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ABSTRACT. We consider a class of hyper-elastic materials with constitutive
equations of power-law type. The power exponent is a hardening parameter,
which is characteristic for metals with extended strain hardening capability
and low proportionality limits.

If the elastic body has reentrant corners and edges or the material pa-
rameters are jumping, then high stresses appear near these geometrical or
structural peculiarities [13], [12], [10], [24], [20].

We give a variational formulation of the nonlinear field equations under
consideration and describe its solvability and uniqueness. The main focus lies
on the investigation of the smoothness of the stress and displacement fields
in Lipschitz domains. Furthermore, we discuss how our regularity results
are connected with the well-known HRR-fields [10], [24]. Finally, we present
some regularity results for elastic fields in composites with varying hardening
exponents.

1. INTRODUCTION

The behaviour of displacement and stress fields of linear elastic bodies with
geometrical and structural singularities is well investigated. Geometric sin-
gularities can be corners, edges, V-notches or cracks; structural singularities
are characterised by discontinuities in the material parameters across inter-
faces. Near such zones high stress concentrations appear. The mathemati-
cal modelling leads to linear elliptic systems of partial differential equations
with piecewise constant coefficients equipped with boundary and transmis-
sion conditions. There is a large number of papers in mathematics and
mechanics where stress singularities are analysed and computed by different
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methods. We recall two mathematical methods to derive regularity results
for linear problems. One is to use layer potential methods for boundary
value problems on Lipschitz domains [28], [3], [4], [18]. These regularity
results are formulated in Sobolev-Slobodeckij, Besov and Holder spaces and
describe the worst possible regularity in the considered class of problems.
Another possibility to find more detailed regularity results is to apply the
Mellin technique [14], [15], [5], [19] in polyhedral domains or composites.
In particular, the smoothness of the solutions is described by asymptotic
expansions with respect to the distance to the geometrical and structural
peculiarities. In the two-dimensional case the expansion of the displacement
field u reads in polar coordinates as follows:

nsu = 773 Z cm‘ﬁvﬁ(ln T, (,0) + nsureg7 (1)
0<Re <1

where r is the distance to a corner point S. The singular exponents [ are
eigenvalues of a corresponding nonlinear eigenvalue problem and the func-
tions vg consist of generalised eigenfunctions and of powers of Inr. The
constants cs denote the stress intensity factors and are calculated from the
given loading. The smoothness of the solution u is determined by the sin-
gular exponent (3 with the smallest positive real part and can be calculated
explicitly for a fixed geometry and material parameters. We underline that
every weak solution of linear elliptic boundary value problems admits an
expansion of the above type.

Much less is known on the global regularity of weak solutions for nonlinear
elliptic boundary value and transmission problems in non-smooth domains.
In this paper we concentrate to quasilinear elliptic problems of power-law
growth. For boundary value problems in Lipschitz domains a difference
quotient technique was adapted and developed in [25], [7], [8]. The obtained
regularity results are formulated in Nikol’skij and Sobolev-Slobodeckij spaces
and guarantee a minimum smoothness. It is an open question whether as-
ymptotic expansions near geometrical and structural singularities can be
expected as in the linear case. J. W.HUTCHINSON [10], and J. K. RICE
and G.F.ROSENGREN [24] have used an ansatz analogously to the linear
case in order to investigate crack tip singularities for nonlinear elastic Ram-
berg/Osgood materials of power-law type. This approach leads to fully non-
linear eigenvalue problems for the determination of the singular terms. Nu-
merical investigations for crack and V-notch problems [30], [29] show the
dependence of the actual regularity of weak solutions on the geometry of
the domain and indicate that the regularity may be covered by asymptotic
expansions in the nonlinear case, too.
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This paper is split into two parts. The first part is concerned with a mixed
boundary value problem for nonlinear elastic Ramberg/Osgood materials
in Lipschitz domains. Starting from the physical model we give a weak
formulation in appropriate anisotropic Sobolev spaces. The existence and
uniqueness of weak solutions is obtained from a minimization problem for
the complementary energy by standard arguments from the calculus of vari-
ations. We present local and global regularity results for the displacement
and stress fields on Lipschitz domains. These results are proved with a dif-
ference quotient technique. It turns out that weak solutions are smoother in
the interior, stress singularities are situated at the boundary. Furthermore,
our results are in coincidence with the stress singularities predicted by the
HRR-approach.

The second part deals with boundary transmission problems in a body
which is composed of different nonlinear elastic materials of power-law type.
It is known from the linear theory that the stress singularities near cross
points are strongly influenced by the number and the geometry of the sub-
domains and the jumps of the material parameters. In general, the arising
singularities are stronger than those of boundary value problems with smooth
coeflicients in Lipschitz domains. We formulate here sufficient conditions on
the distribution of the subdomains and the corresponding elastic energies
in order to assure the same regularity results as for one domain. This new
condition is called quasi-monotone covering condition and is a generaliza-
tion of the quasi-monotonicity condition which was introduced by [6] for the
Laplace equation with piecewise constant coeflicients.

2. THE MATERIAL MODEL

We consider physically nonlinear elastic materials where the corresponding
constitutive law is described by a power-law like relationship which was first
suggested by W. RAMBERG and W. R. OSGOOD in 1943 for aluminium alloys
[21]. Let Q € R% d = 2,3, be a bounded domain with Lipschitz boundary
which is split into a Dirichlet part I'p and a Neumann part I'y. The field
equations for the determination of the displacement field u: © — R and
stress field o: Q — REX¢ read as follows:

sym

dive+ f =0 in Q, (2)

3a (o, =2 D .
e(u) — Ao — — | — 07 =0 in Q, (3)

g onTI'p, (4)
oii="h on I'y. (5)
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Here, f denotes the volume force density, h the surface force density and
g the displacement on I'p. Furthermore (u) = 3(Vu + VuT) is the lin-
earised strain tensor, 0P = o — (1/d)tr ol the deviatoric part of the stress

tensor and 0. = 1/3/2|0P| = \/(3/2) 4 (0]7)? the von Mises effective

ij=1

stress. The material constants in the constitutive law (3) have the following
meaning: A € Lin(R%*? R?*9) is a symmetric and positive definite elastic-
ity tensor with (Ao);; = 227121 Ajjriow; B is the Young modulus, o, the
yield stress and & a further material parameter. The exponent ¢ is called
strain hardening coefficient and describes the hardening behaviour of the
material. Assuming that A corresponds to an isotropic material and that

O11 00
o= < 00 0), relation (3) reduces to
000

~ qg—1
011 Qaay
€11 = T B

011

(6)

Oy

Typical graphs for relation (6) are plotted in Figure 1 for different strain
hardening parameters ¢q. If ¢ = 2 then relation (3) describes a linear elastic
material. For ¢ > 2 the material is strain hardening and for ¢ — oo the
Ramberg/Osgood model is an approximation of the linear elastic, perfect-
plastic Hencky model. A mathematical proof of this assertion is given in

[27], [2].

o1 =2 =3
7x10° e 1
6x10° qg=41
5x10°
4x10° qg=>5
3x10° qg=31
2x10°
1x10°

0.002 0. 005 0.01 0.015 .02 €11

Figure 1. Relation (6) with E = 197 GPa, o, = 286 MPa, & = 1.378. Note that
&oy/E ~ 0.002. The parameters are taken from [23].

Equations (2)—(5) are the field equations of a physically nonlinear and
geometrically linearised elastic material model. However, these equations
are applied mainly for the description of aluminium alloys and stainless
steel alloys, [23], [26], which show in reality an elasto-plastic behaviour: if
a quasi-static cycle of loading and unloading is applied to these materials
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then in general there remains a small permanent plastic strain after the cycle
is finished. This phenomenon cannot be correctly described by the elastic
Ramberg/Osgood model which predicts vanishing strains after unloading.
Thus the Ramberg/Osgood model can be applied for the description of the
metals mentioned above only under the assumption that the applied loading
is quasi-static and monotone. Accepting this condition the terms in the
constitutive relation (3) can be interpreted as follows:

36 (0.\7?
e= Ao + SE <0—> oP = €el 1 Epl- (7)
Y
Eel
Epl

The strain tensor ¢ is split into an elastic strain €, which depends linearly
on the stresses, and into a plastic strain e, which depends nonlinearly on
the deviatoric part of the stresses. The material behaves nearly linear elastic
if the von Mises effective stress o is less than the constant o,. If o, is larger
than o, then the plastic strains e, from (7) dominate the strain tensor.
This justifies the name “yield stress” for the constant o,. One should note
that the considered materials have no yield plateau and therefore the yield
stress o, is not uniquely determinable. Usually o, is chosen as the 0.2%
proof stress og 2, see e.g. [23]. Some typical values are listed in Table 1 with
& = 0.002E /0.

austenitic steel alloys [23] | aluminium alloys [26], [16]

E 180-200 GPa 66-75 GPa
Oy = 00.2 300-600 MPa 160-300 MPa
q 5.45-8.9 20-45

Table 1. Typical values of the material parameters.

3. FUNCTION SPACES AND SOLVABILITY

The special structure of the constitutive law (3) motivates the choice of the
function spaces where the weak problem is formulated. The trace of the
stress tensor occurs in the linear term of the constitutive law only, whereas
the deviatoric part of the stress tensor appears also in the nonlinear term.
Therefore, function spaces have to be applied which take into account this
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structure explicitly. Such spaces were first introduced and investigated by
G. GEYMONAT and P. SUQUET [9].

Let Q C R? be a bounded domain with Lipschitz boundary. For s > 0 and
p € (1,00) we denote by W*P(Q) the usual Sobolev-Slobodeckij spaces, see
e.g. [1]. In [9] the following anisotropic spaces are introduced for r € (1, c0),
pe(l,2]and g =p = £ €[2,00):

L™2(Q) = {7’: Q- ngxr:f P e L"(Q), tr1 € LZ(Q)}, (8)
UP?(Q) = {u € LP(Q) : e(u) € LP*(Q) }. (9)

These spaces are reflexive and separable Banach spaces endowed with the
following norms:

7|

||THLr,2(Q) = HT L’”(Q) + || tI’THLz(Q),

HUHUP@(Q) = HUHLP(Q) + ||5(U)||va2(sz)-
The spaces UP2(2) are embedded in W1P(Q) for p < 2. Therefore, the

traces of functions from UP-2(§)) on parts of the boundary are well defined.
Moreover, the trace operator

’Y‘FD : Up72(Q) - Wl_l/pm(]-—‘D)v u = u|FD7 (10)

is a surjective mapping [9]. For an open set I'p C 9Q and p € (1,2] we
denote by
VP2(Q) = {v e UP*(Q) : v|r, = 0}

the space of test functions. In order to define Neumann boundary conditions
we introduce the following spaces for g = p’

Wi=/pr(Ty) = {ve W=1/PP(9Q) : suppv C I'n}, (11)
W—1/q,q(FN) _ (Wl—l/pm(pN))’. (12)

The dual pairing for elements u of a Banach space X and elements f of its
dual X’ is denoted by (f,u) = (f,u)x. Finally, A : B is the inner product
for matrices A, B € R¥? which is defined as

d
1
A:B=AP.BP 4 StrAtrB = > aijby, A= (A: A2

i,j=1

Since the constitutive law (3) describes the strains as a function of the
stresses and since this relation cannot be explicitly solved for the stresses, an
appropriate framework for the weak formulation is the stress based or dual
formulation.
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Definition 3.1 (Stress-based complementary energy). Let a > 0, g € [2,00)
and let A € Lin(R%*? R9*?) be symmetric with (Ac) : o > calo|? for every
o € R¥4  The function

sym *

sym

1
W,: R4 R, O’l—>§(AO')iO'+%|O'D}q7 (13)

is called complementary energy density for Ramberg/Osgood materials. The
functional

Jo: LY7?(Q) = R, o0 /QWC(U) dz, (14)

describes the corresponding stress based complementary energy.

Let us note that the constitutive law (3) can be rewritten as

e=DW.(o) = (aWC(J)> = Ao + a’0D|q720D,
9955 ) jeq1,....ay
where the material constants from relation (3) are now accumulated in the
new constant «. Since typical values for g are larger than two, see Table 1,
we assume in Definition 3.1 that ¢ > 2. The functional .J. is well defined
for elements of L92(Q), strictly convex, coercive on L92?(Q) and Fréchet
differentiable. The existence of a stress field 0 and a displacement field u
solving the Ramberg/Osgood equations (2)—(5) in a weak sense can be de-
duced from a minimization problem for the complementary energy J. and
the corresponding weak Euler-Lagrange equations.
We assume now that

¢>2 p=q €12, fe (VP*(Q),
ge Wi YPl(Tp), he WHe4(Ty).
We remark that there exists a function go € UP?(Q) with golr, = g (see

[9))-
3.1. Minimisation problem for the complementary energy. The set
of admissible stress fields satisfying the equilibrium of forces is defined as

M= {T € LQ,Q(Q) : /S;T : E(U) dz = <f7U>W1vP(Q) + <hav>ﬁ/1—1/p,p(FN)

for every v € VP?(Q)} .
With this definition the minimisation problem reads as follows:
Find 0 € M such that

Jo(o) — /Qs(go) code < Jo(1) — /Qs(gg) crdz, TEM. (16)

Thereby, J. denotes the complementary energy of Definition 3.1.

(15)
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3.2. Weak formulation. The corresponding weak Euler-Lagrange equa-
tions read as follows:

Find o € L%%(Q) and ug € UP?(Q) with uo|r,, = g such that
/ DW.(0o¢) : Tdz = / e(up) : 7dz, (17)
Q Q

/QJO ce(v)da = (f,v)vez@) + <h7v>v~vl_1/p,p(FN) (18)

for every T € L9%(Q) and v € VP2(Q).

Theorem 3.2 (Existence of weak solutions). Let the assumptions from (15)
be satisfied. If I'y = 00, we require in addition that f and h satisfy the
following solvability condition

(fs 7“>Up,2(9) + <h,7‘>W1_1/p,p(8Q) =0 foreveryr € R,
where R is the set of linearised rigid body displacements,
R={r:Q—R:r(2) =a+ Bz, a ¢ R, Bc R B+ BT =0}.

Then the minimisation problem (16) is uniquely solvable. Moreover, equa-
tions (17)—(18) are the corresponding Euler-Lagrange equations and have
a unique solution og € L¥%(Q) and ug € UP2(Q) with ug|r, = g provided
that Tp # 0. IfTp = 0, then o9 € L%%(Q) is still unique and the dis-
placement field ug is unique up to elements from R. The minimiser of (16)
coincides with 0.

This theorem can be proved by an adaption of the Ljusternik theorem on
the solvability of minimisation problems with constraints (see [31, Theorem
43.D]). Another possibility is to use the ideas of R. TEMAM [27].

A simple conclusion of the existence of a solution pair u € UP3(2) and
o € L7%(Q) for the two-dimensional case describes rough bounds for the
exponents for singular terms:

Corollary 3.3. Let d =2 and let (r,p) be the polar coordinates with respect
to some corner point S € 0). Assume that there is a weak solution pair of
the form

u(r, ) = r750(p) + tireg (1, ¢), (19)
o(r,p) =1778(p) + Oreg (1, ). (20)
Then 8> —1+2/q, v > —2/q.

It is of great interest to get more information about the exponents v and
0, and to study the influence of the material and the geometry on them.
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4. GLOBAL REGULARITY ON LIPSCHITZ DOMAINS

The regularity results which are presented in this section are proved with
a difference quotient technique. To apply this technique we need a careful
description of admissible domains. This definition depends on the type of
the boundary conditions.

Definition 4.1. Let Q C R¢ be a bounded domain.

(i) If the type of the boundary conditions does not change, i.e. 902 = I'p
or 02 = I'y, then © is called admissible, if 9 is a Lipschitz boundary.

(ii) If the type of the boundary conditions changes, then Q is called admis-
sible, if 0N is a Lipschitz boundary and the following condition is satisfied
(see Figure 2): There exists a finite number of balls B; with U;jzl B; D
OI'p N OT'y. Furthermore, for each of these balls B; there exists an infi-
nite cone K; with the vertex in 0 and pair-wise disjoint non-empty domains
Q7,0 C Bj such that

B\Q = QL U’ TpNB; caQ, TynB;co ., (21)

(_(QnBj)+lcj) nol =0, (22)
(R, + )N (QNB) U ) =0. (23)

Figure 2. Notation for Definition 4.1.

Remark 4.2. If Q is a two-dimensional polygonal domain, then the
condition for mixed boundary values reduces to a condition for the interior
opening angle, namely £(T'p,I'y) < 7.

Now, we come to the main theorem about the regularity of solutions of
mixed boundary value problems in admissible domains.
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Theorem 4.3. Let Q C R?, d = 2,3, be an admissible domain. We assume
for the data from (17)—(18) that f € L), g = Y|lrp, 4G, § € W2P(Q) with

Vg e L*(9), where Q 55 Q, h= Hii on Ty, H € WH4(Q,RIX) N L>(Q).
Then every solution u € UP?(Q) and o € L9%(Q) of (17)—(18) has the
following properties.

Locally:

we W2T(Q), divu, o € WXT(Q)n WLA(9Q) (24)

loc

witht=2-61if d=2 andT:% if d=3;0 >0 is arbitrary.
Globally:

u € WH2m02dp/CA=240)(Q) - divu, o € WHI09(Q) nWH202(Q) (25)

for all § > 0. Note that p < 2d3(12p+p < 2. In the linear case of p = q =2 the

well-known regularity results are recovered.

Remarks to the proof. This theorem is proved via the difference
quotient technique. The main idea is to insert into the weak formulation
test functions of the form

v(z) = @* () (u(z + he;) — u(z)), (26)

where ¢ is a cut-off function, {ej,...,eq} is a basis of R? and h > 0. The
main goal is to derive uniform estimates of the type

™8| Vu(- 4 he;) — Vu(:) | r) < c (27)
Such inequalities follow from the convexity properties of the complementary

energy density W.. From the estimate (27) one obtains the regularity results
using embedding theorems for Nikol’skij spaces:

puc WT(Q) ifs=1,
ou € WHs=or(Q) if s € (0,1).

Note that the geometric conditions (21)—-(23) guarantee the existence of a ba-
sis {e1,...,eq} of R? such that v in (26) is an admissible test function. [J
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4.1. Discussion of the regularity results. It follows immediately from
the interior regularity results of Theorem 4.3 that the displacement field w is
continuous in the interior of the domain for d = 2,3. Moreover, the results
show that the strongest singularities are situated at the boundary.

We discuss now for the two-dimensional case the relation between our reg-
ularity results and the HRR-fields. J. W. HUTCHINSON [10], and J. R. RICE
and G.F. ROSENGREN [24] have studied the behaviour of stress fields near
a crack tip in Ramberg/Osgood materials. Based on the assumption that
the displacement and stress fields have an asymptotic structure like in the
linear case, they derived a strongly nonlinear eigenvalue problem from which
they calculated the dominant terms in the asymptotic expansion. Using the
ansatzes

uo(r, ) = " (), oo(r,p) = r7(), (28)
they obtained the following eigenvalue problems for the determination of the
exponent 7y and the functions v and 7:

Find an exponent v € R and functions v and 7 which do not vanish such
that

divyo0=0 forr >0, o € (—m, m), (29)
e(ug) — o 2D =0 forr>0, g€ (—mm), (30)
00,47+ =0 forr >0, ¢ € {—m 7} (31)

Explicit formulae for equations (29)-(31) in polar coordinates are given in
[30]. From this eigenvalue problem HUTCHINSON and RICE/ROSENGREN
obtained . 1

y=—> g-1)+1=~— 32

. (¢—1) . (32)
and they calculated 7 numerically. Thus, the leading terms in (28) are given
by
UO(Tv 410) = Tl/qv(gp)7 00 = Tﬁl/qT(gp)'
The functions ug and og are called HRR-fields.
We compare this approach with our regularity results. Let

we W3/2—6,4p/(2+p)(9), oc Wl/q—&fl(Q) (33)

and assume that v and ¢ admit asymptotic expansions
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From (33) it follows that

B>l 52— (36)

q q
This shows a correspondence between the singularities predicted by the HRR
approach for cracked domains (see (32)) and the worst possible singularities
given in (36). We want to emphasize that it is still an open problem, whether

every weak solution admits an asymptotic expansion as in the linear case.

5. BOUNDARY-TRANSMISSION PROBLEMS

In this part we consider structures which are composed of different homo-
geneous materials of Ramberg/Osgood type. Assume that the body Q is
composed of M sub-bodies Q = vail Q;, where each of these sub-bodies is
homogeneous and of Ramberg/Osgood type with parameters A4;, F;, &;, a;,
¢;- The boundary of the domain 2 shall be divided into a part I'p, where the
displacements are prescribed, and a part I'y, where the surface forces are
given. Let u;, o; be the restriction of u and ¢ to ;. The classical boundary
transmission problem reads:

Find u: Q — R? and o: Q — R3%3 such that

sym
divo; + f; =0 in §;, (37)
3d; i\ 2i—2
E(’Uq) — AiO'i — % (%) O'iD =0 in Qi, (38)
? )
U — U = 0 on 92 N an, (39)
CTiT_iij + O’jﬁji =0 ondN an, (40)
u; =g on 0Q; NIp, (41)

oii; =h on 9, NTy. (42)

Here, f; denotes the volume force densities, h the surface force density and g
the displacement on I'p. Furthermore, 7i;; is the exterior unit normal vector
on ; with respect to I';; = 0Q; N 0y, 7i; = —17ij;, 7i; is the exterior unit
normal vector of €2;.

In order to give a weak formulation of the boundary transmission prob-
lem we have to introduce function spaces which take into account the dif-
ferent nonlinearities on the subdomains. For 1 < i < M, p; € (1,00),

pi=(p1,---,pm) and pyin = 121SnMpi we define
LP2(Q) = {0 € LP=»2(Q) : o], € L7 (Q;)}, (43)

UP2(Q) = {u € UP»=2(Q) : ulg, € UP"2()}. (44)
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These spaces are endowed with the norms

M
lollzra@) =Y lolallLr 2@,
i=1

M
lullosag@) =D Il
i=1

Qi lluri-2(Q;)-

The trace spaces are introduced for an open subset I' C 92 in the usual
way for p; € (1,2]:

WIVPP(T) = [y € LP»(T) : u = dlr, @ € WHP(Q)}, (45)

with the norm |ully1-1/55ry = inf{||dllw1r) : @ € WLP(Q), dlr = u}
and

Wl—l/ﬁ,ﬁ(l") — {U c mein (I‘) :

. _ (46)
u=4dlr, @€ Wlfl/p’p(aﬂ), supp @ C I‘},

which is endowed with the norm ||u||ﬂW171/ﬁ*ﬁ(F) = |ltllwr-1/5.500)-

5.1. Weak formulation. Let ¢ € RM with ¢; > 2, 7= ¢’, f € (VP2(Q)),
g € WY/PP(Tp) and h € W-Y%4(T'y). The weak formulation of the
boundary transmission problem is:

Find o € L7%(Q) and u € UP2(Q) with u|r,, = g such that the identities

i

M
Z/ Aoy T+ ai|0i[)}qi_20f : TiD dz —/ 7 e(uy)de =0, (47)
=1
M
Z/Q oi:e(vi)dz — (f,v)yraiq) — <hav>W1—1/ﬁ,ﬁ(pN) =0 (48)
i=1 i

hold for every 7 € LT%(Q) and v € V72(Q).

Analogously to Theorem 4.3 the existence and uniqueness of a weak so-
lution can be proved.
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5.2. Regularity for weak solutions to transmission problems. We
start with the classical linear KELLOGG example [11] which illustrates that
the regularity of weak solutions can be very low for transmission problems.
This example describes the behaviour of weak solutions of the Laplace equa-
tion with piecewise constant coefficients near a cross point .S of a chess board
(see Figure 3).

1 2 3 4 5 h

Figure 3. Domain and singular exponents 3 for Kellogg’s example.

The corresponding weak formulation reads:

Find u € W2(Q) such that for every v € W, ()
4
Z/ wiVu; Vo, de = / fudz. (49)
=18 Q

The weak solution of (49) admits an asymptotic expansion near the in-
terior cross point S of the type (1). Denoting by SBmin the smallest posi-
tive exponent in expansion (1), it follows that u|g, € W1t/min=02(Q,) for
1<i<4,§>0. Choosing p11 = u3 = h and s = pg = 1 it can be shown
that the singular exponents ( are solutions of the equation

8h
cos(frm) =1 Ok
Note that for h — 0 or h — oo the exponent B, tends to 0. Therefore, the
regularity can be very low.

In order to assure a certain minimum regularity additional assumptions
are necessary. In particular, it turns out that a quasi-monotone distribution
of the material parameters [6] leads to higher regularity for solutions of the
Laplacian and linear isotropic elasticity with piecewise constant coefficients
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[22], [17], [12], [20]. In [13] a new condition for nonlinear transmission prob-
lems, called quasi-monotone covering condition, is proposed which entails
higher regularity for weak solutions.

In this paper we demonstrate how this idea can be applied to transmission
problems for Ramberg/Osgood materials. We formulate it for the special
case of an internal cross point .S.

Definition 5.1 (Quasi-monotonicity). Let be S € Q an interior cross point
of the subdomains Qy, ..., Qy and let B(S) CC Q be a ball with the
centre S. The quasi-monotonicity condition is satisfied on B(S) if there
exist numbers k1, ..., kn € R and a cone K C R? with the vertex in 0 such
that for every 1 <i,j < N the following implication holds:

if ((C%NB(S))+K)n(Q;NB(S)) #0,
then W, ;(7) +k; < We(7) + k; for every 7 € REX4.

sym
Here, W, (1) = %AJ‘T CT+ Z—J] ’TD‘qj is the complementary energy density.

Remark 5.2. This condition is formulated in [13] also for the case when
the cross point S is situated on the boundary.

We give a two-dimensional example in order to illustrate this quasi-mono-
tonicity condition. Let d = 2, S = 0, R > 0 and suppose that the subdomains
Q;, 1 < i < N, are of the following shape: there exist angles &y < ®; <
s <Oy = Pg+2rsuch that Q; = {r € R? : [2| < R, ®;_; < ¢ < ®;}. The
complementary energy densities W, ; satisfy the quasi-monotonicity condi-
tion with respect to the ball Bx(0) if there exits a vector £ € R?\ {0}, an
index iy € {2,..., N}, and numbers ki,...,ky € R such that i € Q; and
—t'€ Q;, (see Figure 4), and

WC,I(T) + ki > Wc,2(T) + k> ...

50
> Weio(T) + ki <+ S Wen(T) + by S Wea(r) + Ky (50)

for every T € Rfyxrg Assuming that ¢; # ¢; for i # j and that
1

Wesr) = g

! 8(Aj + 15)

condition (50) reduces to the following inequalities for the material para-
meters

|tr7|? + 1 |TD]2 + &|TD]‘“,
j j

2444

AMAp << Ny F i 2 AN+ N 2> A+,
q > - > Qi <---<gn <(q1.
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Figure 4. Two-dimensional example for the quasi-monotonicity condition.

Based on the quasi-monotone covering condition we can formulate the
main regularity theorem for boundary transmission problems.

Theorem 5.3. Assume that the densities W.,; and the subdomains Q;

satisfy the quasi-monotone covering condition of Definition 5.1. Further-

more, let us assume for the loads that f € L1(Q), g = d|r,,, § € W?Pmax (Q),

Pmax = mWax p; with V§ € LOO(Q), Q oo Q, h=Hn onI'y, H €
1<i<M

W hPmax (€2, Rg;;ﬁl) N L>(£).

Then, for every § >0 and i,

u; € W3/276,2dpi/(2d72+10i)(Qi),
(51)
div Ui, O € Wl/qj_é’(h (Qz) N W1/2_5’2(Qi).

Remarks to the proof. Again, the main tool is the difference
quotient technique. Now, an additional difficulty is that the weak trans-
mission problem is formulated in spaces with variable exponents. In order
to use difference quotients as test functions we have to require that trans-
lated functions belong to the original spaces, too. This is guaranteed by the
quasi-monotone covering condition. O

Example 54. Let Q,9Q¢,Q C RY d = 2,3, be bounded domains with
Lipschitz boundaries, = Q; Uy and Q; CC Q, see Figure 5. For sim-
plicity we assume that the type of the boundary conditions does not change
on Jf). Furthermore, let be 2 > p; > py and 0 < Ap + p1 < Ao + po.
Then the quasi-monotone covering condition is satisfied and the weak solu-
tions of the corresponding boundary transmission problem (47)—(48) have
the regularity (51).
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Qs

Figure 5. Nested Lipschitz domains.
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