

Exercise sheet 2

Exercise 2.1: Schrödinger equation. A quatummechanical particle is governed by the complex-valued Schrödinger equation:

$$i\frac{\partial}{\partial t}\Psi = -\alpha\Delta\Psi + V(x)\Psi.$$
⁽¹⁾

with a constant $\alpha > 0$. The unknown function $\Psi : \mathbb{R} \times \mathbb{R}^3$ is called wave function.

a) Free particle: Let the potential V = 0 in (1). We look for solutions Ψ of the form $\Psi(t, x) = \gamma \exp(-a(t)|x|^2 + \sum_{i=1}^d b_i(t)x_i + c(t))$ for $t \in (0, \infty)$ and $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$. Derive ordinary differential equations

$$\dot{a} = f(a, b, c), \quad \dot{b}_i = g_i(a, b, c), \quad \dot{c} = h(a, b, c)$$
 (2)

for $a, b_i, c : \mathbb{R} \to \mathbb{C}$ with $i \in \{1, \ldots, d\}$, such that Ψ solves (1).

- b) Provide a general solution of the ODE system (2).
- c) Particle in a one-dimensional box: Let the potential

$$V(x) := \begin{cases} 0 & \text{if } 0 \le x \le L, \\ \infty & \text{otherwise.} \end{cases}$$

Provide continuous solutions of (1). Hint: separation of variables.

Exercise 2.2: Prove the following statement: Let $\Omega \subset \mathbb{R}^3$ and $F \in C([0, T] \times \Omega)$. Assume that

 $\int_{\omega} F(t,x) \, \mathrm{d}x = 0 \text{ for all } t \in [0,T] \text{ and every Lebesgue-measurable subset } \omega \subset \Omega \,.$

This implies that F(t, x) = 0 for all $(t, x) \in [0, T] \times \Omega$.

Exercise 2.3: Determine the solution u = u(t, x) of the following Cauchy problem with the method of characteristics:

$$\begin{aligned} \frac{\partial u}{\partial t} + x^2 \frac{\partial u}{\partial x} &= 0 & \text{ in } (0, \infty) \times \mathbb{R} \,, \\ u(0, x) &= u_0(x) & \text{ in } \mathbb{R} \,. \end{aligned}$$

(please turn)

Exercise 2.4 (written): Differentiating the determinant. Let X and Y be Banach spaces. A mapping $f : X \to Y$ is differentiable at $A \in X$ if there is $f'(A) \in \mathcal{L}(X, Y)$ such that

$$f(A+H) = f(A) + f'(A)H + o(H), \qquad (3)$$

where $o(H) = ||H||_X \varepsilon(H)$ with $\lim_{H\to 0} \varepsilon(H) = 0$ in Y. Here, $\mathcal{L}(X, Y)$ denotes the space of linear functionals $L : X \to Y$. The element $f'(A) \in \mathcal{L}(X, Y)$ is called the Fréchet derivative of f in the point $A \in X$.

a) Fréchet derivative of the determinant: Let $X = Y = \mathbb{R}^{3 \times 3}$ and $f(A) = \det A$ for all $A \in \mathbb{R}^{3 \times 3}$. Show that

$$A \text{ invertible} \quad \Rightarrow \quad f'(A)H = \det A \operatorname{tr}(A^{-1}H) \,. \tag{4}$$

Hint: Start from (3), exploit (and verify) the relation

 $det(Id + E) = 1 + tr E + \{monomials of degree \ge 2\} \text{ for any } E \in \mathbb{R}^{3 \times 3}.$

Here Id denotes the identity matrix in $\mathbb{R}^{3\times 3}$.

b) Show the following statement: Let $t \mapsto A(t) \in \mathbb{R}^{3 \times 3}$ be continuously differentiable and A(t) invertible. Then

$$\frac{\mathrm{d}}{\mathrm{d}t} \det A(t) = \det A(t) \operatorname{tr} \left(A^{-1} \frac{\mathrm{d}}{\mathrm{d}t} A(t) \right).$$
(5)

c) Consider a motion $\Phi: [0,\infty) \times \Omega_0 \to \mathbb{R}^3, (t,x) \mapsto \Phi(t,x)$ satisfying:

- $(\Phi 1) \quad \Phi(0,x) = x_0,$
- $(\Phi 2) \quad \Phi \in \mathcal{C}^1([0,\infty) \times \mathbb{R}^3),$
- (Φ 3) the mapping $\Phi(t, \cdot) : \Omega_0 \to \Omega_t$ is invertible for all t > 0,
- ($\Phi 4$) the Jacobian det $\nabla_x \Phi(t, x)$ is positive for all $(t, x) \in [0, \infty) \times \Omega_0$.

Moreover, assume that the corresponding velocity field $v = \frac{d}{dt}\Phi(t,x)$ is continuously differentiable wrt. (t,x). Prove Euler's expansion formula:

$$\frac{\mathrm{d}}{\mathrm{d}t} \det \nabla \Phi(t, x) = \det \nabla \Phi(t, x) \operatorname{div}_{y} v(t, y) \big|_{y = \Phi(t, x)}.$$
(6)

For this, use (and verify) the relation tr(AB) = tr(BA) for all $A, B \in \mathbb{R}^{3 \times 3}$.

Ex. 2.4 is to be delivered in written form by teams of two persons each in the exercise lesson on 23/04/2012. It will be discussed in the subsequent week.

NEW room for the tutorial: RUD 25, 1.011