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ABSTRACT

The Riemann mapping theorem tells that any two simply-connected domains
with more than one boundary point can be mapped conformally upon one
another. We shall investigate conformal mappings of the unit disk ID onto a
general polygon. Those mappings are called Schwarz-Christoffel mappings,
and they are used in many applications as well as in the theory of conformal
mapping itself.

In this lecture we use MACSYMA, a symbolic algebra system, to calculate
the mapping functions for symmetric polygonal domains.

1. The Schwarz-Christoffel Formula

Let D be a polygon with interior angles a7, aom, . .., q,m.

We define the exterior angles as ugm so that o + pux =1 (kK =1,...,n). The value
it > 0 corresponds to a projecting corner and pu; < 0 corresponds to an inverted
corner. As the sum of the exterior angles of a closed polygon is 27, we have the
condition

S =2, (1)



Let f(z) be an analytic function that maps the unit disk ID := {2z € C | |z| < 1} onto
the interior of the polygon D, whose corners {wy, ..., w,} correspond to the points
{ai,...,a,} on the unit circle in the z-plane. The corresponding exterior angles at
the points {wy, ..., w,} are {m, ..., u,m}, respectively.

By the Schwarz Reflection Principle f is analytically continuable along the seg-
ments (ax, ag+1) on the unit circle when a and ax,1 are two consecutive prevertices,
and so is f"/f', as f' is zero-free.

Next we note that the function h(z) = (f(z) — f(ax))*/* maps a segment of the
tangent at the unit circle at the point a; onto a linear segment. So at ay locally
f(z) = flax) + (2 — ag)*g(z), where g(ax) # 0 and g(z) is analytic. Therefore
f(z) = (z — ag) " p(z), and J}’,’((j)) =tE+ ’;((;)) where p(ay) # 0. Consequently, the
function )

_ + Mk

f'(z)  Zz—a

H(z):

is analytic at all the points a, and since M{'éﬁ)l is analytic in the rest of C, H(z) is
uc

f'(z
analytic in C, and by Liouville’s Theorem reduces to a constant. If no a;y = oo, then

by using the truncated Laurent development for f at the point oo

f:b[0]+b[1]/2+b[2]/272;

it is easy to show with MACSYMA® that

limit (diff(f,z,2)/diff(f,z),z,inf);

equals zero, and hence H(oo) = 0 implying H(z) = 0. We conclude that
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or .
Inf'(z) = =>_ wIn(z —ax) +In B
k=
or ln
f'(z) =B [[(z — ax)™*, (2)
k=1

which may be integrated once more to yield the formula

dz
z — al)ul « .. (Z —_ U/n)un :

fe=a+8 [ (3)
This is the Schwarz-Christoffel formula.

The Schwarz-Christoffel formula remains valid if the polygon D is unbounded,
and if we measure the interior angles negatively at the vertices at oo. Then Eq. 1



remains valid. In particular, if D is smooth at some vertex at oo, then we have to
take into consideration the interior angle o™ = 7 there negatively which leads to an
exterior angle pm = (1 + ax)m = 27 rather that zero. E.g. a half-plane is a polygon
with just one vertex at oo. Suppose its prevertex on the unit circle is the point 1,
then the Schwarz-Christoffel formula reads

fflz) 2
fllz)  z—-1"
or after integration
B
=A :
fe) = A+

The result clearly is a Mobius transformation as just those mappings map circles and
lines onto circles and lines.

Note that the Schwarz-Christoffel formula is a functional differential equation
rather than just a differential equation, as the preimages a; = f~!(wy) depend on f,
and usually are unknown. There are strategies developed to calculate the prevertices
and so the mapping function numerically%2.

Schwarz-Christoffel mappings are used in many applications
theory of conformal mapping itself>*.

2 as well as in the

2. The Completely Symmetric Case

In cases of a special symmetry of the polygon it may be nevertheless possible to
determine the prevertices, and so to calculate the mapping function or at least its
derivative (Eq. 2) symbolically. The last integration (Eq. 3) usually is of the type of
an elliptic integral and an elementary antiderivative does not exist.

Assume now the polygon D has the following symmetry property called m-fold
symmetry: There exists a number m € IN \ {1} such that for each point w € D
the rotated point e?™/™w lies also in D. This is a property common to the square
(m = 4), star-like polygons (different values of m), parallel strip (m = 2), and many
more examples. Note that 2-fold symmetry means just symmetry with respect to the
origin.

It turns out that the number of vertices of an m-fold symmetric polygon is a
multiple of m. Without loss of generality we assume that the vertex w; lies on the
positive real axis, and 1 is its prevertex. If the polygon has just m vertices, or if
it has 2m vertices and is furthermore symmetric with respect to the z-axis, then it
follows again from the Schwarz Reflection Principle that the prevertices turn out to
have the same symmetry behavior. As a; = 1, all prevertices a; (k = 1,...,m) are
then known by their symmetry property,



This knowledge completes the Schwarz-Christoffel formula, and the formula for the
derivative of the mapping function is implemented in the following MACSYMA proce-
dure.

/* completely symmetric case */
SchwarzChristoffelDerivativeSymmetric (Alpha,m) :=
block([bothcases : true,
A,
beta,
T:I:
assume (z<1,z>0),
for j:0 thru m-1 do for k:1 thru length(Alpha) do
beta[k+j*length(Alpha)] :Alphalk],
A : makelist(
rectform(exp (2*%i* (k-1)*/pi/ (m*length(Alpha)))),
k,1,m*length(Alpha)),
T : (product((1-z/A[k]) " (betalk]-1),k,1,length(A))) "2,
return(sqrt(factor (ratsimp(T))))
)$ /* end of SchwarzChristoffelDerivativeSymmetric */

It results in the derivative f’(z) of that mapping function with the normalization
f'(0) = 1. The input has as first argument a vector of the one or two interior angle
entries, and as second argument the symmetry number m. The function can also be
used if m =1, and D is just symmetric with respect to the real axis. The rectform
statement is used to convert the complex expression expr into the standard form
Re expr + 7 Im expr.

The following are examples for the calculation of the derivative of the mapping
function in cases of completely symmetric image polygons. We present short interac-
tive MACSYMA programs that result in sufficiently simple output.

1. (sector) We consider the conformal mapping f : ID — D; for the interior of a
sector Dy of opening ar.

(C2) /* sector of opening alpha pi */
SchwarzChristoffelDerivativeSymmetric([-alpha,alphal,l);

2 ALPHA - 2
2
(z + 1)
(2 e
ALPHA + 1
(1-12)

(C3) expand(%);



ALPHA - 1
(3
ALPHA + 1
1-12)
(C4) sector:(I:integrate(%,z),radcan(I-subst(z=0,1)));
ALPHA ALPHA

Z + 1) - 1-2
(D4 e

aT

Y
Y

2. (square) Next let f: 1D — Dy with a square Ds.

(C5) /* square */
SchwarzChristoffelDerivativeSymmetric([1/2],4);

(DB) e
SQRT(1 - Z) SQRT(Z + 1) SQRT(Z + 1)

(C6) sqrt(ratsimp(%~2));

6272 2

SQRT(1 - Z )

3. (parallel strip) Now we consider a parallel strip Dj.



4

Here

(C7) /* parallel strip */
SchwarzChristoffelDerivativeSymmetric([0],2);

(b8 e
1-2) (Z+ 1

(C9) parallelstrip:logcontract((I:integrate(%,z),radcan(I-subst(z=0,I))));

(b9  mmmmmee e

D,

Y

4. (infinite cross) Let now D, be the interior of an infinite cross. The following
MAcCSYMA statements get the result
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/* infinite cross */
SchwarzChristoffelDerivativeSymmetric([0,3/2],4);
ratsimp(%);
4
SQRT(Z + 1)

. (complement of sectors) Let f:ID — Ds be the mapping onto the comple-
ment Dj of two symmetric sectors of angle (2 — a)w. We get

/* complement of two sectors */
SchwarzChristoffelDerivativeSymmetric([-alpha,alphal,2);
rectform(%~2) ;

trigreduce (%) ;
ratsimp(%);
factor (%) ;
sqrt (%) ;
factor (%) ;
2 ALPHA - 1
z + 1)
ALPHA ALPHA + 1
a1 -2 (Zz-1) (z+ 1)

. (star) Consider a star Dg with four peaks of angle an.

/* star */
SchwarzChristoffelDerivativeSymmetric([alpha,3/2-alphal,4);
%"2;
rectform(%)$
trigexpand (%) $
trigsimp (%) ;
factor (%) ;
sqrt (%) ;
factor (%) ;
2 ALPHA 2 ALPHA - 2 2 2 ALPHA - 2 4

2 2 2 ALPHA 2 2 ALPHA
(Z -1) (Z - SQRT(2) Z + 1) (Z + SQRT(2) Z + 1)

Note that if a MACSYMA statement is finished by a ; sign, its output is pro-
duced on the screen. Some of the output expressions of the above calculation
are rather complicated, so that we prefer to finish the statements by a $ sign
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suppressing the output to be given on the screen.

Y

7. (rhomb) Consider a rhomb D; one of whose angles is a.

/* rhomb */
SchwarzChristoffelDerivativeSymmetric([alpha,1-alpha],2) ;
h2;

rectform(%)$

trigexpand (%) $

trigsimp (%) ;

factor (%) ;

sqrt (%) ;

factor (%) ;

2 ALPHA
(z-1) (Zz +1)

N 74
7

Y



8. (infinite star) We consider the conformal mapping f : ID — Dg for the above
infinite symmetric star Dg. As MACSYMA does not simplify the sine and the
cosine of multiples of 7/8, we use pattern matching rules. (From Version 417
on MAcCSYMA has own capabilities to do this.) The whole calculation is done
by

tellsimpafter(sin(5x%pi/8),sin(3*%pi/8));
tellsimpafter(sin(7x%pi/8),sin(%pi/8));
tellsimpafter(cos(5*%pi/8) ,-sin(%pi/8));
tellsimpafter (cos(7*)pi/8) ,-sin(3*%pi/8));
tellsimpafter(cos(¥%pi/8),sin(3%*%pi/8));
tellsimpafter(cos(3x%pi/8),sin(%pi/8));
tellsimpafter (sin(%pi/8),sqrt(1/2-sqrt(2)/4));
tellsimpafter(sin(3x%pi/8) ,sqrt(1/2+sqrt(2)/4));

/* infinite star */
SchwarzChristoffelDerivativeSymmetric([0,7/4]1,8);

factor (ratsimp(%~4));
sqrt (sqrt (%)) ;

(Zz-1) (Z+1) (Z +1) (zZ + 1)

3. The Partially Symmetric Case

It is also possible to find the mapping function in less symmetric cases. We consider
the case of an m-fold symmetric polygon with 3m vertices, m of them of angle a7
lying symmetrically around the origin, such that between each two of them symmet-
rically lie 2 of the other 2m vertices all having the angle as7.

CH C&

Y
Y

An example is the cross C;. Here m = 4, and the four vertices on the axes are symmet-



ric, and so are their prevertices, whereas the preimages of the other vertices have to
lie symmetrically between them. By the Schwarz Reflection Principle the prevertices
are the points 1, e'@/4 jeia/4 4 jeie/t _eia/t _1 _eia/t _je—ia/t _j _jeia/t o—ia/4
for some « € [0, 7]. The different values of the parameter « correspond to different
width-length ratios of all domains with these geometrical properties, one other of
which is Cy shown above.

The MAcsyMA function

SchwarzChristoffelDerivativeParameter (alphal,alpha2,m)

below calculates the derivative of the conformal mapping f : ID — D for an m-fold
symmetric polygon with 3m vertices, m of them lying symmetrically around the origin
having interior angle «;;7, such that between each two of them symmetrically lie 2 of
the other 2m vertices that all have the same angle a,m.

SchwarzChristoffelDerivativeParameter(alphal,alphaQ,m) =
block([bothcases : true,
A,
beta,
Tl,
assume (z>0,z<1),
for j:0 thru m-1 do for k:1 thru 3 do
(if k=1 then
(beta[1+3%j] :alphal,
A[1+3%j] :rectform(exp(2*)pi*%i*j/m))
) else (if k=2 then
(beta[2+3%j] :alpha?2,
A[2+3%j] :rectform(exp ((2x%pi*%ixj+%i*alpha)/m))
) else
(beta[3+3%j] :alpha2,
A[3+3*j] :rectform(exp((2*%pi*}i*(j+1)-%i*alpha)/m))))
)’
T : (product((1-z/A[k]) " (betalk]-1),k,1,3*m))" 2,
if integerp(2*alpha2) then
return(sqrt(factor(trigreduce(trigsimp(T)))))
else
return(sqrt(sqrt(factor(trigreduce(trigsimp(T~2))))))
)$ /* end of SchwarzChristoffelDerivativeParameter */

The invocation

/* cross */
SchwarzChristoffelDerivativeParameter(3/2,1/2,4);
sqrt (ratsimp(%~2));
4
SQRT(1 - Z )

SQRT(Z - 2 COS(ALPHA) Z + 1)
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leads to the (derivative of the) mapping function of the general cross. Here are more
examples

1. (half parallel strip) Let D; be a half parallel strip. Then

/* half parallel strip */
SchwarzChristoffelDerivativeParameter(0,1/2,1);

(1 - Z) SQRT(Z - 2 COS(ALPHA) Z + 1)

2. (complement of a parallel strip) Let D, be the complement of a half
parallel strip. Then

/* complement of parallel strip */
SchwarzChristoffelDerivativeParameter(0,3/2,1);

2
SQRT(Z - 2 COS(ALPHA) Z + 1)

3. (complement of parallel strips) Let D3 be the complement of two symmet-
ric half parallel strips. Then

/* complement of two parallel strips */
SchwarzChristoffelDerivativeParameter(-1,3/2,2);
4 2
SQRT(Z - 2 COS(ALPHA) Z + 1)

1-2) @+1)
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D,

Y
Y

4. (rectangle) Let next D, be a rectangle. Then

/* rectangle */
SchwarzChristoffelDerivativeParameter(1,1/2,2);

SQRT(Z - 2 COS(ALPHA) Z + 1)

5. (triangle) Let Dj be an isosceles triangle with central angle fr.

/* triangle */
SchwarzChristoffelDerivativeParameter (beta, (1-beta)/2,1);

%4
2 (2 BETA - 2)
(D54) (1 - 2) /
Z - %I SIN(ALPHA) - COS(ALPHA) 2 BETA Z + %I SIN(ALPHA) - COS(ALPHA) 2 BETA
((= === ) (=== )
%I SIN(ALPHA) + COS(ALPHA) %I SIN(ALPHA) - COS(ALPHA)
4 3 2 2

(Z - 4 COS(ALPHA) Z + 2 COS(2 ALPHA) Z + 4 Z - 4 COS(ALPHA) Z + 1))

6. (8-gon) Let finally Dg be the above 8-gon. Then

/* 8-gon */
SchwarzChristoffelDerivativeParameter(1,3/4,4);

(Z - 2 COS(ALPHA) Z + 1)
12



Dg

4
4

\
Ds | pr
/

References

1. P. Henrici, Applied and Computational Complex Analysis, Vol. 1: Power Series
— Integration — Conformal Mapping — Location of Zeros (John Wiley & Sons,
New York, 1974).

2. P. Henrici, Applied and Computational Complex Analysis, Vol. 3: Discrete
Fourier Analysis — Cauchy Integrals — Construction of Conformal maps — Uni-
valent Functions (John Wiley & Sons, New York, 1986).

3. W. Koepf, On close-to-convez functions and linearly accessible domains (Com-
plex Variables 11, 1989), p. 269-279.

4. W. Koepf, On the interplay between geometrical and analytical properties of func-
tions of bounded boundary rotation (Complex Variables 16, 1991), p. 177-207.

5. MACSYMA: Reference Manual, Version 13 (Symbolics, USA, 1988).

6. L. N. Trefethen, Numerical computation of the Schwarz-Christoffel transforma-
tion (STAM J. Sci. Stat. Comput. 1, 1980), p. 82-102.

13



