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Online Demonstrations with
Computer Algebra

e | will use the computer algebra system Maple to
demonstrate and program the algorithms presented.

e Of course, we could also easily use any other general
purpose system like Mathematica, MuPAD or Reduce.

e The following algorithms are most prominently used
(internally): linear algebra techniques, multivariate
polynomial factorization and the solution of nonlinear
equations, e. g. by Grobner basis techniques.
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An Appetizer

e As an appetizer we consider the conversion between a
recurrence equation and a difference equation.

e In this talk a difference equation is an equation
involving the forward difference operator

Af(z) = fle+1) = f(z).
e Question: How can one convert a recurrence equation

a, flx +p)+---+ar flx+1)+ap f(x) =0

(involving the shift operator) to a difference equation
(involving the forward difference operator)? Maple
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Scalar Products

e Given: a scalar product

(f, g) = / f(2)g(x) dpu(x)

with non-negative Borel measure u(x) supported in an
interval |a, b].

e Particular cases:

— absolutely continuous measure du(z) = p(x) dx with weight
function p(x),
— discrete measure u(x) = p(xz) with support in Z.
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Orthogonal Polynomials

e A family P,(x) of polynomials
P,(x) =k + k" P+ K" K, £0

Is called orthogonal w. r. t. the positive definite
measure u(x), if

0 if m #n
h, >0 ifm=n

(P, P.) = {
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Classical Families

e [he classical orthogonal polynomials can be defined as
the polynomial solutions of the differential equation:

o(x)P)(x) + 7(x)P.(x) + \yPu(z) =0 .

e Conclusions:

-n=1 implies 7(x) = dx +e,d # 0

- n =2 implies o(z) = az® + bx + ¢

— coefficient of " implies A, = —n(a(n — 1) + d)
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Classification

e The classical systems can be classified according to the

following scheme ( ):
e o(x)=0 powers "
eo(x)=1 Hermite polynomials
e o(x)=x Laguerre polynomials
o o(x) = 2° powers, Bessel polynomials
e o(r) =x*—1 Jacobi polynomials
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Hermite, Laguerre, Jacobi and Bessel
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Weight function

e The weight function p(x) corresponding to the
differential equation satisfies Pearson’s differential
equation

2 (o(@)p(a)) = r(x)p(a)

e Hence it Is given as
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Classical Discrete Families

e [he classical “discrete” orthogonal polynomials can be
defined as the polynomial solutions of the difference

equation: (Vf(x) = f(x) — f(z — 1))
o(x)AVP,(z) + 7(x)AP,(x) + \,P,(x) = 0.

e Conclusions:

-n=1 implies 7(x) = dx +e,d # 0

- n =2 implies o(z) = az® + bx + ¢

— coefficient of " implies A, = —n(a(n — 1) + d)
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Classification

e The classical discrete systems can be classified accor-
ding to the scheme (Nikiforov, Suslov, Uvarov 1991):

e o(x)=0 falling factorials
=x(z—1)---(zr—n+1)

1 translated Charlier polynomials

e o(x)

x falling factorials, Charlier,
Meixner, Krawtchouk polynomials

e o(x)

e deg(o(xz),x) =2  Hahn polynomials
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Sergei Suslov
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Weight function

e The weight function p(x) corresponding to the
difference equation satisfies Pearson’s difference
equation

e Hence it is given by

plet+1) _o@)+7(z)
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Hypergeometric Functions

e [he power series
a a =
qu(bi::::bS z) :;Akzk7
—0
whose summands o, = A.z" have rational term ratio

apy1 App 2" (k+ar)-(k+ay) 2

o Ay, 2" (k+by)--(k+by) (k+1)

is called the generalized hypergeometric function.
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Hypergeometric Terms

e The summand a; = A;z" of a hypergeometric series is
called a hypergeometric term w. r. t. k.

e [he relation
pla+1) _ ola) +7(a)
p(z) o(x+1)

therefore states that the weight functions p(z) of
classical discrete orthogonal polynomials are
hypergeometric terms w. r. t. the variable .
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Formula for Hypergeometric Terms

e For the coefficients of the hypergeometric function one
gets the formula

o) TR B = (al)k---(ap)kzk
ptq < | = )

bi,...,b, — (b1) - - (by)x K!
in terms of the Pochhammer symbol (or shifted
factorial)

(a)p =ala+1)---(a+k—1) :F(g(:)k) .



Classical Orthogonal Polynomials of Hahn
Class as Hypergeometric Functions

e From the differential or difference equation, one can

determine a hypergeometric representation. Maple
e One gets, for example, for the Laguerre polynomials

n 4+ « —n (=D [n+a

Li(x) = ( " )1F1(04—|—1 x) :kz%( k!) (ntk) z",
and the Hahn polynomials are given_by

a+1,—N

i, — 1
Q?(%a,ﬁ)(x7N)3F2( n,—T,n + ‘|‘Oé‘|_ﬁ 1) |
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Properties of Classical Discrete Orthogonal
Polynomials

e Moreover, by linear algebra one can determine the
coefficients of the following identities

(RE) x P,(z) =a,P,(x)+ b, P,(x) + ¢, P,_1(x)

(DR) o(x)AP,(x) = oy, Pyiq(x) + B Po(z) + v, Pyoq ()

(SR)  Po(z) =0y APyi1(z) + by AP, (2) + ¢, AP, _1 (1)

in terms of the given numbers a,b,c,d and e.  Maple
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Zeilberger’'s Algorithm

o developed an algorithm to
detect a holonomic recurrence equation for
hypergeometric sums

e A recurrence equation is called holonomic, if it is
homogeneous, linear and has polynomial coefficients.
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Zeilberger’'s Algorithm

e A similar algorithm detects a holonomic differential
equation for sums of the form

s(x) = Z F(x, k) .

k=—00

e Holonomic functions form an algebra, i.e. sum and
product of holonomic functions are holonomic, and
there are linear algebra algorithms to compute the
corresponding differential / recurrence equations.
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Application to Orthogonal Polynomials

e As an example, we apply Zeilberger's algorithm to the
Laguerre polynomials

=3 G (175

k=0

e Using the holonomic algebra, it is also easy to find
recurrence and differential equations for the square

L%(x)? and for the product L%(x) LY (x). Maple
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The software used was
developed for my book

Hypergeometric ~ Sum-
mation, Vieweg, 1998,
Braunschweig/Wiesbaden

and can be downloaded
from my home page:

Wolfram Koepf

Hypergeometric
Summation

An Algorithmic Approach to
Summation and
Special Function Identities

Advanced lectures
in Mathematics




Petkovsek-van Hoeij Algorithm

o developed an algorithm to
find all hypergeometric term solutions of a holonomic
recurrence equation.

e This algorithm is not very efficient, but finishes the
problem to find hypergeometric term representations of

hypergeometric sums s, = > F(n,k) like > (Z)z
hi=—oc k=0
algorithmically.
° gave a very efficient version of

such an algorithm, and implemented it in Maple.
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Recurrence Operators

e Assume we consider the holonomic recurrence equation
Rf(z):=flx+2) = (x+1) flx +1) +2° f(x) = 0.

e In the general setting the coefficients could be rational
functions w.r.t. x.

e Let 7 denote the shift operator 7 f(z) = f(x + 1).
Then the above recurrence equation can be rewritten
as R f(x) = 0 with the operator polynomial

R=1m"—(z+1)7+2".

NI KASSEL
E

U
\"/ RSITAT



Recurrence Operators

e Such operators form a non-commutative algebra.
e The product rule for the shift operator
(2f@) = @+1) flz+1) = @+ 1) 7 f(2)
IS equivalent to the commutator rule
TL—XT =T

in this algebra.
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Some Facts

e An operator polynomial has a first order right factor iff
the recurrence has a hypergeometric term solution.

e Hence Petkovsek's algorithm finds first order right
factors of operator polynomials.

e Multiplying an operator polynomial from the left by a
rational function in z is equivalent to multiply the
recurrence equation by this rational function.

e Multiplying an operator polynomial from the left by 7
Is equivalent to substitute x by x + 1 in the recurrence
equation.
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Construction of Fourth Order Recurrence

e | et us construct a fourth-order recurrence equation.
e To construct the equation S f(x) = 0 with operator
S=@@@+)r+2°71+*+2-1)) R,
we just add the equations

(@ +2=1) (f@+2)~ (z+1) flz+1)+2* f(z)) = 0

o~ (f(:z:+3)—($+2)f(x+2)+(:z:+1)2f(x+1)) — 0

z (z+1) ( F24+4)—(2+3) f(243)+(2+2)’ f(:z:+2)) ~0.
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Factorization of Recurrence Equations

e [ his leads to

(z+1) (32" +6z—1)7°
+(z+1) (et +2° -2 —z+1)7T
(

e Given S, a factorization procedure by Mark van Hoeij
can compute the factorization S = L R, again.
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Classical Orthogonal Polynomial Solutions
of Recurrence Equations

e Previously we had shown how the recurrence equation
can be explicitly expressed in terms of the coefficients
of the differential / difference equation.

e If one uses this information in the opposite direction,
then the corresponding differential / difference
equation can be obtained from a given three-term
recurrence.
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Example

e Let the recurrence
Poo(z) —(x—n—1)Pi(z) + a(n + 1)°P,(z) =0
be given.

e We can compute that for & = 1/4 this corresponds to
translated Laguerre polynomials, and for a < 1/4
Meixner and Krawtchouk polynomial solutions occur.
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The End

Thank you very much for your attention!
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