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Abstract We derive a global regularity theorem for stress fields which correspond to
minimizers of convex and some special nonconvex variational problems with mixed
boundary conditions on admissible domains. These are Lipschitz domains satisfying
additional geometric conditions near those points, where the type of the boundary
conditions changes. In the first part it is assumed that the energy densities defining
the variational problem are convex but not necessarily strictly convex and satisfy a
convexity inequality. The regularity result for this case is derived with a difference
quotient technique. In the second part the regularity results are carried over from
the convex case to special nonconvex variational problems taking advantage of the
relation between nonconvex variational problems and the corresponding (quasi-)
convexified problems. The results are applied amongst others to the variational prob-
lems for linear elasticity, the p-Laplace operator, Hencky elasto-plasticity with linear
hardening and for scalar and vectorial two-well potentials (compatible case).

Keywords Global stress regularity · Convex variational problem · Nonconvex
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1 Introduction

We investigate the global regularity of stress fields which are related to minimizers of
convex, but not necessarily strictly convex, variational problems with mixed bound-
ary conditions on domains with Lipschitz boundary. Furthermore, the results are
carried over to stress fields of special nonconvex variational problems. The variational
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problems under consideration are of the following type: for a bounded domain Ω ⊂
R

d we denote by ΓD ⊂ ∂Ω the Dirichlet boundary; furthermore, let g ∈ W1,p(Ω),
f ∈ (

W1,p(Ω)
)′

and V := {v ∈ W1,p(Ω) : v|ΓD = 0}. The variational problem is

Find u : Ω → R
m, u ∈ g + V such that for every v ∈ g + V

I(u) ≤ I(v) =
∫

Ω

W(∇v(x)) dx − 〈f , v〉. (1.1)

Here, W : R
m×d → R is a given energy density. If u is a minimizer of I then the

corresponding stress field σ is defined as

σ(x) := DW(∇u(x)), x ∈ Ω ,

where the notation DW(A)ik = ∂W(A)
∂Aik

, 1 ≤ i ≤ m, 1 ≤ k ≤ d, is used for the derivative
of W. The goal of this paper is to derive a global regularity result for the stress σ on
nonsmooth domains.

In the first part of this paper (Sect. 2) we study the convex case. Here, the main
assumption is that the energy density W is a C1 function and satisfies the following
convexity inequality for every A, B ∈ R

m×d:

(W(A) − W(B) − DW(B) : (A − B))
(
1 + |A|s + |B|s) ≥ c |DW(A) − DW(B)|r (1.2)

for some constants c > 0, s ≥ 0 and r > 1. In addition, we assume that W is of
p-growth for some p ∈ (1, ∞). Inequality (1.2) implies that W is convex but not neces-
sarily strictly convex. Examples for functions W with (1.2) include the energy densities
of linear elastic materials, a model of Hencky elasto-plasticity with linear hardening
and energy densities, which correspond to quasilinear elliptic systems of p-structure.

It is well known for linear and quasilinear elliptic equations that the global regular-
ity of weak solutions does not only depend on the smoothness of the right hand sides
but also on the smoothness of the boundary of Ω , we refer to [14,15,25,31,33,36]
and the references therein for the linear case. Global regularity results on nonsmooth
domains for weak solutions u of quasilinear elliptic systems of p-structure were derived
by Ebmeyer and Frehse [16,19] (mixed boundary conditions, polyhedral domains) and
Savaré [45] (pure Dirichlet or pure Neumann conditions on Lipschitz domains). The
essential assumptions in these papers imply the following convexity inequality for the
energy densities which define the boundary value problems [16,19,28,45]:

W(A) − W(B) − DW(B) : (A − B) ≥ c(κ + |A| + |B|)p−2 |A − B|2 (1.3)

for A, B ∈ R
m×d and some κ ∈ {0, 1}. The regularity results in [16,19,45] are derived

with a difference quotient technique based on (1.3). Due to the similarity between
(1.3) and our main assumption (1.2), it is possible to adapt the techniques in [16,19,45]
to our case. We combine the geometrical assumptions of the above mentioned refer-
ences and introduce the notion of admissible domains in Definition 2.3. Admissible
domains are Lipschitz domains which satisfy an additional geometrical assumption
near points with changing boundary conditions. We then prove the following regular-
ity result for the stress field σ on admissible domains (Theorem 2.2): For every δ > 0
we have

σ = DW(∇u) ∈ W
1
r −δ, pr

p+s (Ω). (1.4)
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Here, r and s are the exponents from (1.2). This result is proved with a difference
quotient technique on the basis of convexity inequality (1.2). A comparison of (1.4)
with well known results for linear elasticity (p = r = 2, s = 0) and for the p-Laplacian
indicates the optimality of (1.4) within the class of considered domains, see Sect. 2.5.

In the second part of the paper (Sect. 3) we discuss the regularity properties of the
stress fields of a special class of nonconvex variational problems. Nonconvex prob-
lems need not have minimizers and in that case it is reasonable to study the relaxed
variational problem

Find u ∈ g + V such that for every v ∈ g + V

IR(u) ≤ IR(v) =
∫

Ω

WR(∇v(x)) dx − 〈f , v〉. (1.5)

Here, WR is in general given by the quasiconvex envelope Wqc of the original energy
density W [1,13,42]. It follows from the relaxation theory in the calculus of variations
that if the original problem has a solution u then it is also a solution of the relaxed prob-
lem. Moreover, the stresses of both problems coincide: σ =DW(∇u)=DWqc(∇u). We
use this relation in combination with the additional strong assumption that the quasi-
convex envelope Wqc is equal to the convex envelope Wc of the original energy density
W in order to carry over regularity results for stresses of convex problems to special
nonconvex problems. Examples for such problems are scalar or vectorial two-well
potentials (compatible case) and a special case of the Ericksen–James energy density.

This paper and the examples herein are highly motivated by an article by Carstensen
and Müller, where local and global stress regularity results for smooth domains are
proved [9]. There, the main assumption is that the energy density W satisfies the
following monotonicity inequality

(
(DW(A) − DW(B)) : (A − B)

) (
1 + |A|s + |B|s) ≥ c |DW(A) − DW(B)|r (1.6)

with c > 0, s ≥ 0 and r > 1. Inequality (1.2) is motivated by (1.3) and (1.6) and is
a stronger assumption than (1.6). In Lemma 2.2 we describe sufficient conditions on
W for which the monotonicity inequality (1.6) and the convexity inequality (1.2) are
equivalent. The local results in [9] are proved with a difference quotient technique.
There, the main idea is to use double differences ṽ(x) = η2(x)(u(x+h)−2u(x)+u(x−h))

as test functions for the weak formulation and to apply the monotonicity inequal-
ity (1.6). The function η is a cut off function with supp η ⊂ Ω and thus the func-
tion ṽ is indeed an admissible test function for the weak formulation. In the proof
of our main result for Lipschitz domains (Theorem 2.2), we use single differences
v(x) = η2(u(x + h) − u(x)) as test functions and apply the convexity inequality (1.2).
Here, η is a cut off function with supp η ∩Ω �= ∅ and supp η ∩ (Rd\Ω) �= ∅, h ∈ R

d\{0}.
The vectors h may cross the boundary and thus the weak solution u has to be extended
to the exterior domain in such a way that v is still an admissible test function for the
weak formulation. Due to the assumed conditions on the geometry of ∂Ω , it is possible
to find suitable extensions. In general, double differences of these extended functions
are not admissible test functions.

The paper is organized as follows: After a description of the assumptions on the
energy density W and the geometry of the domain Ω , we formulate in Sect. 2 the main
result on the global regularity of stress fields of convex variational problems (Theorem
2.2). The proof is based on the difference quotient technique. These results are then
applied to convex examples from continuum mechanics. In Sect. 3 we formulate a
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regularity theorem for the nonconvex case and illustrate it with further examples.
The paper closes with an appendix where we give some technical proofs concerning
examples for admissible domains.

2 Regularity in the convex case

2.1 Notation

Let us first introduce some notation and general assumptions. For m × d-matrices
A, B ∈ R

m×d the inner product is defined by A : B = tr
(
A�B

) = tr
(
B�A

) =
∑m

i=1
∑d

k=1 AikBik and |A| = √
A : A is the corresponding Frobenius norm.

If not otherwise stated it is assumed that Ω ⊂ R
d, d ≥ 2, is a bounded domain

with Lipschitz boundary ∂Ω = ΓD ∪ΓN . ΓD and ΓN are open and disjoint and denote
the Dirichlet and Neumann boundary, respectively. Throughout the whole paper a
domain with Lipschitz boundary is a domain Ω ⊂ R

d with a boundary which can
locally be described as the graph of a Lipschitz continuous function (after a suitable
rotation). We refer to [25] for a precise definition.

For p ∈ (1, ∞) and s > 0 the spaces Ws,p(Ω) are the usual Sobolev–Slobodeckij
spaces, see, e.g. [3,25]. Furthermore,

V = {v ∈ W1,p(Ω) : v|ΓD = 0}. (2.1)

For the formulation of the boundary conditions we need the following trace space
and its dual for an open subset Γ ⊂ ∂Ω , p ∈ (1, ∞):

W1− 1
p ,p

(Γ ) =
{

u ∈ Lp(Γ ) : ∃û ∈ W1,p(Ω) such that û|Γ = u
}

, (2.2)

W̃
− 1

p′ ,p′
(Γ ) =

(
W1− 1

p ,p
(Γ )

)′
. (2.3)

Throughout the whole paper p′ is the conjugate exponent of p, 1
p + 1

p′ = 1. Further-
more, the dual pairing for elements u of a Banach space X and elements f of its dual
X ′ is denoted by 〈f , u〉 = 〈f , u〉X . Besides the usual Sobolev spaces we deal also with
Nikolskii spaces. Nikolskii spaces are very useful for proving regularity results with
a difference quotient technique since their norms are based on difference quotients.
For convenience we cite here the definition of Nikolskii spaces and an embedding
theorem.

Definition 2.1 (Nikolskii space) [3,39] Let s = m + δ, where m ≥ 0 is an integer and
0 < δ < 1. For 1 < p < ∞ the Nikolskii spaces are defined as

N s,p(Ω) := { u ∈ Lp(Ω) ; ‖u‖N s,p(Ω) < ∞ }
with

‖u‖p
N s,p(Ω) = ‖u‖p

Lp(Ω)
+

∑

|α|=m

sup
η>0

h∈R
d

0<|h|<η

∫

Ωη

|Dαu(x + h) − Dαu(x)|p
|h|δp dx (2.4)

and Ωη = {x ∈ Ω : dist(x, ∂Ω) > η}.
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Lemma 2.1 [3,39,49,50] Let s, p be as in Definition 2.1 and let Ω ⊂ R
d be a bounded

domain with Lipschitz boundary. The following embeddings are continuous for every
ε > 0:

N s+ε,p(Ω) ⊂ Ws,p(Ω) ⊂ N s,p(Ω).

An equivalent norm is generated if the supremum in (2.4) is replaced by a supremum
over a basis of R

d, [34,39].

2.2 The convex minimization problem

We study minimization problems where the energy density W : R
m×d → R, m, d ≥ 1,

has the following properties:

H1 W ∈ C1(Rm×d, R).
H2There exist constants p ∈ (1, ∞), c0, c1, c2, c21, c3 > 0 such that for every A ∈ R

m×d

c0 |A|p − c1 ≤ W(A) ≤ c2 |A|p + c21, (2.5)

|DW(A)| ≤ c3(1 + |A|p−1). (2.6)

H3 There exist constants c > 0, r > 1, s ≥ 0 such that we have for every A, B ∈ R
m×d

(
W(A) − W(B) − DW(B) : (A − B)

) (
1 + |A|s + |B|s) ≥ c |DW(A) − DW(B)|r .

(2.7)

Condition H3 implies that the energy density W is convex but not necessarily strictly
convex. Let us remark that H3 is also an essential assumption in [8], where the con-
vergence of adaptive FEM for convex problems is studied. The following lemma
describes sufficient conditions on W for which convexity inequality (2.7) and mono-
tonicity inequality (1.6) are equivalent.

Lemma 2.2 Let W ∈ C1(Rm×d, R) satisfy (2.5) with p > 1 and let monotonicity inequal-
ity (1.6) be valid for s ≥ 0 and r > 1. We denote by W∗ the conjugate function of W
and by ∂W∗(σ ) the subdifferential of W∗ at σ ∈ R

m×d.

1. If s = 0 then we have for every σ1, σ2 ∈ R
m×d and A ∈ ∂W∗(σ2) with the constant

c from monotonicity inequality (1.6)

W∗(σ1) − W∗(σ2) − A : (σ1 − σ2) ≥ cr−1 |σ1 − σ2|r . (2.8)

Furthermore, it holds for every A, B ∈ R
m×d with c from (1.6)

W(A) − W(B) − DW(B) : (A − B) ≥ c
r

|DW(A) − DW(B)|r . (2.9)

2. Let s �= 0 and assume in addition that (2.6) is satisfied. Then there exist constants
κ , δ > 0 such that we have for every σ1, σ2 ∈ R

m×d and Ai ∈ ∂W∗(σi)

W∗(σ1) − W∗(σ2) − A2 : (σ1 − σ2)

≥ κ |σ1 − σ2|r
1 + |A1|s + |A2|s + δ(|A1|ps + |A2|ps)

. (2.10)

Moreover, it holds for every A1, A2 ∈ R
m×d

W(A1) − W(A2) − DW(A2) : (A1 − A2)

≥ κ |DW(A1) − DW(A2)|r
1 + |A1|s + |A2|s + δ(|A1|ps + |A2|ps)

. (2.11)
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If c0 = c2 in (2.5) or if |A| ≤ c(1 + |DW(A)| 1
p−1 ) for some c > 0 and every

A ∈ R
m×d, then (2.10) and (2.11) hold with δ = 0.

Remark 1 The case r = 2, s = 0 is treated in [26, Exercise 1.7, p. 21].

Proof Inequalities (2.9) and (2.11) follow from (2.8) and (2.10) via the relation σ =
DW(A) ⇔ W∗(σ ) + W(A) = A : σ [41, Thm. 23.5]. For the proof of (2.8) and (2.10)
let σ1 �= σ2 ∈ R

m×d. We define f (t) = W∗(σ2 + t(σ1 − σ2)), t ∈ R and

f ′+(t) := lim
λ↘0

λ−1 (f (t + λ) − f (t)) .

Theorem 23.1 in [41] guarantees that f ′+(t) : R → R is well defined. Moreover, it
follows from [41, Thm. 23.4] that

f ′+(t) = sup{A : (σ1 − σ2); A ∈ ∂W∗(σ2 + t(σ1 − σ2))}. (2.12)

Since ∂W∗(σ ) is compact for every σ ∈ R
m×d, there exists for every t an element

A+(t) ∈ ∂W∗(σ2 + t(σ1 − σ2)) for which the supremum in (2.12) is attained. Tay-
lor’s expansion [41, Cor. 24.2.1] and monotonicity inequality (1.6) yield for every
A2 ∈ ∂W∗(σ2)

W∗(σ1) − W∗(σ2) − A2 : (σ1 − σ2) =
1∫

0

f ′+(t) − (A2 : (σ1 − σ2)) dt

=
1∫

0

1
t
(A+(t) − A2) : t(σ1 − σ2) dt

(1.6)≥ c

1∫

0

t−1(1+|A+(t)|s+|A2|s)−1 |t(σ1−σ2)|r dt.

(2.13)

This proves (2.8) if s = 0. Assume now that s > 0. The next task is to find an upper

bound for |A+(t)|. If the estimate |A| ≤ c(1 + |DW(A)| 1
p−1 ) is valid for every A, then

analogous arguments as subsequent to (2.17) here below imply (2.10) with δ = 0. If
this estimate does not hold, then direct calculations show [use (2.5) and the definition
of W∗] that for every σ ∈ R

m×d:

q−1(c2p)
−1

p−1 |σ |q − c21 ≤ W∗(σ ) ≤ c1 + q−1(c0p)
−1

p−1 |σ |q , (2.14)

where c0, c1, c2 are the constants from (2.5) and 1
q + 1

p = 1. The convexity of W∗ and

(2.14) imply for every σ ∈ R
m×d and A ∈ ∂W∗(σ ), A �= 0,

|A| = A : (|A|−1 A) ≤ W∗(σ + |A|−1 A) − W∗(σ )

(2.14)≤ d1 + d0

∣∣∣σ + |A|−1 A
∣∣∣
q − d2 |σ |q , (2.15)

where d0 = q−1(c0p)
−1

p−1 , d1 = c1 + c21 and d2 = q−1(c2p)
−1

p−1 . Furthermore, Taylor’s
expansion yields for σ , τ ∈ R

m×d

|σ + τ |q − |σ |q ≤ q

1∫

0

(|σ | + t |τ |)q−1 |τ | dt ≤ q(|σ | + |τ |)q−1 |τ | . (2.16)
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Combining inequalities (2.15) and (2.16) leads to

|A| ≤ d1 + (d0 − d2) |σ |q + d0q(|σ | + 1)q−1 (2.17)

for every A ∈ ∂W∗(σ ). Thus, it follows for t ∈ (0, 1) and σ(t) = σ2 + t(σ1 −σ2) together
with (2.6) that

|A+(t)| ≤ d1 + (d0 − d2) |σ(t)|q + d0q(|σ(t)| + 1)q−1

≤ d1 + (d0 − d2)(|σ1| + |σ2|)q + d0q(|σ1| + |σ2| + 1)q−1

(2.6)≤ d1 + c(d0 − d2)(1 + |A1|p + |A2|p) + c(1 + |A1| + |A2|). (2.18)

Here, c > 0 is a constant and A1 ∈ ∂W∗(σ1) and A2 ∈ ∂W∗(σ2) are arbitrary. Fur-
thermore, we have used that (|A| + |B|)α ≤ cα(|A|α + |B|α) for α > 0, see, e.g., [32].
Together with (2.13) we obtain finally

W∗(σ1) − W∗ (σ2) −A2 : (σ1 − σ2) ≥ κ |σ1 − σ2|r
1 + (d0 − d2)(|A1|ps + |A2|ps) + |A1|s + |A2|s

(2.19)

for every σ1, σ2 ∈ R
m×d and every Ai ∈ ∂W∗(σi) with a constant κ > 0 which is

independent of σi and Ai. This proves (2.10) with δ = d0 − d2 ≥ 0. If c0 = c2, then
δ = d0 − d2 = 0. ��

The existence of minimizers of problem (1.1) follows with standard arguments from
the direct method in the calculus of variations, see, e.g., [13].

Theorem 2.1 Let Ω ⊂ R
d be a bounded domain with Lipschitz boundary and assume

that the energy density W : R
m×d → R satisfies H1–H3 with p ∈ (1, ∞). Furthermore,

let g ∈ W1,p(Ω), f ∈ Lp′
(Ω) and h ∈ W̃

− 1
p′ ,p′

(ΓN). If ΓD = ∅, we require in addition
that f and h satisfy the solvability condition

∫
Ω

fv dx + 〈h, v〉
W1− 1

p ,p
(∂Ω)

= 0 for every

constant v ∈ R
m. Then there exists u ∈ g + V such that for every v ∈ g + V we have

I(u) ≤ I(v) =
∫

Ω

W(∇v(x)) dx −
∫

Ω

fv dx − 〈h, v〉
W1− 1

p ,p
(ΓN)

. (2.20)

Minimizers fulfill the weak Euler–Lagrange equations: For every v ∈ V we have
∫

Ω

DW(∇u(x)) : ∇v(x) dx =
∫

Ω

fv dx + 〈h, v〉
W1− 1

p ,p
(ΓN)

. (2.21)

The lower bound |DW(A) − DW(B)|r in H3 implies that the stress field σ is unique.
With obvious changes the theorem remains true if the energy I in (2.20) is defined
via the linearized strain tensor ε(v) = 1

2 (∇v + (∇v)�) for v : R
d → R

d. Now,
σ = DW(ε(v)).

2.3 Admissible domains

It is known from the regularity theory for weak solutions of linear elliptic equations
that the global regularity does not only depend on the smoothness of the data but also
on the geometry of the domain Ω . In this section we describe geometrical assumptions
on Ω which enable us to apply the difference quotient technique for the derivation of
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global regularity results for σ . The geometrical assumptions depend on the boundary
conditions and are a slight generalization of the assumptions in [16]. We first give
an abstract definition of admissible domains and describe two and three dimensional
examples afterwards.

Definition 2.2 (Cone) A set K ⊂ R
d is a cone with vertex in x0 ∈ R

d if there exists a
simply connected, open and nonempty set C ⊂ ∂B1(0) = { x ∈ R

d ; |x| = 1 } such that
K = { x ∈ R

d\{x0} ; (x − x0)/|x − x0| ∈ C }.
Definition 2.3 (Admissible domain) Let Ω ⊂ R

d be a bounded domain with ∂Ω =
ΓD ∪ ΓN where ΓD and ΓN are open (possibly empty) and disjoint.

case ΓD ∩ ΓN = ∅: Ω is an admissible domain if it has a Lipschitz boundary.
case ΓD ∩ ΓN �= ∅: Ω is an admissible domain if it has a Lipschitz boundary and if

in addition there exists a finite number of open balls BRj(xj) with radius Rj and
center xj ∈ ΓD ∩ ΓN and a finite number of cones Kj ⊂ R

d with vertex in 0 such
that ΓD ∩ΓN ⊂ ∪J

j=1BRj(xj). Furthermore, for every j there exist open domains

Ω
j
D, Ω

j
N ⊂ BRj(xj) with Ω

j
D ∩ Ω

j
N = ∅, BRj(xj)\Ω = Ω

j
D ∪ Ω

j
N and

ΓD ∩ BRj(xj) ⊂ ∂Ω
j
D, ΓN ∩ BRj(xj) ⊂ ∂Ω

j
N , (2.22)

((
BRj(xj)\Ω j

N

) + Kj

)
∩ Ω

j
N = ∅, (2.23)

(Ω
j
D + Kj) ∩

(
BRj(xj)\Ω j

D

)
= ∅, (2.24)

see also Fig. 1 (the index j is omitted). Here, the notation Ω+K = { y ∈ R
d ; y =

x + h, x ∈ Ω , h ∈ K } is used.

The cones Kj from Definition 2.3 play an important role in the proof of the stress
regularity. They determine the vectors h with respect to which we extend weak solu-
tions across the boundary and with respect to which we then define the difference
quotients. It follows from (2.22) to (2.24) that x + h ∈ (Ω ∩ BRj(xj)) ∪ Ω

j
D for every

x ∈ Ω ∩ BRj(xj) and h ∈ Kj. This means that translations with h ∈ Kj could go across
the Dirichlet boundary but not across the Neumann boundary.

Example 2.1 The domain in Fig. 2 is an admissible domain. In the neighborhood
of the point S, the domains ΩD, ΩN and the cone K can be chosen as follows:
ΩD = { x ∈ R

3 ; x3 > 0 }, ΩN = { x ∈ R
3 ; xi < 0, 1 ≤ i ≤ 3 } and K = {h∈ R

3;
h = ∑3

i=1 rivi, ri > 0}.

Fig. 1 Example for conditions
(2.22)–(2.24)
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Fig. 2 Example for an
admissible domain

The next lemma describes further examples of admissible domains for d = 2, 3. The
proof of this lemma is technical and is given in the appendix.

Lemma 2.3 1. Let Ω ⊂ R
2 be a Lipschitz-polygon. Ω is admissible if and only if the

interior opening angle at those points, where ΓD and ΓN intersect, is strictly less
than π .

2. [16] Let Ω ⊂ R
3 be a Lipschitz-polyhedron where at most three faces intersect

in the neighborhood of those points, where the type of the boundary conditions
changes. Assume in addition that the interior opening angle between the Dirichlet
and Neumann boundary is strictly less than π . Then Ω is an admissible domain.

2.4 Stress regularity in the convex case

We are now ready to formulate the main result on the global regularity of stress
fields of convex minimization problems with mixed boundary conditions on admis-
sible domains. In the following, we denote by n the exterior normal vector on ∂Ω .

Theorem 2.2 Let Ω ⊂ R
d be an admissible domain and assume that W : R

m×d → R

satisfies H1–H3 for r, p > 1, s ≥ 0 with rp
p+s > 1. Let Ω̂ ⊃⊃ Ω be an arbitrary

domain and assume further that f ∈ Lp′
(Ω), g ∈ W2,p(Ω̂), ∇g ∈ L∞(Ω̂) and H ∈

W1,p′
(Ω̂ , Rm×d) ∩ L∞(Ω̂). Let u ∈ W1,p(Ω) be a minimizer of problem (2.20) with

u|ΓD = g|ΓD and h = H|ΓNn on ΓN.
If ∇u ∈ Lα(Ω) for some α ≥ p and if σ = DW(∇u) ∈ Lγ (Ω) with γ = max{p′, αr

α+s },
then σ has the following global regularity for every δ > 0:

σ = DW(∇u) ∈ N 1
r ,τ (Ω) ⊂ W

1
r −δ,τ (Ω). (2.25)

Here, τ = αr
α+s ≥ pr

p+s > 1.

Remark 2 The theorem remains true if ∇u is replaced by ε(u) = 1
2 (∇u + (∇u)�) in

the minimization problem (2.20).
In [9], Carstensen and Müller proved the local regularity result σ ∈ W1,τ

loc (Ω) with
τ = pr

p+s on the basis of monotonicity inequality (1.6). For scalar problems (m = 1)

with p = 2, r = 2, s = 0, they obtained σ ∈ W1,2(Ω) globally under the assumptions
that Ω is a C2,1-domain and that W depends on |∇u|, only. It is an interesting open
problem whether the local result from [9] can be extended to domains with smooth
boundaries for arbitrary energy densities satisfying (1.6) or (1.2).
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A comparison of the result in Theorem 2.2 with well known results for linear
elasticity and for systems of p-structure indicates that (2.25) is optimal within the class
of admissible domains (see Sect. 2.5).

Proof We apply a difference quotient technique to deduce estimates for the stress
fields in Nikolskii norms. For the derivation of these estimates the domain Ω is covered
by a finite number of balls and the estimates are proved for each of these balls sepa-
rately. The estimates are obtained by inserting suitable differences of weak solutions
and shifted weak solutions into the weak formulation and by applying the convexity
inequality. The main difficulty is that weak solutions have to be extended across the
boundary of Ω in such a way that differences of weak solutions and shifted weak solu-
tions are admissible test functions for the weak formulation. Due to the assumptions
on the domain Ω it is possible to define such extensions. We partially take up the ideas
from [17] in the proof.

Let Ω ⊂ R
d be an admissible domain. In particular, Ω is a Lipschitz domain and

satisfies therefore the uniform interior and exterior cone condition [25]. In view of
Definition 2.3 it follows that there exists a finite number of balls BRj(xj) and cones Kj

with vertices in 0 such that Ω ⊂ ∪J
j=1BRj(xj) and each of the pairs (BRj(xj), Kj) satisfies

one of the following four cases:

1. BRj(xj) ⊂ Ω .

2.
(

BRj(xj) ∩ ∂Ω
)

⊂ ΓD and ((x+Kj)∩BRj(xj))∩Ω = ∅ for every x ∈ BRj(xj)∩ΓD.

3.
(

BRj(xj) ∩ ∂Ω
)

⊂ ΓN and ((x + Kj) ∩ BRj(xj)) ⊂ Ω for every x ∈ BRj(xj) ∩ Ω .

4. xj ∈ ΓD ∩ΓN and the pair (BRj(xj), Kj) satisfies (2.22)–(2.24) of Definition 2.3 with

suitable domains Ω
j
D and Ω

j
N .

Note that there exists θ > 0 such that the balls BRj−θ (xj) still cover Ω . We prove now
that

σ
∣∣
Ω∩BRj−θ (xj)

∈ N 1
r ,τ (Ω ∩ BRj−θ (xj))

for every j and consider the fourth case in detail. The remaining cases can be treated
similarly. In order to simplify the notation we omit the index j in the following.

Let BR be a ball, K a cone with vertex in 0 and ΩD, ΩN ⊂ BR domains such
that (2.22)–(2.24) of Definition 2.3 hold. Let u ∈ W1,p(Ω) be a weak solution of
minimization problem (2.20) with f ∈ Lp′

(Ω), g ∈ W2,p(Ω̂), ∇g ∈ L∞(Ω̂) and H ∈
W1,p′

(Ω̂ , Rm×d) ∩ L∞(Ω̂). Note that the Neumann term in (2.20) can be rewritten as

〈h, v〉
W1− 1

p ,p
(ΓN)

= 〈Hn, v〉
W1− 1

p ,p
(ΓN)

=
∫

Ω

v div H dx +
∫

Ω

H : ∇v dx (2.26)

for v ∈ V. Let Ω0 = int
(
Ω ∩ BR ∪ ΩD

)
= BR\ΩN and assume that Ω0 ⊂ Ω̂ , see

Fig. 1. We extend u to ΩD as follows:

ũ(x) =
{

u(x), x ∈ Ω ,
g(x), x ∈ Ω0\Ω .

(2.27)
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Since u|ΓD = g|ΓD it follows that ũ ∈ W1,p(Ω ∪ Ω0). Choose η ∈ C∞
0 (BR) with η = 1

on BR−θ and define for x ∈ Ω and h ∈ K with |h| < h0 = 1
2 dist(supp η, ∂BR):

v(x) = η2(x)
(
ũ(x + h) − g(x + h) − (ũ(x) − g(x))

)

= η2(x)�h(ũ(x) − g(x)). (2.28)

Here, we use the notation �hw(x) = w(x+h)−w(x) for h ∈ R
d. Note that v ∈ W1,p

0 (Ω)

and therefore v is an admissible test function for the weak formulation (2.21). Assume
that ∇u ∈ Lα(Ω) for some α ≥ p and let τ = αr

α+s . It follows from convexity inequality
(2.7) with A = ∇ũ(x + h), B = ∇ũ(x) and Hölder’s inequality with r

τ
≥ 1 that

∫

Ω

η
4τ
r

∣
∣�hDW(∇ũ)

∣
∣τ dx

(2.7)≤ c
∫

Ω

η
4τ
r

(
1 + ∣

∣∇ũ
∣
∣s + ∣

∣∇ũ(x + h)
∣
∣s) τ

r

× (�hW(∇ũ) − DW(∇ũ) : �h∇ũ
) τ

r dx

≤ c

⎛

⎝
∫

Ω

η
2τ

r−τ
(
1 + ∣∣∇ũ

∣∣s + ∣∣∇ũ(x + h)
∣∣s) τ

r−τ dx

⎞

⎠

r−τ
r

×
⎛

⎝
∫

Ω

η2 (�hW(∇ũ) − DW(∇ũ) : �h∇ũ
)

dx

⎞

⎠

τ
r

= cI1I2. (2.29)

It is sτ(r− τ)−1 = α and since ∇u ∈ Lα(Ω) and ∇g ∈ L∞(Ω̂), the factor I1 is bounded
independently of h ∈ K. Therefore, there exists a constant c > 0 such that for every
h ∈ K with |h| < h0

c
∥∥∥η

4
r
∣∣�hDW(∇ũ)

∣∣
∥∥∥

r

Lτ (Ω)
≤

∫

Ω

η2�hW(∇ũ)dx −
∫

Ω

η2DW(∇ũ) :�h∇ũ dx

= I21 + I22. (2.30)

We now prove that |I21| + |I22| ≤ c |h| for a constant c > 0 which is independent of
h ∈ K. Due to the product rule for differences, �h(f (x)g(x)) = f (x)�hg(x) +
g(x + h)�hf (x), we obtain for I21

I21 =
∫

Ω

�h

(
η2W(∇ũ)

)
dx −

∫

Ω

W(∇ũ(x + h))�hη2 dx.

= I211 + I212. (2.31)
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Note that [supp η ∪ supp η(· + h)] ⊂ BR for h ∈ K with |h| < h0 and therefore we get
taking into account the definition of ũ

I211 =
∫

Ω∩BR

η2(x + h)W(∇ũ(x + h)) dx −
∫

Ω

η2W(∇ũ) dx

=
∫

(Ω+h)∩BR

η2W(∇ũ) dx −
∫

Ω∩BR

η2W(∇ũ) dx

=
∫

((Ω+h)\Ω)∩BR

η2W(∇g) dx −
∫

((Ω\(Ω+h))∩BR

η2W(∇u) dx. (2.32)

From ∇g ∈ L∞(Ω̂) and assumption H2, inequality (2.5), we obtain

I211 ≤ |((Ω + h)\Ω) ∩ BR|
∥∥∥η2W(∇g)

∥∥∥
L∞(BR)

−
∫

(Ω\(Ω+h))∩BR

η2 (
c0 |∇u|p − c1

)
dx

≤ c |h|(‖η2W(∇g)‖L∞(BR)+ c1) − c0

∫

(Ω\(Ω+h))∩BR

η2 |∇u|p dx (2.33)

and the constant c is independent of h ∈ K. Since η ∈ C∞
0 (BR), there exists c(η) > 0

such that

∣∣∣η2(x + h) − η2(x)

∣∣∣ ≤ c(η) |h|

for every h ∈ R
d and x ∈ BR. Thus the term I212 can be estimated as follows:

|I212| ≤ c(η) |h|
∫

(Ω∪ΩD)∩BR

∣∣W(∇ũ)
∣∣ dx ≤ c |h| . (2.34)

We obtain finally from (2.33) and (2.34) that

I21 = I211 + I212 ≤ c |h| − c0

∫

(Ω\(Ω+h))∩BR

η2 |∇u|p dx, (2.35)

where c is independent of h ∈ K and c0 is the constant from (2.5). Applying the
product rule to I22 and taking into account (2.26) and that v = η2�h(ũ − g) is an
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admissible test function for the weak formulation (2.21) we obtain

I22 = −
∫

Ω

η2DW(∇ũ) : �h∇ũ dx

= −
∫

Ω

DW(∇ũ) : ∇
(
η2�h(ũ − g)

)
dx −

∫

Ω

DW(∇ũ) : ∇(η2�hg)dx

+
∫

Ω

DW(∇ũ) : (�hũ ⊗ ∇η2) dx

= −
∫

Ω

η2(f + div H)�h(ũ − g) dx −
∫

Ω

H : ∇(η2�hũ) dx

+
∫

Ω

H : ∇(η2�hg) dx

+
∫

Ω

DW(∇ũ) : (�hũ ⊗ ∇η2) dx −
∫

Ω

DW(∇ũ) : ∇(η2�hg) dx

= I221 + . . . + I225. (2.36)

Here, (�hũ ⊗ ∇η2)ij = (∂iη)(�hũj) and ũj is the j-th component of ũ. Lemma 7.23 in
[23] implies for ũ, g ∈ W1,p(Ω ∪ Ω0) and h ∈ K that

∥∥η�h(ũ − g)
∥∥

Lp((Ω∪Ω0)∩BR)
≤ |h| ‖u − g‖Lp(Ω∩BR) ‖η‖L∞(BR) .

Therefore, there exists a constant c > 0 which is independent of h ∈ K such that

|I221| + |I224| ≤ ‖f + div H‖Lp′
(Ω)

∥∥η�h(ũ − g)
∥∥

Lp((Ω∪Ω0)∩BR)

+‖DW(∇u)‖Lp′
(Ω)

c(η)
∥∥η�hũ

∥∥
Lp((Ω∪Ω0)∩BR)

≤ c |h| . (2.37)

Since g ∈ W2,p(Ω̂), similar arguments show that

|I223| + |I225| ≤ c |h| . (2.38)

In order to estimate I222 we apply again the product rules for differences and deriva-
tives:

I222 = −
∫

Ω

H : ∇(η2�hũ) dx

= −
∫

Ω

H :
(
�hũ ⊗ ∇η2

)
dx −

∫

Ω

�h

(
η2H : ∇ũ

)
dx

+
∫

Ω

(�h(η2H)) : ∇ũ(x + h) dx. (2.39)

The first term can be treated similarly to I224, the third term similarly to I221. The
second term can be transformed as follows [compare also (2.32)]:

∫

Ω

�h(η2H :∇ũ)dx=
∫

(Ω+h\Ω)∩BR

η2H :∇g dx −
∫

(Ω\(Ω+h))∩BR

η2H :∇u dx. (2.40)
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Since ∇g, H ∈ L∞(Ω̂ , Rm×d), we obtain
∣
∣
∣
∣

∫

(Ω+h\Ω)∩BR

η2H : ∇g dx

∣
∣
∣
∣ ≤ ∣

∣((Ω + h)\Ω) ∩ BR
∣
∣
∥
∥
∥η2H :∇g

∥
∥
∥

L∞(Ω̂)
≤ c |h| (2.41)

and c is independent of h ∈ K. By Hölder’s and Young’s inequality we get for the
second term in (2.40) for every ε > 0

∣
∣
∣
∣

∫

(Ω\(Ω+h))∩BR

(
ε−1η

2
p′ H

)
:
(
εη

2
p ∇u

)
dx

∣
∣
∣
∣

≤
∫

(Ω\(Ω+h))∩BR

1
p′

∣
∣
∣
∣ε

−1η
2
p′ H

∣
∣
∣
∣

p′

dx +
∫

(Ω\(Ω+h))∩BR

εp

p η2 |∇u|p dx (2.42)

and the first term is bounded by c |h|, where c depends on ε > 0. Estimates (2.39)–
(2.42) imply that

|I222| ≤ c |h| + εp

p

∫

(Ω\Ω+h)∩BR

η2 |∇u|p dx. (2.43)

Collecting the above estimates [inequalities (2.35), (2.37), (2.38), (2.43)] we obtain
finally that there exists a constant c > 0 such that it holds for every h ∈ K, |h| < h0

∥∥∥η
4
r
∣∣�hDW(∇ũ)

∣∣
∥∥∥

r

Lτ (Ω)
≤ I21 + I221 + I222 + I223 + I224 + I225

≤ c |h| +
(

p−1εp − c0

) ∫

(Ω\(Ω+h))∩BR

η2 |∇u|p dx.

Choosing 0 < ε < (pc0)
1
p and taking into account that η

∣∣
BR−θ

= 1 we get

‖�hDW(∇u)‖r
Lτ (Ω∩BR−θ ) ≤ c |h|

for every h ∈ K, |h| < h0, with a constant c which is independent of h. This implies
that σ = DW(∇u) ∈ N 1

r ,τ (Ω ∩ BR−θ ) ⊂ W
1
r −δ,τ (Ω ∩ BR−θ ) for every δ > 0, see the

definition of the Nikolskii norm and Lemma 2.1. This finishes the proof. ��
2.5 Convex examples

As examples for energy densities which satisfy the convexity inequality (2.7) we con-
sider the energy densities of linear elastic materials, of a variational functional from
the deformation theory of plasticity and the energy densities describing equations or
systems of p-structure. A typical example here is the p-Laplace equation.

2.5.1 Linear elasticity

The energy density for linear elastic materials with elasticity tensor C ∈ R
(d×d)×(d×d),

symmetric and positive definite, is given by W(ε) = 1
2 Cε : ε for ε ∈ R

d×d
sym . Obviously,

it holds due to the positive definiteness of C that

W(ε1) − W(ε2) − DW(ε2) : (ε1 − ε2) ≥ c |Cε1 − Cε2|2
and thus p = 2, s = 0, r = 2 in (2.7).
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Corollary 2.1 Let Ω ⊂ R
d be an admissible domain and let u be a solution of the

minimization problem for linear elasticity. It follows for every δ > 0 that σ = Cε(u) ∈
N 1

2 ,2(Ω) ⊂ W
1
2 −δ,2(Ω).

This result is well known and optimal for boundary value problems with pure Dirichlet
or pure Neumann conditions [15]. For polyhedral domains Ω , the behavior of dis-
placement and stress fields near corners and edges can be characterized completely
by asymptotic expansions [15,31,35]. Let Ω ⊂ R

2 be a polygon with mixed boundary
conditions and suppose that C describes an isotropic material. It is shown in [38,43] by
a careful study of the asymptotic expansions that σ ∈ W

1
2 ,2(Ω) if Ω is an admissible

domain, i.e., if �(ΓD, ΓN) < π at every point S ∈ ΓD ∩ ΓN . Moreover, if S ∈ ΓD ∩ ΓN
with �(ΓD, ΓN) > π , then weak solutions exist with σ ∈ Wα−δ,2(Ω) for an appropriate
0 < α < 1

2 and every δ > 0 but not for δ = 0. The parameter α depends on the material
parameters and the opening angle at S and α → 1

2 as �(ΓD, ΓN) → π . This example
shows the optimality of Corollary 2.1 for admissible domains.

2.5.2 Hencky elasto-plasticity with linear hardening

For ε ∈ R
d×d
sym we define as in [22]

W(ε) = 1
2
κ0(tr ε)2 + g0(|εD|), (2.44)

where κ0 > 0 is a constant and εD = ε− 1
d tr εI is the deviatoric part of ε. It is assumed

that g0 ∈ C1(R) ∩ C2(R\{t0}) for some t0 > 0 and the left and right limits of g′′
0 exist at

t0. The quantity g′
0(t0) may be interpreted in this context as yield stress. Furthermore,

we suppose that there exist constants κ1, κ2 > 0 such that for every t ∈ R

κ1 ≤ min
{

g′′
0(t), t−1g′

0(t)
}

≤ max
{

g′′
0(t), t−1g′

0(t)
}

≤ κ2. (2.45)

It follows with Taylor’s expansion that c0t2 − c1 ≤ g0(t) ≤ c2(1 + t2) for every t and
some constants ci > 0. The variational problem related to energy density (2.44) is

Find u ∈ W1,2(Ω) with u|ΓD = g|ΓD such that for every v ∈ W1,2(Ω) with v|ΓD = g|ΓD

we have I(u) ≤ I(v), where

I(v) =
∫

Ω

1
2
κ0(tr ε(v))2 + g0(|εD(v)|) dx −

∫

Ω

fv dx − 〈h, v〉
W

1
2 ,2

(ΓN)
. (2.46)

Functionals of this type describe in the framework of deformation theory of plasticity
the behavior of materials with linear hardening. The local regularity of stress fields
corresponding to minimizers of (2.46) is studied in [22,46].

Lemma 2.4 Energy density W from (2.44) satisfies the convexity inequality (2.7) on
R

d×d
sym with s = 0 and r = 2.

Proof Let ε1, ε2 ∈ R
d×d
sym , ε1 �= ε2 and θ(s) = ε2 + s(ε1 − ε2), s ∈ [0, 1]. Note that there

are at most two elements si ∈ [0, 1] with |θ(si)| = t0. Therefore, we may apply Taylor’s
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expansion at least piecewise on [0, 1] and obtain

W(ε1) − W(ε2) − DW(ε2) : (ε1 − ε2)

= κ0

2
|tr(ε1 − ε2)|2 +

1∫

0

(1 − s)
g′′

0

( ∣
∣θD(s)

∣
∣ )

∣∣θD(s)
∣∣2

(
θD(s) : (ε1 − ε2)

D
)2

ds

+
1∫

0

(1 − s)
g′

0

( ∣
∣θD(s)

∣
∣ )

∣
∣θD(s)

∣
∣

(∣
∣
∣εD

1 − εD
2

∣
∣
∣
2 − (θD(s) : (εD

1 − εD
2 ))2

∣
∣θD(s)

∣
∣2

)

ds

(2.45)≥ κ0

2
|tr(ε1 − ε2)|2 +

1∫

0

(1 − s)κ1(θ
D(s) :(εD

1 − εD
2 ))2∣∣θD(s)

∣
∣−2ds

+
1∫

0

(1 − s)κ1

(∣
∣
∣εD

1 − εD
2

∣
∣
∣
2 − (θD(s) : (εD

1 − εD
2 ))2∣∣θD(s)

∣
∣−2

)
ds

= 1
2

(
κ0 |tr(ε1 − ε2)|2 + κ1

∣∣∣εD
1 − εD

2

∣∣∣
2
)

. (2.47)

In a similar way it follows again by (2.45) that there exists a constant c > 0 with

|DW(ε1) − DW(ε2)| ≤
1∫

0

∣∣∣D2W(θ(s))(ε1 − ε2)

∣∣∣ ds

≤ c
(
|tr(ε1 − ε2)| +

∣∣∣εD
1 − εD

2

∣∣∣
)

. (2.48)

Combining (2.47) and (2.48) finishes the proof. ��

Corollary 2.2 Let Ω ⊂ R
d be an admissible domain and let u ∈ W1,2(Ω) be a mini-

mizer of (2.46) with data f , g, h = Hn as in Theorem 2.2 (p = 2). Then σ = DW(ε(u)) ∈
N 1

2 ,2(Ω) ∩ W
1
2 −δ,2(Ω) for every δ > 0.

Remark 3 The function

Wη(ε) = 1
2 Cε : ε − (4µ(1 + η))−1 max

{
0,

∣∣(Cε)D∣∣ − σy
}2

from [4,48] fits into this framework. Here, C is the elasticity tensor for isotropic mate-
rials, µ a Lamé constant, σy > 0 the yield stress and η > 0 a hardening parameter. It
is shown in [48, Chap. III.1.3] that the stresses ση converge for η → 0 to a stress field
σH which corresponds to the elastic, perfect-plastic Hencky model. One could now
try to carry over the regularity results for ση from Corollary 2.2 to σH . By a different
approximation of the Hencky stress σH , namely the Norton/Hoff or Ramberg/Osgood
approximation, it is shown that σH ∈ W

1
2 −δ,2(Ω) ∩ W1,2

loc(Ω) for every δ > 0 on admis-
sible domains, see [6] for the local and [29] for the global result. This correlates well
with Corollary 2.2. Interestingly, a global result for σH on smooth domains is not
proved yet, see the discussion in [47].
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2.5.3 Systems of p-structure

Let p ∈ (1, ∞) and assume that W : R
m×d → R satisfies H1, H2 and in addition H4

here below:

H4 W ∈ C2(Rm×d\{0}, R) and there exist constants c1, c2 > 0, κ ∈ {0, 1} such that we
have for every A, B ∈ R

m×d, A �= 0,

∣
∣
∣D2W(A)

∣
∣
∣ ≤ c1(κ + |A|)p−2, (2.49)

D2W(A)[B, B] =
m∑

k,j=1

d∑

r,s=1

∂2W(A)

∂Aks∂Ajr
BksBjr ≥ c2(κ + |A|)p−2 |B|2 . (2.50)

Here, the notation(D2W(A))ksjr = ∂2W(A)
∂Aks∂Ajr

with D2W(A) ∈ R
(m×d)×(m×d) is used.

Energy densities of this type lead to quasilinear elliptic systems of p-structure. Note
that the function W(A) = 1

p |A|p, A ∈ R
d, which corresponds to the p-Laplace equa-

tion, satisfies H4 with κ = 0.

Lemma 2.5 Assume that W satisfies H1, H2 and H4 for some p ∈ (1, ∞) and let
q = p′ = p

p−1 . If p ≥ 2, then convexity inequality (2.7) holds with r = 2 and s = p − 2.
If p ∈ (1, 2], then the convexity inequality holds with r = p′ = q and s = 0.

Proof Let p ∈ (1, ∞) be arbitrary. Due to [2,24] there exist for every β > −1 and
every κ ≥ 0 constants c1, c2 > 0 such that

c1(κ + |A| + |B|)β ≤
1∫

0

(κ + |B + t(A − B)|)β dt ≤ c2(κ + |A| + |B|)β (2.51)

for every A, B ∈ R
m×d with |A|+|B| > 0 if κ = 0. Thus it follows by Taylor’s expansion

together with (2.50) that

W(A) − W(B) − DW(B) : (A − B)

=
1∫

0

(1 − t)D2W(B + t(A − B))[A − B, A − B] dt

≥ c(κ + |A| + |B|)p−2 |A − B|2 . (2.52)

Furthermore, Taylor’s expansion, inequality (2.51) and assumption (2.49) imply

|DW(A) − DW(B)| ≤
1∫

0

|D2W(B + t(A − B))| dt |A − B|

≤ c(κ + |A| + |B|)p−2 |A − B| . (2.53)

Combining (2.52) and (2.53) finishes the proof for p ≥ 2. If p ≤ 2, it holds for
q = p′ ≥ 2:

|A − B|q ≤ (κ + |A| + |B|)q−2 |A − B|2 (2.54)
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and thus, together with (2.53),

|DW(A) − DW(B)|q ≤ (κ + |A| + |B|)q(p−2)+q−2 |A − B|2 . (2.55)

This finishes the proof for p ≤ 2 since q(p − 2) + q − 2 = p − 2. ��
The following global regularity results are available for weak solutions u ∈ W1,p(Ω)

of problem (2.20) on admissible domains with energy densities W satisfying H1, H2
and H4 [17,18,45]:

u ∈ W1+ 1
p −δ,p

(Ω) if p ∈ [2, ∞),

u ∈ W
3
2 −δ, 2dp

2d−2+p (Ω) if p ∈ (1, 2]
for every δ > 0. In both cases, the Sobolev embedding theorems yield ∇u ∈ L

dp
d−1 −δ

(Ω).

From H2 and lemma 2.5 we conclude that σ ∈ L
dq

d−1 −δ
(Ω) for q = p′ and for every

δ > 0.

Corollary 2.3 Let p ∈ (1, ∞), q = p′ = p
p−1 and let u ∈ W1,p(Ω) be a minimizer

of (2.20) with an energy density satisfying H1, H2 and H4 on an admissible domain
Ω ⊂ R

d. Let the data f , g, h = Hn be given according to Theorem 2.2 with α = dp
d−1 .

Then it holds for the stress σ = DW(∇u) and every δ > 0

σ = DW(∇u) ∈ W
1
2 −δ, 2dq

2d−2+q (Ω) if p ≥ 2, (2.56)

σ = DW(∇u) ∈ N 1
q ,q

(Ω) ⊂ W
1
q −δ,q

(Ω) if p ∈ (1, 2]. (2.57)

Let Ω ⊂ R
2 be an admissible polygon and assume that the stress σ = |∇u|p−2 ∇u

corresponds to a weak solution of the p-Laplace equation

div |∇u|p−2 ∇u + f = 0

with p ∈ (1, ∞), q = p′. Assume furthermore that σ is of the form σ = rγ σ0(ϕ),
where (r, ϕ) are polar coordinates with respect to a corner point S and σ0 �≡ 0. By
[44, Lemma 2.3.1] we obtain that σ is an element of the spaces in Corollary 2.3 if and
only if γ ≥ −1/q. In [5] a weak solution u of the p-Laplace equation is constructed
for a domain with a crack and vanishing Neumann conditions on both crack faces,
where γ = −1/q. This indicates the optimality of Theorem 2.2 also for nonlinear
elliptic equations of p-structure. We finally remark that global regularity results for u
on smooth domains are derived, e.g., in [20,37,40].

3 Regularity for stresses of nonconvex variational problems

Nonconvex variational problems may fail to have minimizers and a relaxed prob-
lem is studied instead. This relaxed problem is in general defined through an energy
density which is the quasi-convex envelope of the nonconvex energy density. Weak
cluster points of infimizing sequences of the nonconvex problem are minimizers of
the relaxed problem [2,13,21]. Moreover, if the nonconvex problem has a minimizer,
then this minimizer is also a minimizer of the relaxed problem and the corresponding
stress fields coincide under suitable assumptions on the energy densities. This relation
is the key for carrying over regularity results from the convex case to minimizers of
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nonconvex problems. After a short description of these relations we formulate the
regularity theorem and illustrate it with some examples.

3.1 Regularity for stress fields of nonconvex variational problems

Let W ∈ C(Rm×d, R) be an energy density satisfying growth condition (2.5) for some
p > 1 and let I be the energy functional related to W, see (2.20). By Wqc and Wc we
denote the quasi-convex and convex envelope of W, respectively, i.e., for A ∈ R

m×d

Wqc(A) = sup{g(A) : g ≤ W and g is quasi-convex}
and similar for Wc. For a definition of quasi-convexity we refer to Dacorogna’s book
[13]. Furthermore, we define for v ∈ W1,p(Ω)

Iqc(v) =
∫

Ω

Wqc(∇v) dx −
∫

Ω

fv dx − 〈h, v〉
W1− 1

p ,p
(ΓN)

,

where f , h are given as in Theorem 2.1; Ic is analogously defined. The following
well known theorem describes the relation between minimizers of Iqc and infimizing
sequences of I. For convenience we reformulate it here for our situation.

Theorem 3.1 [2,13,21] Let W ∈ C(Rm×d, R) satisfy (2.5) for p > 1, g ∈ W1,p(Ω),

f ∈ Lp′
(Ω), h ∈ W

− 1
p′ ,p′

(ΓN) and assume that f , h satisfy the solvability condition if
ΓD = ∅. Then the minimization problem for Iqc on g+V, where V is the space defined in
(2.1), has a minimizer uqc ∈ g + V and it holds infv∈g+V I(v) = Iqc(uqc). Furthermore,
every weak cluster point of infimizing sequences of I is a minimizer of Iqc.

Due to Theorem 3.1 we have

Lemma 3.1 Let the assumptions of Theorem 3.1 be satisfied and suppose that u ∈ g+V
is a minimizer of I. Then W(∇u) = Wqc(∇u) almost everywhere in Ω . Furthermore, let
M = { A ∈ R

m×d ; W(A) = Wqc(A) } and assume that W and Wqc are differentiable
on an open neighborhood of M. Then DW(∇u) = DWqc(∇u) a.e. in Ω .

Proof The first assertion of Lemma 3.1 follows from the definition of Wqc and The-
orem 3.1. The second assertion can be shown as follows: Let A ∈ M, H ∈ R

m×d be
arbitrary. Then

DW(A) : H ≥ lim
t↘0

t−1(Wqc(A + tH) − Wqc(A)) = DWqc(A) : H,

DW(A) : H = lim
t↗0

t−1(W(A + tH) − W(A)) ≤ DWqc(A) : H.

Since H is arbitrary this implies DW(A) = DWqc(A). ��
Lemma 3.1 and Theorem 2.2 imply the following regularity theorem for stress fields
in the nonconvex case:

Theorem 3.2 Let Ω ⊂ R
d be an admissible domain and let W ∈ C(Rm×d, R) satisfy

(2.5) for p > 1. Moreover, let W be differentiable on a neighborhood of M with M
as in Lemma 3.1. Assume that the data f , g, H is given as in regularity theorem 2.2.
Furthermore, we suppose that the convex envelope and the quasi-convex envelope of
W coincide, Wqc = Wc, and that Wc satisfies H1, H2 and convexity inequality H3 with
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s ≥ 0, r > 1 and τ = rp
p+s > 1. Let u be a minimizer of the minimization problem for I

and assume that DWc(∇u) ∈ Lγ (Ω) with γ = max{p′, τ }. Then DW(∇u) = DWc(∇u)

and for every δ > 0

σ = DW(∇u) ∈ N 1
r ,τ (Ω) ⊂ W

1
r −δ,τ (Ω).

The assumption Wqc = Wc is automatically satisfied if m = 1 or d = 1. For
min{m, d} ≥ 2, only a few examples with Wqc = Wc are known and the equality
does not hold in general. Thus, the assumption Wqc = Wc is rather restrictive in the
vectorial case. Note that Theorem 3.2 holds also if ∇u is replaced with ε(u) in the
definition of I.

3.2 Nonconvex examples

Typical examples for nonconvex energy densities with Wqc = Wc are the scalar and
vectorial two-well potentials (compatible case). It is shown in [9] that the convexified
energy densities satisfy the monotonicity inequality. We prove here that convexity
inequality (2.7) holds as well and, as a consequence, regularity Theorem 3.2 is appli-
cable. Finally, we discuss a special case of the Ericksen–James energy density.

3.2.1 Scalar two-well potential, m = 1

The energy density of the scalar two-well potential reads for A ∈ R
d and fixed

A1 �= A2 ∈ R
d

W(A) = |A − A1|2 |A − A2|2 .

Since m = 1, the convex and the quasi-convex envelopes Wc and Wqc coincide and

Wc(A)=max
{ |A − F|2 − |G|2 , 0

}2 + 4
( |G|2 |A − F|2 − (G · (A − F))2 )

,

where G = (A2 − A1)/2 and F = (A1 + A2)/2, see [10]. Furthermore, it is shown in
[10] that Wc satisfies monotonicity inequality (1.6) with p = 4 and r = s = 2.

Lemma 3.2 There exists a constant c > 0 such that it holds for every A ∈ R
d

|A| ≤ c
(

1 + ∣∣DWc(A)
∣∣

1
3

)
. (3.1)

Therefore, Wc satisfies convexity inequality (2.7) with p = 4 and r = s = 2 due to
Lemma 2.2.

Proof For A �= F it holds
∣∣DWc(A)

∣∣ = sup
H∈Rd\{0}

DWc(A) : H |H|−1 ≥ DWc(A) : (A − F) |A − F|−1

≥ 4 max
{
|A − F|2 − |G|2 , 0

}
|A − F| .

Assume now that |A − F| ≥ |G|. Young’s inequality yields for every δ > 0
∣∣DWc(A)

∣∣ ≥ 4 |A − F|3 − δ−14 |G|2 δ |A − F|

≥
(

4 − δ3

3

)
|A − F|3 − 16

3
|G|3 δ− 3

2 .
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For δ0 = 2
2
3 it holds c1 := 4 − δ3

0
3 > 0. Moreover, it follows for |A − F| ≤ |G| that

(

4 − δ3
0

3

)

|A − F|3 − 16
3

δ
− 3

2
0 |G|3 ≤ 0.

Therefore, we have
∣
∣DWc(A)

∣
∣ ≥ c1 |A − F|3 − c1 for every A ∈ R

d. With |A − F| ≥
|A| − |F| and applying once more Young’s inequality we obtain finally (3.1). ��
Corollary 3.1 Let Ω ⊂ R

d be an admissible domain and let u be a minimizer of I or

Ic. Then it follows for the corresponding stress field for every δ > 0: σ ∈ N 1
2 , 4

3 (Ω) ⊂
W

1
2 −δ, 4

3 (Ω).

3.2.2 A vectorial two-well potential, m = d

For ε1 �= ε2 ∈ R
d×d
sym we consider the following energy densities

Wi(ε) = 1
2

C(ε − εi) : (ε − εi) + W0
i , ε ∈ R

d×d
sym , i = 1, 2, (3.2)

where C is the elasticity tensor for linear elastic materials and W0
i ∈ R. Let

W(ε) = min{W1(ε), W2(ε)}, ε ∈ R
d×d
sym . (3.3)

The nonconvex function W describes in a geometrically linear framework the elastic
strain energy density of a two-phase material with stress-free strains εi, see, e.g., [27,
30]. It is assumed that both phases have identical elasticity tensors. If the strains ε1
and ε2 are compatible, i.e., if there exist a, b ∈ R

d with ε1 − ε2 = 1
2 (a ⊗ b + b ⊗ a),

then the convex and quasi-convex envelopes of W coincide and are given by [30]

Wc(ε) =

⎧
⎪⎨

⎪⎩

W2(ε) if W2(ε) + γ ≤ W1(ε),
W3(ε) if |W1(ε) − W2(ε)| ≤ γ ,
W1(ε) if W1(ε) + γ ≤ W2(ε),

(3.4)

where γ = 1
2 C(ε1 − ε2) : (ε1 − ε2) and

W3(ε) = 1
2
(W2(ε) + W1(ε)) − 1

4γ
(W2(ε) − W1(ε))

2 − γ

4
. (3.5)

It is shown in [11] that Wc satisfies the monotonicity inequality with p = r = 2 and
s = 0. From Lemma 2.2 we obtain immediately that Wc satisfies also the convexity
inequality (2.7) with p = r = 2 and s = 0.

Corollary 3.2 Let Ω ⊂ R
d be an admissible domain and u a minimizer of I or Ic. Then

σ = DW(ε(u)) ∈ N 1
2 ,2(Ω) ⊂ W

1
2 −δ,2(Ω) for every δ > 0.

3.2.3 A special case of the Ericksen–James energy

The last example deals with a special case of the two dimensional Ericksen–James
energy function [12]. Let κ1, κ2 > 0. For A ∈ R

2×2 and C = A�A we consider the
function

W(A) = κ1(tr C − 2)2 + κ2c2
12 = κ1(|A|2 − 2)2 + κ2

4
(a(A, A))2, (3.6)
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where the bilinear form a(·, ·) is defined as

a(A, B) = a11b12 + a12b11 + a21b22 + a22b21, A, B ∈ R
2×2. (3.7)

Note that 2c12 = a(A, A). The complete Ericksen–James energy has the additional
term

κ3

(
1
4

(
a2

11 + a2
21 − a2

12 − a2
22

)2 − ε2
)2

, κ3 > 0

and is applied to model crystalline microstructure, see [12] and the references therein.
In this context, u : Ω → R

2 is the deformation field, W(∇u) the stored energy function
of a two dimensional crystal and C = ∇u�∇u the right Cauchy–Green strain tensor.
Let us emphasize that we consider here only the case κ3 = 0 since the quasiconvex
envelope is known only for that case. It is shown by Bousselsal and Brighi in [7] that
the convex and the quasiconvex envelopes Wqc and Wc of W from (3.6) coincide for
κ3 = 0 and have the form

Wc(A) = Φi(A) for A ∈ Mi, 1 ≤ i ≤ 4, (3.8)

where ∪4
i=1Mi = R

2×2,

M1 = {A ∈ R
2×2 : |a(A, A)| ≤ 2 − |A|2},

M2 = {A ∈ R
2×2 : κ2 |a(A, A)| ≤ 4κ1(|A|2 − 2)},

M3 = {A ∈ R
2×2 : κ2a(A, A) ≥ 4κ1(|A|2 − 2) ≥ 0

or a(A, A) ≥ 2 − |A|2 ≥ 0},
M4 = {A ∈ R

2×2 : −κ2a(A, A) ≥ 4κ1(|A|2 − 2) ≥ 0

or − a(A, A) ≥ 2 − |A|2 ≥ 0}
and Φ1(A) = 0, Φ2(A) = W(A), Φ3(A) = Φ4(A) with

Φ3(A) = κ1κ2

4κ1 + κ2

( |A|2 − 2 + |a(A, A)| )2.

Lemma 3.3 Wc from (3.8) satisfies convexity inequality (2.7) with p = 4, r = 2, s = 2.

Corollary 3.3 Let Ω ⊂ R
2 be an admissible domain and u a minimizer of I or Ic with

energy density W from (3.6) and Wc from (3.8), respectively. Assume that the data
f , g, H is given according to theorem 2.2 with p = 4. Then we have σ = DW(∇u) ∈
N 1

2 , 4
3 (Ω) ⊂ W

1
2 −δ, 4

3 (Ω) for every δ > 0.

Proof of Lemma 3.3 The proof of Lemma 3.3 is quite technical and we split it into
two parts. In the first step we show that Φi satisfies the convexity inequality for every
A, B ∈ Mi, 1 ≤ i ≤ 4. Putting these estimates together we show in the second step
that Wc satisfies the convexity inequality for arbitrary A, B ∈ R

2×2 = ∪4
i=1Mi.

Let i = 2 and A, B ∈ M2, A �= B. It follows

Φ2(A) − Φ2(B) − DΦ2(B) : (A − B)

= κ1(|A|2 − |B|2)2 + κ2

4
(a(A, A) − a(B, B))2

+ 2κ1(|B|2 − 2) |A − B|2 + κ2

2
a(B, B)a(A − B, A − B)

= s1 + . . . + s4, (3.9)
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where a(·, ·) is defined in (3.7). Let T(A) = ( a12 a11
a22 a21

)
and note that T(A) : B = a(A, B)

and DAa(A, A) = 2T(A). Young’s inequality yields

|DΦ2(A) − DΦ2(B)|2 = ∣
∣4κ1(|A|2 − |B|2)A + κ2(a(A, A) − a(B, B))T(A)

+4κ1(|B|2 − 2)(A − B) + κ2a(B, B)T(A − B)
∣
∣2

≤ c
(
(|A|2 − |B|2)2 |A|2 + (a(A, A) − a(B, B))2 |A|2 )

+c
∣
∣4κ1(|B|2 − 2)(A − B) + κ2a(B, B)T(A − B)

∣
∣2

= c(t1 + t2) + ct3. (3.10)

Obviously, there exists a constant c > 0 such that t1 + t2 ≤ c(1 + |A|2 + |B|2)(s1 + s2).
It remains to show that

t3 ≤ c(1 + |A|2 + |B|2)(s3 + s4). (3.11)

If a(B, B)a(A − B, A − B) ≥ 0, then

(1 + |A|2 + |B|2)a(B, B)a(A − B, A − B)

≥ (|B|2 − 2)a(B, B)a(A − B, A − B), (3.12)

(1 + |A|2 + |B|2)(|B|2 − 2) |A − B|2

≥ (|B|2 − 2)2 |A − B|2 B∈M2≥ κ2
2

16κ2
1

a2(B, B) |A − B|2 . (3.13)

Evaluating t3 and taking into account estimates (3.12) and (3.13) finally implies (3.11).
If a(B, B)a(A − B, A − B) < 0, then

s3 + s4 =
(

2κ1(|B|2 − 2) − κ2

2
|a(B, B)|

)
|A − B|2

+κ2

2
|a(B, B)| ( |A − B|2 − |a(A − B, A − B)| ) (3.14)

and both terms are nonnegative. On the other hand,

t3 = 4
(

2κ1(|B|2 − 2) − κ2

2
|a(B, B)|

)2 |A − B|2

+8κ1κ2(|B|2 − 2) |a(B, B)| ( |A − B|2 − |a(A − B, A − B)| ) (3.15)

and since B ∈ M2, we have
(

2κ1(|B|2 − 2) − κ2

2
|a(B, B)|

)2

≤ c
(

2κ1(|B|2 − 2) − κ2

2
|a(B, B)|

)
(1 + |A|2 + |B|2) (3.16)

for a constant c > 0 which is independent of A, B. Combining (3.14)–(3.16) results in
(3.11) and convexity inequality (2.7) is proved for Φ2 on M2 with r = s = 2.

Let i = 3. For A, B ∈ M3, A �= B, it holds

(4κ1 + κ2)(κ1κ2)
−1 (Φ3(A) − Φ3(B) − DΦ3(B) : (A − B))

= (|A|2− |B|2+ a(A, A) − a(B, B))2

+ 2
( |B|2− 2 + a(B, B)

)( |A − B|2+ a(A − B, A − B)
)

(3.17)
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and both summands are nonnegative. On the other hand, by Young’s inequality, there
exists a constant c > 0 such that

c
∣
∣DΦ3(A) − DΦ3(B)

∣
∣2

≤ ( |A|2 − |B|2 + a(A, A) − a(B, B)
)2 |A + T(A)|2

+( |B|2 − 2 + a(B, B)
)2(2 |A − B|2 + a(A − B, A − B)

)
. (3.18)

B ∈ M3 implies 0 ≤ |B|2 − 2 + a(B, B) ≤ 2(1 + |A|2 + |B|2) and therefore, combining
(3.17) and (3.18), it follows that Φ3 satisfies the convexity inequality on M3. The case
i = 4 can be treated in the same way.

In order show that the convexity inequality is valid for every A, B ∈ R
2×2 note first

that there exists a J0 ∈ N such that it holds for every A, B ∈ R
2×2: There exist real

numbers 0 = t0 < t1 . . . < tJ = 1, J ≤ J0, and numbers i0, . . . , iJ−1 ∈ {1, . . . , 4} such
that F(t) = B + t(A − B) ∈ Mij for t ∈ [tj, tj+1], 0 ≤ j ≤ J − 1. We obtain

Wc(A) − Wc(B) − DWc(B) : (A − B)

=
J∑

j=1

Wc(F(tj)) − Wc(F(tj−1)) − DWc(F(tj−1)) : (F(tj) − F(tj−1))

+
J∑

j=1

(
DWc(F(tj−1)) − DWc(F(0))

)
: (F(tj) − F(tj−1))

= s1 + s2. (3.19)

Since Wc is convex, the derivative DWc is a monotone function and thus

s2 =
J∑

j=2

tj − tj−1

tj−1

(
DWc(F(tj−1) − DWc(F(0)

)
: (F(tj−1) − F(0)) ≥ 0.

Moreover, F(tj−1), F(tj) ∈ Mij−1 and therefore the convexity inequality may be applied
to every summand of s1 separately due to the first part of this proof:

s1 ≥ c
J∑

j=1

(
1 + ∣∣F(tj)

∣∣2 + ∣∣F(tj−1)
∣∣2

)−1 ∣∣DWc(F(tj)) − DWc(F(tj−1))
∣∣2 .

Note that (1 + ∣∣F(tj)
∣∣2 + ∣∣F(tj−1)

∣∣2
)−1 ≥ 1

4 (1 + |A|2 + |B|2)−1 and that
∑J

j=1

∣∣Bj
∣∣2 ≥

J−1
∣∣ ∑J

j=1 Bj
∣∣2 for Bj ∈ R

2×2 and thus, since J ≤ J0,

s1 ≥ c
4J0

(1 + |A|2 + |B|2)−1 ∣∣DWc(A) − DWc(B)
∣∣2 .

This finishes the proof. ��
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A Appendix: Proof of Lemma 2.3

A.1 The two dimensional case

Let Ω ⊂ R
2 be a Lipschitz-polygon and assume that 0 ∈ ΓD ∩ ΓN . Then there

exists R > 0 such that BR(0) ∩ ∂Ω does not contain any further corner point of ∂Ω .
Assume further that ΓN ∩ BR(0) is a subset of the positive x1-axis and that there
exists Φ > 0 such that Ω ∩ BR(0) = {x ∈ BR(0) : 0 < ϕ < Φ} [polar coordinates,
x = |x| (cos ϕ, sin ϕ)�].

Case 1 Let �(ΓD, ΓN) < π , i.e., Φ < π . Choose ΩN = {x ∈ BR(0) : π < ϕ < 2π},
ΩD = {x ∈ BR(0) : Φ < x < π} and K = {x ∈ R

2 : Φ < x < π}. Then conditions
(2.23)–(2.24) of Definition 2.3 are satisfied and thus Ω is an admissible domain.

Case 2 Assume that Ω is admissible. We have to show that Φ < π . Let K, ΩD
and ΩN be the cone and domains of (2.23)–(2.24) in Definition 2.3 corresponding to
the corner 0 ∈ ΓD ∩ ΓN . It follows from ΓN ∩ BR(0) ⊂ (∂ΩN ∩ BR(0)) ⊂ positive
x1-axis together with (2.23) that K is completely contained in the upper half plane,
i.e., K = {x ∈ R

2 : Φ1 < ϕ < Φ2} and 0 ≤ Φ1 < Φ2 ≤ π . Furthermore, (2.24) together
with ΓD ∩ BR(0) ⊂ {x ∈ R

2 : ϕ = Φ} implies Φ ≤ Φ1 and thus Φ < π .

A.2 The three dimensional case

Let Ω ⊂ R
3 be a Lipschitz-polyhedron according to Part 2 of Lemma 2.3 and let

x0 ∈ ΓD ∩ ΓN . There exists R > 0 and a polyhedral cone K̃ with vertex in x0 such that
Ω coincides with K̃ on BR(x0):

Ω ∩ BR(x0) = K̃ ∩ BR(x0).

We assume that K̃ has exactly three faces Γi, 1 ≤ i ≤ 3, which intersect at x0 and which
satisfy (Γ1 ∪ Γ2) ∩ BR(x0) ⊂ ΓN and Γ3 ∩ BR(x0) ⊂ ΓD. Furthermore, we assume that
�(Γ1, Γ2) �= π . The remaining cases can be treated similarly. Let ni be the exterior
unit normal vector on Γi and denote by Hi = {x ∈ R

3 : (x − x0)ni < 0} the “interior”
half space with respect to Γi and ni. Due to the assumption �(ΓD, ΓN) < π it follows
that (Ω ∪ ΓN) ∩ BR(x0) ⊂ H3. Therefore, we have exactly the following two cases for
K̃:

K̃ = H1 ∩ H2 ∩ H3 or K̃ = (H1 ∪ H2) ∩ H3,

depending on whether �(Γ1, Γ2) < π or > π . In order to show that Ω is an admissible
domain we have to construct domains ΩD, ΩN and a cone K according to (2.23)–(2.24)
of Definition 2.3. We define

ΩD = {x ∈ BR(x0) : (x − x0)n3 > 0}, ΩN = BR(x0)\(ΩD ∪ Ω).

Since �(ΓD, ΓN) < π it follows that ΩD ∩ Ω = ∅ and ΩN �= ∅. Let e1 be tangential
to Γ1 ∩ Γ3, e2 be tangential to Γ2 ∩ Γ3 and e3 tangential to Γ1 ∩ Γ2. The orientation of
the vectors ei is chosen in such a way that

e1n2 < 0, e2n1 < 0, e3n3 > 0. (A.1)
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This choice is always possible since �(Γ1, Γ2) �= π and �(ΓN , ΓD) < π . Note that
{e1, e2, e3} is a basis of R

3. We define the cone K by

K =
{

v ∈ R
3 : v =

3∑

i=1

λiei, λi ≥ 0

}

.

Then ΩD, ΩN and K satisfy (2.23)–(2.24) of Definition 2.3, which can be seen as
follows.

Choose x ∈ ΩD and v = ∑
i λiei ∈ K such that x + v ∈ BR(x0). Since e1n3 = 0,

e2n3 = 0 we get from the definition of ΩD and (A.1) that

(x + v − x0)n3 = (x − x0)n3 + λ3e3n3 > 0

and therefore x + v ∈ ΩD and (2.24) is proved. For the proof of (2.23) choose
x ∈ Ω ∩ BR(x0) = K̃ ∩ BR(x0) and v = ∑

i λiei ∈ K such that x + v ∈ BR(x0). If
λ3 ≥ −((x − x0)n3)/(e3n3), then (x + v − x0)n3 ≥ 0 which yields x + v ∈ ΩD and (2.23)
holds for this case. If λ3 < −((x − x0)n3)/(e3n3), then x + v ∈ H3 and we have to show
that x + v ∈ K̃ in order to verify (2.23).

Case 1 K̃ = H1 ∩ H2 ∩ H3. It follows for i, j ∈ {1, 2} with i �= j from the definitions
of K, Hi and from (A.1) that

(x + v − x0)ni = (x − x0)ni + λjejni < 0

and therefore x + v ∈ H1 ∩ H2 ∩ H3.
Case 2 K̃ = (H1 ∪ H2) ∩ H3. It follows for i, j ∈ {1, 2}, i �= j as before that

(x + v − x0)ni = (x − x0)ni + λjejni.

Since x ∈ H1∪H2 we have (x−x0)n1 < 0 or (x−x0)n2 < 0. Together with λjejni ≤ 0 we
obtain finally (x+v−x0)n1 < 0 or (x+v−x0)n2 < 0 which shows that x+v ∈ H1 ∪H2.
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