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Exercises and Examples

Exercise 1:

Let Q C R? be a bounded domain and X = W,*(,R). For z € X and ¢ € C'([0,T]; X")
we define the energy via

t:2) =3 [ IV do+ [ xan(eo) d - (60, 2

The dissipation potential is given by

RO = [ nl¢a)l d.
Verify the conditions (A0)—(A3) introduced in the lecture.

Exercise 2: Unidirectional processes

Within the global energetic formulation it is possible to model unidirectional processes.
This means that a certain state variable e.g. can increase only, but not decrease. This
behavior can be modeled by a suitable choice of the dissipation potential.

Example: Again the gliding mass problem (see the figure below):

E 77 ]

Energy: £(t,z) = £(0(t) — z)? for z e R = X.

Dissipation: for some reason, the mass can move to the right, only. Hence 0,z(t) > 0 for

almost every ¢ and
¢ if¢=>0
R(¢) =1" .
oo otherwise

K, it > 0 given constants.

Verify the conditions (A0)—(A3) and show that the solutions of the global energetic model
formulated with these functionals £ and R satisfy 0,2(t) > 0 a.e. in .

Derive the formulation of the problem as a differential inclusion.
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Exercise 3: Quadratic energies

Let X =V x Z, where V is a real, reflexive and separable Banach space and Z is a
separable Hilbert space. Let V' be the dual of V', while we identify Z with its dual.

Assume that A € Lin(X, X’) is a linear, bounded operator having the property

(AQ1> Q2>X',X = <ACI2> Q1>X’,X

for all ¢; € X and being X-coercive, i.e. there exists a constant a > 0 such that for all
qe X:
2
(Ag,q)xrx > allql”.

Given ¢ € C'([0,T]; V') let the energy and the dissipation potential be defined as follows
forg=(v,2) eV x7Z=X:

where R : z — [0, 0¢] is assumed to be convex, strongly lower semicontinuous and posi-
tively homogeneous of degree 1.

(a) Verify that conditions (A0)—(A3) are satisfied.

(Hint concerning (A3) (compatibility condition): given sequences ¢, — ¢, t, — t, with
qn € S(t,) it could be quite interesting to investigate the test-sequences &, = £ + ¢, — ¢«
for arbitrary £ € X and to take into account the quadratic structure of £.)

(b) Assume that in addition to the above A has the particular structure

¢ -cB
A= (—B*C B*CB + L) ’ @

where C' € Lin(V, V"), B € Lin(Z,V') and L € Lin(Z, 7).
Show that if C' is V-coercive and L is Z-coercive, then A is X-coercive.

Derive the differential inclusion formulation for the rate independent process associated
with £ and R and the operator given in (1).
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Exercise 4: An application of Exercise 3

Let Q C R? be a bounded domain, V = W,?(Q,R) and Z = L*(Q, R%). We define the
energy and dissipation potential as

S(t,u,z):/Q%|Vu(x)—z($)\2+g|z(x)|2 dx—[)f(t,x)u(:c)dx,
R(w2) = [ pleta) da

for given f € C'([0,T]; L*(Q)) and constants x, u > 0.

Show with the help of Exercise 3 (in particular 3(b)) that the rate independent process de-
fined via £ and R has a solution and derive the corresponding formulation as a differential
inclusion.

This is the typical structure of elasto-plastic models if one interprets u as a kind of
displacements and z as a vector of internal variables, here the plastic strains. Of course,
in true elasto-plasticity, one has to deal with vector valued functions u.



