

Exercises 3

Exercise 9

Let X be a Banach space and $I: X \to \mathbb{R}_{\infty}$ a functional on X. Assume that the sublevel sets $S_{\alpha} = \{u \in X; I(u) \leq \alpha\}$ are sequentially compact for every $\alpha \in \mathbb{R}$. Show that the direct problem has a solution.

Exercise 10: Criterium for weak convergence

Let X be a Banach space, $u^* \in X$ and $(u_n)_{n \in \mathbb{N}} \subset X$. Assume that the following holds true:

- (a) $(u_n)_{n \in \mathbb{N}}$ is bounded in X: $\sup_n ||u_n||_X \le c$.
- (b) $\ell(u_n) \to \ell(u^*)$ for $\ell \in S$, where $S \subset X'$ and the linear hull of S (finite linear combinations of elements from S) is dense in X'.

Show that $u_n \rightharpoonup u^*$ in X.

Exercise 11: Weak convergence of oscillating functions

Let $X = L^p((0,1))$ with $p \in (1,\infty)$ and let $u \in X$. The function \tilde{u} is defined by the periodic extension of u to \mathbb{R} . Consider the sequence $(u_n)_{n \in \mathbb{N}} \subset X$, which is defined via

$$u_n(x) = \widetilde{u}(nx), \quad x \in (0,1).$$

Show that $u_n \rightharpoonup u^*$ in X with $u^*(x) = \int_0^1 u(\xi) d\xi$ for all $x \in (0, 1)$. **Hint:** Use exercise 10 with $S = \{1_{[0,\alpha]}, 0 \le \alpha \le 1\}$, where $1_{[0,\alpha]}$ is the indicator function of the set $[0, \alpha]$, i.e. $1_{[0,\alpha]}(x) = 1$ if $x \in [0, \alpha]$ and 0 otherwise.

Exercise 12: Weakly continuous integral functionals in L^2 are affine Let $g : \mathbb{R} \to \mathbb{R}$ be continuous with $|g(u)| \leq C(1+u^2)$ and let the functional $I : L^2((0,1)) \to \mathbb{R}$ be defined through $I(u) = \int_0^1 g(u(x)) \, dx$. Show that the following statements are equivalent:

- (i) I is weakly continuous.
- (ii) I is affine, i.e. $I(u) = I(0) + \langle y, u \rangle$ with a suitable $y \in L^2((0, 1), \mathbb{R})$.

Hint: Use exercise 11 and proove first that $I(u) = g(\int_0^1 u \, dx)$ for all u. Next consider sequences u_n with $u_n(x) \in \{\alpha, \beta\}$ and show that g is convex and concave.