Übungen zur Vorlesung Diskrete Strukturen II

Aufgaben 1) und 2) sind relevant für den Scheinerwerb.

Aufgabe 1. Wir betrachten den Graph $\Gamma = (V, E)$ mit Knotenmenge $V := \{1, 2, 3, 4, 5\}$ und Kantenmenge $E = \{\{2, 3\}, \{4, 5\}, \{2, 4\}, \{1, 2\}, \{1, 3\}, \{2, 5\}, \{3, 4\}\}.$

- a) Erstellen Sie eine Visualisierung von Γ .
- b) Geben Sie die Adjazenz-Matrix von Γ an.
- c) Bestimmen Sie für jeden Knoten $v \in V$ den Grad $\deg_{\Gamma}(v)$.

Aufgabe 2.

- a) Gibt es einen Graphen Γ mit 103 Kanten, in dem jeder Knoten einen durch 7 teilbaren Grad hat?
- b) Sei $\Gamma = (V, E)$ ein Graph mit gerader Anzahl |E| von Kanten. Beweisen Sie: Wenn $\deg_{\Gamma}(v) \in \{7, 11, 23\}$ für alle $v \in V$ gilt, dann ist |V| durch 4 teilbar.

Aufgabe 3. Sei $\Gamma = (V, E)$ ein zusammenhängender Graph und $W = (v_0, \dots, v_l)$ ein Kreis in Γ. Zeigen Sie, dass für alle $i = 1, \dots, l$ auch der Graph $(V, E \setminus \{\{v_{i-1}, v_i\})$ zusammenhängend ist.

Aufgabe 4. Sei $\Gamma = (V, E)$ ein zusammenhängender Graph. Eine Kante $e \in E$ werde Brücke genannt, wenn der Graph $(V, E \setminus \{e\})$, der durch Entfernen von e entsteht, nicht mehr zusammenhängend ist. Zeigen Sie: Wenn in einem zusammenhängenden Graphen Γ jeder Knoten einen geraden Grad hat, dann gibt es in Γ keine Brücke.

Abgabe: Die Lösungen müssen am Mittwoch, 27.01.2016 spätestens bis 08:15 Uhr abgegeben werden.