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Exercises and Examples

Exercise 1:

Let Ω ⊂ R
d be a bounded domain and X = W

1,2
0 (Ω, R). For z ∈ X and ℓ ∈ C1([0, T ]; X ′)

we define the energy via

E(t, z) =
1

2

∫

Ω

|∇z(x)|2 dx +

∫

Ω

χ[−1,1](z(x)) dx − 〈ℓ(t), z〉X′,X .

The dissipation potential is given by

R(ζ) =

∫

Ω

µ |ζ(x)| dx.

Verify the conditions (A0)–(A3) introduced in the lecture.

Exercise 2: Unidirectional processes

Within the global energetic formulation it is possible to model unidirectional processes.
This means that a certain state variable e.g. can increase only, but not decrease. This
behavior can be modeled by a suitable choice of the dissipation potential.

Example: Again the gliding mass problem (see the figure below):

z(t)

ℓ(t)

Energy: E(t, z) = κ
2
(ℓ(t) − z)2 for z ∈ R = X.

Dissipation: for some reason, the mass can move to the right, only. Hence ∂tz(t) ≥ 0 for
almost every t and

R(ζ) =

{
µζ if ζ ≥ 0

∞ otherwise
,

κ, µ > 0 given constants.

Verify the conditions (A0)–(A3) and show that the solutions of the global energetic model
formulated with these functionals E and R satisfy ∂tz(t) ≥ 0 a.e. in Ω.

Derive the formulation of the problem as a differential inclusion.
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Exercise 3: Quadratic energies

Let X = V × Z, where V is a real, reflexive and separable Banach space and Z is a
separable Hilbert space. Let V ′ be the dual of V , while we identify Z with its dual.

Assume that A ∈ Lin(X, X ′) is a linear, bounded operator having the property

〈Aq1, q2〉X′,X = 〈Aq2, q1〉X′,X

for all qi ∈ X and being X-coercive, i.e. there exists a constant α > 0 such that for all
q ∈ X:

〈Aq, q〉X′,X ≥ α ‖q‖2
.

Given ℓ ∈ C1([0, T ]; V ′) let the energy and the dissipation potential be defined as follows
for q = (v, z) ∈ V × Z = X:

E(t, q) = 1
2
〈Aq, q〉X′,X − 〈ℓ(t), v〉V ′,V

R(q) = R̃(z),

where R̃ : z → [0,∞] is assumed to be convex, strongly lower semicontinuous and posi-
tively homogeneous of degree 1.

(a) Verify that conditions (A0)–(A3) are satisfied.
(Hint concerning (A3) (compatibility condition): given sequences qn ⇀ q∗, tn → t∗ with
qn ∈ S(tn) it could be quite interesting to investigate the test-sequences ξn = ξ + qn − q∗
for arbitrary ξ ∈ X and to take into account the quadratic structure of E .)

(b) Assume that in addition to the above A has the particular structure

A =

(
C −CB

−B∗C B∗CB + L

)
, (1)

where C ∈ Lin(V, V ′), B ∈ Lin(Z, V ′) and L ∈ Lin(Z, Z).
Show that if C is V -coercive and L is Z-coercive, then A is X-coercive.

Derive the differential inclusion formulation for the rate independent process associated
with E and R and the operator given in (1).
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Exercise 4: An application of Exercise 3

Let Ω ⊂ R
d be a bounded domain, V = W

1,2
0 (Ω, R) and Z = L2(Ω, Rd). We define the

energy and dissipation potential as

E(t, u, z) =

∫

Ω

1

2
|∇u(x) − z(x)|2 +

κ

2
|z(x)|2 dx −

∫

Ω

f(t, x)u(x) dx,

R(u, z) =

∫

Ω

µ |z(x)| dx

for given f ∈ C1([0, T ]; L2(Ω)) and constants κ, µ > 0.

Show with the help of Exercise 3 (in particular 3(b)) that the rate independent process de-
fined via E and R has a solution and derive the corresponding formulation as a differential
inclusion.

This is the typical structure of elasto-plastic models if one interprets u as a kind of
displacements and z as a vector of internal variables, here the plastic strains. Of course,
in true elasto-plasticity, one has to deal with vector valued functions u.
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