Prof. Dr. Andreas Meister Fil. mag. Philipp Birken

Numerik I

Aufgabenblatt 10

Aufgabe 1

Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit und gelte $A^j = A$ für ein $j \in \mathbb{N}$ mit n > j > 1, dann liefert das CG-Verfahren spätestens mit x_j die exakte Lösung der Gleichung Ax = b für beliebiges $b \in \mathbb{R}^n$. (4 P)

Aufgabe 2

Betrachten Sie das Verfahren der konjugierten Richtungen und konstruieren Sie eine Matrix $A \in \mathbb{R}^{4 \times 4}$ sowie 4 A-orthogonale Suchrichtungen p_0, \ldots, p_3 derart, daß für gegebene rechte Seite $b = (10, 9, 8, 7)^T$ und Startvektor $x_0 = (1, 2, 3, 4)^T$ der durch das Verfahren ermittelte Fehlervektor

$$e_m = x_m - A^{-1}b$$

die Bedingung

$$||e_m||_2 \ge 2,749$$
 für $m = 0,1,2,3$

erfüllt.

(4 P)

Aufgabe 3

Sei $A \in \mathbb{R}^{m \times m}$ eine symmetrische positiv definite Matrix. Man weise für das CG-Verfahren mit Startvektor $\mathbf{x}_0 = \mathbf{b}$ für $n = 2, 3, ..., n_*$, wobei n_* die kleinste natürliche Zahl ist, für die $A^{n+1}b \in span(b, ..., A^nb)$, die folgenden Darstellungen nach:

- a) $x_n = q_n(A)b$ mit $q_n \in \Pi_n$ und $r_n = -p_n(A)b$ mit $p_n(t) = 1 tq_n(t)$
- b) Der zur Entwicklung $q_n(t) = \sum_{k=0}^n c_k t^k$ gehörende Koeffizientenvektor $(c_0, c_1, ..., c_n)^T \in \mathbb{R}^n$ ist Lösung des linearen Gleichungssystems

$$\begin{pmatrix} b^{T}Ab & b^{T}A^{2}b & \cdots & b^{T}A^{n+1}b \\ b^{T}A^{2}b & b^{T}A^{3}b & \cdots & b^{T}A^{n+2}b \\ \vdots & \vdots & \ddots & \vdots \\ b^{T}A^{n+1}b & b^{T}A^{n+1}b & \cdots & b^{T}A^{2n+1}b \end{pmatrix} \begin{pmatrix} c_{0} \\ c_{1} \\ \vdots \\ c_{n-1} \end{pmatrix} = \begin{pmatrix} b^{T}b \\ b^{T}Ab \\ \vdots \\ b^{T}A^{n-1}b \end{pmatrix}$$

$$(4 P)$$

Aufgabe 4

Programmieren Sie in MATLAB das Verfahren des steilsten Abstiegs und der konjugierten Gradienten. Vergleichen Sie die Verfahren anhand folgender Beispiele:

Die Funktionen a) $f(x) = cos(x), x \in [0, \pi/2]$ und b) $f(x) = e^x, x \in [0, 1]$ sollen durch Polynome n-ten Grades $p_n(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ für n = 2, 4, 8 approximiert

werden, so dass die Summe der Quadrate der Residuen an N=10,20 äquidistanten Stützstellen minimal ist. Geben Sie jeweils die Kondition der Normalgleichungsmatrix bezüglich der Frobenius-Norm aus und erklären sie das beobachtete Verhalten der Verfahren.

Die m-Files an numerikabgabe@mathematik.uni-kassel.de schicken, zusätzlich bitte einen Ausdruck des Programms und der Ergebnisse schriftlich abgeben. Für diese Aufgabe haben Sie 2 Wochen Zeit.

(8 P)

Abgabe: Dienstag, 27.06.2004 in der Vorlesung