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Introduction
Let (u(n))n∈N := (u(0) + dn)n∈N be an integral
arithmetic progression of common difference d ∈
N \ {0}. By (.)

b
, we mean the concatenation in

base b ≥ 2. We consider (s(n))n∈N, (sr(n))n∈N,
and (s∗(n))n∈N, s∗(0) := u(0), such that:

1. s(n) := u(0)u(1) · · ·u(n)
b
;

2. sr(n) := u(n)u(n− 1) · · ·u(0)
b
;

3. s∗(n) := s(n)sr(n− 1)
b
, n ≥ 1.

Special cases of these sequences include OEIS
A007908, OEIS A000422, and OEIS A173426.
This poster reports results from [3].

Guessed and Proved Recurrences
Let l be a positive integer. We call l-digit concatenations in (s(n))n, (sr(n))n or (s∗(n))n, all their
terms obtained by concatenating l digits in their precedents. For instance, in the decimal base,
the terms 1, 12, 123, . . ., 123456789 correspond to 1-digit concatenations in A007908. We used the
guess-and-prove paradigm with the GFUN package [4] (command listtorec) to find and prove that
these sequences satisfy holonomic recurrence equations for every fixed-length concatenation.

Proposition 1. Let l be a positive integer and b ≥ 5 a natural number base. The recurrence equations
(1), (2), and (3) are satisfied by all terms of l-digit concatenations in (s(n))n, (sr(n))n and (s∗(n))n,
respectively.

a(n+ 3)− (bl + 2) · a(n+ 2) + (2 · bl + 1) · a(n+ 1)− bl · a(n) = 0. (1)

a(n+ 3)− (2 · bl + 1) · a(n+ 2) + (b2l + 2 · bl) · a(n+ 1)− b2l · a(n) = 0. (2)

a(n+ 3)−
(
1 + bl + b2l

)
· a(n+ 2) +

(
bl + b2l + b3l

)
· a(n+ 1)− b3l · a(n) = 0. (3)

We solve these recurrence equations using LREtools:-mhypergeomsols to obtain formulas for these
sequences in every intervals {tl, tl + 1, . . . , tl+1}, tl =

⌈
(bl−1 − s(0))/d

⌉
.

Case of (s(n))n∈N
Theorem 1. The general term of (s(n))n, b ≥
5, can be computed as follows:

s(n) = αl + µl(n− tl) + θl b
l(n−tl),

l = ⌈logb(nd+ s(0) + 1)⌉, tl =
⌈
bl−1 − s(0)

d

⌉
,

αl = −
(
bl − 1

)
· u(tl) + d · bl

(bl − 1)
2 ,

µl = − d

bl − 1
, θl =

κ2 − 2 · κ1 + κ0

(bl − 1)
2 ,

κ0 = s(tl), κ1 = s(tl + 1), κ2 = s(tl + 2).

See also an equivalent formula in [1]. Theorem 1
applies to A007908, A019519, and A019520.

Case of (sr(n))n∈N
Theorem 2. (sr(n))n, b ≥ 5, can be computed
as follows (l, tl as in Theorem 1 with sr(0)):

sr(n) = αl + µl · bl(n−tl) + θl · (n− tl) · bl(n−tl)

νl ≡ digit length of sr(tl),

αl =
κ2 − 2 · bl · κ1 + b2l · κ0

(bl − 1)2
,

µl =

((
bl − 1

)
· u(tl)− d

)
· bνl

(bl − 1)
2 ,

θl =
d · bνl

bl − 1
,

κ0 = sr(tl), κ1 = sr(tl + 1), κ2 = sr(tl + 2).

Theorem 2 applies to A000422, A038395, and
A038396.

Case of (s∗(n))n∈N
Theorem 3. (s∗(n))n, b ≥ 5 can be computed
as follows (l, tl as in Theorem 1 with s∗(0)):

s∗(n) = αl + µl · bl(n−tl) + θl · b2l(n−tl),

αl =
b3l · κ0 − bl ·

(
bl + 1

)
· κ1 + ·κ2

(bl + 1) · (bl − 1)
2 ,

µl = −
b2l · κ0 −

(
b2l + 1

)
· κ1 + κ2

bl · (bl − 1)
2 ,

θl =
bl · κ0 −

(
bl + 1

)
· κ1 + κ2

bl · (bl + 1) · (bl − 1)
2 ,

κ0 = s∗(tl), κ1 = s∗(tl + 1), κ2 = s∗(tl + 2).

Theorem 3 leads to an explicit formula for com-
puting terms of A173426.

Asymptotic Computations
We implemented Theorem 1 for A007908 as Smarandache:-Sm. We compare existing Maple codes for computing terms of A007908 with our implemen-
tation. The best performance for naive approaches is given by the code a007908 (see [3]).
Table 1 shows that our implementation Smarandache:-Sm is faster than a007908 for asymptotic computations.

Table 1: Smarandache:-Sm vs a007908
l 5 6 7 8
CPUTime(Smarandache:-Sm(10l − 1)) 0.046 0.125 1.766 31.532
CPUTime(a007908(10l − 1)) 0.079 0.719 10.969 208.391

We obtain similar results for A000422 with our implementation Smarandache:-Smr as illustrated in Table 2 below.

Table 2: Smarandache:-Smr vs a000422
l 5 6 7 8
CPUTime(Smarandache:-Smr(10l − 1)) 0.016 0.516 7.313 123.657
CPUTime(a000422(10l − 1)) 0.047 1.047 12.921 215.765

Non-Holonomic Character
An annihilator is a linear operator defined by a holonomic recurrence equation.
Observe that the formulas for l-digit concatenations in (s(n))n and (sr(n))n may be seen as linear
combinations of two linearly independent hypergeometric terms. This shows that the minimal annihi-
lating operators for fixed-length concatenations in (s(n))n and (sr(n))n are second-order annihilators.
For (s∗(n))n, the minimal annihilating operator is the one defined by (3).

Theorem 4 (Theorem 4 in [3]). The sequences (s(n))n, (sr(n))n, and (s∗(n))n are not holonomic.

Proof. Sketch of the proof: Let (a(n))n be any of the sequences (s(n))n, (sr(n))n, and (s∗(n))n, and
ql be their minimal annihilator for l-digit concatenations, where l is sufficiently large. The proof relies
on the fact that the existence of a linear operator p that annihilates a(n) for all n would imply that
gcd(p, ql) annihilates a(n) for l-digit concatenations; a contradiction because gcd(p, ql) is of lower
order than ql. For further details, see [3, Theorem 4], and the background in [2].
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