

Exercise sheet 12

Exercise 12.1: Spaces involving time

Let X be a Banach space.

- (a) Let $u: [0,T] \to X$ be Bochner integrable.
 - (i) Prove that $\left\|\int_0^T u(t) \, \mathrm{d}t\right\|_X \leq \int_0^T \|u(t)\|_X \, \mathrm{d}t.$
 - (ii) Prove that for all $\ell \in X'$ it holds: $\langle \ell, \int_0^T u(t) \, dt \rangle_{X',X} = \int_0^T \langle \ell, u(t) \rangle_{X',X} \, dt.$
- (b) We recall for $p \in [1, \infty)$ that

 $L^p(0,T;X) = \{ u : [0,T] \to X ; u \text{ Bochner measurable and } \int_0^T ||u(t)||_X^p dt < \infty \}.$ Further, $v \in L^1(0,T;X)$ is the weak derivative of $u \in L^1(0,T;X), v = u'$, if

$$\forall \varphi \in C_0^{\infty}(0,T;\mathbb{R}): \quad \int_0^T \varphi'(t)u(t) \,\mathrm{d}t = -\int_0^T \varphi(t)v(t) \,\mathrm{d}t$$

Let $V := H_0^1(\Omega)$ and $H := L^2(\Omega)$. Let $(u_k)_{k \in \mathbb{N}} \subset L^2(0,T;V)$ such that for all $k \in \mathbb{N}$ the weak derivative u'_k exists and belongs to $L^2(0,T;V')$. Let further $u \in L^2(0,T;V)$ and $v \in L^2(0,T;V')$ such that

$$u_k \rightharpoonup u$$
 weakly in $L^2(0,T;V)$, $u'_k \rightharpoonup v$ weakly in $L^2(0,T;V')$.

Show that u' = v.

HINT: Use and verify that for all $k \in \mathbb{N}$, $\varphi \in C_0^{\infty}(0,T;\mathbb{R})$ and $w \in V$ it holds

$$\int_0^T \langle u'_k(t), \varphi(t)w \rangle_{V',V} \, \mathrm{d}t = -\int_0^T \langle u_k(t), \varphi'(t)w \rangle_H \, \mathrm{d}t,$$

with $\langle w_1, w_2 \rangle_H = \int_\Omega w_1(x)w_2(x) \, \mathrm{d}x$ for $w_1, w_2 \in H$.

Exercise 12.2: Fourier series

Let $\mathbb{S} = (0, 2\pi)$ and consider for $k \in \mathbb{N}$ the Hilbert space

$$W_{\rm per}^{k,2}(\mathbb{S}) := \{ f \in W^{k,2}(\mathbb{S}); D^j f(0) = D^j f(2\pi) \text{ for } j = 0, \dots, k-1 \}.$$

For $n \in \mathbb{N}$ let $S_n(\varphi) = s_n \sin(n\varphi)$ and for $m \in \mathbb{N}_0$ let $C_m(\varphi) = c_m \cos(m\varphi)$. The constants s_n , c_m are chosen such that $\|S_n\|_{L^2(\mathbb{S})} = 1 = \|C_m\|_{L^2(\mathbb{S})}$ for all n, m. From Functional Analysis we know that the set

$$\mathcal{O} := \{ S_n, C_m \, ; \, n \in \mathbb{N}, \, m \in \mathbb{N}_0 \, \}$$

is a complete orthonormal system in $L^2(\mathbb{S})$. Hence, for all $f \in L^2(\mathbb{S})$ we have $||f||^2_{L^2(\mathbb{S})} = \sum_{n=0}^{\infty} (\langle f, S_n \rangle^2 + \langle f, C_n \rangle^2)$ and $f = \sum_{n=0}^{\infty} (\langle f, S_n \rangle S_n + \langle f, C_n \rangle C_n)$, where $\langle \cdot, \cdot \rangle$ is the scalar product in $L^2(\mathbb{S})$.

(continued on next page)

Let $f \in L^2(\mathbb{S})$ with $f = \sum_{n=0}^{\infty} a_n S_n + b_n C_n$. Show that

$$f \in W^{k,2}_{\text{per}}(\mathbb{S}) \qquad \Longleftrightarrow \qquad \sum_{n=0}^{\infty} (1+n^2)^k (a_n^2+b_n^2) < \infty$$

and that in this case we may differentiate the series representation of f term by term.

Hint: Compare the series differentiated term by term with a suitable new expansion of the derivative.

Exercise 12.3: Neumann problem on a disc

Let $\Omega = B_1(0) \subset \mathbb{R}^2$ and consider the Neumann-problem

$$\Delta u = 0 \quad \text{for } x \in \Omega, \tag{1}$$

$$\frac{\partial u}{\partial n} = g \quad \text{for } x \in \partial \Omega.$$
(2)

(a) For $g_N(\varphi) := \sum_{n=1}^N a_n S_n(\varphi) + b_n C_n(\varphi), \ \varphi \in \mathbb{S} = (0, 2\pi)$ and S_n, C_n as in Exercise 12.2, construct the solution u_N of the Neumann-problem (1)–(2) and calculate the norm of u_N in $L^2(\Omega)$ and $H^1(\Omega)$.

Hint: Use separation ansatzes of the form $R(r)v(\varphi)$ and superposition. Observe that $\|\nabla_x u\|_{L^2(\Omega)}^2 = \int_0^1 \int_0^{2\pi} r |\partial_r u|^2 + r^{-1} |\partial_{\varphi} u|^2 d\varphi dr.$

(b) Investigate via the limit $N \to \infty$ for which functions $g : \partial \Omega \simeq \mathbb{T} \to \mathbb{R}$ solutions of (1)-(2) exist and belong to $H^1(\Omega)$. For $s \in \mathbb{R}$ use the spaces

$$H^{s}(\mathbb{T}) := \left\{ v \in \mathcal{D}'(\mathbb{T}) \, ; \, \sum_{n \in \mathbb{N}_{0}} (1 + n^{2})^{s} \left(\langle v, S_{n} \rangle^{2} + \langle v, C_{n} \rangle^{2} \right) < \infty \right\}$$

Interpret your result in view of the statements of Exercise 12.5 and discuss the connection with weak solutions.

Exercise 12.4: Wave equation and Fourier method

OPTIONAL!

Let $\Omega = (0, \pi)^2$. We consider the initial value problem for the wave equation:

$$\partial_t^2 u(t,x) - \Delta_x u(t,x) = 0, \qquad t \in (0,T), \ x \in \Omega, \tag{3}$$

$$u(t,x) = 0, \qquad x \in \partial\Omega, \tag{4}$$

$$u(0,x) = u_0(x), \quad x \in \Omega, \tag{5}$$

$$\partial_t u(0,x) = u_1(x), \quad x \in \Omega.$$
(6)

- (a) Use a separation ansatz $(\tilde{u}(t,x) = T_{\omega}(t)u_n(x_1)v_m(x_2))$ to construct a solution with initial data $u_0(x) = \frac{2}{\pi} \sum_{n,m=1}^{N} b_{n,m} \sin(nx_1) \sin(mx_2)$ and $u_1(x) = \frac{2}{\pi} \sum_{n,m=1}^{N} a_{n,m} \sin(nx_1) \sin(mx_2).$
- (b) By studying the limit $N \to \infty$ derive conditions on the coefficients $(a_{n,m})_{n,m\in\mathbb{N}}$ and $(b_{n,m})_{n,m\in\mathbb{N}}$ such that the corresponding solution satisfies $u \in L^2(0,T; H^1_0(\Omega))$ and $\partial_t u \in L^2(0,T; L^2(\Omega))$.

(please turn)

Exercise 12.5: Fourier series and $H^{s}(\mathbb{T})$ (extension of Exercise 12.2 to $s \in \mathbb{R}$) OPTIONAL!

Let $\mathbb{T} = \partial B_1(0) \subset \mathbb{R}^2$ be the one-dimensional torus. The set $\mathcal{D}(\mathbb{T}) \equiv C_0^{\infty}(\mathbb{T})$ can be identified with the set $C_{\text{per}}^{\infty}([0, 2\pi]) := \{ v \in C^{\infty}([0, 2\pi]); \forall k \in \mathbb{N}_0 : D^k v(0) = D^k v(2\pi) \}.$ For $n \in \mathbb{N}_0$ let $S_n, C_n \in \mathcal{D}(\mathbb{T})$ be the functions from Exercise 12.2. For $s \in \mathbb{R}$ we define

$$H^{s}(\mathbb{T}) := \left\{ v \in \mathcal{D}'(\mathbb{T}) ; \sum_{n \in \mathbb{N}_{0}} (1+n^{2})^{s} \left(\langle v, S_{n} \rangle^{2} + \langle v, C_{n} \rangle^{2} \right) < \infty \right\}$$
$$\|v\|_{s} := \left(\sum_{n \in \mathbb{N}_{0}} (1+n^{2})^{s} \left(\langle v, S_{n} \rangle^{2} + \langle v, C_{n} \rangle^{2} \right) \right)^{\frac{1}{2}}.$$

Then it holds

- (i) For all $s \in \mathbb{R}$ the spaces $H^s(\mathbb{T})$ are Hilbert spaces with scalar product $(u, v)_s = \sum_{n \in \mathbb{N}_0} (1+n^2)^s (u_{1,n}v_{1,n}+u_{2,n}v_{2,n})$, where $u_{1,n} = \langle u, S_n \rangle$ and $u_{2,n} = \langle u, C_n \rangle$.
- (ii) Dual spaces: For all $s \in \mathbb{R}$ we have $(H^s(\mathbb{T}))' = H^{-s}(\mathbb{T})$, where for $u \in H^s(\mathbb{T})$ and $v \in H^{-s}(\mathbb{T})$ the following pairing is used

$$\langle v, u \rangle_{-s,s} := \sum_{n \in \mathbb{N}_0} \langle v, S_n \rangle \langle u, S_n \rangle + \langle v, C_n \rangle \langle u, C_n \rangle.$$

(iii) For all $s \ge 0$ the spaces $H^s(\mathbb{T})$ and $W^{s,2}(\mathbb{T})$ are isomorphic, where, for $k \in \mathbb{N}_0$ and $\sigma \in (0, 1)$,

$$W^{k,2}(\mathbb{T}) = \{ v \in L^2(\mathbb{T}) ; \text{ the weak derivatives order } \leq k \text{ exist} \\ \text{and belong to } L^2(\mathbb{T}) \}, \\ W^{k+\sigma,2}(\mathbb{T}) = \{ v \in W^{k,2}(\mathbb{T}) ; \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{\left| D^k v(x) - D^k v(y) \right|^2}{\left| x - y \right|^{1+2\sigma}} \, \mathrm{d}a_x \, \mathrm{d}a_y < \infty \}.$$

References:

Hans-Jürgen Schmeisser, Hans Triebel: Topics in Fourier Analysis and Function Spaces. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig 1987. Chapter 3: Periodic Spaces.

H.W. Alt, Lineare Funktionalanalysis, Springer (2006)

D. Werner, Funktionalanalysis, Springer (2005)

The last tutorial will be on WEDNESDAY, July 11. Exam dates: July 24+25, 2012, September 27+28, 2012.