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Abstract

In this note the spatial regularity of weak solutions for a class of elasto-viscoplastic
evolution models is studied for nonsmooth domains. The considered class comprises
e.g. models which are obtained through a Yosida regularization from classical, rate-
independent elasto-plastic models. The corresponding evolution model consists of an
elliptic PDE for the (generalized) displacements which is coupled with an ordinary
differential equation with a Lipschitz continuous nonlinearity describing the evolution
of the internal variable. It is shown that the global spatial regularity of the displace-
ments and the inner variables is exactly determined through the mapping properties
of the underlying elliptic operator.

1 Introduction

In this note we study the spatial regularity of weak solutions for a class of elasto-viscoplastic
models on nonsmooth domains. The class comprises the Perzyna model and models which
arise from a regularization of classical rate-independent elasto-plastic problems.

Let  C R? be a bounded domain and S = (0,7) a time interval. By u : S x Q — R we
denote the displacement field and by z : S x @ — RY the vector of the internal variables.
Assuming small strains, the behavior of the body is described by the quasistatic balance
of forces (1.1), Hooke’s law (1.2), which relates the stress o : S x Q — R‘Si;rff with the

elastic part of the strain, and an evolution equation for the internal variable z (1.3):

divpo+ f=0 in (0,7) x €, (1.1)
o=A(e(u) — Bz) in (0,T) x Q, (1.2)
Oz = g(Vu, 2) in (0,7) x Q. (1.3)

These equations are completed with an initial condition for z and Dirichlet and Neumann
boundary conditions for u. The function f is a given volume force density, the tensor
e(u) = 3(Vu + (Vu)") denotes the linearized strain tensor, A € Lin(ngXnﬁl,Rg;nﬂl) is the
fourth order elasticity tensor and the linear mapping B : RV — ngxrff maps the vector z of
internal variables on the plastic strain €, = Bz. Throughout the whole paper we assume
that the constitutive function g : R¥*¢ x RV — R¥ is Lipschitz continuous.

Equations (1.1)—(1.3) with Lipschitz continuous g typically arise as a regularization of
classical elasto-plastic models: Assume that §: RY — P(RY) is a multi-valued monotone
mapping with 0 € §(0) and replace (1.3) with the relation 0;z(t) € §(B'o — Lz), where
L € Lin(RY,RY) is a symmetric and positive semi definite tensor. Then (1.3) belongs to



the class of constitutive relations of monotone type introduced by Alber, [A1b98], where
a typical example is the model of elasto-plasticity with linear kinematic or isotropic hard-
ening. Replacing the monotone mapping g with its Yosida approximation leads to the
systems which we study here.

Elasto-viscoplastic models with Lipschitz continuous ¢ are extensively studied in the
literature, see for example [FHSV01, IS93, DL76] and the references therein, where exis-
tence of solutions is established and where numerical schemes for solving (1.1)—(1.3) are
discussed. In order to obtain information about convergence rates, global spatial regular-
ity properties of the solutions are needed. In this note we show that regularity results for
linear elliptic systems can immediately be carried over to time dependent systems of the
type (1.1)—(1.3).

In particular we prove the following global regularity result for weak solutions of (1.1)-
(1.3) with Lipschitz continuous ¢g (Theorem 3.2): Assume that the operator of linear
elasticity generates an isomorphism between the spaces H{-t*(Q) — HE1(Q) for some
s € (0,1], where H-™ = {v € H'*5(Q); U|FDir = 0}. Then, under natural assumptions

on the smoothness of the given data, we have
ue Wheo,T; H(Q,RY), ze Wh(0,T; H*(Q,RY)). (1.4)

This extends a local regularity result by Miersemann, [Mie80].

The regularity result is obtained by discussing the properties of the fixed point operator,
which is used to prove existence of solutions. The smoothness properties in (1.4) fit exactly
with the smoothness assumptions in the paper [FHSV01] (if we neglect the contact problem
studied there), where convergence rates for numerical schemes are discussed.

It is an open problem whether the regularity result of the present paper can be carried
over to solutions of classical elasto-plastic models with a multi-valued monotone constitu-
tive function §. The problem is that regularity estimates, which are uniform with respect
to the regularization parameter, are not available yet. However, with a different technique
(difference quotients in combination with a reflection argument) a global regularity re-
sult was recently derived for elasto-plastic models with a multi-valued maximal monotone
mapping g, [Kne09].

The paper is organized as follows: In Section 2 we study an abstract ordinary differential
equation in a Banach space and formulate and prove the regularity result in the abstract
setting. In Section 3 we reformulate the abstract result for general elasto-viscoplastic
models and give some examples. In the last section, Section 4, we illustrate the influence
of the regularity of solutions on the convergence rates of numerical schemes.

The results which we present in this note were derived while A. Bumb was student

research assistant at the Weierstrass Institute.



2 An abstract regularity result

In this section we study the “spatial regularity” of solutions of the following ordinary
differential equation:

Let Y, Z be Banach spaces. The problem under consideration is: For given zg € Z and
f:S—=Yfind z:5 — Z with

Oz(t) = G(f(t),2(t)) fort e S, (2.1)
z(0) = zo. (2.2)

Here, G : Y x Z — Z is a given Lipschitz continuous operator. We denote by LP(S; Z)
and W*P(S;Z), k € N the spaces of functions z : S — Z which are measurable and
p-integrable and which have p-integrable weak derivatives up to order k.

The following existence theorem is standard for ordinary differential equations in Banach

spaces:

Theorem 2.1. Assume that G :' Y x Z — Z is Lipschitz continuous. For every zo € Z
and every f € WFEP(S;Y) with k € {0,1} and p € [1,00|, there exists a unique element
z € WETLP(S, Z) solving (2.1)-(2.2).

The proof of this theorem relies on Banach’s fixed point theorem. Since we need the
fixed point operator for proving our regularity result, Theorem 2.2 below, we give a short
sketch of the proof following the lines in [Sof93].

Proof. Let p € [1,00] and f € LP(S;Y). For n € LP(S;Z) and t € S let z,(t) €
W1P(S; Z) be defined through z, = 29 + fg n(s)ds. The fixed point operator is defined in

the usual way
Q: LP(S;Z) — LP(S;2); n— G(f, z). (2.3)

It is shown in [Sof93] that there exists a constant ng € N such that (Qo...0Q), times = Q™
is a contraction in LP(S;Z). The generalized Banach fixed point theorem implies that
Q has a unique fixed point n* € LP(S;Z) and that for every n € LP(S;Z) we have
limy, 0o Q™" () = n*. Finally, z, € WP(S; Z) is the unique solution of (2.1)-(2.2). O

Let now Y7, Z; be further Banach spaces which are continuously embedded in Y and

Z, respectively. In addition to the Lipschitz continuity of G : Y X Z — Z we assume that
G:Yix 71— 7 (2.4)

is well defined and bounded, i.e. there is a constant ¢, > 0 such that for every y € Y7 and

z € Z1 we have

Hg(yvz)HZl < Cb(l + ||l/||Y1 + ||ZHZ1 ) (2.5)



Theorem 2.2. Let Y,Y1,Z,7Z1 be as described above and assume in addition that the
spaces LP(S; Z71), p € (1,00], are sequentially weaklyx compact. Let furthermore G :'Y X
Z — Z be Lipschitz with (2.4)~(2.5). Then for every zo € Zi the unique solution of
(2.1)—(2.2) satisfies

€ (1,00] and f € LP(S;Y)) = z e W'P(S;2Z)).

Since G : Y7 X Zy — Z; is bounded, only, we do not obtain further information on
the second time derivative of z, which means that f € W'P(S;Y;) does not imply z €
W?2P(S; Z1), in general.

Proof. Let f € LP(S;Y7) with p € (1,00]. The goal is to show that for every n € LP(S; Z1)

we have
sup 1Q" (Ml Lo (s;2,) < 0, (2.6)

where Q is the operator defined in (2.3). Since LP(S;Z;) is sequentially weakly* com-
pact, estimate (2.6) implies that the sequence (Q™"(n))nen contains a subsequence which
converges weakly* in LP(S;Z;) to an element 7 € LP(S;Z;). Here, ng is the number in
the proof of Theorem 2.1. From the proof of Theorem 2.1 and the uniqueness of limits it
follows that z7 is the solution of (2.1)-(2.2). Observe that z; € WHP(S; Zy).

It remains to prove estimate (2.6). Let w(t) = 1+ [/ f(t)lly, + [l20llz,- From (2.5) and
the definition of @ it follows that for almost every ty € S we have

1Q(n ()l z, < ev(w(to) +/OO In(t)]l 2, dtr)

and, by induction,

to tn—1
19" (n(to)) 5, < /0 /0 (), ... dty

to to tn—2
+ cyw(tp) +c§/ w(ty)dt; + ... + cg/ / w(ty_1)dt,_q ... dt
0 0 0
= S1n(to) + S2.n(to). (2.7)

Assume now that p < co. From (2.7) we obtain with a constant depending on p

T T
| D5,z < [ 1510t dto+ [ IS0l dt (2.8)

Note that for o > 0 we have

to tn—2 4 n—1 ) tg—l—l—a
t* dtyqy...dty =TT 1< . 2.9
/0 /0 n—1 1 1 0 H( + a) — (n . 1)| ( )

=1




Therefore, the first term in (2.8) can be estimated as follows using Holder’s inequality and
P )T =1

T T to tn—2 L{ p
/0 ’Sl,n(to)‘p dtg < ch Hn”iP(S;Zl)/O </0 /0 th_ dtp—1... dt1> dtg

1 P (D)™ \*
< s (o) (2.10)

The right hand side in (2.10) tends to zero for n — oco. Furthermore, again with Hélder’s

inequality and estimate (2.9), we have

n—1

to ti—1
Sg,n(to) = wa(t(]) + Z Cé—H / - w(tl) dt; ... dt;
0 0

n—1 -1
L CbT

< ayw(to) + wll sy GTY Y ((l _)1)1

=1 '

1
< cw(to) + TV [wll L (g) exp(csT).
This implies

12l Loy < €llwllLasy (1 + exp(eT)) (2.11)

with a constant ¢ which is independent of n. Putting together estimates (2.10) and (2.11)
proves (2.6) for p < co. The case p = co can be treated similarly with obvious modifica-

tions. O

A special case of the previous theorem is the following:
Let H,V,Z,Y be Banach spaces and assume that V' C H is a closed subspace. Let
furthermore A : V — Y be a linear and continuous isomorphism and let B: Z — Y and

G : H x Z — Z be Lipschitz continuous operators. We consider the following problem:
Findu:S — V and z: S — Z such that

Au(t) + B(z(t)) = f(¢), (2.12)
Orz(t) = G(u(t) + h(t), 2(t)), (2.13)
2(0) = 2o (2.14)

for some given f € W*P(S;Y), h € WFP(S;H) and 2 € Z. Let Vi C Hy, Z1,Y; be
Banach spaces, which are continuously embedded in V, H, Z and Y, and assume that

LP(S; Zy) is sequentially weakly+ compact for every p € (1, c0].

Corollary 2.3. Assume in addition that A : Vi3 — Y7 is an isomorphism. Moreover,
suppose that B : Z1 — Y1 and G : Hy X Z1 — Z1 are bounded operators satisfying
1By, < e+ 12ll,) and GG, 2)l5, < e2(1+ Jully, + l2llz,) for all u € Hy and
z € 7.



Then, for every f € LP(S;Y1), h € LP(S; Hy) with p € (1,00] and for every zy € Z1,
there exist unique elements u € LP(S; V1) and z € WYP(S; Z1), which solve (2.12)-(2.14).
If f € WLP(S;Y7), then u € WIP(S; V).

Proof. WesetEN/:YxHanddeﬁneg:f/xZﬂZby
G((f,h),2) = GATN(f = B(2)) + (1), 2).

Then the pair (u,z) : S — (V,Z) is a solution to problem (2.12)—(2.14) if and only if =z
solves 9,z(t) = G((f(t), h(t)), 2(t)) and u(t) = A~1(f(t) — B(z(t))). Corollary 2.3 is now
a consequence of Theorem 2.2 since the operator G satisfies the assumptions of Theorem
2.2 with respect to the space 171 X Z1, where }71 =Y x Hy. O

3 Application to elasto-viscoplasticity

3.1 Notation and basic assumptions

As an application of Corollary 2.3 we discuss the case, where the operator A in (2.12)
represents a linear, elliptic differential operator of second order. Let  C R? be a bounded
domain with Lipschitz boundary and 092 = ' pUI 5, where I'p and I' y denote the Dirichlet
and Neumann boundary, respectively. It is assumed that I'p is not empty. The spaces
H,V,Z and Y are chosen as

H=H'(QR™), V={ueH (QR");ul, =0} 51)
Z=L*QRY), Z=IL*QR™%), Y =V (the dual of V). '

Let the bilinear form a : H x H — R be defined by a(u,v) = [, AVu : Vuda, where the

following assumptions on the coefficient matrix A shall be satisfied:

A1l A c L>®(Q,Lin(R™*? R™*4)) and satisfies Zgjzl Zgb’ﬁ:l A?‘-ﬁ(x)&fjnang > cq ]5\2 \77]2
for a.e. z € Q and every ¢ € R? 5 € R™. Moreover, the induced bilinear form
a:V xV — Ris V-elliptic, i.e. there is a constant c4 > 0 such that for every v € V
we have a(v,v) > cq Hv”%l(m.

The Lax-Milgram Lemma guarantees that the operator A : V — V', which is defined by
(Au,v) = a(u,v) for every u,v € V, (3.2)
is an isomorphism. Concerning the constitutive functions B and g, we assume

A2 B: QxRN — R™*4 ig a Carathéodory function for which there exists a constant

Lp > 0 such that for every =,y € Q and every 21, zp € RY we have

|B(x,21) — B(x,22)| < Lp|z1 — 22|,
|B(x,21) = B(y, 21)| < Lp(1 + |z1]) | — y].



A3 g: OxR™ xRN — RN is a Carathéodory function for which there exists a constant
Ly > 0 such that for every x,y € €2, 21,22 € RN and a;,as € R™*% we have

lg(z,a1,21) — g(y, a1, 21)| < Lg(1 + |aa| + |21]) |z — o],

lg(z,a1,21) = g(x, @z, 20)| < Lg(lar — az| + |21 — 22] ).

TheoperatorsDiV:Z—>Y,B:Z—>Z,B:Z—>YandQ:H><Z—>Zaredeﬁnedvia

(Divn,u) = — /Q n(z): Vu(z)dz forueV,ne Z, (3.3)
B(z)(z) = B(x, 2(x)) for z € Z, (3.4)
B(z) = Div B(z) for z € Z, (3.5)
G(u,2)(x) = g(x, Vu(zx), z(x)) for every u e H,z € Z. (3.6)

It is easily checked that B and G are well defined and Lipschitz continuous provided that

A2 and A3 are satisfied. For the data we assume
A4 feLP(S;Y), Hp € LP(S; H) with p € (1,00}, 29 € Z.

The function Hp can be interpreted as an extension of the Dirichlet datum to the entire
domain 2. The Neumann datum is included in f. With f and Hp we associate the
function F' € LP(S;Y) via (F(t),v) = (f(t),v) —a(Hp(t),v) for every v € V.

The problem under consideration is: Find u € LP(S;V) and z € W1P(S; Z) such that

Au(t) — B(=(t)) = F(t), 3.7
Orz(t) = G(u(t) + Hp(t), 2(1)), 3.8
2(0) = 2 3.9

Problem (3.7)—(3.9) contains the model (1.1)—(1.3) as well as the models in [FHSV01, 1S93]
as special cases. If conditions A1-A4 hold, then Theorem 2.1 guarantees the existence of
unique elements u € LP(S; V) and z € WP(S; Z) which solve (3.7)—(3.9). Under suitable
regularity assumptions on the elliptic operator A, higher regularity properties can be

derived on the basis of Corollary 2.3. This will be explained in the next section.

3.2 Regularity in Sobolev—Slobodeckij spaces

We will now investigate the higher spatial regularity of v and z in Sobolev-Slobodeckij
spaces. For s > 0 we denote by H*(Q2) the usual Sobolev—Slobodeckij spaces and refer to
[Gri85] for a definition.

Proposition 3.1. Assume A2 and A3. For every s € [0,1] the operators

B:H*Q) — HQ), G:H'™(Q) x H(Q) — H*(Q)



are well defined and there exist constants cp,cq > 0 such that for every z € H*(Q) and
u € H'T5(Q) we have

HB(Z)HHS(Q) <cp(l+ ”ZHHS(Q))a 16 (u, Z)HHS(Q) < cg(1+ HUHHHS(Q) + HZ”HS(Q))-
(3.10)

Proof. For s = 1 the assertion follows from the Lipschitz continuity of B and g. The case
s € (0,1) is then a consequence of Tartar’s interpolation theorem for nonlinear operators,
[Tar72]. O

Our final assumption concerns the regularity property of A:

A5 There exists s € (0,1] and a Hilbert space Y5 C Y (continuous embedding) such that
A VN HY(Q) — Y is an isomorphism and such that the restriction of Div to
H*(Q) is well defined and continuous as an operator Div : H*(Q2) — Y.

The space Y; depends strongly on the smoothness of the coefficient matrix A, the smooth-
ness of 0 and the type of the boundary conditions. If 9Q is Cl!-smooth, if A €
CO1(Q, Lin(R™*4, R™*%) satisfies Al and if Q = T'p, then classical regularity and in-
terpolation results, [Nec67, Tri78|, guarantee that A5 holds for every s € (0,1] with
Yy = (H}5%(R))', where for § > 0

H(Q) if 6 —1 <o,
HgQ(Q) = {uEH%(Rd); suppu C Q} if§= %,
{uGH‘S(Q);u‘on} if § — 3 >0.

Subsequent to the next theorem we give further examples, where A5 is valid.
The following regularity theorem is a direct consequence of Corollary 2.3 and Proposition
3.1.

Theorem 3.2. Assume A1-A5 for some p € (1,00] and s € (0,1]. Let furthermore
f € LP(S;Y,), Hp € LP(S; H'*5(Q)) and 2o € H*(Q). Then the unique solution (u,z) of
(3.7)—(3.9) satisfies

u € LP(S; H*3(Q)), z e WIP(S; H5(Q)).
If in addition f € WYP(S;Ys) and Hp € WHP(S; HT$(Q)), then uw € WHP(S; HITS(Q)).

This theorem shows that regularity results for linear elliptic operators can immediately
be carried over to the viscous models. Note that in the scale of Sobolev—Slobodeckij
spaces we may at best expect u(t) € H2(Q) and z(t) € H'(Q), since for s > 1 and an arbi-
trary Lipschitz continuous function g one cannot guarantee in general that G(H'**(Q) x
H5(Q)) C H*(Q).



Example 3.3 (Scalar case). This example relies on regularity results by Dauge for scalar
elliptic equations on polyhedral domains [Dau88]. Assume that m = 1 and that the
coefficient matrix A is constant and satisfies Al. For simplicity we restrict ourself to
two and three space dimensions. Let Q C R? d € {2,3}, be a bounded, polyhedral
domain with Lipschitz boundary (i.e. 992 coincides locally with the graph of a Lipschitz
continuous function). We denote the faces of Q with I';,1 < i < L, and assume that
00 = Uj<i< rT; and that every I'; is an open subset of a d — 1 dimensional hyperplane.
Moreover, we assume that the opening angle £(I';,T';) #  for i # j if [;NT'; # 0. Finally,
we assume that for every ¢ we have I'; C I'p or I'; C T'y. Let Ip = {i; I, C I'p } and
Iy = {i;T; C I'y}. From these assumptions it follows that the type of the boundary
conditions does not change within a face of the polyhedron §2.

For s € (0,1)\{2} we define analogously to [Daus8, p. 194]

V=t ={ve H'™(Q); U|FD =0}, Y,=(V'"%) ifs<i, (3.11)
Vit = HI(Q), Vo= (VY x [ BE) ifs > L (3.12)
i€ln

From Theorem 23.3 in [Dau88] it follows that there exists s € (0,1)\{3} such that A :
V N HF$(Q) — Y is an isomorphism, and thus condition A5 holds for this particular
s. The optimal s depends on the opening angles of €2, the boundary conditions and
the coefficient matrix A and can be calculated from a nonlinear eigenvalue problem, see
e.g. [MNP91, Dau88|. For example, if Q is a two dimensional polygon and the interior

opening angle between Dirichlet and Neumann boundary satisfies £(I'p,I'y) < 7 and if

1
)
[Kne04]. If again A is symmetric and if Q € R? is a polyhedral domain with Lipschitz
boundary and with 9Q = T'p, then there exists 6 € (0, %) such that A5 is satisfied for

s =146, [KMS8Sg].

A is symmetric, then A5 holds for every s € (0, 5), see the estimates of eigenvalues in

Corollary 3.4. Under the above assumptions on 2, I'p, Ty and s € (0,1)\{3} it fol-
lows that for every f € LP(S;Yy), Hp € LP(S;H'5(Q)) and 20 € H*(Q) we have
u € LP(S; H5(Q)) and z € WHP(S; H(R)).

Finally, if Q ¢ R¢, d > 2, is a bounded convex domain with 9Q = I'p and if u is scalar,
then A : H}(Q) N H%(Q) — L?(Q) is an isomorphism [Gri85] and we have Corollary 3.4
with s = 1 and Yy = L?(Q).

Example 3.5 (Elasto-viscoplasticity). Here, we consider system (1.1)—(1.3) with a Lip-
schitz continuous function ¢ : RY — RY and with 9Q = I'p. Assume that the material
tensors A and B from (1.1)—(1.3) satisfy: A € Lin(R%X4; R9*d) " A symmetric and positive

Sym> —sym

definite and B € Lin(RN;ngXnﬁl). We define A : HY}(Q) — H1(Q) = (HLQ)) via

(Au,v) = — [, Ae(u) : e(v) dz for u,v € H}(Q). Condition Al is satisfied due to Korn’s

inequality.



Assume that 99 is smooth enough such that for some s € (0,1] the mapping A :
VN HY(Q) — H5~Y(Q) is an isomorphism. For example, if 9 is C1''-smooth, then one
may choose s = 1. If  is a two or three dimensional polyhedral domain with Lipschitz
boundary and if A is the coefficient matrix for isotropic elasticity, then again from the
work by Dauge in combination with [KM88] it follows that there is a 6 € (0, 1] such that
we may choose s = % + 6. Like in Example 3.3, the optimal s depends on the opening

angles near the edges and vertices.

Corollary 3.6. Under the above assumptions and with zg € H*(Q), f € LP(S; H~1(Q))
and Hp € LP(S; H*5(Q)) we have u € LP(S; H*4(Q)) and z € WHP(S; H*(R)).

Let us note that the viscous models studied by Sofonea et al., see for example [FHSV01,
IS93], can be reformulated in the form of (1.1)—(1.2) with an evolution law of the type
Oz = g(Vu, z) with a Lipschitz continuous function g. Therefore, Corollary 3.6 is valid

for these models.

Example 3.7 (Smooth inclusions). Let 1, Q@ C R? be bounded domains with C"!-
smooth boundaries and Q; € Q. Let Qy = Q\Q; with T' := 991 N 9Qs. Assume that
the coefficients A and B satisfy Al and A2 and that their restrictions to the subdomains
Q); are constant. Consider the spaces H = HY(Q), V = H}(Q), Z = L*(Q) and define
Hy={uec H(Q);ulg € H*(Q)}, Vi=VNH, Z1 ={z € Z; 2|, € H (%)} and
Yy = L2(Q) x H%(F) Let furthermore A:V — V' and B: Z — V' be defined as in (3.2)
and (3.5). Observe that A : V; — Y] and B : Z; — Y; are well defined and bounded. From
regularity theory for elliptic problems with smooth inclusions it follows that A : 1V — Y;
is an isomorphism. Hence, Corollary 2.3 is applicable to the time dependent problem
(3.7)—(3.9). We refer to [NS94, NS99, CDN99, Kne04, Nic93] for more information about

the regularity theory of elliptic problems with nonsmooth coefficients.

4 Example: Convergence rates based on regularity results

In this section we illustrate how the regularity of solutions affects the convergence rates of
numerical schemes. First, we provide an estimate concerning the convergence rate when
discretizing the problem with a standard FE-method in space and an implicit Euler scheme

in time. The predicted convergence rate is then verified for an explicit example.

4.1 An error Estimate

At first we derive an estimate for a semi-discrete version of (3.7)-(3.9). Let Hy C H,
Vi, =V NH,and Zy, C Z be closed subspaces of H, V and Z, where the spaces H, V' and

Z are chosen as in (3.1). In the notation of Section 3.1 the discrete model reads: Find

10



up, € LP(S;V},), 2z, € WHP(S; Zy) such that for t € S

Anun(t) — Bz () = Fi(t) in V7, (4.1)
Ozn(t) = G(un(t) + Hpn(t), 2n(t)) in Zp, (4.2)
zp(0) = 20,h; (4.3)

where the operators Ay, and Bj, are defined as
(Anun, vr)vy v, == (Aun, vp)vry for up, vy, € Vi,
<Bh(zh)’vh>\/}i,vh = —/ B(Zh) : Vo dx  for zp € Zp, vy, € V.
Q

In addition to A1-A4 we assume that the nonlinear operator G has the mapping property
G(Vi, Zy) C Zy. For example this is guaranteed if V}, consists of continuous and piecewise
affine functions and if the elements of Z; are piecewise constant. The discretized data

shall satisfy

A6 fh € Wl’p(S; Vf{), HD,h € Wl’p(S; Hh), (Fh(t),?)> = (fh(t),1)> —CL(HDJL,U) forv € Vh,
and 2o, € Zp.

Theorem 2.1 implies the existence and uniqueness of solutions u, € WP(S;V}) and
2, € W2P(S; Z3,) of the discretized problem (4.1)—(4.3). Let

r(t,h) = [lz0 — 20nll ; + inf [[u(t) —vplly + [[F(E) — Fu(@)lly,
VR EVR h

+ [t ulr) = vally + 1Ho(r) = Hoa(r)l ydr. (44
0

v EVR

The next proposition is an application of Cea’s Lemma:

Proposition 4.1. There exists a constant k > 0 such that for a.e. t € S and all V}, and
Zy, the solutions (u, z) of (3.7)~(3.9) and (up, zxn) of (4.1)—(4.3) satisfy:

1w = un)®)lly + 1(z = 2) (D)l z < Kr(Eh).
Proof. By Cea’s Lemma it follows from relations (3.7) and (4.1) that for a.e. t € S it
holds
Itw = un) Dy < 1 (I = z)Ollz + 15 @) = Fu@)lly; + it Jlult) =vlly ), (4.5)

and the constant ¢; is independent of ¢ and the subspaces V}, and Z;,.
Multiplying (3.8) and (4.2) with (z—2z3)(t) (here we use the assumption that G(V},, Zp,) C
Zy,) and using the Lipschitz continuity of G, estimate (4.5) and Young’s inequality, we

arrive at

1d .

5 Iz - @)Wy < Cz(vlgvfh lu(t) = ol + 1Hp(t) — Hpa(t)3 + (2 — 2) (0)]1%).
The Gronwall Lemma now leads to the desired result. O
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For the time discretization we use an implicit Euler method. Let N € N be the number
of time steps, Aty = T/N the time step size, and t{fv = kAty. For given zyj € Zj let
u%N = A1 (F(0) + Bp(20,)). For 1 <k < N the pair (uZ’N,z}]j’N) € Vi, X Zy, is defined

as the solution of

Apup™ = Bu(zp) = Fa(t)) in Vy,, (4.6)
(N = ) =GN + Hp (), 2Y)  in Zp. (4.7)

The next proposition gives the full error estimate:

Proposition 4.2. Let f € W'P(S; V'), Hp € WYP(S; H) for some p € (1,00] and assume
that A6 is satisfied. There exist constants k > 0 and Ny € N such that for all N > Ny,
1 <k < N and all solutions (ui’N, z,'f’N)lngN C Vi X Zy, it holds with r(t,h) from (4.4):

k,N k,N
() = wy ™y + 1208 = 27|, < 5 (At lznllwace(siz) + (), (4.8)
and there exists a constant ¢ > 0 such that for all Vi, and Z), it holds ||z 200 (5.7 < €

Proof. The last statement of the proposition follows from Proposition 4.1 and the Lip-

schitz continuity of G. In order to prove (4.8) observe that it holds

lute) = willy + =) = =]l

< ulte) = un(te)||y + || 2(te) = 20 (te) ||, + [lun(te) — ui |l + |20 (te) — 2], (4.9)
The first two terms are estimated in Proposition 4.1. From (4.1) and (4.6) it follows that
Jun e — ol < exllon(e) — 25, (4.10)

and the constant is independent of A and N. From the Lipschitz continuity of G and

estimate (4.10) it follows by standard arguments that the discretization error
R (Y, Dtn) o= (Atn) ™! (2n(t) = 2n(tho1)) — G (up™ + Hp n(t), 2n (1))
satisfies
Rt At ||, < ca(Dtn lznllwzoe(s.z) + |20 () — 2N, (4.11)

Hence, taking into account relation (4.7), we obtain with (4.11) and for Aty < C~1, where
C= OLip(g) + co, that

lan () = 24N, < (1= AtwC) ™ (lzn@iln) = 2N + ea(Btw) lznllipzce s,z ) -
After recursion this yields
zn () = 2V, < exp(€T) (||20(0) = 2h ], + Dt 2 Izl (siz) ) -

Combining the last estimate with (4.9) and (4.10) finishes the proof. O
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Figure 1: Domain €2

4.2 The numerical example

Let Q C [~1,1]2 be an L-shaped domain, see Fig. 1. The problem under consideration is
tofindu:95x0Q—=R, z:5 xQ — R such that:

div (Vu(t,z) — z(t,z) (§)) = in S x Q, (4.12)
Oz(t,x) = (81u —2z), inSxQ, (4.13)

u(t,z) = hp(t,z) on 092, (4.14)

2(0,2) = zo(x) in Q, (4.15)

where hp(t,z) = h(t) ré sin (20), h(t) = max{0, (t — 2)3} sin(%t) and (r,¢) denote polar
coordinates. Observe that hp € W1°(S; H? (0€2)). The function g : R — R is chosen as
g(s) = max{0;s — 1} + min{0; s + 1}. For this setting obviously the assumptions Al to
A4 are fulfilled and Proposition 4.1 and 4.2 can be applied.

As already discussed in Example 3.3 there exists s € [0, 1] such that the Laplace operator
with Dirichlet boundary conditions is an isomorphism between the spaces H'**(Q) N
H}(Q) — Y, with Y as in (3.11). For the considered L-shaped domain, we may choose
s = 2§ for arbitrary § > 0, [Gri85]. Hence the solution of (4.12)-(4.15) has the regularity
u € WhHee(s; H1+%_6(Q)) and z € Wl’oo(S;H%_‘S(Q)) for every 6 > 0.

In order to compute the solution of (4.12)—(4.15) numerically the domain €2 is discretized
with a sequence of regular triangulations 7, in triangles (see Fig. 1 for the initial mesh).
To reveal the influence of the regularity of the solution on the convergence rate, the meshes
are not refined towards the origin, where the solution develops a singularity.

The spaces Hj, and Zj, are chosen as Hy, = {v € H'(Q); V7 € T, U|T € Pi(1) }, where
P1(7) consists of the affine functions on 7, and Z), = {z € L*(Q); V7 € T;, z|_ = const }.
With this choice, the mapping property G(Vj, Z) C Zp, of Section 4.1 is valid.

Combining the error estimate (4.8) with estimates for the interpolation error of H!*$-
functions (see e.g. [BS94]) and assuming that 2(0) = 2;,(0) = 2Y), we obtain the following
estimate for the convergence rate

s (futef) b+ [0~ ) < motx bR @16)

Here h = max,c7, diam(7) is the mesh size, Aty the time step size and, in the above

example, s = % — 0 with § > 0 arbitrary.
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Nz+1

Elements of h; H H NZ“ S;
hist |l o) hin [l 2()
12 3.0620 0.8459 0.5861
48 2.0336 0.5697 0.7382
192 1.2028 0.3578 0.6919
768 0.7539 0.2122 0.6838
3072 0.4694 0.132 0.6286
12288 0.2958 0.0932 0.6901
49152 0.1858 0.0553

Table 1: Computed convergence rate s;

In the experiment we consider a sequence of step-sizes h; = 2=+ 1, and choose At; =
h; with s = % in order to obtain similar convergence rates in space and time. Since an
explicit solution of the problem is not known we approximate the convergence rate s for

k = N through the expression

o Nita Ny _Nipa
H hivt [ g1 + th‘ “hit || 12(q)
siln2 =1In (4.17)
N'L+1 _ 'L+2 ZN'L+1 _ 1+2
z+1 z+2 hi i+1 1+2 L2 (Q)

Tabular 1 shows the values of s; for our example calculated with Comsol Script. The

resulting convergence rate s; is ~ %, which coincides with the predicted rate.
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