

Exercise sheet 7

Exercise 7.1: For u = u(x, y) consider the PDE

$$\frac{4(y-x)^2}{(x+y)^2+(y-x)^2}u_{xx} + \frac{8(y-x)(x+y)}{(x+y)^2+(y-x)^2}u_{xy} + \frac{4(y+x)^2}{(x+y)^2+(y-x)^2}u_{yy} + u_x + 3u_y = 0 \quad \text{in } \mathbb{R}^2 \setminus \{(0,0)\}.$$

Analyze the type of the PDE, transform the main part into its canonical form and determine the transformation to use.

Exercise 7.2 Polygons: Consider the Dirichlet problem

$$\Delta u = f \text{ in } \Omega \subset \mathbb{R}^2, \quad u = g \text{ on } \partial \Omega \tag{1}$$

with $f \in \mathcal{C}(\overline{\Omega})$ and $g \in \mathcal{C}(\partial \Omega)$.

a) Let $\Omega \subset \mathbb{R}^2$ be a polygon with the k corner points y_1, \ldots, y_k . Let α_j denote the interior angle enclosed by the two edges meeting in $y_j, j \in \{1, \ldots, k\}$. For $u \in C^2(\overline{\Omega})$ verify the following representation formula

$$\sigma(x)u(x) = \int_{\Omega} K_2(y-x)\Delta u(y) \,\mathrm{d}y - \int_{\partial\Omega} (K_2(y-x)\frac{\partial u}{\partial n} - u(y)\frac{\partial K_2(y-x)}{\partial n}) \,\mathrm{d}n_y \quad (2a)$$

with
$$\sigma(x) = \begin{cases} 1 & \text{if } x \in \Omega, \\ 1/2 & \text{if } x \in \partial\Omega \setminus \{y_1, \dots, y_k\} \\ \alpha_j/(2\pi) & \text{if } x \in \{y_1, \dots, y_k\} \end{cases}$$
 (2b)

and $K_2(x) = \frac{1}{2\pi} \ln |x|$. Hint: To check for y_j , start from 2nd Green's formula (Formula (4.2) in the lecture) on $\Omega_{\varepsilon} = \Omega \setminus S_{\varepsilon}(y_j)$ with $S_{\varepsilon}(y_j)$ being the segment of the ball of radius ε around y_j .

b) Show that, for a polygon with a reentrant corner, there does not always exist a solution $u \in C^2(\overline{\Omega})$ of (1). Hint: You may consider the open polygon $\Omega \subset \mathbb{R}^2$ with the corner points $\{(-1, -1), (0, -1), (0, 0), (1, 0), (1, 1), (-1, 1)\}$ and u of the form $u(r, \varphi) = r^a \sin(a\varphi)$; then f and g have to be determined suitably.

Exercise 7.3 Poisson's formula for a disc: Let $\Omega = B_R(0) \subset \mathbb{R}^2$, $g \in C(\partial \Omega)$ and

$$u(x) = \int_{|y|=R} P(x,y)g(y) \,\mathrm{d}a_y \quad \text{with } P(x,y) = \frac{R^2 - |x|^2}{2\pi R|x-y|^2} \,. \tag{3}$$

- a) Show that (3) defines a function $u \in C^2(\Omega)$ satisfying $\Delta u = 0$ in Ω .
- b) Show that $u \in C(\overline{\Omega})$ and u = g on $\partial\Omega$. Hint: Verify $\int_{\partial\Omega} P(x, y) da_y = 1$ for all $x \in \Omega$.

(please turn)

Exercise 7.4 (written) Step 6 in the proof of the Cauchy Kovalevskaya Theorem: Let $p = (p_0, p_1, \ldots, p_d)$ be an analytical solution of the first order system

$$\partial_{x_d} \boldsymbol{p}(x) = \begin{pmatrix} p_d(x) \\ 0 \\ \vdots \\ 0 \\ -\frac{b(x, \boldsymbol{p}(x))}{A_{dd}(x, \boldsymbol{p}(x))} \end{pmatrix} + \begin{pmatrix} 0 \\ \partial_{x_1} p_d \\ \vdots \\ 0 \\ -\frac{1}{A_{dd}(x, \boldsymbol{p}(x))} \sum_{i, j \neq d} A_{ij}(x, \boldsymbol{p}(x)) \partial_{x_i} p_j(x) \end{pmatrix},$$
$$\boldsymbol{p}(x', 0) = (g_0(x'), \partial_{x_1} g_0, \dots, \partial_{x_{d-1}} g_0, g_1(x'))^\top, \quad x' \in \mathbb{R}^{d-1}.$$

Show that $u(x) = p_0(x)$ is a solution of the second order Cauchy problem

$$\begin{split} A_{dd}(x, u, Du)\partial_{x_{dd}}^2 u + \sum_{i, j \neq d} A_{ij}(x, u, Du)\partial_{x_i}\partial_{x_j} u + b(x, u, Du) = 0 \quad \text{ in } \mathbb{R}^d \backslash C, \\ u = g_0 \quad \text{ on } C, \qquad \frac{\partial u}{\partial n} = g_1 \quad \text{ on } C. \end{split}$$

Exercise 7.5 (written) Maximum principle for functions with mean value property: Let $\Omega \subset \mathbb{R}^d$ be an open, bounded domain. Let $u \in C(\overline{\Omega})$ such that for all $x_0 \in \Omega$, for all r > 0 with $B_r(x_0) \subset \Omega$:

$$u(x_0) = \frac{1}{\omega_d r^{d-1}} \int_{\partial B_r(x_0)} u(z) \, \mathrm{d}a_z, \tag{4}$$

where $\omega_d = \int_{\partial B_1(0)} 1 \, da$ and $B_r(x_0)$ denotes the open ball of radius r around the point $x_0 \in \Omega$. Moreover, let $M = \sup\{u(x), x \in \Omega\}$.

- a) Assume that $u(x_0) = M$ for a particular $x_0 \in \Omega$. Conclude that u(y) = M for every $y \in B_r(x_0) \subset \Omega$.
- b) Conclude that u is constant in Ω if u attains its maximum in some $x_0 \in \Omega$. Hint: argue by contradiction. For this, you may use a continuous path that connects x_0 with a point $x_1 \in \Omega$ with $u(x_1) < M$.
- c) Let u be non-constant. Conclude that u attains its maximum and minimum on $\partial \Omega$.
- d) Let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ such that

$$\Delta u = f \text{ in } \Omega, \tag{5}$$

$$u = 0 \text{ on } \partial\Omega. \tag{6}$$

Conclude from the maximum principle that this Dirichlet problem admits at most one solution.

e) Let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ solve (5) with f = 0 together with the boundary condition

$$\frac{\partial u}{\partial n} + hu = 0 \text{ on } \partial\Omega,\tag{7}$$

where n is the outer unit normal vector to Ω . Assume that $h \in C(\partial \Omega)$ satisfies $h \ge \kappa > 0$ on $\partial \Omega$. Conclude that u = 0.

Ex. 7.4 and 7.5 are to be delivered in written form by teams of two persons each in the exercise lesson on 04/06/2012. They will be discussed in the subsequent week.