UNIVERSITY OF THE
WITWATERSRAND,
JOHANNESBURG

Introduction

Let (u(n))nen == (u(0) + dn),en be an integral
arithmetic progression of common difference d €

N\ {0}. By (.) , we mean the concatenation in
base b > 2. We consider (s(n))nen, (Sr(1))nen,
and (5+(n)), cn» 5%(0) == u(0), such that:

u(n)u(n —1)---u(0) ;

b

2. sp(n) =
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Guessed and Proved Recurrences

Let [ be a positive integer. We call [-digit concatenations in (s(n))n, (s-(n)), or (s«(n)),, all their
terms obtained by concatenating [ digits in their precedents. For instance, in the decimal base,
the terms 1, 12, 123, ..., 123456789 correspond to 1-digit concatenations in A007908. We used the
guess-and-prove paradigm with the GFUN package [4| (command listtorec) to find and prove that
these sequences satisty holonomic recurrence equations for every fixed-length concatenation.

Proposition 1. Let [ be a positive integer and b > 5 a natural number base. The recurrence equations
(1), (2), and (3) are satisfied by all terms of [-digit concatenations in (s(n))n, (s-(n))n and (s<(n))n,
respectively.

an+3)— b +2)-an+2)+(2-b'+1)-a(n+1)—=5b-a(n)=0.

3. s4(n) =s(n)s,(n—1) ,n>1

= = an+3)—(2-0'+1)-an+2)+ B> +2-b")-a(n+1) —b* a(n) =0.

Special cases of these sequences include OEIS
A007908, OEIS A000422, and OEIS A173426.
This poster reports results from |3].
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b*) - a(n + 1) — b* - a(n) = 0.

We solve these recurrence equations using LREtools: -mhypergeomsols to obtain formulas for these

sequences in every intervals {¢;, ¢, +1,...,t;41}, t = [(0'71 = s(0))/d|.

Case of (s(n))nen Case of (5,(n))nen

Theorem 1. The general term of (s(n)),, b >
5, can be computed as follows:

Theorem 2. (s,.(n)),, b > 5, can be computed
as follows (l,t; as in Theorem 1 with s,(0)):

s(n) = oy + wi(n —t;) + 6; B1n=t), sp(n) =ag 4+ - 61" 46, - (n— ;) - BHnTH)

_ v, = digit length of s,.(¢;),

Case of (54(n))nen

Theorem 3. (s.(n))n, b > 5 can be computed
as follows (I,t; as in Theorem 1 with s,(0)):

s.(n) = ay + p - B0 g, pPH—t),

_bl_l—S(O) b3l°li()—bl' bl—|—1 - K1 T+ ‘K9
[ = [logy(nd+s(0) +1)[, t; = y ) ko — 20 -k + 0% - K y = ( ) 2 )
] = (bl 1)2 9 (bl+1)(bl—1)
bt — 1 -u(tl)—l—d-bl B b2l . ko — (B2 1) .
ay = ( )l . 7 ((bl_l)u(tl)_d)bl/l ILLl: K ( _I_ )25'/1—'_/4327
(0" — 1) py = 1) , bl - (Bl — 1)
Yy = bldlaelZRQ_?./il;l_li()? d - b . —bl.lﬁi@_(bl_l_l)”il—l_’%2
— - _ [ — 9
(0" = 1) 0= 7 b (b +1) - (B — 1)°

ko = s(t1), k1 =s(ti+1), ko =s(t; +2). ko = sr(t1), K1 = 8-(L1 +1), K2 = 5-(1; + 2).

See also an equivalent formula in [1|. Theorem 1

applies to A007908, A019519, and A019520. Theorem 2 applies to A000422, AD38395, and

A038396.

Asymptotic Computations

Ko = S«(t1), kK1 = s«(t; + 1), ko = s.(t; + 2).

Theorem 3 leads to an explicit formula for com-
puting terms of A173426.

We implemented Theorem 1 for A007908 as Smarandache:-Sm. We compare existing Maple codes for computing terms of A007908 with our implemen-

tation. The best performance for naive approaches is given by the code a007908 (see |3|).

Table 1 shows that our implementation Smarandache:-Sm is faster than a007908 for asymptotic computations.

Table 1: Smarandache:-Sm vs a007908

[ 5 6 7 3
CPUTime(Smarandache:-Sm(10' — 1)) | 0.046 | 0.125 | 1.766 | 31.532
CPUTime(a007908(10" — 1)) 0.079 | 0.719 | 10.969 | 208.391

We obtain similar results for A000422 with our implementation Smarandache:-Smr as illustrated in Table 2 below.

Table 2: Smarandache:-Smr vs a000422

[ 5 6 7 8

CPUTime(Smarandache:-Smr(10° — 1)) | 0.016 | 0.516 | 7.313 | 123.657

CPUTime(a000422(10" — 1)) 0.047 | 1.047 | 12.921 | 215.765
Non-Holonomic Character References

An annihilator is a linear operator defined by a holonomic recurrence equation.

Observe that the formulas for [-digit concatenations in (s(n)), and (s.(n)), may be seen as linear
combinations of two linearly independent hypergeometric terms. This shows that the minimal annihi-
lating operators for fixed-length concatenations in (s(n)), and (s,(n)), are second-order annihilators.
For (s4(n))., the minimal annihilating operator is the one defined by (3).

Theorem 4 (Theorem 4 in (3]|). The sequences (s(n))n, ($-(n))n, and (s4«(n)), are not holonomic.

Proof. Sketch of the proof: Let (a(n)), be any of the sequences (s(n)),, (s-(n))n, and (s«(n))n, and
q; be their minimal annihilator for [-digit concatenations, where [ is sufficiently large. The proof relies
on the fact that the existence of a linear operator p that annihilates a(n) for all n would imply that
ged(p, q;) annihilates a(n) for [-digit concatenations; a contradiction because gcd(p, q;) is of lower
order than ¢;. For further details, see |3, Theorem 4|, and the background in [2].
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