Prof. Dr. Walter Strampp Dr. E. Nana Chiadjeu

Lineare Algebra für

U N I K A S S E L V E R S I T 'A' T

Übungsblatt 03

Elektrotechniker/Informatiker Mechatroniker/Wirtschaftsingenieure

11.11.2013

Aufgabe 1 Gegeben seien die Punkte P = (-2, 4, 3), Q = (3, -1, -4) und R = (2, -5, -3) im \mathbb{R}^3 .

- (a) Man bestimme den Punkt S so, dass PQRS ein Parallelogramm ist.
- (b) Wie gross ist der Flächeninhalt dieses Parallelogramms?
- (c) Man berechne den von \overrightarrow{PQ} und \overrightarrow{PR} eingeschlossenen Winkel mit dem Skalarprodukt.

Aufgabe 2 Gegeben seien die drei Vektoren
$$\vec{a} = \begin{pmatrix} x \\ 2 \\ 3 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} -1 \\ 0 \\ x \end{pmatrix}$.

- (a) Man berechne das Spatprodukt der drei Vektoren.
- (b) Wie muss man x wählen, damit das Volumen des von den Vektoren \vec{a} , \vec{b} und \vec{c}

aufgespannten Spats 20 ist?

Aufgabe 3 Man vereinfache folgenden Ausdruck:

$$(\vec{a} + \vec{b}) \times (\vec{c} - \vec{b}) + \vec{c} \times (\vec{a} - \vec{b}) - (\vec{c} - \vec{a}) \times (\vec{a} + \vec{b})$$

Aufgabe 4 Gegeben sei die Gerade

$$g: \quad \vec{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \quad (t \in \mathbb{R})$$

Man bestimme zwei Punkte A und B auf g sowie einen Richtungsvektor \vec{u} von g.

Aufgabe 5 (10 Punkte)

(a) Die drei Punkte A=(3,a,5), B=(-1,1,2), C=(-3,6,-2) spannen im \mathbb{R}^3 ein Dreieck auf $(a\in\mathbb{R})$. Verschiebt man dieses Dreieck durch den Vektor $\vec{v}=\begin{pmatrix} -\frac{2}{3}\\1\\3 \end{pmatrix}$, so überstreicht es ein Prisma im Raum.

Wie groß ist das Volumen V dieses Prismas? (Hinweis: Man betrachte das Spatprodukt von \overrightarrow{AB} , \overrightarrow{AC} und \overrightarrow{V}). Man bestimme a so, dass V=0 wird. Was bedeutet dies geometrisch für die Vektoren \overrightarrow{AB} , \overrightarrow{AC} und \overrightarrow{V} ?

(Bitte wenden)

(b) Gegeben seien die Geraden

$$g_1: \quad \vec{r} = \left(egin{array}{c} -1 \ 2 \ -3 \end{array}
ight) + t \left(egin{array}{c} -rac{1}{2} \ rac{1}{3} \ 1 \end{array}
ight) \quad (t \in \mathbb{R})$$

$$g_2: \quad \vec{r} = \begin{pmatrix} -4 \\ 4 \\ 3 \end{pmatrix} + s \begin{pmatrix} -3 \\ 2 \\ 6 \end{pmatrix} \quad (s \in \mathbb{R})$$

$$g_3: \quad \vec{r} = \begin{pmatrix} -2\\3\\-1 \end{pmatrix} + q \begin{pmatrix} 2\\-2\\-4 \end{pmatrix} \quad (q \in \mathbb{R})$$

Welche Lage haben die Geraden

- (i) g_1 und g_2 zueinander?
- (ii) g_2 und g_3 zueinander?

Prof. Dr. Walter Strampp Dr. E. Nana Chiadjeu

Lineare Algebra für

U N I K A S S E L V E R S I T 'A' T

WS 2013/2014

Elektrotechniker/Informatiker Mechatroniker/Wirtschaftsingenieure

18.11.2013

Hausaufgabe 03

Nachname:							
Vorname:							
Studiengang:							
MatrNr.:							
Gruppe:							
Punkte:							