1 2 3

0 2.3895 2.3895 2.3895 2.3895

1 2.3895 2.3895 2.3895 2.3895

2 2.3895 2.3895 2.3895 2.3895

3 2.3895 2.3895 2.3895 2.3895
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Table 4 Matrix of the individual
largest Lyapunov exponent of
different initial conditions of the
PWLCM for n = 2, α = β = 1,
M = N = 2, c1 = 0, c2 = 3,
d1 = d2 = 0, a1 = 0, a2 = 1,
b1 = b2 = 0; λ0(3, 3) = 2.3895

x0\y0 0 1 2 3

0 2.3895 2.3895 0.0006 2.3895

1 1.8542 1.8542 1.8543 2.3895

2 1.8542 1.8542 1.8543 1.8542

3 2.3895 1.8542 1.8543 1.8542

187 distinct values of λ, five distinct period values (T = {1, 4, 5, 8, 233}), and the cor-
responding period of the PWLCM is T1 = 9320; in the second case, a single value of λ

and four distinct period values (T = {1, 3, 6, 12}) are obtained, thus leading to T2 = 12;
while in the third case (setting 3), there are 63 distinct values of λ and 9 distinct periods
(T = {1, 2, 4, 8, 10, 12, 14, 18, 40}), which corresponds to T3 = 2520. We can observe
that in the case of a single Lyapunov exponent, the largest period value is a multiple of the
other values, which contributes to reduce the period of the whole system.

Such an observation also implies a high sensitivity of the period to the precision n.
Indeed, for a parameter setting with a high sensitivity of the Lyapunov exponent to the initial
conditions, the diversity of the Lyapunov exponent values increases with n, as the number of
initial conditions itself increases. While setting n = 5 for the above parameter settings, the
periods become respectively T1 = 1.51 · 1015, T2 = 24 and T3 = 1.02 · 1010. As shown in
Fig. 2, the values of the largest Lyapunov exponent are within the same range (1.4, 2.5), but
the number of distinct values has significantly increased, 450 for the first parameter setting

Fig. 1 Behavior of the Lyapunov exponent λ(z0) with respect to the initial condition z0 = 2nx0 + y0, for
n = 4 and ai , bi , ci and di set as in Table 2 (setting 1), Table 3 (setting 2) and Table 4 (setting 3). The
corresponding periods are respectively T1 = 9320, T2 = 12 and T3 = 2520.The Lyapunov exponents were
evaluated after 1000 iterations of the PWLCM
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Fig. 2 Behavior of the Lyapunov exponent λ(z0) with respect to the initial condition z0 = 2nx0 + y0, for
n = 5 and ai , bi , ci and di set as in Table 2 (setting 1), Table 3 (setting 2) and Table 4 (setting 3). The
corresponding periods are respectively T1 = 1.51 · 1015, T2 = 24 and T3 = 1.02 · 1010. The Lyapunov
exponents were evaluated after 1000 iterations of the PWLCM

(setting 1), and 163 for the third one (setting 3). There is no change for the second parameter
setting as the corresponding Jacobian matrix does not depend on the initial conditions.

3.2 Sensitivity to control parameters ai and bi

For the analysis of the impact of ai and bi , we first set M = N = 1 and n = 3, α = β = 1,
c1 = 3, d1 = 5. The corresponding periods are summarized in Table 5 from where we can
appreciate the sensitivity of the system to the parameters ai and bj . These periods are to be
compared to �A = 6 that is the period of the equivalent QACM.

3.3 Sensitivity on control parameters ci and di

Table 6 shows the dependence of the PWLCM period on the perturbation parameters c1 and
d1, for n = 2, M = N = 1, α = β = 1, a1 = 1 and b1 = 3. It appears from this table that
the maximum period is obtained for (c1, d1) = (1, 6). This table shows that large periods
can be achieved even with a small number of bits (n = 2 for example), which is not possible

Table 5 Dependence of the
PWLCM period �PWLCM on ai

and bi for n = 3, M = N = 1,
α = β = 1, c1 = 3, d1 = 5 and
different values of (a1, b1)

a1\b1 0 1 2 3 4

0 504 108 60 252 48

1 62 456 72 120 462

2 350 429 252 13566 12558
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Table 6 Dependence of the
PWLCM �PWLCM period on ci

and di for n = 2, α′ = β ′ = 2,
a1 = 1, b1 = 3 and different
values of (c1, d1)

c1\d1 0 1 2 3 4 5 6

0 2 4 4 16 2 6 4

1 4 3 12 70 4 105 12

2 4 12 6 16 4 14 8

3 6 28 14 8 6 36 14

4 2 4 4 16 2 6 4

with the conventional QACM. Indeed, the period depends on the choice of the parameters
ai , bi , ci and di .

The proposed PWLCM is conservative and depending on the parameter setting, it can
be linear or nonlinear. As it includes all the properties of the QACM, it can be seen as a
generalized form of the QACM that can exhibit large periods. The worst parameter setting
of the PWLCM corresponds to a QACM. For the PWLCM to generate dynamics with large
periods, its Jacobian matrix should depend on the initial conditions. We suggest a particular
parameter setting depending on the parity of n that generates large periods such that:

ci(resp.di) =
{

n + 2, if n = 2p + 1;
2n+1 − (n + 1), if n = 2p.

, p ∈ N≥1, (22)

and

ai(resp.bi) =
{

p, if n = 2p + 1;
2n+1 − (2n + 1), if n = 2p.

, p ∈ N≥1. (23)

We verified that the case ci = 0 or di = 0 corresponds to the forced QACM in which the
steady state (0,0) is modified and depends on ai and bi and the case ci = 1 or di = 1
corresponds to the conventional QACM. The period of the system is large when only one
dimension is perturbed with di = 1 and ci as in (22), or ci = 1 and di as in (22). In such a
case, the Lyapunov exponent of the PWLCM is sensitive to the initial condition as it is the
case for many chaotic systems. It can therefore generate rich and complex dynamics. An
example periodic image shuffling using both 8-bit QACM and 8-bit PWLCM is shown in
Fig. 3. The period of the QACM in that case is 192, while that of the PWLCM, with a1 = 0,
a2 = 0, c1 = 0, c2 = 11 and d1 = d2 = 1, is 4.28 × 10114. Applying the reverse system to
the shuffled image with the same number of iterations allows to obtain the original image
without needs of running the shuffling process on the whole period of the system.

In order to compare the mixing property of the PWLCM and QACM, we applied the
NIST800-22 statistical test to a periodic 213 × 213 image shuffled with both systems. The
periodic image is obtained by repeating sequences of 8-bit encoded integers ranged from 0
to 255. Such a data set can be divided into 50 bitstreams of 106 length each. The NIST test
was applied to the shuffled images, after 50 iterations. The PWLCM parameters were set as
a1 = 0, a2 = 0, c1 = 0, c2 = 11 and d1 = d2 = 1, and the number of bits was n = 13 for
both systems. The corresponding results are shown in Table 7, from where it appears that
the PWLCM shuffled image is passing NIST test, whereas the QACM image is failing. The
PWLCM thus better mixes the pixels of the image than the QACM, hence is suitable for
image shuffling.
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plain-image iteration #70 iteration #192 iteration #19200

Fig. 3 Image shuffling using the QACM and PWLCM Transformation. The first line shows the results of the
QACM, the second line depicts the PWLCM results, while the third line shows the reverse image obtained
from the reverse PWLCM

Table 7 NIST 800-22 test results:

Sub-Tests QACM PWLCM

P-value Proportion P-value Proportion

Frequency 0.0 7/50 0.3505 50/50

Block frequency 0.0 0/50 0.6993 49/50

Cumulative sums (forward) 0.0 0/50 0.3191 50/50

Cumulative sums (reverse) 0.0 0/50 0.1538 50/50

Runs 0.0 5/50 0.6163 49/50

Longest run 0.0 0/50 0.5749 49/50

Rank 0.0 0/50 0.1223 49/50

FFT 0.0 0/50 0.1719 48/50

Non overlapping 0.0 0/50 0.9114 50/50

Overlapping 0.0 0/50 0.6579 49/50

Universal 0.0 0/50 0.3191 50/50

Approximate entropy 0.0 0/50 0.4190 49/50

Random excursions 0.0 0/36 0.3505 36/36

Random excursions variant 0.0 0/36 0.8044 36/36

Serial 0.0 0/50 0.6163 50/50

Linear complexity 0.0 0/50 0.5749 50/50
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4 Hardware implementation

In this section, we propose 2-dimensional (2D) electronic implementations of the conven-
tional QACM and the proposed PWLCM. The implementation circuit includes exclusively
basic electronic logic circuits such as adders, multiplexers, D-type flip-flops, and basic logic
gates (AND, NOR, NAND, NOT, . . . ). We propose a hardware architecture which is sim-
ulated on both Multisim and Vivado HLx, and implemented on a Zynq 7020 FPGA board
to confirm the effectiveness of the proposed architecture. The Multisim synthesis allows to
optimize the FPGA architecture.

4.1 Multisim architecture

We first designed the circuit corresponding to the conventional 2-dimensional (2D) QACM
with α = β = 1. For such a circuit, we considered two stages, the one computing x(t + 1)
and the one computing y(t + 1). Given that y(t + 1) depends on x(t + 1), we considered a
delay time of half the clock period to sequentially determine x(t + 1), then y(t + 1). The
corresponding electronic architecture is shown in Fig. 4.

Components U1 and U4 are multiplexers (74157N) that are used to set initial conditions
x0 and y0, respectively. The SET input allows to load initial conditions when SET = 1.
Once initial conditions have been set, the circuit starts oscillating (SET = 0), that is com-
puting x(t + 1) on the leading edge of the clock pulse and y(t + 1) on the trailing edge
of the clock signal. U3 and U6 are D-type flip-flops (74ALS273) that allow the circuit to
sequentially change the output value as a clock pulse occurs (time increment). U2 and U5
are 4-bit adders (74283N) that are used to implement (1).

Fig. 4 Circuit of the conventional 2D QACM for α = β = 1, n = 4. Values are displayed in hexadecimal
representation
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Fig. 5 Electronic implementation of 4-bit PWLCM with α′ = 3, β ′ = 1, c1 = 0, c2 = 11 and, a1 = a2 = 0.
Values are displayed in hexadecimal representation

Now considering the perturbation term, we propose the schematic of the PWLCMwhose
equation is{

x(t + 1) = x(t) + y(t) +
(
a1 + y(t)

)
mod c1 +

(
a2 + y(t)

)
mod c2

y(t + 1) = x(t + 1) + y(t)
mod 2n.

(24)
The circuit in Fig. 5 implements such a system for α′ = 3, β ′ = 1, c1 = 0, c2 = 11,
a1 = a2 = 0 and, n = 4. The circuit implementing modulo 11 is shown in Fig. 6. The

Fig. 6 Electronic implementation of modulo 11 (Modulo 11 module), 4-bit precision
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Table 8 Dependence of the
period � on the precision n n �QACM �PWLCM

2 3 6

3 6 6

4 12 4.81 × 1012

5 24 1.06 × 1015

6 48 1.03 × 1037

7 96 5.49 × 1053

8 192 4.28 × 10114

9 384 1.96 × 10260

10 768 1.09 × 10513

period of the above PWLCM is T = 4.8135×1012, while that of the corresponding QACM
is only T = 12. The period gain for this example is therefore γ = 411. We simulated this
circuit using MULTISIM software as well as PROTEUS/ISIS software and verified that
the dynamics of the electronic system perfectly matches with the MATLAB simulation.
Based on the low complexity of the electronic circuit and the period gain brought by the
insertion of the nonlinear term into the QACM, we concluded that the proposed system can
be efficiently included in a pseudo-random number generator.

We analyzed its period for 2 ≤ n ≤ 10 and compared it with that of the corresponding
QACM. The overall results obtained are summarized in Table 8, from where we can confirm
the efficiency of the nonlinear element for increasing the QACM period, thus giving an
exponential growth of the period with respect to the precision n. Cases n = 2 and n = 3
correspond to the QACM with α = 3 and β = 1, as c2 > 2n, while the periods of the cases
4 ≤ n ≤ 10 are evaluated using the Maple software to avoid calculation errors in Matlab.
An example of distribution of the orbit periods T (x0, y0) with respect to the initial condition
(x0, y0) for the case n = 8 is shown in Fig. 7. One can observe that there are some initial

Fig. 7 Distribution of the PWLCM orbit period T (x0, y0) with respect to the initial condition (x0, y0), case
of n = 8. The other parameters are set as α′ = 3, β ′ = 1, c1 = 0, c2 = 11 and a1 = a2 = 0
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Fig. 8 Probability distribution of T (x0, y0) of the PWLCM for n = 6, n = 7 and, n = 8; with α′ = 3,
β ′ = 1, c1 = 0, c2 = 11 and a1 = a2 = 0

conditions for which the period is greater than the upper limit of the orbit periods of the
QACM, that is π = 2n. Figure 8 shows the probability distribution of T (x0, y0) for n = 6,
7 and 8. It appears from this figure that the frequency or probability increases with the
period: the highest probability corresponds to the largest period T (x0, y0). Such a result is
interesting as our goal is to obtain large periods for all the nontrivial points of the PWLCM.

4.2 FPGA implementation

In order to confirm the effectiveness of the above architecture simulated with the Multisim
software, we used Vivado and implemented the system on Zynq 7020 FPGA board. The
schematic of the implemented system is shown in Fig. 9, with α′ = 3, β ′ = 1, c1 = 0,

Fig. 9 Generalized FPGA implementation of n-bit PWLCM. The “LOAD” command allows to set x0 and
y0 as initial conditions in the 2n-bit register; “RESET” allows to clear the 2n-bit register; and the “SET”
command allows to load the initial conditions to n-bit registers FF1 and FF2, therefore to start the system
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Table 9 Hardware resource
utilization of the 4-bit PWLCM
architecture

Vivado HLx

Data format Unsigned integer

Technology Zynq 7020

LUT 16

FF 12

Fmax (MHz) 134

Throughput(Gbps) 1.072

c2 = 11, a1 = a2 = 0 and, n = 4. The resource utilisation as well as the throughput of the
proposed architecture are given in Table 9. From this table we observe that the implementa-
tion of the PWLCM does not require any DSP module, but exclusively basic modules such
as look-up tables (LUT) and flip-flops (FF). We verified that the outputs of the FPGA and
Multisim architectures perfectly match, thus confirming the effectiveness of the proposed
architectures of the QACM and the PWLCM. For 4-bit precision, the FPGA implementation
performs 1.072 Gbps throughput at 134 MHz maximum frequency. Such a high throughput
shows that the proposed system can be easily combined with other basic gates such XOR
gates or linear feedback shift registers (LSFR) for a real-time generation of pseudo-random
numbers.

5 Conclusion

We presented in this paper the PWLCM obtained from a QACM that is nonlinearly per-
turbed. Depending on the parameter setting, the PWLCM exhibits large periods as compared
to the equivalent QACM. The increase of the period enhance the complexity of the PWLCM,
thereby is more suitable for image shuffling than the QACM. We evaluated the dependence
of the period of the proposed system on the control parameters involved by the perturbing
nonlinear term and observed that the worst parameter setting corresponds to a QACM. The
PWLCM thus appears to be a generalized form of the QACM in which the sensitivity to the
initial conditions has been improved for generating rich and complex dynamics. We showed
that the Lyapunov exponent of the PWLCM is sensitive to the initial condition as it is the
case for many chaotic systems, which justifies the large periods obtained. We noticed that
the period of the PWLCM does not depend on the value of the largest Lyapunov exponent,
but on its variability: a large Lyapunov exponent does not imply a large period, but a constant
Lyapunov exponent implies a weak period. We also proposed an electronic implementation
of both the QACM and the PWLCM. The two circuits are nearly identical, whatever con-
firms that introducing the perturbation term does not significantly modify the complexity of
the QACM, despite the high period gain obtained. The effectiveness of the proposed archi-
tecture was confirmed by implementing the system on a Zynq 7020 FPGA board. Both the
resource utilisation and the throughput of 1.072 Gbps at a maximum frequency of 134 MHz
attest that the PWLCM can be easily combined with other basic gates to design a complete
PRNG. The analysis of the model electronically implemented shows that the period expo-
nentially increases with the precision n. In prospect, we intend to apply the PWLCM to data
encryption in order to take advantage of its large periods, and to investigate its dynamics in
the continuous phase space.
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