Lineare Algebra für

U N I K A S S E L V E R S I T 'A' T

Übungsblatt 09

Elektrotechniker/Informatiker Mechatroniker/Wirtschaftsingenieure

12.01.2015

Aufgabe 1

Die lineare Abbildung $f: \mathbb{C}^3 \to \mathbb{C}^2$ wird gegeben durch:

$$f\begin{pmatrix}1\\0\\0\end{pmatrix}=\begin{pmatrix}3+i\\0\end{pmatrix}, f\begin{pmatrix}0\\1\\0\end{pmatrix}=\begin{pmatrix}1\\1-i\end{pmatrix}, f\begin{pmatrix}0\\0\\1\end{pmatrix}=\begin{pmatrix}0\\1\end{pmatrix}.$$

Man berechne den Kern von f und bestätige die Dimensionsformel

Aufgabe 2

Gegeben sei im \mathbb{R}^2 die Basis

$$\vec{a_1} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$$
, $\vec{a_2} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$.

Die lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^2$ wird gegeben durch:

$$f(\vec{a_1}) = \vec{a_1} - \vec{a_2}, \quad f(\vec{a_2}) = \vec{a_2}.$$

- (i) Man bestimme die Matrix von f bezüglich der Basis $\vec{a_1}$, $\vec{a_2}$.
- (ii) Man bestimme die Matrix von f bezüglich der kanonischen Basis .

Aufgabe 3

Im \mathbb{R}^3 wird eine Ebene E durch den Nullpunkt mit dem normalen Vektor $\vec{n} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ gegeben. Wir betrachten

die lineare Abbildung $S: \mathbb{R}^3 \to \mathbb{R}^3$, die einen Vektor an der Ebene E spiegelt. Man wähle eine **geeignete Basis** des \mathbb{R}^3 und gebe die Matrix S bezüglich dieser Basis an. Wie lautet die Matrix, wenn statt einer Spiegelung eine Drehung D um den Winkel ϕ um die durch den Vektor \vec{n} festgelegte Achse betrachtet wird?

Aufgabe 4 (10 Punkte)

(1) Die lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^2$ wird gegeben durch:

$$f\begin{pmatrix}1\\0\\0\end{pmatrix}=\begin{pmatrix}5\\-10\end{pmatrix}, f\begin{pmatrix}0\\1\\0\end{pmatrix}=\begin{pmatrix}-3\\6\end{pmatrix}, f\begin{pmatrix}0\\0\\1\end{pmatrix}=\begin{pmatrix}-1\\2\end{pmatrix}.$$

- (a) Wie lautet die Matrix von f bezüglich der kanonischen Basen des \mathbb{R}^3 und des \mathbb{R}^2 ?
- (b) Man bestimme den Kern von f (Nullraum) und bestätige die Dimensionsformel.
- (2) Gegeben sei im \mathbb{R}^3 die Basis

$$\vec{a_1} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
, $\vec{a_2} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\vec{a_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Die lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3$ wird gegeben durch:

$$f(\vec{a_1}) = -\vec{a_1} + \vec{a_3}, \quad f(\vec{a_2}) = 3\vec{a_2} - 6\vec{a_3}, \quad f(\vec{a_3}) = \vec{a_1} + \vec{a_2} - 3\vec{a_3}.$$

Prof. Dr. Wolfram Koepf

Dr. Anen Lakhal

Lineare Algebra für

U N I K A S S E L V E R S I T 'A' T

WS 2014/2015

Elektrotechniker/Informatiker Mechatroniker/Wirtschaftsingenieure

19.01.2015

Hausaufgabe 09

Nachname:							
Vorname:							
Studiengang:							
MatrNr.:							
Gruppe:							
Punkte:							