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Online Demonstrations with
Computer Algebra

• I will use the computer algebra system Maple to

demonstrate and program the algorithms presented.

• Of course, we could also easily use any other general

purpose system like Mathematica, MuPAD or Reduce.

• The following algorithms are most prominently used

(internally): linear algebra techniques, multivariate

polynomial factorization and the solution of nonlinear

equations, e. g. by Gröbner basis techniques.



An Appetizer

• As an appetizer we consider the conversion between a

recurrence equation and a difference equation.

• In this talk a difference equation is an equation

involving the forward difference operator

∆f(x) = f(x + 1) − f(x) .

• Question: How can one convert a recurrence equation

ap f(x + p) + · · ·+ a1 f(x + 1) + a0 f(x) = 0
(involving the shift operator) to a difference equation

(involving the forward difference operator)? Maple



Scalar Products

• Given: a scalar product

〈f, g〉 :=
∫ b

a

f(x)g(x) dµ(x)

with non-negative Borel measure µ(x) supported in an

interval [a, b].

• Particular cases:

– absolutely continuous measure dµ(x) = ρ(x) dx with weight

function ρ(x),
– discrete measure µ(x) = ρ(x) with support in Z.



Orthogonal Polynomials

• A family Pn(x) of polynomials

Pn(x) = knx
n + k′nx

n−1 + k′′nx
n−2 + · · · , kn 6= 0

is called orthogonal w. r. t. the positive definite

measure µ(x), if

〈Pm, Pn〉 =
{

0 if m 6= n

hn > 0 if m = n



Classical Families

• The classical orthogonal polynomials can be defined as

the polynomial solutions of the differential equation:

σ(x)P ′′
n (x) + τ(x)P ′

n(x) + λnPn(x) = 0 .

• Conclusions:

– n = 1 implies τ(x) = dx + e, d 6= 0
– n = 2 implies σ(x) = ax2 + bx + c

– coefficient of xn implies λn = −n(a(n − 1) + d)



Classification

• The classical systems can be classified according to the

following scheme (Bochner 1929):

• σ(x) = 0 powers xn

• σ(x) = 1 Hermite polynomials

• σ(x) = x Laguerre polynomials

• σ(x) = x2 powers, Bessel polynomials

• σ(x) = x2 − 1 Jacobi polynomials



Hermite, Laguerre, Jacobi and Bessel



Weight function

• The weight function ρ(x) corresponding to the

differential equation satisfies Pearson’s differential

equation

d

dx

(
σ(x)ρ(x)

)
= τ(x)ρ(x) .

• Hence it is given as

ρ(x) =
C

σ(x)
e
∫ τ(x)

σ(x)
dx

.



Classical Discrete Families

• The classical “discrete” orthogonal polynomials can be

defined as the polynomial solutions of the difference

equation: (∇f(x) = f(x) − f(x− 1))

σ(x)∆∇Pn(x) + τ(x)∆Pn(x) + λnPn(x) = 0 .

• Conclusions:

– n = 1 implies τ(x) = dx + e, d 6= 0
– n = 2 implies σ(x) = ax2 + bx + c

– coefficient of xn implies λn = −n(a(n − 1) + d)



Classification

• The classical discrete systems can be classified accor-

ding to the scheme (Nikiforov, Suslov, Uvarov 1991):

• σ(x) = 0 falling factorials

xn = x(x− 1) · · · (x− n + 1)

• σ(x) = 1 translated Charlier polynomials

• σ(x) = x falling factorials, Charlier,

Meixner, Krawtchouk polynomials

• deg(σ(x), x) = 2 Hahn polynomials



Sergei Suslov



Weight function

• The weight function ρ(x) corresponding to the

difference equation satisfies Pearson’s difference

equation

∆
(
σ(x)ρ(x)

)
= τ(x)ρ(x) .

• Hence it is given by

ρ(x + 1)
ρ(x)

=
σ(x) + τ(x)

σ(x + 1)
.



Hypergeometric Functions

• The power series

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)

=
∞∑

k=0

Ak zk ,

whose summands αk = Akz
k have rational term ratio

αk+1

αk
=

Ak+1 zk+1

Ak zk
=

(k + a1) · · · (k + ap)
(k + b1) · · · (k + bq)

z

(k + 1)

is called the generalized hypergeometric function.



Hypergeometric Terms

• The summand αk = Akz
k of a hypergeometric series is

called a hypergeometric term w. r. t. k.

• The relation

ρ(x + 1)
ρ(x)

=
σ(x) + τ(x)

σ(x + 1)

therefore states that the weight functions ρ(x) of

classical discrete orthogonal polynomials are

hypergeometric terms w. r. t. the variable x.



Formula for Hypergeometric Terms

• For the coefficients of the hypergeometric function one

gets the formula

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)

=
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
,

in terms of the Pochhammer symbol (or shifted

factorial)

(a)k = a(a + 1) · · · (a + k − 1) =
Γ(a + k)

Γ(a)
.



Classical Orthogonal Polynomials of Hahn
Class as Hypergeometric Functions

• From the differential or difference equation, one can

determine a hypergeometric representation. Maple

• One gets, for example, for the Laguerre polynomials

Lα
n(x) =

(
n + α

n

)
1F1

(
−n

α + 1

∣∣∣∣∣x
)

=
n∑

k=0

(−1)k

k!

(
n + α

n − k

)
xn,

and the Hahn polynomials are given by

Q(α,β)
n (x,N) = 3F2

(
−n,−x, n + 1 + α + β

α + 1,−N

∣∣∣∣∣ 1
)

.



Properties of Classical Discrete Orthogonal
Polynomials

• Moreover, by linear algebra one can determine the

coefficients of the following identities

(RE) xPn(x) = an Pn+1(x) + bn Pn(x) + cn Pn−1(x)

(DR) σ(x) ∆Pn(x) = αn Pn+1(x) + βn Pn(x) + γn Pn−1(x)

(SR) Pn(x) = ân ∆Pn+1(x) + b̂n ∆Pn(x) + ĉn ∆Pn−1(x)

in terms of the given numbers a, b, c, d and e. Maple



Zeilberger’s Algorithm

• Doron Zeilberger (1990) developed an algorithm to

detect a holonomic recurrence equation for

hypergeometric sums

sn =
∞∑

k=−∞

F (n, k) .

• A recurrence equation is called holonomic, if it is

homogeneous, linear and has polynomial coefficients.



Zeilberger’s Algorithm

• A similar algorithm detects a holonomic differential

equation for sums of the form

s(x) =
∞∑

k=−∞

F (x, k) .

• Holonomic functions form an algebra, i.e. sum and

product of holonomic functions are holonomic, and

there are linear algebra algorithms to compute the

corresponding differential / recurrence equations.



Application to Orthogonal Polynomials

• As an example, we apply Zeilberger’s algorithm to the

Laguerre polynomials

Lα
n(x) =

n∑
k=0

(−1)k

k!

(
n + α

n − k

)
xn .

• Using the holonomic algebra, it is also easy to find

recurrence and differential equations for the square

Lα
n(x)2 and for the product Lα

n(x) Lβ
m(x). Maple



The software used was

developed for my book

Hypergeometric Sum-

mation, Vieweg, 1998,

Braunschweig/Wiesbaden

and can be downloaded

from my home page:

http://www.mathematik.uni-kassel.de/˜koepf



Petkovsek-van Hoeij Algorithm

• Marko Petkovsek (1992) developed an algorithm to

find all hypergeometric term solutions of a holonomic

recurrence equation.

• This algorithm is not very efficient, but finishes the

problem to find hypergeometric term representations of

hypergeometric sums sn =
∞∑

k=−∞
F (n, k) like

n∑
k=0

(
n
k

)2
algorithmically.

• Mark van Hoeij (1999) gave a very efficient version of

such an algorithm, and implemented it in Maple.



Recurrence Operators

• Assume we consider the holonomic recurrence equation

R f(x) := f(x + 2) − (x + 1) f(x + 1) + x2 f(x) = 0 .

• In the general setting the coefficients could be rational

functions w.r.t. x.

• Let τ denote the shift operator τ f(x) = f(x + 1).
Then the above recurrence equation can be rewritten

as R f(x) = 0 with the operator polynomial

R := τ 2 − (x + 1) τ + x2 .



Recurrence Operators

• Such operators form a non-commutative algebra.

• The product rule for the shift operator

τ
(
x f(x)

)
= (x + 1) f(x + 1) = (x + 1) τ f(x)

is equivalent to the commutator rule

τ x− x τ = τ

in this algebra.



Some Facts

• An operator polynomial has a first order right factor iff

the recurrence has a hypergeometric term solution.

• Hence Petkovsek’s algorithm finds first order right

factors of operator polynomials.

• Multiplying an operator polynomial from the left by a

rational function in x is equivalent to multiply the

recurrence equation by this rational function.

• Multiplying an operator polynomial from the left by τ

is equivalent to substitute x by x + 1 in the recurrence

equation.



Construction of Fourth Order Recurrence

• Let us construct a fourth-order recurrence equation.

• To construct the equation S f(x) = 0 with operator

S := (x (x + 1)τ 2 + x3 τ + (x2 + x− 1)) ·R ,

we just add the equations

(x2 +x−1)
(
f(x+2)− (x+1) f(x+1)+x2 f(x)

)
= 0

x3
(
f(x+3)− (x+2) f(x+2)+(x+1)2 f(x+1)

)
= 0

x (x+1)
(
f(x+4)−(x+3) f(x+3)+(x+2)2 f(x+2)

)
= 0 .



Factorization of Recurrence Equations

• This leads to

S := x (x + 1) τ 4

−x (4 x + 3) τ 3

+(x + 1)
(
3 x2 + 6 x− 1

)
τ 2

+(x + 1)
(
x4 + x3 − x2 − x + 1

)
τ

+
(
x2 + x− 1

)
x2 .

• Given S, a factorization procedure by Mark van Hoeij

can compute the factorization S = LR, again.



Classical Orthogonal Polynomial Solutions
of Recurrence Equations

• Previously we had shown how the recurrence equation

can be explicitly expressed in terms of the coefficients

of the differential / difference equation.

• If one uses this information in the opposite direction,

then the corresponding differential / difference

equation can be obtained from a given three-term

recurrence.



Example

• Let the recurrence

Pn+2(x) − (x− n − 1) Pn+1(x) + α(n + 1)2Pn(x) = 0

be given.

• We can compute that for α = 1/4 this corresponds to

translated Laguerre polynomials, and for α < 1/4
Meixner and Krawtchouk polynomial solutions occur.



The End

Thank you very much for your attention!


