Prof. Dr. Andreas Meister Dr. Philipp Birken

Numerik I

Aufgabenblatt 11

Aufgabe 1

Sei $A \in \mathbb{R}^{m \times n}$ und A^{\dagger} die Pseudoinverse von A. Beweisen Sie:

- i) Die Singulärwerte von A sind eindeutig bestimmt.
- ii) Es gilt: $AA^{\dagger}A = A$, $A^{\dagger}AA^{\dagger} = A^{\dagger}$, $(AA^{\dagger})^T = AA^{\dagger}$ und $(A^{\dagger}A)^T = A^{\dagger}A$.
- iii) $AA^{\dagger}: \mathbb{R}^n \to Bild(A)$ und $A^{\dagger}A: \mathbb{R}^n \to Bild(A^T)$ sind orthogonale Projektionen.

(4 P)

Aufgabe 2

Beweisen Sie folgendes Störungslemma für lineare Ausgleichsprobleme. Die Aussagen aus Aufgabe 1 dürfen hierbei ohne Beweis verwendet werden.

Seien $A \in \mathbb{R}^{m \times n}$ mit $m \geq n$ sowie $b, \Delta b \in \mathbb{R}^m$ gegeben. Seien x bzw. $x + \Delta x$ die eindeutigen Lösungen minimaler euklidischer Norm der linearen Ausgleichsprobleme zu den Daten (A,b) bzw. $(A,b+\Delta b)$. Dann ist

$$\|\Delta x\|_{2} \leq \|A^{\dagger}\| \|P_{Bild(A)}\Delta b\|_{2}, \qquad \frac{\|\Delta x\|_{2}}{\|x\|_{2}} \leq \kappa_{2}(A) \frac{\|P_{Bild(A)}\Delta b\|_{2}}{\|P_{Bild(A)}b\|_{2}}$$

$$(4 P)$$

Aufgabe 3

Gegeben sei die Funktion

$$\varphi(x) = x - \frac{f(x)}{g}$$
 mit $g = f'(x_0)$.

Das im folgenden betrachtete Iterationsverfahren zur Bestimmung von x_* mit $f(x_*) = 0$ sei durch

$$x_{k+1} = \varphi(x_k)$$

definiert. Man leite mit Hilfe von (sinnvoll abgebrochenen) Taylor-Entwicklungen eine Konvergenzaussage ab. Dabei stelle man gegebenenfalls zusätzlich benötigte Bedingungen auf, die die Konvergenz des Verfahrens gewährleisten. (4 P)

Abgabe: Dienstag, 4.7.2004 vor der Vorlesung