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1 Introduction

In this talk, I would like to show you how DERIVE can be used as a didactical tool in
secondary high school education. For my demonstration I use the newest release DERIVE
for Windows 5 which supports the use of worksheets. I will concentrate on some examples
describing general topics that I find most appropriate to enhance our educational opportuni-
ties. In this introduction, I would like to embed the sooner or later expected replacement of
numerical calculators in mathematics education by symbolic ones into a historical context.

In the history of mathematics from time to time new calculation tools were invented replac-
ing old ones. Obviously the known mathematical calculation techniques were quite different
at the time before logarithm tables made the computation of products and powers easier,
and the traditional techniques changed when these methods were generally accessible. Sim-
ilarly, when the slide-rule came up, the used—and taught—calculation techniques changed
again.

More dramatically, when numerical calculators came into the scene, they made both the
logarithm tables and the slide-rule dispensable, and, indeed in our days students do no
longer have the knowledge about these former mighty tools,1 let alone their use.

As an example, I have experienced that since the numerical calculator was introduced into
the classroom, students tend to avoid working with rational arithmetic. They prefer to
use decimal numbers instead. Even if these computations might give inaccurate results
in certain situations (e.g. 0.999999999 rather than 1), this is one of the expected results
of the use of the new tool, whether we like it or not. The students don’t find this an
essential disadvantage. Whenever mathematical tools are replaced by new ones, teaching
and exercising changes. Obviously we should be aware of this fact, and we should try to
make sure that important knowledge and techniques do not get lost.

In my opinion, computer algebra tools are more adequate for mathematics education than
numerical calculators are. Whereas a numerical calculator gives some new possibilities like

1Ask your students whether they can tell you what a slide-rule is!
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the fast computation of trigonometric functions etc., it cannot really replace the former
computations as the simple example of rational arithmetic shows. Hence, one can expect
positive side effects when computer algebra comes into the game.

The examples of this article are mainly taken from my book [3] which offers material for the
use of DERIVE in the secondary education at German high schools. I hope I can convince
you that save the large personal involvement of each teacher, there are great chances with
the use of computer algebra in the classroom.

2 Probability

Computer algebra systems should be used to work with large integers. As already men-
tioned, since the numerical calculator was introduced into the classroom, students tend to
avoid working with rational arithmetic. Rational arithmetic comes back into the picture
when using computer algebra.

Here I give an example from probability. The point is that such computations are out of
reach for hand computations although they form interesting and by no means pathological
questions. It is a typical situation that realistic “real world problems” are not generally
accessible for hand computation.

One can use numeric computation for such problems, however the student has no chance to
do the necessary error analysis. With some calculators, the result may be even wrong since
large factorials are involved.2 Using exact rational arithmetic, errors do not occur at all.
Nevertheless all results presented in this lecture can be computed in a second on today’s
PC’s.

Problem 1:

What is the probability P1 to throw exactly 50 times Head when throwing a fair coin 100

times?

Clearly, the teacher should develop the theory behind such questions, and the binomial
distribution will show up. Hence the result is given by the formula

P1 =

(

100

50

)

·
(

1

2

)100

,

(

n

k

)

denoting the binomial coefficient. In DERIVE, this can be entered as

COMB(100, 50) ∗ (1/2)^100

2Indeed, large factorials are only involved if a numerical calculator does not support products. In a

computer algebra system binomial coefficients are computed differently and more efficiently.
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and simplification yields

P1 =
12611418068195524166851562157

158456325028528675187087900672
,

a rational number with huge numerator and denominator. Such a result is not accessible
with a numerical calculator. On the other hand, in DERIVE we can now approximate the
previous exact result and get

P1 = 0.07958923738 ,

clearly accurate in all its decimal places, and no error analysis is necessary. To interpret
the result, it might be unexpected that in almost 8 % of all repetitions of the experiment to
throw a coin 100 times exactly 50 times Head occurs. Clearly this provokes an even more
complicated question like

Problem 2:

What is the probability P2 to throw between 45 and 55 times Head when throwing a fair

coin 100 times?

The binomial distribution gives the sum

P2 =
55
∑

k=45

(

100

k

)

·
(

1

2

)100

,

which is in DERIVE

SUM(COMB(100, k) ∗ (1/2)^100, k, 45, 55) .

DERIVE computes very fast

P2 =
28868641920228451421269389993

39614081257132168796771975168
.

Clearly, such a computation is absolutely intractable by hand computation! The decimal
analogue of the result is

P2 = 0.7287469759 .

Hence in more than 2/3 of all repetitions of the experiment to throw a coin 100 times we
get between 45 and 55 times Head.

This gives a hint how “wide” the underlying binomial distribution is. To measure its width,

we compute the standard deviation σ =
√

n p (1 − p),

σ := SQRT(100 ∗ (1/2) ∗ (1/2)) ,

to obtain σ = 5. This corresponds to the well-known fact that in about 2/3 of all cases the
result of a normally-distributed random variable lies in the 1-σ neighborhood [µ− σ, µ + σ]
of the expected value µ, which in our case is µ = 50.
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One could also easily check the 2-σ and 3-σ neighborhoods of the expected value which
should contain about 95 % and 99 % of the results, respectively, therefore proving that the
binomial distribution is already “almost normal” if n = 100.

Another hint for the width of the binomial distribution as well as for its similarity to the
normal distribution is given by its graph

which we receive after simplifying

VECTOR([k, COMB(100, k) ∗ (1/2)^100], k, 0, 100)

Next, we generate a picture of the distribution function of the binomial distribution

by graphing

SUM(COMB(100, k) ∗ (1/2)^100 ∗ CHI(k, x,∞), k, 0, 100)

to be compared with the distribution function of the corresponding Gaussian normal dis-
tribution

N(µ, σ, x) :=

x
∫

−∞

1

σ
√

2π
e−

(x−µ)2

2σ2 .

A plot of the simplified expression
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INT(1/(σ ∗ SQRT(2 ∗ π)) ∗ EXP(−(x − 50)^2/(2 ∗ σ^2)),−∞, x)

involving the error function

erf
(√

2x
10

− 5
√

2
)

+ 1

2

yields

The superposition of both functions is most impressive:

Obviously we are free—and DERIVE offers the capability—to study, e.g., also the situation
for n = 1000.

3 Graphics

We already saw in the above section, that graphs can give very interesting insights into
mathematical situations. On the other hand, graphing is not that easy in all situations as
the following example shows [4]:

Problem 3:

Graph the rational function f(x) = 1000 (x−1)
(101x−100) (100x−99)

. Where is the second pole?

5



We enter

f := 1000 ∗ (x − 1)/((101 ∗ x − 100) ∗ (100 ∗ x − 99)) .

DERIVE immediately graphs f as

It looks as if there is a maximum just right of 1, a zero at 1, and a pole just left of 1. Actually,
this picture is not bad compared to the results of other computer algebra software. But
nevertheless: A glimpse at the formula shows that there should be two poles. Where is the
second pole? Even zooming out does not give any hint, so what is going on?

Clearly, directly from the formula we see that the two poles are at x = 100
101

and x = 99
100

,
both slightly smaller than 1. To find out how the graph between the two poles looks, we
search for the critical points by

SOLVE(DIF(f, x), x)

and get the result

x = ±∞ or x = 1 −
√

101

1010
or x =

√
101

1010
+ 1 .

The last solution is obviously larger than 1, hence yields the maximum, so the middle
solution is the one we are interested in. Substituting this number into f

SUBST(f, x, 1 − SQRT(101)/1010)

yields the value 20000
√

101 + 201000 ≈ 4.019975124 · 105. Now we see what’s happening:
The function has a local minimum at x = 1−

√
101

1010
and all its values are larger than 4 · 105

between the two poles. That’s why we didn’t see anything! Using a reasonable plot range3

gives the following graph:

3using Set: Plot Range in the 2D-Plot window
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This example shows that the use of computer algebra enhanced graphing is much superior
to the use of a graphics calculator with which such information is not available.

4 Factorization

In this section we deal with a question which is out of reach for hand computation as well
as for graphics calculators. Here, symbolic computation is the essential ingredient.

Leibniz, one of the developers of the differential and integral calculus, still doubted the
existence of an elementary antiderivative of the rational function

1

1 + x4
.

The reason was that he was not able to find a proper real factorization of the denominator
polynomial

1 + x4

in terms of quadratics. Let’s check this with DERIVE. We enter

g := 1/(1 + x4)

and use DERIVE to factorize g by

FACTOR(g)

to get
1 + x4

again. This seems to approve Leibniz’s opinion. However, we get more detailed information
when using DERIVE’s Simplify menu. The Simplify: Factor submenu asks the
user for the degree of factorization: Trivial, Rational, Radical or Complex, Rational being

7



the default choice. This gives us a clue why a proper factorization was not found in the first
step: A factorization of g over the rationals Q does not exist!4 However, since we search for
a factorization over R, we choose the Radical option to get

1 + x4 = (x2 +
√

2 x + 1) (x2 −
√

2 x + 1) .

With this factorization in mind, it is easy to find the partial fraction decomposition

1

1 + x4
= −

√
2x

4 (x2 −
√

2x + 1)
+

1

2 (x2 −
√

2 x + 1)
+

√
2 x

4 (x2 +
√

2 x + 1)
+

1

2 (x2 +
√

2x + 1)

with Simplify: Expand , and to understand the antiderivative

∫

1

1 + x4
dx =

√
2 arctan (

√
2 x − 1)

4
+

√
2 arctan (

√
2 x + 1)

4
−

√
2 ln

(

x2−
√

2 x+1
x2+

√
2 x+1

)

8

which is returned by DERIVE’s integrator.

5 Parametric Representation of Conic Sections

Students of Physics need the parametric representation of conic sections when planetary
motion is studied. University teachers in Germany observe and criticize that a typical
student does not have this knowledge. The reason is simple: With hand computations the
parametric representation of conic sections is rather difficult to derive. Here, we show how a
rational factorization gives this result very easily. Note that although rational factorizations
are difficult to find, they are very easy to check.

We start with the rectangular equation of an ellipse whose left focus lies in the origin:

(x − e)2/a2 + y2/b2 − 1 = 0 .

We replace b2 by a2 − e2 using the substitution

(x − e)2/a2 + y2/SQRT(a2 − e2)2 − 1 = 0 .

Simplification yields

x2 (a2 − e2) + 2 e x (e2 − a2) + a2 y2 − (a2 − e2)2

a2 (a2 − e2)
= 0 .

4Actually this was proved by DERIVE in the first calculation!
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Next, we introduce polar coordinates x = r cosφ and y = r sin φ by another substitution.
Simplification gives

equation :=
e2 r2 COS(φ)2 + 2 e r (a2 − e2) COS(φ) + a4 − a2 (2 e2 + r2) + e4

a2 (e2 − a2)
= 0 .

You see that the simplification procedure has removed the sine expression using the trigono-
metric identity sin2 φ = 1 − cos2 φ. But what’s next?

What we want is a representation of r in terms of φ. It turns out that students who don’t
have any idea how to proceed, but are accustomed with DERIVE, nevertheless have the
idea to let DERIVE solve the equation for r, and this is a successful approach! On the
other hand the main reason for this success is hidden. Let’s rather try to factorize the given
expression by

FACTOR(equation)

with the result

(e r COS(φ) + a2 + a r − e2) (e r COS(φ) + a2 − a r − e2)

a2 (a + e) (e − a)
= 0 .

It is now obvious why the equation easily can be solved for r: By the factorization, either
of the two numerator factors must be zero. Using

SOLVE(equation, r)

returns these two solutions

r =
e2 − a2

e COS(φ) − a
or r =

e2 − a2

e COS(φ) + a
.

It turns out that only one of these is positive, hence we get

r =
e2 − a2

e COS(φ) − a
.

Finally, we introduce the eccentricity ε = e/a which is smaller than 1 for an ellipse, larger
than 1 for a hyperbola and equal to 1 for a parabola, and obtain

r =
e (ε2 − 1)

ε (ε COS(φ) − 1)
.

It turns out ([3], Chapter 2) that a similar computation yields the same result for a hyper-
bola, for which, however, ε > 1.

9



To get a picture, we produce a graph for e = 1, ε = 0.9 and ε = 1.1, respectively.5 This
yields

6 Cubic Newton Iteration

Let’s start to derive the usual Newton iteration by linearization. Declare f by

f(x) :=

to be an arbitrary function of a single variable. Linearizing f at the point xn gives the
equation

y = f(xn) + (x − xn) ∗ f ′(xn) .

If xn is an approximation of a zero, we therefore can set y = 0, and solve for x to get the
next iteration value:

SOLVE(0 = f(xn) + (x − xn) ∗ f ′(xn), x)

with the solution

x = xn −
f(xn)

f ′(xn)
.

This gives the well-known Newton iteration formula for xn+1 which usually converges
quadratic to a simple zero of f (see e.g. [2] for details).

Now we are ready to develop a cubic interpolation scheme (see e.g. [3], Chapter 3) by
starting with a second order parabolic approximation of f :6

5To generate a polar plot, one uses Set: Coordinate System: Polar in the 2D-Plot window.
6Instead of using the TAYLOR function, one could also enter the expression by hand.

10



y = TAYLOR(f(x), x, xn, 2)

which simplifies to

y =
(x − xn)2 f ′′(xn)

2
+ (x − xn) f ′(xn) + f(xn) .

Since x − xn ≈ − f(xn)
f ′(xn)

by the Newton iteration, one can linearize the quadratic factor.
Setting y = 0 and solving for x, again, we get

equation := SOLVE(0 = (x − xn) ∗ (−f ′(xn)/f(xn))/2 + (x − xn) ∗ f ′(xn) + f(xn), x)

with the solution

x =
2 f(xn) f ′(xn)

f(xn) f ′′(xn) − 2 f ′(xn)2
+ xn .

This is a cubic iteration scheme as we shall see. Let’s test it to calculate square roots. To
compute

√
a, we use

f(x) := x2 − a .

With this definition, one can simplify equation again to obtain

x = 3 xn −
8 x3

n

a + 3 x2
n

.

Let’s check that this gives a cubic iteration scheme: Simplifying xn+1 − a by

FACTOR((3 ∗ xn− 8 ∗ xn3/(a + 3 ∗ xn2))2 − a)

gives
(x2

n − a)3

(a + 3 x2
n)2

proving the cubic convergence. The same method shows that Newton’s iteration is quadratic
convergent.

Now, we test the iteration for

a := 10 .

The iteration can be executed by the command
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ITERATES(3 ∗ xn− 8 ∗ xn3/(a + 3 ∗ xn2), xn, 1, 5)

which we approximate to get

[1, 2.384615384, 3.144897306, 3.162277527, 3.16227766, 3.16227766] .

Hence
√

10 is computed from the (bad) initial guess 1 in 4 steps, whereas Newton’s iteration

ITERATES(xn− f(xn)/f ′(xn), xn, 1, 5)

gives
[1, 5.5, 3.659090909, 3.196005081, 3.162455622, 3.162277665]

convergence in five steps. From the practical point of view this might be not very essential,
but from a theoretical point of view the higher order Newton method is rather interesting.

Note that by a similar computation iteration schemes with convergence of arbitrary order
can be obtained which however—as a negative computational repercussion–get more and
more complicated. Note further that the cubic iteration scheme for the square root discussed
in this section was discovered by Dedekind (see e.g. [5], pp. 99).

7 Final Remarks

I hope that I could convince you that the smart use of computer algebra in the classroom
can be a very convenient didactical tool to teach and develop mathematical insights. On
the other hand, one should not disregard the fact that nevertheless the students should
obtain advanced mathematical skills before using computer algebra since otherwise they
might neither be able to handle such a program nor to understand its results. A similar
remark applies to hand-held computer algebra tools like the TI-89. Therefore, it is very
important that the essential mathematical skills are still practiced.

Especially if you have weak students, it may happen that this scheme cannot be put into
practice. One essential problem are time constraints. Furthermore, my experience is that
weaker students tend to be overwhelmed by the handling of a computer algebra system7

since they need to acquire even more skills to use such a program which they try to avoid.

Note that in the meantime many different teachers all over the world use computer algebra
in Math education and curriculum discussions are on their way. A collection of interesting
projects on this topic can be found in Section 3.8 on “Computer Algebra in Education”
which I compiled for [1].

7even though the students might enjoy the calculation assistance
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