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Abstract We derive a global regularity theorem for stress fields which correspond to
minimizers of convex and some special nonconvex variational problems with mixed
boundary conditions on admissible domains. These are Lipschitz domains satisfying
additional geometric conditions near those points, where the type of the boundary
conditions changes. In the first part it is assumed that the energy densities defining
the variational problem are convex but not necessarily strictly convex and satisfy a
convexity inequality. The regularity result for this case is derived with a difference
quotient technique. In the second part the regularity results are carried over from
the convex case to special nonconvex variational problems taking advantage of the
relation between nonconvex variational problems and the corresponding (quasi-)
convexified problems. The results are applied amongst others to the variational prob-
lems for linear elasticity, the p-Laplace operator, Hencky elasto-plasticity with linear
hardening and for scalar and vectorial two-well potentials (compatible case).
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1 Introduction

We investigate the global regularity of stress fields which are related to minimizers of
convex, but not necessarily strictly convex, variational problems with mixed bound-
ary conditions on domains with Lipschitz boundary. Furthermore, the results are
carried over to stress fields of special nonconvex variational problems. The variational
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problems under consideration are of the following type: for a bounded domain 2 C
R4 we denote by I'p C 382 the Dirichlet boundary; furthermore, let g € WP (),

fe (Wl’P(.Q))/ and V := {v € W'?(2) : v|r, = 0}. The variational problem is
Findu: 2 — R™ u € g+ Vsuch that foreveryve g+ V
I(w) <I(v) = /W(VV(X)) dx — (f,v). (1.1)
2

Here, W : R”"*¢ — R is a given energy density. If « is a minimizer of I then the
corresponding stress field o is defined as

o(x) :=DW(Vu(x)), xe 2,

where the notation DW(A);;, = a;‘;VA(-I:) 1 <i<m,1 <k <d,isused for the derivative

of W. The goal of this paper is to derive a global regularity result for the stress o on
nonsmooth domains.

In the first part of this paper (Sect. 2) we study the convex case. Here, the main
assumption is that the energy density W is a C! function and satisfies the following
convexity inequality for every A, B € R"*¢:

(W(A) — W(B) —DW(B) : (A — B)) (1+|A[° 4+ |B[) = cIDW(A) —DW(B)|" (1.2)

for some constants ¢ > 0, s > 0 and r > 1. In addition, we assume that W is of
p-growth for some p € (1, 00). Inequality (1.2) implies that W is convex but not neces-
sarily strictly convex. Examples for functions W with (1.2) include the energy densities
of linear elastic materials, a model of Hencky elasto-plasticity with linear hardening
and energy densities, which correspond to quasilinear elliptic systems of p-structure.

It is well known for linear and quasilinear elliptic equations that the global regular-
ity of weak solutions does not only depend on the smoothness of the right hand sides
but also on the smoothness of the boundary of 2, we refer to [14,15,25,31,33,36]
and the references therein for the linear case. Global regularity results on nonsmooth
domains for weak solutions u of quasilinear elliptic systems of p-structure were derived
by Ebmeyer and Frehse [16,19] (mixed boundary conditions, polyhedral domains) and
Savaré [45] (pure Dirichlet or pure Neumann conditions on Lipschitz domains). The
essential assumptions in these papers imply the following convexity inequality for the
energy densities which define the boundary value problems [16,19,28,45]:

W(A) — W(B) —DW(B) : (A — B) > c(k + |A| + |B|)’ "2 |A — B| (1.3)

for A, B € R"*? and some « € {0,1}. The regularity results in [16,19,45] are derived
with a difference quotient technique based on (1.3). Due to the similarity between
(1.3) and our main assumption (1.2), it is possible to adapt the techniques in [16,19,45]
to our case. We combine the geometrical assumptions of the above mentioned refer-
ences and introduce the notion of admissible domains in Definition 2.3. Admissible
domains are Lipschitz domains which satisfy an additional geometrical assumption
near points with changing boundary conditions. We then prove the following regular-
ity result for the stress field o on admissible domains (Theorem 2.2): For every § > 0
we have

1 r
o = DW(Vu) € W7 0% (). (1.4)
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Here, r and s are the exponents from (1.2). This result is proved with a difference
quotient technique on the basis of convexity inequality (1.2). A comparison of (1.4)
with well known results for linear elasticity (p = r = 2, s = 0) and for the p-Laplacian
indicates the optimality of (1.4) within the class of considered domains, see Sect. 2.5.

In the second part of the paper (Sect. 3) we discuss the regularity properties of the
stress fields of a special class of nonconvex variational problems. Nonconvex prob-
lems need not have minimizers and in that case it is reasonable to study the relaxed
variational problem

Find u € g+ V such that foreveryv e g+ V
IR () < IR(w) = / WR(Vv () dx — {f, V). (15)
2

Here, WX is in general given by the quasiconvex envelope W4 of the original energy
density W [1,13,42]. It follows from the relaxation theory in the calculus of variations
that if the original problem has a solution « then it is also a solution of the relaxed prob-
lem. Moreover, the stresses of both problems coincide: 0 = DW(Vu) =DW9¢(Vu). We
use this relation in combination with the additional strong assumption that the quasi-
convex envelope W€ is equal to the convex envelope W¢ of the original energy density
W in order to carry over regularity results for stresses of convex problems to special
nonconvex problems. Examples for such problems are scalar or vectorial two-well
potentials (compatible case) and a special case of the Ericksen—James energy density.

This paper and the examples herein are highly motivated by an article by Carstensen
and Miiller, where local and global stress regularity results for smooth domains are
proved [9]. There, the main assumption is that the energy density W satisfies the
following monotonicity inequality

((DW(A) —DW(B)) : (A — B)) (1 + |A’ + [BI’) = ¢|DW(A) — DW(B)|" (1.6)

with ¢ > 0, s > 0 and r > 1. Inequality (1.2) is motivated by (1.3) and (1.6) and is
a stronger assumption than (1.6). In Lemma 2.2 we describe sufficient conditions on
W for which the monotonicity inequality (1.6) and the convexity inequality (1.2) are
equivalent. The local results in [9] are proved with a difference quotient technique.
There, the main idea is to use double differences ¥(x) = 12 (x) (u(x+h)—2u(x)+u(x—h))
as test functions for the weak formulation and to apply the monotonicity inequal-
ity (1.6). The function 5 is a cut off function with suppn C £ and thus the func-
tion v is indeed an admissible test function for the weak formulation. In the proof
of our main result for Lipschitz domains (Theorem 2.2), we use single differences
v(x) = n%(u(x 4+ h) — u(x)) as test functions and apply the convexity inequality (1.2).
Here, 7 is a cut off function with supp n N 2 # @ and supp n N (R\2) # @, h € R4\{0}.
The vectors & may cross the boundary and thus the weak solution « has to be extended
to the exterior domain in such a way that v is still an admissible test function for the
weak formulation. Due to the assumed conditions on the geometry of 952, it is possible
to find suitable extensions. In general, double differences of these extended functions
are not admissible test functions.

The paper is organized as follows: After a description of the assumptions on the
energy density W and the geometry of the domain £2, we formulate in Sect. 2 the main
result on the global regularity of stress fields of convex variational problems (Theorem
2.2). The proof is based on the difference quotient technique. These results are then
applied to convex examples from continuum mechanics. In Sect. 3 we formulate a

@ Springer



D. Knees

regularity theorem for the nonconvex case and illustrate it with further examples.
The paper closes with an appendix where we give some technical proofs concerning
examples for admissible domains.

2 Regularity in the convex case
2.1 Notation

Let us first introduce some notation and general assumptions. For m x d-matrices
A,B € R™ the inner product is defined by A : B = tr (ATB) = tr (BTA) =
>y Zzzl AiBjx and |A| = v/ A : A is the corresponding Frobenius norm.

If not otherwise stated it is assumed that 2 C RY, d > 2, is a bounded domain
with Lipschitz boundary 82 = I'p U Ty. I'p and I'y are open and disjoint and denote
the Dirichlet and Neumann boundary, respectively. Throughout the whole paper a
domain with Lipschitz boundary is a domain £ ¢ R? with a boundary which can
locally be described as the graph of a Lipschitz continuous function (after a suitable
rotation). We refer to [25] for a precise definition.

For p € (1,00) and s > 0 the spaces W% (£2) are the usual Sobolev-Slobodeckij
spaces, see, e.g. [3,25]. Furthermore,

V={ve W) v, =0 (2.1)

For the formulation of the boundary conditions we need the following trace space
and its dual for an open subset I' C 352, p € (1,00):
1
wirP(ry = {u € LP(I') : 30 € W' (£2) such that iy = u} 2.2)
~ 1 P 1-1 !
W) = (W p*f’(r)) :

2.3)

Throughout the whole paper p’ is the conjugate exponent of p, % + 1% = 1. Further-
more, the dual pairing for elements u of a Banach space X and elements f of its dual
X’ is denoted by (f,u) = (f,u)y. Besides the usual Sobolev spaces we deal also with
Nikolskii spaces. Nikolskii spaces are very useful for proving regularity results with
a difference quotient technique since their norms are based on difference quotients.
For convenience we cite here the definition of Nikolskii spaces and an embedding
theorem.

Definition 2.1 (Nikolskii space)[3,39] Let s = m + §, where m > 0 is an integer and
0 <8 < 1.For 1 < p < oo the Nikolskii spaces are defined as

NP (2) :={u € LP(2); llul prso(2) < 00}

with
|D%u(x + h) — D%u(x)|?
Wl op iy = Nl + S sup / - & 24)
lal=m 1>0 |h|
T herd
O<l|h|<n

and 2, = {x € 2 : dist(x,382) > n}.
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Lemma 2.1 [3,39,49,50] Let s, p be as in Definition 2.1 and let 2 C R? be a bounded
domain with Lipschitz boundary. The following embeddings are continuous for every
€ >0

N3TEP(2) € WP (2) € N¥P(2).

An equivalent norm is generated if the supremum in (2.4) is replaced by a supremum
over a basis of RY, [34,39)].

2.2 The convex minimization problem

We study minimization problems where the energy density W : R"*¢ — R m,d > 1,
has the following properties:

H1W e c'(R"™4 R).
H2There exist constants p € (1,00), cp, ¢y, 2, ¢z1,¢3 > Osuch that forevery A € Rmxd
clAlP —cp < W(A) < 2 |APP + ¢, (2.5)
IDW(A)| < e3(1 + AP, (2.6)

H3 There exist constants ¢ > 0,7 > 1, s > 0 such that we have for every A, B € Rm*d

(W(A) — W(B) —DW(B) : (A — B)) (1+ |A’ + |BI') = ¢ IDW(A) — DW(B)|".
2.7)
Condition H3 implies that the energy density W is convex but not necessarily strictly
convex. Let us remark that H3 is also an essential assumption in [8], where the con-
vergence of adaptive FEM for convex problems is studied. The following lemma

describes sufficient conditions on W for which convexity inequality (2.7) and mono-
tonicity inequality (1.6) are equivalent.

Lemma 2.2 Let W e CL(R"™*4 R) satisfy (2.5) with p > 1 and let monotonicity inequal-
ity (1.6) be valid for s > 0 and r > 1. We denote by W* the conjugate function of W
and by 9W* (o) the subdifferential of W* at o € R"™*,

1. If's = 0 then we have for every 01,07 € R gnd A € 9W* (02) with the constant
¢ from monotonicity inequality (1.6)

W¥(o1) — W (02) —A: (01 —02) > cr op —oa|. (2.8)
Furthermore, it holds for every A, B € R"™*? with ¢ from (1.6)
W(A) —W(B)—DW@B): (A—-B) > ; IDW(A) — DW(B)|". (2.9)
2. Lets # 0 and assume in addition that (2.6) is satisfied. Then there exist constants
k,8 > 0such that we have for every 01,07 € R™4 and A; € dW*(0;)

W*(o1) — W*(02) — Az : (01 — 02)
Kk lop — ool

2T AF F A A s P A O
Moreover, it holds for every Ay, Ay € R"*4
W(A)) — W(Az) — DW(A2) : (A1 — A2)
x IDW(A1) — DW(Ay)|" 211)

> .
T 1AL 4 A2 + (AP 4+ |A2IP%)
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1
If co = ¢ in (2.5) or if |A| < c(1 + IDW(A)|r-T) for some ¢ > 0 and every
A e R4 then (2.10) and (2.11) hold with § = 0.

Remark 1 The case r =2, s = 0 is treated in [26, Exercise 1.7, p. 21].

Proof Inequalities (2.9) and (2.11) follow from (2.8) and (2.10) via the relation o =
DW(A) & W*(o) + W(A) = A : o [41, Thm. 23.5]. For the proof of (2.8) and (2.10)
leto; #o02 € R"*d We define f(t) = W*(o2 + t(o1 — 02)), ¢t € R and

i 3 =1
o= K%A fae+xr —f@).
Theorem 23.1 in [41] guarantees that f} (/) : R — R is well defined. Moreover, it
follows from [41, Thm. 23.4] that
fi(0) =sup{A : (01 — 02); A € IW* (02 + t(01 — 02))}. (2.12)

Since dW* (o) is compact for every o € R”*¢, there exists for every ¢ an element
A4 () € dW*(oy + t(o1 — 02)) for which the supremum in (2.12) is attained. Tay-
lor’s expansion [41, Cor. 24.2.1] and monotonicity inequality (1.6) yield for every
Ay € dW*(07)

1
W*(o1) — W¥(02) — Az : (01 —0p) = /fﬁr(l) — (A : (0] — o)) dt
0

1
1
/ S0 — A2 oy — o) dr
0

1
(1-6) 1 K sy—1 r
> ¢ [ - A+ALOF +]A2P) 7 |tlor—o2)|" dt.

0 (2.13)

This proves (2.8) if s = 0. Assume now that s > 0. The next task is to find an upper

bound for |A 4 (?)|. If the estimate |A| < ¢(1 + |DW(A)|P+1) is valid for every A, then
analogous arguments as subsequent to (2.17) here below imply (2.10) with § = 0. If
this estimate does not hold, then direct calculations show [use (2.5) and the definition
of W*] that for every o € R”*¢:

-1

;]
g ep) T 0|1 — e < WHo) < e+ cop) T o], (2.14)
where ¢y, c1, c; are the constants from (2.5) and % + 1% = 1. The convexity of W* and
(2.14) imply for every o € R"*? and A € dW*(0), A # 0,

IAl=A: (AT A) < Wio + AT A) — W (o)

(2.14) L
= di+dolo 1417 Al = da o1, (2.15)

—1 —1
where dy = g~ Y(cop)? T, dy = ¢1 + ¢»1 and dy = ¢~ (cop) 7T . Furthermore, Taylor’s
expansion yields for o, 7 € R"*4

1
lo 4+ ]9 — |09 < q/(|a| +eleh? el dt < qlo) + 247 el (2.16)
0
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Combining inequalities (2.15) and (2.16) leads to
|A| < di + (do — d2) o] + dog(lo| + 1)7~! (2.17)

forevery A € 9W* (o). Thus, it follows for ¢ € (0,1) and o (¥) = 02 + (01 —02) together
with (2.6) that

AL < di+ (do — d2) lo ] + dog(lo ()] + 1)
< dy + (do — d2) (01| + |o2D? + doq(loy| + loz] + 1)
.6

@
< di+c(do — o)1+ |A1) + [A2fP) +c(1 + [A1] + |A2]).  (2.18)

=

Here, ¢ > 0 is a constant and A; € dW*(o1) and Ay € dW*(0y) are arbitrary. Fur-
thermore, we have used that (|A| + |B])¥ < cq(|A|* + |B|*) for @ > 0, see, e.g., [32].
Together with (2.13) we obtain finally

klop — ol
W*(01) = W* (03) —As : (0 — 02) >
() = W(02) = A2 (o1 = 02) 2 T AL P + 1Al + 1AL + Ao

(2.19)

for every 01,07 € R™*d and every A; € dW*(o;) with a constant ¥ > 0 which is
independent of o; and A;. This proves (2.10) with § = dy — dp > 0. If ¢y = ¢, then
§=dy—dp=0. O

The existence of minimizers of problem (1.1) follows with standard arguments from
the direct method in the calculus of variations, see, e.g., [13].

Theorem 2.1 Let 2 C R? be a bounded domain with Lipschitz boundary and assume
that the energy density W : R4 — R satisfies HI-H3 with p € (1,00). Furthermore,

/ ~ 1y
let g € WP (), felP(2)andheW 7V P (I'n). If I'p = @, we require in addition

that f and h satisfy the solvability condition [, fvdx + (h, V)Wl_lp = 0 for every
P(982)
constant v € R™. Then there exists u € g+ V such that for every v € g+ V we have

Wby (2.20)

I(w) §I(v):/W(Vv(x))dx—/fvdx—(h,v)
2 2

Minimizers fulfill the weak Euler—-Lagrange equations: For every v € V we have

I (2.21)

/DW(Vu(x)) :Vv(x)dx = /fvdx + (h,v)
2 Q
The lower bound |[DW(A) — DW(B)|” in H3 implies that the stress field o is unique.
With obvious changes the theorem remains true if the energy 7 in (2.20) is defined
via the linearized strain tensor e(v) = (Vv + (V1)!) for v : RY — R? Now,
o =DW(e(v)).

2.3 Admissible domains

It is known from the regularity theory for weak solutions of linear elliptic equations
that the global regularity does not only depend on the smoothness of the data but also
on the geometry of the domain £2. In this section we describe geometrical assumptions
on §2 which enable us to apply the difference quotient technique for the derivation of
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global regularity results for o. The geometrical assumptions depend on the boundary
conditions and are a slight generalization of the assumptions in [16]. We first give
an abstract definition of admissible domains and describe two and three dimensional
examples afterwards.

Definition 2.2 (Cone) A set £ C R? is a cone with vertex in xo € R? if there exists a

simply connected, open and nonempty set C C dB1(0) = {x € R?; |x| = 1} such that

K = {x e RU\{xo}; (x —x0)/Ix —x0| €C}.

Definition 2.3 (Admissible domain) Let 2 ¢ R? be a bounded domain with 32 =

I'p U I'y where I'p and I'y are open (possibly empty) and disjoint.

case Ip N Ty =@:$2 is an admissible domain if it has a Lipschitz boundary.

case Ip NIy # ¢¥: £2 is an admissible domain if it has a Lipschitz boundary and if
in addition there exists a finite number of open balls B R; (X)) with radius R; and
center x; € T'p N Ty and a finite number of cones Kj C R4 with vertex in 0 such
that TpN Ty C U{ZIB R, (x)). Furthermore, for every j there exist open domains

2}, 2 C Bg(xj) with 2], N 2} = 0, Bg @)\ 2 = 2}, U 2} and

Ip NBg,(xj) C 382}, I'yN B (x) C 32y, (2.22)
((BR,.(xj)\QT'V) + /c]-) nel =0, (2.23)
@+ k)N (BR,. (xj)\QTJ) -9, (2.24)

see also Fig. 1 (the index j is omitted). Here, the notation 24K = {y € R%; y =
x+h,xe 2,heK}isused.

The cones K; from Definition 2.3 play an important role in the proof of the stress
regularity. They determine the vectors /4 with respect to which we extend weak solu-
tions across the boundary and with respect to which we then define the difference
quotients. It follows from (2.22) to (2.24) that x + h € (£2 N Bg;(x;)) U 2}, for every
xeNn BR/. (x;) and h € K;. This means that translations with /& € K; could go across
the Dirichlet boundary but not across the Neumann boundary.

Example 2.1 The domain in Fig. 2 is an admissible domain. In the neighborhood
of the point S, the domains £2p, 2y and the cone K can be chosen as follows:
2p ={xeR;x3 >0}, 2y ={xeR;x <0,1 <i<3}and K={heR3
h= Z?:l rivi, ri > 0}.

Fig. 1 Example for conditions
(2.22)—(2.24)
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Fig. 2 Example for an z3
admissible domain T2
AN
(%]
V2 V1
S 1
I'p
I'n

The next lemma describes further examples of admissible domains for d = 2,3. The
proof of this lemma is technical and is given in the appendix.

Lemma 23 1. Let 2 C R? be a Lipschitz-polygon. 2 is admissible if and only if the
interior opening angle at those points, where I'p and Ty intersect, is strictly less
than .

2. [16] Let 2 C R3 be a Lipschitz-polyhedron where at most three faces intersect
in the neighborhood of those points, where the type of the boundary conditions
changes. Assume in addition that the interior opening angle between the Dirichlet
and Neumann boundary is strictly less than 7. Then §2 is an admissible domain.

2.4 Stress regularity in the convex case

We are now ready to formulate the main result on the global regularity of stress
fields of convex minimization problems with mixed boundary conditions on admis-
sible domains. In the following, we denote by n the exterior normal vector on 942.

Theorem 2.2 Let 2 C RY be an admissible domain and assume that W : R4 — R
satisfies H1-H3 for r,p > 1, s > 0 with p’—is > 1. Let 2 D> 2 be an arbitrary
domain and assume further that f € Lp/(.Q), g € W2’p(f2), Vg € LOO(Q) and H €
WP (2, Rm*dy 0 L(R). Let u € WYP(2) be a minimizer of problem (2.20) with
ury, = 8irp and h = Hypyn on I'y.

IfVu € L*(82) for some o > p andifo = DW(Vu) € LY (2) withy = max{p’, -2},

ats
then o has the following global regularity for every § > 0: o
o =DW(Vu) e N77(2) € Wi (). (2.25)
Here,r:%z[%>l.

Remark 2 The theorem remains true if Vu is replaced by e(u) = %(Vu + (Vu)T) in
the minimization problem (2.20).

In [9], Carstensen and Miiller proved the local regularity result o € W]1 Oz (£2) with

o . . . B
T =, on the basis of monotonicity inequality (1.6). For scalar problems (m = 1)

withp =2,r =2, s = 0, they obtained o € wWl2(02) globally under the assumptions
that £2 is a C>!-domain and that W depends on |Vu|, only. It is an interesting open
problem whether the local result from [9] can be extended to domains with smooth
boundaries for arbitrary energy densities satisfying (1.6) or (1.2).
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A comparison of the result in Theorem 2.2 with well known results for linear
elasticity and for systems of p-structure indicates that (2.25) is optimal within the class
of admissible domains (see Sect. 2.5).

Proof We apply a difference quotient technique to deduce estimates for the stress
fields in Nikolskii norms. For the derivation of these estimates the domain £2 is covered
by a finite number of balls and the estimates are proved for each of these balls sepa-
rately. The estimates are obtained by inserting suitable differences of weak solutions
and shifted weak solutions into the weak formulation and by applying the convexity
inequality. The main difficulty is that weak solutions have to be extended across the
boundary of 2 in such a way that differences of weak solutions and shifted weak solu-
tions are admissible test functions for the weak formulation. Due to the assumptions
on the domain §2 it is possible to define such extensions. We partially take up the ideas
from [17] in the proof.

Let 22 C RY be an admissible domain. In particular, £2 is a Lipschitz domain and
satisfies therefore the uniform interior and exterior cone condition [25]. In view of
Definition 2.3 it follows that there exists a finite number of balls B R; (x;) and cones K;

with vertices in 0 such that 2 C U11=1B R; (X)) and each of the pairs (B R (X)), K;) satisfies
one of the following four cases:

1. Bg;(xj) C £2.

2. (BR/. (x)nN 8[2) C I'p and ((x+ K;) ﬂBR/. (X)) N2 = Pforeveryx BR]. (x)NIp.
3. (BR/.(xj) N 8.(2) C I'vand ((x + ) N BR,.(xj)) C £2 forevery x € BRj(x,-) N $2.

4. xj € I'pNTy and the pair (Br; (x)), K;) satisfies (2.22)~(2.24) of Definition 2.3 with

suitable domains .Qé) and .va

Note that there exists & > 0 such that the balls B Rj—6 (xj) still cover £2. We prove now
that
1, ‘
G|QOBRJ-_9(XJ-) € N7 (22 N Br—o(x)))
for every j and consider the fourth case in detail. The remaining cases can be treated
similarly. In order to simplify the notation we omit the index j in the following.

Let Bg be a ball, K a cone with vertex in 0 and £2p, 2y C Br domains such
that (2.22)-(2.24) of Definition 2.3 hold. Let u € W'? (£2) be a weak solution of
minimigation problem (AZ.ZO) with f € LP' (), g e WP(2),Vg e L*(2) and H €
W' (2, R"*d) 0 L(£2). Note that the Neumann term in (2.20) can be rewritten as

(h,v) = (Hn,v)

1 = = [vdivHdx+ | H:Vvdx 2.26
1
WP (ry) A

1
W' PP (ry)

forv e V. Let 2y = int (Q N Bg Uﬁp) = Bg\R2y and assume that 29 C £2, see
Fig. 1. We extend u to §2p as follows:

f(x) = {”(")’ * €L, (2.27)
g(x), x e £20\52.
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Since ur;, = g|rp it follows that i € WLP(£2 U £20). Choose 1 € Ci°(Br) withn =1
on Br_gy and define for x € 2 and h € K with |h| < hg = %dist(supp n,0BR):

v(x) = n*(x) (i(x + h) — g(x + h) — (@(x) — g(x)))
= 0> () Ap(iL(x) — g(x)). (2.28)

Here, we use the notation A,w(x) = w(x+h) —w(x) for i € R9. Note thatv € W(l)’p(.Q)
and therefore v is an admissible test function for the weak formulation (2.21). Assume
ar

that Vu € L*(£2) for some & > p andlet T = 7. It follows from convexity inequality

(2.7) with A = Vii(x + h), B = Vii(x) and Holder’s inequality with = > 1 that

. 2.7 B}
/n“? ARDW(ViD)|* ar % c/n47 1+ |Val’ + |Vax +h))
2 2

x (AW (Vii) — DW(Vit) : AyVit) " dx

z
Fl

r—=t

2t s - s\ =X o
c(/nr—r (14| Vil + |V + m[") = dx)

2

IA

T

X ( / n* (AW (Vi) — DW(Vii) : ApVii) dx
2
= chib. (2.29)

Itisst(r—7)~! = @ and since Vu € LY(£2) and Vg e LOO(Q), the factor /7 is bounded
independently of & € K. Therefore, there exists a constant ¢ > 0 such that for every
h € K with |h| < hg

4
nr

c‘ AhDW(va)|HrU(m5 /nzAhW(Vﬁ)dx - /nzDW(Vﬁ):AhVﬁdx

2 2
= 121 —I— 122. (230)

We now prove that |I1| 4 |I22] < c|h| for a constant ¢ > 0 which is independent of
h € K. Due to the product rule for differences, An(f(x)g(x)) = f(xX)Apgx) +
g(x + h)Apf(x), we obtain for I

by = / A, (n2W(va)) dx — / W(Vii(x + h)Apn? dx.
2 2
= D11 + by (2.31)
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Note that [supp n U supp n(- + h)] C Br for h € K with |h| < hg and therefore we get
taking into account the definition of &t

by = / nz(x—i—h)W(Vﬁ(x—l—h))dx—/n2W(Vﬁ)dx
2NBR 2

= / ?W(Vir) dx — / > W (Vi) dx

($2+h)NBr 2NBR
= / n’W(Vg) dx — / n>W(Vu) dx. (2.32)
((2+M\2)NBr ((2\(2+h)NBR

From Vg € L®°(£2) and assumption H2, inequality (2.5), we obtain

bu <102 +I\@ 0 Bel [PWp|, = [ R eolvul - ) ax
R
(2\(2+h)NBR
< AP W mmot e) —co [ P Vul dx (233)
(82\(2+h))NBR

and the constant c is independent of 4 € K. Since € C§°(Bg), there exists c(i7) > 0
such that

n*(x+h) —n*(@| < c) |l
for every h € R and x € Bg. Thus the term 51, can be estimated as follows:

o] < e A / W(Vi)| dx < ch. 234)
(2U2p)NBR

We obtain finally from (2.33) and (2.34) that

Ly =D+ iy <clhl—co / n* [VulP dx, (2.35)

(2\(£2+h)NBR

where c¢ is independent of 2 € K and ¢ is the constant from (2.5). Applying the
product rule to I and taking into account (2.26) and that v = n?>Ay(ii — g) is an
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admissible test function for the weak formulation (2.21) we obtain

In = — / n’DW (Vi) : A, Viidx
2

/DW(Vu) v( 20, (i —g) /DW(Vu) V(2 Ang)dx

+ / DW (Vi) : (Apit ® Vi?) dx

= —/nz(f+divH)Ah(f4—g)dx—/H:V(nzAhﬁ)dx
2

+/H SV’ Apg) dx

+/DW(VL2) (AR ® Vnz)dx—/DW(Vﬁ) S V(n?Apg) dx

=Ip+...4+ Ipns. (2.36)
Here, (At ® Vnz)ij = (9;n)(Apiyy) and i is the j-th component of ii. Lemma 7.23 in
[23] implies for it,g € W (22 U £29) and h € K that
[n20 @@ = )| Lo auaensr = M= &llr@nsg 111l Bg) -
Therefore, there exists a constant ¢ > 0 which is independent of # € K such that
211 + 24l < IIf 4+ div Hll 1 ) 028 — ) ||L,,((_QUQO)OBR)

+HIDWVW) Il 17 oy €D [ 02848 1 ou0008R)
<clhl. (2.37)
Since g € W2P(£2), similar arguments show that
1223 + [I225| < clhl. (2.38)

In order to estimate I, we apply again the product rules for differences and deriva-
tives:

Iy = —/H L V(* Apit) dx

—/H:(Ahit@Vnz) dx—/Ah(nzH:Vﬁ) dx
2

2

+ / (A, (n*H)) : Vii(x + h) dx. (2.39)

The first term can be treated similarly to /4, the third term similarly to I551. The
second term can be transformed as follows [compare also (2.32)]:

/Ah(n2H;vﬁ)dx= / n?H:Vgdx — / n*H:Vudx. (2.40)
Q (2+h\2)NBr (2\(24+h)NBg
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Since Vg, H € L (82, R™*4), we obtain

n*H : Vgdx

(2+h\2)NBg

<[((2 + h\2) N Bg| H nzH:VgHLm(é) <clhl (2.41)

and c is independent of 4 € K. By Holder’s and Young’s inequality we get for the
second term in (2.40) for every € > 0

1% 2
‘ / (e’ nP’H) : (6771’ Vu) dx‘
(2\(£2+h)NBR
2

p/
e H| dx+ / ;in2 |VulP dx ~ (2.42)
(£2\(2+h)NBR (82\($2+h))NBg

<

N

and the first term is bounded by c ||, where ¢ depends on € > 0. Estimates (2.39)-
(2.42) imply that
eP )
22| < clhl+ — n” |VulP dx. (2.43)
(2\2+h)NBgr

Collecting the above estimates [inequalities (2.35), (2.37), (2.38), (2.43)] we obtain
finally that there exists a constant ¢ > 0 such that it holds for every & € K, |h| < hg

4
nr

,
ARDW (Vi) | H Ly = Dy + Iy + oo + 1223 + Iooa + Inps
<clhl + (p*e” - CO) / n* [VulP dx.
(2\(2+h))NBR
1
Choosing 0 < € < (pcp)? and taking into account that n[ Bro = 1 we get

I8 DWV e sy ) < €]

for every h € K, |h| < hp, with a constant ¢ which is independent of 4. This implies

that 0 = DW(Vu) € NTT (2N Br_y) C W87 (£2 N Br—yp) for every § > 0, see the
definition of the Nikolskii norm and Lemma 2.1. This finishes the proof. O

2.5 Convex examples

As examples for energy densities which satisfy the convexity inequality (2.7) we con-
sider the energy densities of linear elastic materials, of a variational functional from
the deformation theory of plasticity and the energy densities describing equations or
systems of p-structure. A typical example here is the p-Laplace equation.

2.5.1 Linear elasticity

The energy density for linear elastic materials with elasticity tensor C € R(@*dx(dxd),
symmetric and positive definite, is given by W(e) = 1Ce : ¢ for ¢ € ngxn‘f. Obviously,
it holds due to the positive definiteness of C that

W(e1) — W(e2) — DW(e2) : (61 — £2) > ¢|Ce; — Cer|?

and thusp =2,5s =0,r =21in (2.7).
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Corollary 2.1 Let 2 C R? be an admissible domain and let u be a solution of the
minimization problem for linear elasticity. It follows for every § > 0 that o = Ce(u) €

N22(2) C Wi—32(0).

This result is well known and optimal for boundary value problems with pure Dirichlet
or pure Neumann conditions [15]. For polyhedral domains §2, the behavior of dis-
placement and stress fields near corners and edges can be characterized completely
by asymptotic expansions [15,31,35]. Let £2 C R? be a polygon with mixed boundary
conditions and suppose that C describes an isotropic material. It is shown in [38,43] by

a careful study of the asymptotic expansions that o € W%’Z(Q) if £2 is an admissible
domain, i.e., if £(I'p, I'y) < 7 at every point S € I'p N I'y. Moreover,if S € Tp N Ty
with £(I'p, I'y) > 7, then weak solutions exist with o € W*=%2(£2) for an appropriate
O<a< % and every § > 0 butnot for § = 0. The parameter « depends on the material
parameters and the opening angle at S and o — % as £(I'p, I'ny) — m. This example
shows the optimality of Corollary 2.1 for admissible domains.

2.5.2 Hencky elasto-plasticity with linear hardening

For & € R&Y we define as in [22]

1
W(e) = EKo(trS)z +go(leP D), (2.44)

where kg > 0is a constant and e? = ¢ — % tr ¢ is the deviatoric part of ¢. It is assumed
that g € cl®n Cz(R\{to}) for some fy > 0 and the left and right limits of gg exist at
to. The quantity g;,(fo) may be interpreted in this context as yield stress. Furthermore,
we suppose that there exist constants k1,2 > 0 such that for every t € R

a1 < min {gh@.17' gy} = max {gh@0. 70} < . (2.45)

It follows with Taylor’s expansion that cot®> — ¢; < go(t) < c2(1 + £2) for every ¢ and
some constants ¢; > 0. The variational problem related to energy density (2.44) is

Findu € W1’2(Q) withu|r, = g/, suchthatforeveryv e W12(2) with Virp = 8l
we have I(u) < I(v), where

2.46
WI(ry) (246)

1
I(v)=/§Ko<tre(v>)2+go(|sD(v)|>dx—/fvdx— (h,v)
2

2

Functionals of this type describe in the framework of deformation theory of plasticity
the behavior of materials with linear hardening. The local regularity of stress fields
corresponding to minimizers of (2.46) is studied in [22,46].

Lemma 2.4 Energy density W from (2.44) satisfies the convexity inequality (2.7) on
R with s = 0 and r = 2.

Sym

Proof Letey, e € RAxd o # ey and 0(s) = &2 + s(e1 — &2), s € [0, 1]. Note that there

sym »
are at most two elements s; € [0, 1] with |0(s;)| = #p. Therefore, we may apply Taylor’s
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expansion at least piecewise on [0, 1] and obtain

Wi(e1) — W(e2) — DW(e2) : (g1 — &2)

1
(gD 2
- %0 ltr(ey — £2)| +/(1 - S)W (QD(S) Her = EZ)D) ds

D Do . B 2
/(1 - )g0 i ) ‘81 —85)‘2 _ T e —27)) ds
6P )] 162 s)|

|ds

2.45
( : % |tr(81 - 82)|2 +/(1 — S)Kl(GD(S):(g{) _ 85)))2|9D(S)

1
#Ja s (|6 e - P of —ebplpP 0] ) as
0

1 2
=3 (Ko [tr(e1 — 52)|2 + K1 ‘2{) - SZD‘ ) . (2.47)

In a similar way it follows again by (2.45) that there exists a constant ¢ > 0 with

1
DWeep) = DWGe) = [ [DW0wn e - e ds

0
<c (Itr(sl o)+ ]s? - 85‘) . (2.48)
Combining (2.47) and (2.48) finishes the proof. o

Corollary 2.2 Let 2 C R4 be an admissible domain and let u € WY2(82) be a mini-
mizer of (2.46) withdataf,g,h = Hnas in Theorem2.2 (p = 2). Theno = DW(e(u)) €

N%’Z(Q) N W%’M(Q) forevery § > 0.

Remark 3 The function

2
D‘_Uy}

from [4,48] fits into this framework. Here, C is the elasticity tensor for isotropic mate-
rials, # a Lamé constant, o, > 0 the yield stress and n > 0 a hardening parameter. It
is shown in [48, Chap. I11.1.3] that the stresses o, converge for n — 0 to a stress field
oy which corresponds to the elastic, perfect-plastic Hencky model. One could now
try to carry over the regularity results for o, from Corollary 2.2 to oy. By a different
approximation of the Hencky stress of7, namely the Norton/Hoff or Ramberg/Osgood

W(e) = %Ca e — (4 + )" max {0,

approximation, it is shown that oy € W%"S’Z(Q) N Wllog(.@) for every § > 0 on admis-
sible domains, see [6] for the local and [29] for the global result. This correlates well
with Corollary 2.2. Interestingly, a global result for oy on smooth domains is not

proved yet, see the discussion in [47].
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2.5.3 Systems of p-structure
Let p € (1,00) and assume that W : R™*d 5 R satisfies H1, H2 and in addition H4
here below:

H4W € CZ(R’"X‘I\{O},]R) and there exist constants c¢1,¢p > 0, k € {0,1} such that we
have for every A, B € RM¥d A #0,

‘DZW(A)‘ < ik +ADP2, (2.49)

5 4 52w(A) .
D>W(A)[B.B § S L BB, ADP2|B 2.50
Al 1= oa 13Aks8A]r ksBjr = c2(c + |ADF7 | 2. (2.50)

2
Here, the notation(D*W(A))ksjr = % with D2W(A) e ROmxdxmxd) jg ysed.

Energy densities of this type lead to quasilinear elliptic systems of p-structure. Note
that the function W(A) = [% |AP, A € R, which corresponds to the p-Laplace equa-

tion, satisfies H4 with « = 0.

LemmaZS Assume that W satisfies H1, H2 and H4 for some p € (1,00) and let
q =p' = ;5. If p = 2, then convexity inequality (2.7) holds withr =2 and s = p — 2.

Ifp e, 2] then the convexity inequality holds withr = p’ = q and s = 0.
Proof Let p € (1,00) be arbitrary. Due to [2,24] there exist for every § > —1 and
every k > 0 constants cq,c2 > 0 such that

1
c1(c + |A| + |B)? s/<x+|B+z<A—B)l)ﬁdzscz(x+|A|+|B|>ﬁ (2.51)

forevery A,B € R"™*4 with |A|+|B| > 0if x = 0. Thus it follows by Taylor’s expansion
together with (2.50) that

W(A) — W(B) — DW(B) : (A — B)
- /(1 —0)D*W(B +t(A — B))[A — B,A — Bl dt

> c(k + |A| + |B)P 2 |A - B. (2.52)
Furthermore, Taylor’s expansion, inequality (2.51) and assumption (2.49) imply
1
[IDW(A) — DW(B)| < / |D*W(B + t(A — B))|dt|A — B|
0
<c(k +|A|+ |B))’ 214 — B. (2.53)
Combining (2.52) and (2.53) finishes the proof for p > 2. If p < 2, it holds for
q=p >2:
|A—B|? < (k + |A| + |B])?7% |A - B (2:54)
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and thus, together with (2.53),
IDW(A) = DW(B)|? < (c + |A] + [B)IP~2972 |4 — B*. (2.55)
This finishes the proof for p <2sinceg(p —2)+g—-2=p —2. O

The following global regularity results are available for weak solutions u € W (£2)
of problem (2.20) on admissible domains with energy densities W satisfying H1, H2
and H4 [17,18,45]:

1
ue W@y ifp e [2,00),
3_5 2dp .
ue W2 () ifp e (1,2]

dp
forevery$ > 0.Inboth cases, the Sobolevembedding theorems yield Vu e Liib (£2).

From H2 and lemma 2.5 we conclude that o € L%f‘s (2) for ¢ = p’ and for every
8> 0.

Corollary 2.3 Let p € (1,00), g = p' = 1% and let u € WP (2) be a minimizer
of (2.20) with an energy density satisfying H1, H2 and H4 on an admissible domain
2 C R Let the data f,g,h = Hn be given according to Theorem 2.2 with a = %.
Then it holds for the stress 0 = DW(Vu) and every § > 0

1 2d.

o = DW(Vu) € W2 5225 () itp =2, (2.56)
1 1

o =DW(Vu) e No1(2) c Wi (@) ifp e (1,2]. (2.57)

Let 2 C R? be an admissible polygon and assume that the stress o = |VulP =2 Vu
corresponds to a weak solution of the p-Laplace equation

div [VulP2Vu+f=0

with p € (1,00), ¢ = p’. Assume furthermore that o is of the form o = r’og(p),
where (r,¢) are polar coordinates with respect to a corner point S and oy # 0. By
[44, Lemma 2.3.1] we obtain that o is an element of the spaces in Corollary 2.3 if and
only if y > —1/q. In [5] a weak solution u of the p-Laplace equation is constructed
for a domain with a crack and vanishing Neumann conditions on both crack faces,
where y = —1/q. This indicates the optimality of Theorem 2.2 also for nonlinear
elliptic equations of p-structure. We finally remark that global regularity results for u
on smooth domains are derived, e.g., in [20,37,40].

3 Regularity for stresses of nonconvex variational problems

Nonconvex variational problems may fail to have minimizers and a relaxed prob-
lem is studied instead. This relaxed problem is in general defined through an energy
density which is the quasi-convex envelope of the nonconvex energy density. Weak
cluster points of infimizing sequences of the nonconvex problem are minimizers of
the relaxed problem [2,13,21]. Moreover, if the nonconvex problem has a minimizer,
then this minimizer is also a minimizer of the relaxed problem and the corresponding
stress fields coincide under suitable assumptions on the energy densities. This relation
is the key for carrying over regularity results from the convex case to minimizers of
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nonconvex problems. After a short description of these relations we formulate the
regularity theorem and illustrate it with some examples.

3.1 Regularity for stress fields of nonconvex variational problems

Let W € C(R"*“ R) be an energy density satisfying growth condition (2.5) for some
p > 1 and let I be the energy functional related to W, see (2.20). By W4¢ and W* we
denote the quasi-convex and convex envelope of W, respectively, i.e., for A € R"*4

WI(A) = sup{g(A) : g < W and g is quasi-convex}

and similar for W¢. For a definition of quasi-convexity we refer to Dacorogna’s book
[13]. Furthermore, we define for v € W' (£2)

1

1
WPy

19°(v) = / W9 (Vy) dx — /fv dx — (h,v)
2 2
where f,h are given as in Theorem 2.1; I¢ is analogously defined. The following
well known theorem describes the relation between minimizers of /9¢ and infimizing
sequences of /. For convenience we reformulate it here for our situation.

Theorem 3.1 [2,13,21] Let W € C(R™*? R) satisfy (2.5) forp > 1, g € WP(),

| -
fe Ll (R),heW P’ (I'y) and assume that f,h satisfy the solvability condition if
I'p = 0. Then the minimization problem for 19° on g+V, where V is the space defined in
(2.1), has a minimizer ui® € g +V and it holds inf ,eg v I(v) = I9°(u9°). Furthermore,
every weak cluster point of infimizing sequences of I is a minimizer of 1.

Due to Theorem 3.1 we have

Lemma 3.1 Let the assumptions of Theorem 3.1 be satisfied and suppose thatu € g+V
is a minimizer of I. Then W (Vu) = W9¢(Vu) almost everywhere in 2. Furthermore, let
M ={A e R W(A) = WI°(A) )} and assume that W and W€ are differentiable
on an open neighborhood of M. Then DW(Vu) = DW?(Vu) a.e. in $2.

Proof The first assertion of Lemma 3.1 follows from the definition of W4¢ and The-
orem 3.1. The second assertion can be shown as follows: Let A € M, H € R"*? be
arbitrary. Then

DW(A) :H > }i\n(l)t‘l(W"”(A +tH) — Wi°(A)) = DWI°(A) : H,
DW(A): H = }i/n(q) Y (W(A +tH) — W(A)) < DWZ(A) : H.

Since H is arbitrary this implies DW(A) = DW?¢(A). O

Lemma 3.1 and Theorem 2.2 imply the following regularity theorem for stress fields
in the nonconvex case:

Theorem 3.2 Let 2 C RY be an admissible domain and let W € C(R™*4 R) satisfy
(2.5) for p > 1. Moreover, let W be differentiable on a neighborhood of M with M
as in Lemma 3.1. Assume that the data f,g, H is given as in regularity theorem 2.2.
Furthermore, we suppose that the convex envelope and the quasi-convex envelope of
W coincide, W1¢ = W€, and that W¢ satisfies H1, H2 and convexity inequality H3 with
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s>0,r>1landt = 1% > 1. Let u be a minimizer of the minimization problem for I

and assume that DW€(Vu) € LY (2) with y = max{p’, t}. Then DW(Vu) = DW¢(Vu)
and for every § > 0

o = DW(Vu) € N7T(2) C W=7 ().

The assumption W7¢ = W¢ is automatically satisfied if m = 1 or d = 1. For
min{m,d} > 2, only a few examples with W?¢ = W¢ are known and the equality
does not hold in general. Thus, the assumption W9¢ = W€ is rather restrictive in the
vectorial case. Note that Theorem 3.2 holds also if Vu is replaced with e(u) in the
definition of /.

3.2 Nonconvex examples

Typical examples for nonconvex energy densities with W?¢ = W¢ are the scalar and
vectorial two-well potentials (compatible case). It is shown in [9] that the convexified
energy densities satisfy the monotonicity inequality. We prove here that convexity
inequality (2.7) holds as well and, as a consequence, regularity Theorem 3.2 is appli-
cable. Finally, we discuss a special case of the Ericksen—James energy density.

3.2.1 Scalar two-well potential, m = 1

The energy density of the scalar two-well potential reads for A € R? and fixed
A #£ Ay eRY

WA) =14 - AP 1A - Ao
Since m = 1, the convex and the quasi-convex envelopes W¢ and W4¢ coincide and
W(A)=max {|A — FI> — |G*,0) +4(IGI*|A — FI> = (G - (A — F))?),

where G = (Ay — Ay)/2 and F = (A; + A3)/2, see [10]. Furthermore, it is shown in
[10] that W€ satisfies monotonicity inequality (1.6) withp =4 andr =5 = 2.

Lemma 3.2 There exists a constant ¢ > 0 such that it holds for every A € R?
1
|A| §c(1+ |DWC(A)|3). (3.1)

Therefore, W€ satisfies convexity inequality (2.7) with p = 4 and r = s = 2 due to
Lemma 2.2.

Proof For A # F it holds

IDWC(A)| = sup DW(A): H|H|™' > DWA): (A—F)|A—F|"!
HeR4\ {0}

> 4max {|4 - FI* = |GP,0} 14 - FI.
Assume now that |[A — F| > |G|. Young’s inequality yields for every § > 0
IDW(A)| > 4|14 — FI° —57'4|G|*§ 1A — F|

83 16 3
4— —)IA-FP - = |GPs 2.
z( 3)I | 3||
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3
For 8y = 2% itholds ¢ :=4 — %0 > (0. Moreover, it follows for |[A — F| < |G| that

83 16 _32
(4— 30)|A —FP - =% 21GP <.

Therefore, we have [DW¢(A)| > ¢1 |A — F]®> — ¢; for every A € RY. With |[A — F| >
|A| — |F| and applying once more Young’s inequality we obtain finally (3.1). O

Corollary 3.1 Let 2 C RY be an admissible domain and let u be a minimizer of I or

I¢. Then it follows for the corresponding stress field for every § > 0: 0 € N3 (£2) C
1 4

W2=53(Q).

3.2.2 A vectorial two-well potential, m = d

For g1 # & € REX? we consider the following energy densities

sym
Wie) = %C(s —e):(e—e)+ W), eeRYY =12, (32)

where C is the elasticity tensor for linear elastic materials and W9 € R. Let
W(e) = min{Wy(2), Wa(e)}, &€ RE:. (3.3)

The nonconvex function W describes in a geometrically linear framework the elastic
strain energy density of a two-phase material with stress-free strains g;, see, e.g., [27,
30]. It is assumed that both phases have identical elasticity tensors. If the strains g
and & are compatible, i.e., if there exist a,b € RY with &; — &9 = % @a®b+b®a),
then the convex and quasi-convex envelopes of W coincide and are given by [30]

Wa(e) if Wa(e) +y < Wi(e),
We(e) = {Wa(e) if [Wi(e) — Wa(e)| < v, (34)
Wi(e) it Wi(e) +y < Wa(e),

where y = %C(sl — &) : (g1 — &) and
1 1
W3(e) = S(Wa(e) + Wi(e)) = 2 (Wa(e) = Wi(e))? — 2. (3.5)
y 4

It is shown in [11] that W€ satisfies the monotonicity inequality with p = r = 2 and
s = 0. From Lemma 2.2 we obtain immediately that W¢ satisfies also the convexity
inequality (2.7) withp =r=2and s = 0.

Corollary 3.2 Let 2 C RY be an admissible domain and u a minimizer of I or I°. Then
o =DW(e)) € ./\/%’2(9) C W%_‘S’Z(Q) forevery § > 0.

3.2.3 A special case of the Ericksen—James energy

The last example deals with a special case of the two dimensional Ericksen—James
energy function [12]. Let k,k2 > 0. For A € R**? and C = AT A we consider the
function

W(A) = k1 (tr C — 2)2 + k2c2, = k1 (JA2 — 2)% + ’;—z(a(A,A»Z, (3.6)
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where the bilinear form a(-, -) is defined as
a(A,B) = ayib1y + apbiy + anbxn +anby, A,B e RPZ (3.7)

Note that 2c¢1p = a(A, A). The complete Ericksen—James energy has the additional
term

2
1 2
2 2 2 2 2
K3 (Z (‘111 +ay —aj, — azz) —& , k3>0

and is applied to model crystalline microstructure, see [12] and the references therein.
In this context, u : 2 — R? is the deformation field, W (Vu) the stored energy function
of a two dimensional crystal and C = Vu' Vu the right Cauchy-Green strain tensor.
Let us emphasize that we consider here only the case x3 = 0 since the quasiconvex
envelope is known only for that case. It is shown by Bousselsal and Brighi in [7] that
the convex and the quasiconvex envelopes W9¢ and W¢ of W from (3.6) coincide for
«3 = 0 and have the form

WE(A) = di(A) forA e My, 1 <i<4, (3.8)
where U}_ M; = R?*2,

My = {A eR¥?: |a(A,A)| <2 —|AP),
My ={A e R¥?: iy la(A,A)| < 4r1 (A7 —2)},
M3z = {A e R¥?: aa(A,A) > 4k (JA]> = 2) > 0
ora(A,A) =2 — |A]* = 0},
My =1{A eR¥>?: —ira(A,A) > 41 (JA> =2) > 0
or —a(A,A) >2— A >0}
and @1(A) =0, Pr(A) = W(A), P3(A) = P4(A) with

K1K?2

D3(A) = A2 =2+ la(A. A2
3(A) 4K1+K2(| | + la(A, A)])

Lemma 3.3 W¢ from (3.8) satisfies convexity inequality (2.7) withp =4, r =2, 5 = 2.

Corollary 3.3 Let 2 C R? be an admissible domain and u a minimizer of I or I¢ with
energy density W from (3.6) and W€ from (3.8), respectively. Assume that the data
f,8, H is given according to theorem 2.2 with p = 4. Then we have 0 = DW(Vu) €

ND3(Q) c W13 (82) for every § > 0.

Proof of Lemma 3.3 The proof of Lemma 3.3 is quite technical and we split it into
two parts. In the first step we show that @; satisfies the convexity inequality for every
A,B € M;, 1 <i < 4. Putting these estimates together we show in the second step
that W¢ satisfies the convexity inequality for arbitrary A, B € R?*? = U?lei-
Leti=2and A, B € M3, A # B. It follows
D2(A) — P2(B) — DP2(B) : (A — B)
K
= (AP — [BPY + 5 @(A,A) — a(B. B))’
+26(IB2 —2)|A — B + %za(B,B)a(A —B,A—B)

=81 +...+54, (3.9)
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where a(-, ) is defined in (3.7). Let T(A) = (522 gl! ) and note that T(A) : B = a(A, B)

az azy

and Dga(A,A) = 2T(A). Young’s inequality yields

ID®2(A) — DP2(B)* = |4k (|A]* — |BI)A + k2(a(A, A) — a(B, B) T(A)
+4x1 (B> — 2)(A — B) + 2a(B, B)T(A — B)|*
< c((JA? = B |A]* + (a(A, A) — a(B, B))* |A]?)
+cldi (1B = 2)(A — B) + 2a(B, B)T(A — B)|
=c(t1 + 1) + ct3. (3.10)

Obviously, there exists a constant ¢ > O such thatf; +1 < c(1+ |A|2 + |B|2)(51 +572).
It remains to show that

13 < c(L+ AP+ [B*)(s3 + s4). (3.11)
If a(B,B)a(A — B,A — B) > 0, then

(1 + |AP? + |B»)a(B,B)a(A — B,A — B)
> (|B]> — 2)a(B,B)a(A — B,A — B), (3.12)
(1+ A+ |BP)(B* -2)|A — B

BeMy K5
> (IBP—22|A—BP = —2:a*B,B)|A - BP. (3.13)
16k}
Evaluating 3 and taking into account estimates (3.12) and (3.13) finally implies (3.11).
Ifa(B,B)a(A — B,A — B) < 0, then
K
s34+ 84 = (2(BP =2) = 5 a(B. B)I) 1A - B
+5 1a(B.B)| (14 - B — |a(A ~ B.A=B))) (3.14)

and both terms are nonnegative. On the other hand,

=4 (2K1(|B|2 -2)— Kz—z |a(B,B)|)2 |A—BP?
+8cia(BE = 2)1aB, B (14~ BF ~laA = BA-BI)  (315)

and since B € M3, we have
K 2
(2B ~2) - T 1a8.B))
K
= (2 (BP =2) = 3 a(B. B)I) (1 + A + |BP) (3.16)

for a constant ¢ > 0 which is independent of A, B. Combining (3.14)—(3.16) results in
(3.11) and convexity inequality (2.7) is proved for @, on My with r =5 = 2.
Leti=3.For A,B € M3, A # B, itholds

(k1 + k2) (K1Kk2) ~H (@3(A) — D3(B) — DP3(B) : (A — B))
= (AP~ B+ a(A,A) — a(B, B))
+2(IB?=2+a(B,B))(|A - B>+ a(A — B,A — B)) (3.17)
@ Springer
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and both summands are nonnegative. On the other hand, by Young’s inequality, there
exists a constant ¢ > 0 such that

c|D®3(A) — Do3(B)[°
< (JAP = IBI® + a(A, A) — a(B,B))” |A + T(A)|?
+(IB? =2 +a(B,B))’(2|A — B +a(A — B,A — B)). (3.18)

B € M3 implies 0 < |B|2 —24a(B,B) <21+ |A|2 + |B|2) and therefore, combining
(3.17) and (3.18), it follows that &3 satisfies the convexity inequality on M3. The case
i = 4 can be treated in the same way.

In order show that the convexity inequality is valid for every A, B € R?*? note first
that there exists a Jo € N such that it holds for every A,B € R2%2: There exist real
numbers 0 =ty < ;... < ty = 1,J < Jp, and numbers iy,...,i;_1 € {1,...,4} such
that F(1) = B+ (A — B) € M, fort € [1j,4;11],0 < j < J — 1. We obtain

W¢(A) — W¢(B) — DW'(B) : (A — B)

J
= > WEF() = WE(F(t-1)) = DWE(F (1)) = (F(5) — F(t-1))
j=1
J
+3" (DWE(E(_1) — DWEEO)) : (F(5) — F(tj1)
j=1
=51 + 8. (3.19)

Since W€ is convex, the derivative DW€ is a monotone function and thus
L h—t,
5y = Z %(DWC(F(Ij,l) — DWE(F(0)) : (F(1j—1) — F(0)) > 0.
=2~
Moreover, F(tj_1), F(tj) € M;;_, and therefore the convexity inequality may be applied
to every summand of s; separately due to the first part of this proof:

J
-1
stz e (1 [F@ +[Fa-0)  [DWFE@) - DWFG-1)| .
j=1

Note that (1 + |F()|* + [F—) ! = §A + AP + |B>)~! and that 32, [B;[* =

J_1| z]{=1 Bj|2 for B € R2*2 and thus, since J < Jo,
¢
s12 (Lt |A]? + B~ IDW¢(4) — DWE(B)|.
0
This finishes the proof. O
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A Appendix: Proof of Lemma 2.3
A.1 The two dimensional case

Let 2 C R? be a Lipschitz-polygon and assume that 0 € I'p N Ty. Then there
exists R > 0 such that Bg(0) N 352 does not contain any further corner point of 952.
Assume further that I'y N Bg(0) is a subset of the positive xq-axis and that there
exists @ > 0 such that 2 N Bgr(0) = {x € Br(0) : 0 < ¢ < @} [polar coordinates,
x = |x| (cos g, sing) T].

Case I Let L(I'p,I'N) < m,i.e.,,® < . Choose 2y = {x € BR(0) : 7 < ¢ < 27},
2p={xeBr0): ® <x <m}and K = {x € R?2: ® < x < n}. Then conditions
(2.23)—(2.24) of Definition 2.3 are satisfied and thus §2 is an admissible domain.

Case 2 Assume that £2 is admissible. We have to show that @ < 7. Let K, 2p
and 2y be the cone and domains of (2.23)—(2.24) in Definition 2.3 corresponding to
the corner 0 € I'p N I'y. It follows from I'y N Br(0) C (32y N Br(0)) C positive
x1-axis together with (2.23) that K is completely contained in the upper half plane,
ie,K={xeR?: & < ¢ < &} and0 < & < &, < 7. Furthermore, (2.24) together
with I'p N Br(0) C {x € R%: ¢ = @} implies ® < @1 and thus @ < «.

A.2 The three dimensional case

Let 2 C gbe a Lipschitz-polyhedron according to Part 2 of Lemma 2.3 and let
xo € I'p N I'y. There exists R > 0 and a polyhedral cone £ with vertex in xo such that
£2 coincides with K on Bg(xg):

2 N Br(xo) = K N Br(xop).

We assume that K has exactly three faces 7,1 < i < 3, which intersect at xo and which
satisfy (17 U I2) N Br(xp) C I'yv and I3N Br(xp) C I'p. Furthermore, we assume that
£(I, I») # n. The remaining cases can be treated similarly. Let n; be the exterior
unit normal vector on [ and denote by H; = {x € R3: (x — xo)n; < 0} the “interior”
half space with respect to I'; and n;. Due to the assumption £(I'p, I'y) < 7 it follows
t~hat (22U I'v) N Br(xp) C H3. Therefore, we have exactly the following two cases for
K:

K=H,NnHyNH3 or K= (H,UH>) N Hs,

depending on whether £ (17, I») < 7 or > . In order to show that £2 is an admissible
domain we have to construct domains §2p, £2y and a cone K according to (2.23)-(2.24)
of Definition 2.3. We define

2p = {x € BR(x0) : (x —xo)nz >0}, 2y = Br(x0)\(2p U 2).
Sinie L(UIp,IN) < it followithelLQD N2 = @ and Q2N #9. Leteg be tangential
to I'1 N I3, e be tangential to 1> N I3 and e3 tangential to I'7 N 1. The orientation of

the vectors ¢; is chosen in such a way that

einy <0, eny <0, eznz>0. (A1)
@ Springer
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This choice is always possible since £(I,1>) # m and £(I'y,Ip) < m. Note that
{eq, 2, e3) is a basis of R3. We define the cone K by

3
K:[VGH@:V:ZMQ,MZO].

i=1

Then £2p, 2y and K satisfy (2.23)—(2.24) of Definition 2.3, which can be seen as
follows.

Choose x € 2p and v = > ; A;e; € K such that x + v € Bg(xp). Since ejn3 = 0,
exn3 = 0 we get from the definition of §2p and (A.1) that

(x+v—xp)n3 = (x — xg)n3z + Azeznz > 0

and therefore x + v € £2p and (2.24) is proved. For the proof of (2.23) choose
x € 2N Br(xp) = KN Br(xg) and v = >, Aje; € K such that x + v € Bg(xo). If
A3 > —((x —xo)n3)/(e3ns), then (x +v — xo)nz > 0 which yields x +v € £2p and (2.23)
holds for this case. If A3 < —((x — xg)n3)/(e3n3), then x +v € H3 and we have to show
that x + v € K in order to verify (2.23).

Case 1 K = H; N Hy N H;. Tt follows for i,j € {1,2} with i # j from the definitions
of K, H; and from (A.1) that

(x +v—xo)n; = (x — xo)n; + rjejn; <0

and therefore x +v € Hy N Hy N H3.
Case 2 K = (Hy U Hy) N H3. It follows for i,j € {1,2}, i # j as before that

(x +v —xo)n; = (x — xo)n; + Ajejn;.

Since x € H{UH, we have (x—xg)n; < 0or (x—xo)nz < 0. Together with Ajejn; < 0 we
obtain finally (x+v—xg)n; < 0or (x+v—xp)ny < 0which shows thatx+v € H{UH>.
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