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ABSTRACT. We study second order equations and systems on non-Lipschitz domains including mixed
boundary conditions. The key result is interpolation for suitable function spaces.

1. INTRODUCTION

In this paper we first establish interpolation properties for function spaces that are related to mixed
boundary value problems. Afterwards, from this and a fundamental result of Sneiberg [52] we deduce
elliptic and parabolic regularity results for divergence operators.

In recent years it became manifest that the appearance of mixed boundary conditions is not the ex-
ception when modelling real world problems, but more the rule. For instance, in semiconductor theory,
models with only pure Dirichlet or pure Neumann conditions are meaningless, see [50].

One geometric concept, which proved of value for the analysis of mixed boundary value problems, is
that introduced by Gréger in [23] (compare also [47] and references therein). It demands, roughly
speaking, that the domain under consideration is a Lipschitz domain and that the ’Dirichlet part’
D C 09 of the boundary is locally separated from the rest by a Lipschitzian hypersurface within
0f). (For a simplifying characterisation in the most relevant cases of two and three space dimensions
see [26].) Within this concept, several properties for differential operators, well-known from smooth
constellations, were re-established. This concerns elliptic regularity (in particular Hélder continuity)
[283], [20], [22], [26], maximal parabolic regularity [21], [27], [28] and interpolation [19].

Gréger’s concept covers many realistic constellations occurring in real-world problems; and the pro-
cedure of proof for the above listed results was always this: localise the problem and then pass via
bi-Lipschitz diffeomorphisms and (if necessary) by reflection to a corresponding — homogeneous —
Dirichlet problem of the same quality. Take the information, known for the Dirichlet problem, and go
back.

In this paper we, for the first time, dispense the Lipschitz property of the domain as concerns interpo-
lation of the corresponding function spaces, and, additionally, pose a condition on the Dirichlet part of
the boundary which is extremely general; in particular it is far beyond Gréger’s condition. The possibil-
ity to do this rests on a new extension result, which allows to extend functions, defined on the domain
(2 and possessing a certain boundary behaviour at the Dirichlet part D C 952, to the whole of RY, (cf.
Lemma 2.6 below, compare also [10]). A relevant example is contained in Figure 1.

Roughly spoken, our setting is as follows: we demand that the Dirichlet part has only to be a (d — 1)-
set in the sense of Jonsson/Wallin while its complement has to admit local Lipschitzian charts. We
think that this concept should cover nearly everything what is needed for the treatment of real-world
problems — as long as the domain does not include cracks or things like that.

The outline of the paper is as follows: in the next section we introduce some preliminaries. In Section 3
we reproduce interpolation within the sets of spaces {WW,5”(2)},ej1.00[, and, as a consequence,
in the set {TW,,"”(2) },e11.00- Rather unexpectedly, this follows directly from the pioneering results
of Jonsson/Wallin, combined with a classical interpolation principle for complemented subspaces.
Knowing only this, in Section 4 we succeed in reproducing Grdger’s elliptic regularity result from [23],
namely that an arbitrary elliptic divergence operator —V - 1V + 1 provides a topological isomorphism
between a space W;P(Q) and W, "*(Q) for some p > 2. Note that the main result from [23]
was used in some tens of papers in order to treat successfully (mostly two dimensional) problems,
stemming from real world applications. Having this regularity result at hand, one succeeds in proving
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that divergence operators of this type generate analytic semigroups on spaces ng’p(Q), as long
as p is chosen close to 2. Clearly, this can serve as the adequate instrument for the treatment of
corresponding parabolic problems, compare e.g. [29, Ch. 2], [2], [42].

In Section 5 we extend the discussion to a class of elliptic systems comprising the equations for
linear elasticity and for Cosserat models. Relying on the interpolation results it is shown that the corre-
sponding differential operators provide topological isomorphisms between WBP(Q) and ng’p(ﬂ) for
suitable p > 2. Moreover, under an additional symmetry assumption on the coefficient tensor, uniform
estimates are derived for classes of coefficient tensors satisfying certain uniform bounds. Since in the
case of systems the coercivity of the operator not necessarily entails the positivity of the coefficient
tensor, the pointwise arguments from [23] have to be modified and transferred to arguments dealing
with the whole operator. In this way also the results from [30] are extended to more general geometric
situations.

Finally, in Ch. 6, we point out a broad class of possible applications for our regularity results.

2. NOTATIONS, PRELIMINARIES

If X and Y are two Banach spaces, then we use the symbol £(.X;Y") for the space of linear, contin-
uous operators from X to Y. In case of X =Y we abbreviate £(X).

Definition 2.1. We denote the open unit cube |—1, %[d C R centred at 0, by Ey, its upper half
E, %10, 4[by EI and its midplate £4 N {x : 4 = 0} by P.

Our central geometric supposition on the domain €2 and the boundary part I" we include in the following

Assumption 2.2. ) C R¢ is always a bounded domain and I is a (relatively) open subset of its
boundary OS2. For every x € T there is an open neighbourhood Uy and a bi-Lipschitz mapping ®,
from Uy onto the unit cube E, such that @, (Q N Uy) = E, (002N Uyx) = Pand Px(x) =0 €
R,

Remark 2.3. It is well-known that the bi-Lipschitzian charts around the points from I induce the
boundary measure on €2 N (UX@UX), compare [25] and [11, Ch. 3.3.4 C]).

Definition 2.4. Let Y be a bounded domain or T = R and let D be a closed subset of Y. Then we
define

C5(Y) = {¢lr : ¢ € C*(R"), suppyy N D = 0} (2.1)
Moreover, for p € [1, oc], we denote the closure of C% () in WP(T) by W5*(T).

Remark 2.5. If {2 is a bounded Lipschitz domain, then the definition of W})’p(Q) is in coincidence with
the fact that in the space WW*(£2) the restrictions of C*°(IR%)-functions are dense.

Lemma 2.6. Let(2 and I satisfy Assumption 2.2 and set D := 02\ I. Then there is a continuous ex-
tension operator & : W' (Q) — W' (R%) whose restriction simultaneously provides a continuous
extension operator from W P (Q) — WAP(R?) forallp € ]1, 00].

Proof. Fix p € [1, 00]. Let, for every x € T the set U, be an open neighbourhood which satisfies the
condition from Assumption 2.2. Let Uy, . . ., U,, be a finite subcovering of I" and let € C5°(R?) be
a function that is identically one in a neighbourhood of I" and has its support in U := U§:1 Uy;-
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Assume 1) € O (£2); then we can write ¢ = 1) + (1 — n)1. By the definition of C%y(£2) and 7 it
is clear that the support of (1 — 7)) is contained in 2, thus this function may be extended by 0 to the
whole space R while its W P-norm is preserved.

It remains to define the extension of the function 71, what we will do now. For this, let 1y, ..., 7
be a partition of unity on supp(n), subordinated to the covering Uy, .. ., Uy,. Then we can write

mp = 2£:1 11y and have to define an extension for every function n,11. For doing so, we first
transform the corresponding function under the mapping @, to the function m = (mpmy) o <I>;r1
on the half unit cube E. Afterwards, by even reflection, one obtains a function 77777\@/1 e WhP(Ey)
on the unit cube Ej. It is clear by construction that supp(m) has a positive distance to 0F}.
Transforming back, one ends up with a function 7,17 € W1P(U, ) whose support has a positive

distance to OUy, . Thus, this function may also be extended by 0 to the whole of R?, preserving again
the WP norm.

Lastly, one observes that all the mappings W'?(U, N Q) > nnp — W e W'P(E]),
WP (ET) 2 nony — nopp € WHP(E,) and WP (Ey) 2 nop — o € WHP(Uy,) are

continuous. Thus, adding up, one arrives at an extension of 1) whose WLP(Rd)-norm may be es-
timated by c||¢|lw1.r(q) with ¢ independent from 1. Hence, the mapping &, up to now defined on

C% (), continuously and uniquely extends to a mapping from W})’p to WLP(Rd).

It remains to show that the images in fact even ly in Wllj’p(Rd). For doing so, one first observes that, by
construction of the extension operator, for any ¢ € C%5(2), the support of the extended function &1
has a positive distance to D — but &) need not be smooth. Clearly, one may convolve &) suitably in
order to obtain an appropriate approximation in the Wl’p(]Rd)-norm — maintaining a positive distance
of the support to the set D. Thus, & maps C'%y(£2) continuously into W[l,’p(Rd), what is also true for
its extension to the whole of TV ;57 (€2). O

Remark 2.7. It is clear by the construction of €& that all functions &) have their support in €2 U
U?:l Uy, Letfrom now on B C R? be a fixed ball around 0 € R* such that B D QU (Uﬁz1 Uy,).
In particular, one then has D C 90f) C B.

Remark 2.8. It is not hard to see that the operator & extends to a continuous operator from LP(£2)
to Lp(Rd), where p € [1, o0]. Using this, one can establish the corresponding Sobolev embeddings
WEP(Q) — L(S2) (compactness, included) in a straightforward manner.

Remark 2.9. Combining the mapping & with the operator that restricts any function on R? to B,
one obtains an operator that maps W[l)’p(Q) continuously into the space Wllj’p(B); we maintain the
notation & for the resulting operator.

Definition 2.10. We denote by R : W1?(B) — W1P(Q) the canonic restriction operator.

Remark 2.11. It is not hard to see that the canonic restriction operator R : W'?(B) — W?(Q)
gives rise to a restriction operator R : WSP(B) — W5P(Q) — for which we also maintain the
notation 9R. Note that € and A are consistent on the sets {IW;”(B)}ef1.00] and {57 () el oo
if ¢ > p, then | : W54(B) — WS%Q) is the restriction of | : W;"(B) — WAP(Q) and
¢ WE(Q) — WSY(B) is the restriction of & : WP(Q) — WSP(B).

Finally, one observes that, for every p € [1,00], the operators & : W57(B) — W5*(Q) and
¢ WEP(Q) — WP (B) form a retraction/coretraction pair, see [54, Ch. 1.2.4].
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FIGURE 1. A geometric non-Lipschitzian setting which fulfills our assumptions, if the
grey apex and the three shaded circles carry the Dirichlet condition

We are now going to impose the adequate condition on the Dirichlet boundary part D = 992 \ T". For
this we first recall the notion of an [-set, cf. Jonsson/Wallin [33, 1I.1.1].

Definition 2.12. Assume 0 < [ < d. Let M C R? be closed and ¢ a Borel measure on M. Then o
is an [-measure, and M is called an [-set, if there exist two positive constants ¢y, ¢, that satisfy

art < Q(B(X, r)N M) < cyr!, x € M,r €]0,1], (2.2)

where B(x, r) is the ball with center x and radius r in R%,

Let us further introduce
Assumption 2.13. D = 0Q \ I'isa (d — 1)-set.

Remark 2.14. Of course, in the case of Lipschitz domains, the boundary measure, restricted to D,
plays the role of p, compare [11, Ch. 3.3.4 C] or see [25, Ch. 3].

Since the ultimate instrument for almost everything in the next section is a pioneering result of Jons-
son/Wallin (see [33, Ch. VII]) we quote this here for the convenience of the reader:

Proposition 2.15. Let I’ C R? be closed and, additionally, a (d — 1)-set.

i) Then there is a continuous restriction operator R i which maps every space Wl’p(Rd) contin-
1

1—-1
uously onto the Besov space B,,;," (F') as long asp € |1, 00].

-

1—=
i)y Conversely, there is an extension operator £ which maps each space By,,” (F) continuously
into W1P(IR%), provided p € |1, c0].
iy The operator £ maps the space of Lipschitz continuous functions on F' continuously into the

space of Lipschitz continuous functions on R¢.
1

1—1
iv) By construction, E is a right inverse for R, i.e. RpEr is the identity operator on By, " (F),
cf. [33, Ch.V.1.3].

Proof. Only iii) is not explicitely contained in [33], therefore we give a proof here, referring to [33] for
more background and details.

The extension operator used in the theorem is of Whitney type, and we need some facts about the
Whitney decomposition of R? \ F' and a related partition of unity {¢; }. The decomposition is a col-
lection of closed, dyadic cubes (;, with sidelength 2%V for some integer N, and with mutually disjoint
interiours, such that UQ,; = R? \ F',and
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where d(Q);, F') is the distance between (); and F'. Denote the diameter of Q; by [;, its sidelength by
s;, and its center by x;, and let ()7 denote the cube obtained by expanding (); around its center with
afactor p, 1 < p < 5/4. It follows from (2.3) that

1/4l; <l < 4l (2.4)

if (); and (Q, touch. This means that ()7 intersects a cube (), only if (); and (), touch, and that each
point in R¢ \ I is contained in at most N, cubes ()7, where N is a number depending only on the
dimension d. Next, nonnegative C'>°— functions ¢, are constructed in such a way that ¢;(x) = 0 if

x & QY ¢i(x) =1,x € R\ F,and so that | D7 ¢;| < cl[lj‘ for any j, where ¢ depends on j.

Let I denote those i such that s; < 1, let o be a (d — 1)-measure on F, and put ¢; = o(B(x;, 61;))~*
Note that it follows from (2.2) and (2.3), that o(B(x;,6l;)) > 0. The extension operator used in
Proposition 2.15 is given by

e = 0es [ S)delt), xR\ E 25)

el

and Erf(x) = f(x),x € F.

Let x and y be in cubes with sides < 1/4, then > ¢;(x) = > ¢x(y) = 1. Using this, one obtains,
for any constant b,

£rf09 =0 =326 JARCICRUIO! )
and taking b = Er f(y)

£rf(0) = Erf() = 12 oo ear | /| oy, U0 = )t

(2.7)
We also have
P(ErN() =3 Do o f e 29
t—x,;|<6;
and, for | j| > 0, since then > D7¢;(x) = 0, so we can subtract Ex f () from the integrand,
e =S Pantees [ [ (06l @9
t—x; <6l S—Xp <61k

Assume now that f is Lipschitz continuous with Lipschitz norm 1. Let x € @,, y € @),, where,
say, s, > s, and assume first s, < 1/4.1f |[x — y| < [, /2, then by the mean value theorem
f(x) = f(y) = V(&) - (x—y) for some & with |x — £| < [,/2. Take k so that { € Q. Now we
use, if s, < 1/4 (otherwise, see below), (2.9) with x and y equal to £, and recall that if ¢;(£) # 0,
then (); and (), touch. For nonzero terms we then have, for t and s in the domain of integration,
It —s] < |t — x| + [ — x| + |xe — x| + |x% — 8| < 7l + 21, + 7y, and also, by (2.4),
that, [; and [}, are comparable to [,.. Recalling that 0 < ¢; < 1, |D7¢;| < cl; !, || = 1 and using
|f(s) — f(t)| < |t — s|, one immediately obtains | D7 (£ f)(¢)| < ¢, |j| = 1, so

EF(x) = EFY)] < elx —yl. (2.10)
If |x —y| > 1,/2, we use (2.7) together with the observation that now |t —s| < |t —x;| + |x; — x| +

x =y 41y =yl +lye —s| S TL+ L+ 1+ Tl + [x — y| <58l + [x —y| < cJx —y|if p(x)
and ¢(y) are nonzero, and obtain again (2.10). If instead y € F' we get the same result using (2.6)
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withb = f(y)and [t —y| < |t — x| + |xi = x| + |x —y| < Tl + 1, + |[x — y| < ¢|x —y], since,
by (2.3), 1, < [x —yl.

If s, > 1/4, or s, > 1/4, we can no longer use (2.9), (2.7), and (2.6). In the case |x — y| < [,,/2,

(2.8) together with | f| < 1 gives the desired estimate | D?(Ef)(¢)] < cl;! < ¢, |j| = 1. Using (2.5)
we see that |€ f| < ¢ everywhere, which in particular implies (2.10) in the remaining cases. O

Remark 2.16. The proof of iii) does not require much about the measure g¢. The only thing needed is
that the measure of any ball with center in F’ is positive, which in particular holds for any [-measure g,
0<il<n.

1—1
Remark 2.17. Since the detailed structure of the Besov spaces By,,” (F') is not of interest here, we

refer to [33, Ch. V.1] for a definition.

In the sequel we consider in our case I = D the restriction/extension operators R /€ not only on
all of R?, but also on the ball B. Since D C B and the restriction operator R, takes into account
only the local behaviour of functions near D, £p remains a right inverse of R p in this understanding.
In this spirit, we also maintain the notations £p, R p.

Definition 2.18. We use the symbol Wll)’p(B) for the space
{sp) € WHP(B) : Rpy = 0a.e. on D with respect to o},
cf. Definition 2.12.

It is a natural question whether W (B) = W5*(B) holds. An affirmative answer for our situation
will be given in Theorem 3.2.

3. INTERPOLATION

In this section we establish the interpolation results that are well-known for R or smooth domains, for
the spaces W;”(9).

What is of use for us from the Jonsson/Wallin result is the following: the right inverse property of £p
for Rp implies that EpRp : WHP(B) — WP(B) is a (continuous) projection. Furthermore, it is
straightforward to verify that EpRpp = 0, iff Rpe = 0. This implies that ¢ € W}J’p(B), if and
only if ¢ € W'P(B) and (1 — EpRp)p = ». Consequently, the operator P := 1 — EpRp is a
(continuous) projection from W*(B) onto Wj;"(B).

The existence of the projector P allows to deduce the desired interpolation properties for the spaces
WB’)(Q) by purely functorial properties.

Theorem 3.1. Letp € |1,00[ andlet D C B be a(d— 1)-set. Then the spaces W;" (B) interpolate
according to the same rules as the spaces Wl’p( B) do.

Proof. Let P be the projection from above. Since, for any p € |1,00[, P maps W'?(B) onto
W5 (B), interpolation carries over from the spaces TW'?(B) to the spaces W,*(B) by a classical
interpolation principle for complemented subspaces, see [54, Ch. 1.17.1]. [

In order to obtain this also for the spaces W57 (€2), we will prove the following:
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Theorem 3.2. Let B C R? be a balland D C B be a (d — 1)-set. Then the spaces W " (B) and
W5 (B) in fact coincide for p € |1, 00|,

Proof. The inclusion W;*(B) € W*(B) is implied by the Jonsson/Wallin result: all functions from
C'%(€2) vanish in a neighbourhood of D and, hence, have trace 0 on D. Since the trace is a continu-
ous operator into L' (D; p), this remains true for all elements from Wl’p(Q).

Conversely, assume ) € W1 (B), and let w be a W P-extension of 1 to all of R¢ with compact
support K. By the definition of the projector P = 1 — EpRp one has Pw zp Since w €
WEP(RY) ¢ WP(RY), there is a sequence {1/}, from C*(R%) that converges towards ¢ in the
lep(Rd) topology. Modulo multiplication with a suitable cutoff function we can arrange that all the
functions 1, have their supports in a common compact set. Clearly, then P, — 731/3 = 1/3 and the
elements Py, fulfill, by the definition of P, the condition P, = 0 a.e. on D with respect to p.

We fix k and denote P, by f for brevity. Our intention is to show:
1
There exists g € C°°(R%) with supp(g) N D = P and || f — gllwrrmey < T (3.1)

By the construction of the projector P = 1—&pR p and the Jonsson/Wallin results in Proposition 2.15
the function f is Lipschitzian and vanishes almost everywhere on D. We will now show that, in fact,
it vanishes identically on D. Let x € D be an arbitrary point. Then, for every » > 0, one has
o(D N B(x,r)) > 0because D is a (d — 1)-set. Thus, in this ball there is a point y € D for which
f(y) = 0 holds. Hence, x is an accumulation point of the set on which f vanishes, and the claim
follows from the continuity of f.

Let now {(, }, be the sequence of cut-off functions defined on R, by

0, if0 <t <1/n,
Gt)=qnt—1, ifl/n<t<2/n,
1, if 2/n < t.

Note that for ¢ # 0 the values (,,(t) tend to 1 as n — oo. Moreover, one has 0 < t(/,(t) < 2 and
t¢! (t) tends to O for all t. We denote by distp : RY — R the function which measures the distance
to the set D. Note that distp is Lipschitzian with Lipschitz constant 1, and hence, from W 1:>°(IR¢)
with |V distp | < 1, see [11, Ch. 4.2.3]. Define w,, := (, o distp. Note that w,, — 1 almost
everywhere in R? when n — 0o. Moreover, since (,, is piecewise smooth, one calculates, according
to the chain rule (see [17, Ch. 7.4]),

0, if distp(x) € {%,% ;
an( ) {CI (dlStD( ))V diStD(X), else.

Since |V distp | < 1 a.e., distp Vw, is uniformly (in n) bounded a.e. and converges almost every-
where to 0 as n — oo. Let f,, = fw,. We claim that f,, — f = f(1 —w,) — 0in WP(R%). By the
dominated convergence theorem, f(1 — w,) — 0 in LP(R?) since w,, — 1. Now, for the gradient
we have

V(fo—f)=0—w,)Vf+ fVw, ae onR%
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Again by the dominated convergence theorem, the first term converges to O in Lp(Rd). It remains to
prove that || fVw,||» — 0. We have

P
dx. (3.2)

v f ‘p
P __
”f wnHLp N /Rd‘diStD

Due to the fact that f vanishes identically on D and the Lipschitz property of f, the function digtD is
bounded. Hence, again dominated convergence yields fVw, — 0in LP(Rd). The support of each
function f,, has a positive distance to the set D. Thus, it suffices to convolve a function f,, (according
to a sufficiently high index n) with a smooth mollifying function with small support to obtain g, which
proves (3.1). Thus, according to (3.1), for any ¢ > 0 there is a function £, € C°°(R?), such that

supp(&.) N D = () and

diStD an

1€l — wHWLP(B) <& — ,l;HWLP(Rd) <e. O

Remark 3.3. i) The basic idea of this proof is analogous to that in [32, Prop. 3.12].

i) Seemingly, the coincidence of the spaces W[l)’p(B) and WBP(B) is only of limited, more tech-
nical interest. This, however, is not the case: on the one hand it is often considerably simpler
to prove that a certain function belongs to the space Wl’p, compare [33, Ch. VIII.1] or [43,
Ch. 6.6]. On the other hand, it is of course often more comfortable, if one has to prove a certain
property for all elements from W})’p(B) and may confine oneself, by density, to the functions
from C¥(B).

iii) Theorem 3.2 heavily rests on the property of D to be a (d — 1)-set: suppose e.g. p > d and
assume that x € D is an isolated point. Then, for every ¢ € C%(2) one has 1(x) = 0, what
clearly extends to all ¢ € Wll)’p(Q), since the Dirac measure Jy is a continuous linear form on
WHP(€2). On the other hand, the condition R p1) = 0 a.e. on D does not impose a condition
on 7 in the point x because {x} is of measure 0 with respect to o.

Corollary 3.4. Concerning real and complex interpolation, Theorem 3.1 remains true, if there WBP (B)

is replaced by Wllj’p (B). In particular, one has for py, p1 € |1, 0] and% = 110;09 + p%

W™ (B), W5 (B)], = Wh(B) = (W5 (B), Wh™ (B))

0,p’

compare [54, Ch. 2.4.2].

Proof. The assertion concerning complex interpolation is immediate from Theorem 3.1 and Theo-
rem 3.2, which also imply the right equality. Considering real interpolation, one gets
1, , ; L,
(W5™ (B), W5 (B)),,, = (W5 (B), W5™(B)),,. 83)

0,

According to Theorem 3.1, the right hand side is some Besov space (see [54, Ch. 2.4.2]) including
again the trace-zero condition on D. It is clear that C'%y(€2) is contained in this space. What remains
to show is that C'%y(B) is also dense in this space.

Let us suppose, without loss of generality, p; > po. By definition, C'%y(B) is dense in Wé’pl(B)
with respect to its natural topology. Moreover, Wllj’p '(B) is dense in the interpolation space (3.3) (see
[54, Ch. 1.6.2]), and the topology of this interpolation space is weaker than that of Wll)’p1 (B). Hence,
C% (B) is indeed dense in the corresponding interpolation space, or, in other words: the interpolation
space is the closure of C'y (B) with respect to the corresponding Besov topology. 0
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Theorem 3.5. Let Assumptions 2.2 and 2.13 be satisfied. Then complex and real interpolation be-
tween the spaces of the set {W[l,’p () } pet 0] acts as if one formally replaces Q2 by B and D by 0B.
In particular, one has for py, p1 € |1, 00| and% = 11);00 + pil
1, 1, 1, 1, 1,
[WDPO(Q)v WDm(Q)]g =Wph(Q) = (WDPO(Q>7 WDm(Q))O,p’
Proof. Let B be the ball from Remark 2.7. Firstly, Corollary 3.4 shows how the spaces from the set
{W[l,’p(B)}pe}Loo[ interpolate. Secondly, the extension/restriction operators & /%R together with the

retraction/coretraction theorem, see [54, Ch. 1.2.4], allow to carry over interpolation between spaces
from {Wé’p(B)}pe]l,oo[ to the spaces from {Wé,’p(Q)}pe]Loo[. O

Corollary 3.6. Let W, "(Q) denote the dual of Wé’q,(Q), é + i = 1 and W;,"%(Q) denote the

space of continuous antilinear forms on W57 (), % + i = 1. Forpg,p1 € |1, 00[ and% — 1p;09 + pil
one has
51 51 £,
(W5 (Q), W, P (Q)], = W5 P (Q), (3.4)
and

(W50 (), W7 ()], = Wy #(9), 3.5

0
Proof. Concerning (3.4), one employs the duality formula for complex interpolation in case of reflexive
Banach spaces (see [54, Ch. 1.11.3]), which reads as [ X", Y], = [X, Y]}. In order to conclude (3.5),
one associates to any linear form 7" an antilinear form T}, defining (T}, 1)) := (T,4). It is clear that
the mappings 1" — 1, and T,, — T’ form a retraction/coretraction pair, thus (3.5) may be derived
from (3.4) by the retraction/coretraction theorem for interpolation. O

4. ELLIPTIC AND PARABOLIC REGULARITY

In this section we prove that alone the interpolation property of the spaces W};”(Q) — in conjuction
with a deep result of Sneiberg [52] — already leads to suitable regularity results within this scale of
spaces.

Let us first recall the definition of a scale of Banach spaces (see [40, Ch.1], compare also [54,
Ch. 1.19.4)).

Definition 4.1. Consider a closed interval I C [0,00[ and a family of complex Banach spaces
{X;}+er. One calls this family a (complex) scale (of Banach spaces) if

i) X embeds continuously and densely in X, whenever 3 > «.
i) For every triple o, 3,y € I satisfying a« < [3 < -y there is a positive constant ¢(«, 3, ) such
that for all 1) € X, the following interpolation inequality holds

=B B-a
[¥llx,; < ele, BN 1PN (4.1)

We associate to the families {157 (€2) } 1001 and {Wp 7 (2) }pep1.00f Banach scales in the follow-
ing manner

Definition 4.2. For 7 € |0, 1| we define X, := W5 (Q) and ¥, := W50 7 (q).

Lemma 4.3. Let Assumptions 2.2 and 2.13 be satisfied. Then, for all 7, 7o € |0, 1[ with 7y < To, the
families { X+ }+c[r, r] and {Y; }rcir, +,) form Banach scales.
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Proof. We show more, namely: for every o, 3,7 € ]0, 1[ with o < 3 < y one has
Xg = [Xa, Xv]ﬁ;a and Y3 = Yo, Y»Y]ﬂ—ia. (4.2)
Y- Yoo

Putting 6 := 5:—‘;‘ onehas 1 — 3 = (1 — «a)(1 —0) + (1 — 7)6. Thus the equalities in (4.2)
follow from Theorem 3.5 and Corollary 3.6. The inequality (4.1) is then the interpolation inequality for
complex interpolation. O

Throughout the rest of the paper we assume that the following is satisfied:

Assumption 4.4. 1 is a bounded, measurable, elliptic coefficient function on (). This means that
Re((1u(x)&,€)) > c|€|* for some positive constant ¢, all ¢ € C¢ and almost all x € (2.

Definition 4.5. We define the operator —V - uV : W52(Q) — W, "*(Q) by

_ 1,2
(—V - uVo, w>W51,2(Q) = /Q,qu Vo dx, v,we W5 (). (4.3)
In the sequel, we maintain the notation —V - 'V for the restriction of this operator to the spaces

W[l,’p(Q) incase of p > 2. If p < 2 and p* denotes the adjoint coefficient function, we define the
operator —V - uV : W5P(Q) — W, P(Q) as the adjoint of =V - 11*V : W57 (Q) — W, (Q).

Remark 4.6. When restricting the range space of the operator —V - 1V to L?(2), one obtains an
operator for which the elements ¢ of its domain satisfy the conditions ¢|39\p = 0 in the sense of
traces and v - V¢ = 0 on I' in a generalized sense — v being the outward unit normal of the
domain, compare [5, Ch. 1.2] or [13, Ch 11.2]).

In this spirit, the operator —V - 'V shall be understood as one with mixed boundary conditions — as
announced in the title.

Theorem 4.7. Let Assumptions 2.2, 2.13 and 4.4 be satisfied. Then there is an open interval [ > 2
such that the operator

—V - uV 4+ 1:WE(Q) = W, (Q) (4.4)
is a topological isomorphism for allp € 1.

Proof. We know from Lemma 4.3 that the families { X };c(a,5) and { Y7 } rc(a,g With o, 3 € |0, 1] form
complex interpolation scales. The mapping in (4.4) is continuous for all p, due to the boundedness of
the coefficient function p, what is to be interpreted as the continuity of

VouV4+1:X, >Y, (4.5)

for all 7 € 0, 1[. Lastly, the quadratic form W;*(Q) 3 ¢ = [, uV1p - Vb + [¢|? dx is coercive.
Hence the Lax-Milgram lemma gives the continuity of the inverse of (4.4) in the case of p = 2. In the
scale terminology, this is nothing else but the continuity of (—V - uV + 1)7! : Y, — X, in case
of T = % A deep theorem of Sneiberg ([52], see also [4, Lemma 4.16] or [53]) says that the set of
parameters 7 for which (4.5) is a topological isomorphism, is open. Since 1 is contained in this set, it

2
cannot be empty. OJ

Remark 4.8. i) Again interpolation shows that the values p, for which (4.4) is a topological iso-
morphism, form an interval. Due to the Sneiberg result, this interval is an open one.

ii) If 1 takes real, symmetric matrices as values, then the maximal restriction of —V - 1V to L?(2)

is selfadjoint. Hence, the interval I must be of the form I = |g, qqu[ in this case, because with

q also the number q%’l is contained in 1.
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It is well-known that the interval I depends on the domain {2 (see [32], [6]) and on 1 (see [45]
or [44]), and on D (see [47]). The most important point is that the length of I may be arbitrarily
small, see [9, Ch. 4] for a striking example. Even in smooth situations it cannot be expected that
4 belongs to I, as the pioneering counterexample in [51] shows.

If M is a set of coefficient functions p with a common L bound and a common ellipticity
constant, then one can find a common open interval 1y, around 2, such that (4.4) is a topological
isomorphism for all x € M and all p € I,,. Finally, one has

sup supH(—V-uV+1 < 00.

>71||
W*LP.lep
Ipm peM £Wp W)

The proof of this is completely analogous to [24, Thm. 1].

It is interesting to observe that in the case of two space dimensions Theorem 4.7 immediately
implies the Holder continuity of the solution as long as the right hand side belongs to a space
W;,"P(Q) with p > 2. The question arises whether this remains true in higher dimensions, if p
exceeds the corresponding space dimension — despite the fact that the gradient of the solution
does only admit integrability a bit more than 2 in general. We will prove — by entirely different
methods —in a forthcoming paper [49] that this is indeed the case, at least for space dimensions
up to 4.

Corollary 4.9. i) Under the same suppositions as in Theorem 4.7

i)

Proof.

—V -V 4+ X WE(Q) — W, P (Q) (4.6)

is a topological isomorphism for allp € I, if —\ € C is not an eigenvalue of —V - V.
If, in particular the boundary measure of DN (Uxef UX) is nonzero, then 0 is not an eigenvalue
of =V - uV.

i) According to Remark 2.8, the embedding W,7(Q) — LP(Q) — W,;'?(Q) is com-
pact. Thus (4.6) can only fail to be an isomorphism, if —\ is an eigenvalue for —V - 1V, accord-
ing to the Riesz-Schauder theory, cf. [36, Ch. 111.6.8]. Observe that an eigenvalue for =V - 4V,
when considered on ng’p(ﬂ) for p > 2 is automatically an eigenvalue when —V - 'V is
considered on WEI’Q(Q). Since all eigenvalues are real, the assertion for p € I N1, 2[ follows
by duality.

Assume that this is false, and let w € domy, 1.5 (V- V) C W *(€) be the corresponding
eigenfunction. Then, testing the equation —V - uVw = 0 by w, one gets

0= (—V - pVo, w) > c/ [Vo||? dx,
Q

thanks to the ellipticity of 1. Hence, w has to be constant on 2. But, if the boundary measure
of DN (Uxef Ux) is nonzero, the nonzero constant functions cannot belong to WL‘%’2(Q) and,

hence, not to domwgl,p(m(—v -uV) C WZ}’Q(Q)- U

In the sequel we are going to show how to exploit the elliptic regularity result for proving resolvent
estimates for the operators —V - 'V, which assure the generator property for an analytic semigroup
on suitable spaces ng’p(Q). It is well known that this property allows to solve parabolic equations

like

W=V pVu =i u0) = u,
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where the right hand side f depends Holder continuously on time (or even suitably on the solution
itself), see [42] or [29]. Since we proceed very similar to [24] we do not point out all details but refer to
that paper.

Theorem 4.10. Let Assumptions 2.2, 2.13 and 4.4 be satisfied. Suppose, additionally, that Q) C R% js
a d-set. Then the following assertions hold true.

i) There is an open interval J > 2 such that the operator V - 41NV generates an analytic semigroup
onW,"*(Q), aslong asp € J.
ii) If M is a set of coefficient functions (. with common L*° bound and common ellipticity constant,
one can find — in the spirit of j) —a common interval J, for all these © € M.
iiiy There is an interval J > 2 such that for allp € J one has resolvent estimates like

C
< —
1+ |l

which are uniforminpu € M,p € Jyand X € Hy := {9 € C: Re(v) > 0}, i.e. the same
constant c may be taken for all these parameters.

-1
I(=V -V +1+2) "l av-roq) (4.7)

Proof. Assertion iii) implies points i) and ii), so we concentrate on this. Concerning the p’s above 2
one proceeds exactly as in [24]: Let I, := [2, py] be a closed interval, such that (4.4) is a topological
isomorphism for all p € I,. Due to Remark 2.8, the embedding W;*(€2) < LP(€) is compact for
every p € |1, 00[. Thus the resolvent of —V - 1V is compact on every space ng’p(Q), as long as
p € Iy. Moreover, no A € —H  is an eigenvalue of —V - 4V + 1, when this operator is considered
on W, ?(Q) with p € [2, oo[. Thus, the Riesz-Schauder theory tells us that

V-V 414+ X WE(Q) — W, P(Q) (4.8)
is a topological isomorphism for allp € Iy and A € H,.
Defining Q := € x ]0, 1], one obtains
99 = (2 x {0,1}) U (89 x 10,1[) = (2 x {0,1}) U (99 x [0, 1]). (4.9)
We define ' := I x ]0, 1], thus obtaining
D:=090\T = (Qx{0,1})u(Dx]0,1]) = (2 x {0,1}) U (D x [0,1]).  (4.10)

Since Qis a d-setand D is a (d — 1)-set by supposition, it is clear that D is a d-set. Let us next show
that [ satisfies (mutatis mutandis) the condition in Assumption 2.2. For points from T x 10, 1], suitable
bi-Lipschitzian charts are constructed from the bi-Lipschitzian charts for Tina straightforward manner
as follows: if x € T and ®,, is the corresponding bi-Lipschitz mapping (cf. Definition 2.2) onto the unit
cube, then @, is defined by P (v, t) := (P (y), t).

What is not so easy is to construct such charts around the points from ' x {0} and from T’ x {1}. We
perform the construction for the first set, the second is treated analogously. Let, in this spirit, x € T
and U, be a corresponding neighbourhood from Assumption 2.2. We define V; := Uy x | — 1, 1]
and U, : Vi — Eguq by U (y, 1) = ($y(y), t). Clearly, then V, N Q = (U N Q) x 0, =, what
implies

xlrx(vxmﬁ):E;x}o,%[:Ed_lx}o,%[x}o,%[. (4.11)



On the other hand, (4.9) gives
~ 1
Ven o = ((U.NQ) x {0}) U ((UX NoQ) x [0, 5 D (4.12)
From this we get by the definition of W:

U, (V, N0Q) = (B x {0}) U (P x [0, % D
- (Ed_1 X }0,%[x {0}) U (Ed_1 x {0} x [0,%[)
— By x Mo, %[ x {0}> U ({0} X [o, % m (4.13)

and U, (x,0) = 0 € R The equations (4.11) and (4.13) reveal that the image sets under the
bi-Lipschitz charts are not as required in Assumption (2.2) up to now. Consequently, we are going to
modify them: Let us define «, as the linear mapping from R? onto itself which leaves the vector (1, 1)
invariant and maps the vector (0, 1) onto the vector (—1, 0). Furthermore, we define the bi-Lipschitz

mapping  : R? — R? by
Z, if ) < 21,
K(z) =
k4 (z), else.

It is not hard to see that iEQ C k(FEs,). Writing the elements y from RI*! as (Y, Yd> Yar1) with
Ya,Ya+1 € R, we define the bi-Lipschitz mapping @ : R* — R by ®(y) := (y, £(Ya; Ya+1))-

Moreover, we put ﬁx =¥ 1o (bfl(}iEdH) and EIVDX := 4 o V.. It is easily verified that then U,
and P, together fulfill (mutatis mutandis) Assumption 2.2.

The following considerations can be carried out in detail in exactly the same way as in [24], and we give
here only a short summary of the main steps. As in [24], for every A € H ., one defines a coefficient
function 1z on Qin the following manner: Let 14* be the L°°-bound for the coefficient function 1z and e
its ellipticity constant. Then we define the coefficient function for the auxiliary divergence operator on
Q) by

(1 — g5 sign(Im(A))i) sk (%), it j, k€ {1,....d},
fin(X,t) = S Hjdr1 = far1,; =0 forallj € {1,...,d}, (4.14)
fd+1,d+1 = ﬁ(ﬂ' -5 sign(lm()\))i).
One easily observes that all these coefficient functions admit a common L°°-bound and a common
ellipticity constant. Thus, Remark 4.8 iv) applies to the operators —V - iV + 1. This gives an interval
I, := [2, p1] such that the norms of the operators (—V - iV + 1)~ ! : W;’p(Q) — Wé’p(Q) are
bounded, uniformly in A € H, andinp € I;.
One associates to the problem (—V - uV + 1 + A)u = f aproblem (—V - zV + 1)u, = f) and
exploits the (uniform) regularity properties of the operators —V - ©V + 1 for an estimate
||u||W;=P(Q) < C”f”WBl’p(Q)) (4.15)

where c is independent from f and A\ € H.. We already know the isomorphism property of (4.8),
thus (4.15) may be expressed as

sup [[(=V - uV +1+ A
AEH

—1
) ||[,(W517P(Q);W115P(Q)) < 0 (416)
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forallp € Iy N I.

Finally, (4.16) allows us to deduce the estimate

)\selgi IA|[(=V - 1V + 1+ )\)71||L(W51,p(m)

= sup [ AM(=V - pV + 1+ )\)*1H£(W51,p(

AeH4 )
f— —_— —_— . —_— . 71

-1
S U=V iV 4 Ul cwgr@parg oy S0P [V -0V + 14 07| @)oo
+
< 0

for allp S [0 N Il-

The case p < 2 can be treated as follows: first, one gets the following resolvent estimate on W[l)’p(Q)
forp > 2:

[(=V - uV+1+ )‘)_IHL(WB”(Q))
— (=Y uV+ 1) =V uV 4+ 14+ A) (V- pV + 1
<[[(=V-pV+1

) HL(WBP(Q))

<=V oV A+ U g @y e @)

)_1 Hc(wgl"“(g);wgp(g)) H (

Since the first and third factor are finite, one can use (4.7). Then, considering the adjoint of (—V -
1V 4 1+ X)~!, which is nothing else but (=V - 1*V + 1+ X)~' on W, (Q), one obtains the
assertion for p < 2. O

Remark 4.11. The proof of the main result in [24] follows an old idea of Agmon in [1].

5. ELLIPTIC REGULARITY FOR SYSTEMS

In this section we apply the interpolation property of the W !P-spaces in order to derive p-estimates
for linear elliptic operators acting on vector-valued functions. Here, for each component a different
Dirichlet boundary might be prescribed. To be more precise, we assume the following

(A1) © C R%is a bounded domain and for 1 < i < m the sets D; C OS2 are closed (d — 1)-sets.
Let D := (", D;and ' := 9Q \ D. ltis assumed that {2 and I" satisfy Assumption 2.2.

For p € [1, c0) we introduce the space
1, 1,
Wp'(2) = H WDip<Q)
i=1

and its dual W,'?' (Q) for % + ]% — 1, Furthermore, we define the operator £, : W (Q) —
Lr(Q; CmxC™* ) by L,,(u) = (u, Vu). Given a complex valued coefficient function A € L>°(; Lin (C™ x
Cmxd C™ x C™*4)), we investigate differential operators of the type

AW (Q) = WEP(Q), A=LHAL,



The corresponding weak formulation on W57 (Q) reads (A(u),v) = JoA(vy) : (¢) dxfor
1,2
u,v € W5 (), where

(b1, By) : (by, By) = Z b b + Z Z BI*BIF

=1 k=1

for (by, By), (by, By) € C™ x C™*4, It is assumed that the operator A is elliptic. More precisely, we
assume that

(A2) There is a constant x > 0 such that for all v € W} (Q) it holds R(Av, v) > /i||v||§,w,2(m.

Remark 5.1. We recall that in case of systems of partial differential equations the positivity property
formulated in (A2) in general does not imply that the coefficient tensor belonging to the principle
part of the differential operator is positive definite. In general, this coefficient tensor only satisfies the
weaker Legendre-Hadamard condition, cf. [16]: Assume that (A2) is satisfied for A = (ﬁ; ﬁ;z)
where Ayy € Lin (C™*4 C™*%) corresponds to the principle part of the operator .A. Then there

exists a constant c,, > 0 such that for all ¢ € C™, nn € C% it holds
R(A2g®@n:E@n) > cleInl*. (5.1)

Theorem 5.2. Let (A1) and (A2) be satisfied. Then there exists an open interval J > 2, such that for
all ¢ € J the operator A : W}j’q(Q) — ng’q(Q) is a topological isomorphism.

Proof. Exactly the same arguments as in the proof of Theorem 4.7 can be applied. 0

If in addition the operator A satisfies a certain symmetry relation, then the interval J can be de-
termined uniformly for classes of coefficient tensors satisfying uniform upper bounds and ellipticity
properties.

(A3) Forall u,v € Wj*(Q) it holds (Au,v) = (Av,u).

Theorem 5.3. Let (A1) be satisfied and let M be a set of coefficient tensors fulfilling (A2) and (A3)
with a uniform upper L°°-bound and a common lower bound for the ellipticity constant « in (A2). Then,
there exists an open interval Jn; © 2 such that for all p € Jy and all A € M the corresponding
operator A is a topological isomorphism between W ;P (Q) and W ;""" (Q). Moreover, there exists a
constant cpq > 0 such that for all f € W """ (€) we have

sup {l A () lomogey s 9 € Tats A € M} < caall ooy, 52

Remark 5.4. In the case of scalar equations, i.e. m = 1, the previous theorem is also valid for
operators A which do not satisfy (A3), (see Remark 4.8). Similar arguments as in the scalar case
can be applied to the vectorial case without assuming (A3) provided that the coefficient tensor Ao
satisfies (5.1) for all B € C™*4 and not only for B = £ ® 7. In this case, the proof of the uniform
bound (5.2) relies on certain estimates that are derived using the positivity of the coefficient-tensors
(see [24]). In the general non-symmetric vector valued case, we do not see how the proof can be
generalised, if only the weaker positivity (5.1) is assumed. In the case studied in Theorem 5.3 we
derive estimates for the corresponding operators directly (and not pointwise for the coefficients) and
use the fact that for self-adjoint operators on a Hilbert space H the operator norm is given by |||, =
sup {[{T'a, a)|; a € H, [[a]| < 1}.
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Proof. Let P : W;*(Q) — W,"*(Q) be defined by P = L£*L. Due to Theorem 5.2 there exist
¢5 < 2 < qf such that for all p € [gg, ¢i] the operator P is a topological isomorphism between
WP (Q) and W,"P(€). This implies that for all £ > 0 and p € [qZ, ¢}] the operator Q;, given by
Q, = P~'(P — tA) is a bounded linear operator from W (Q) to W (). In a first step, we will
show that there exist ¢y > 0 and qo, ¢1 € [g5, ¢}] with go < 2 < 1, such that
sup || Qg llopp < p <1, (5.3)
p€Elq0,q1]

where || Qy, [|op,» denotes the operator norm with respect to the space W7 (). In the second step,
the uniform estimate (5.2) is derived from (5.3).

We start the investigation with p = 2. Observe that the standard inner product on WBQ(Q) satisfies
(u,v)12 = (Lu, Lv)g2 = (P(u),v). Hence, by (A3) the following identities are valid for u,v €
W5 (Q):

(Qiu,v)12 = (P — tA)u,v) = (P —tAv,u) = (PYP —tA)v,u)12 = (u, Qsv)1 2.

This shows that Q, is self adjoint on WBQ(Q). Moreover, taking into account the upper bound M
of the coefficient matrix A and the uniform ellipticity property, the following estimates are valid for all
u e W5 (Q):

(Quu, u)rz = (P — tA)u,u) > (1 = tM)||ullf 2
(Qut, )12 < (1= ) [ulffn ey
Thus, the operator norm || Q;||ep.2 With respect to W% () can be estimated as

1Qtllop,z = sup{[{Qeus, u) | s u € W5 (), [[ullwize) < 13
< max{|l — tM|, |1 — tk|}.

Hence, the operator Q; is a strict contraction provided that t € ]0,2/M|[. We choose now t, =
2/(k+ M) and define p = 1 — tor = (M — k) /(M + k). With this, we have || Qy, |lop2 < p < 1.

For p € [2,¢j], interpolation theory gives the estimate || Qs [/opp < ﬁlfGHQtngp’q;, where 1/p =

(1—6)/2+ 6/q;. Hence, there exist p; € ]0,1[and ¢; € ]2, ¢i] such that for all p € [2, ¢1] it holds
I|1Qtollopp < p1. Similar arguments applied to the interval [¢g, 2] finally imply (5.3).

Now, we proceed analogously to the arguments in the proof of Theorem 1 in [23]: Since the operator
Qy, is a contraction on W (), for every f € W,,'?(Q) the operator v — Qy, (v) + toP~"f has
a unique fixed point u ;. Observe that u; satisfies Au; = f. Hence, forallp € [po, p1] the operator
A is a topological isomorphism with respect to WBP(Q). Finally, since

lusllwa) = 1 Quus +toP~" fllwre) < pllugllwa@) + tocgsaf 1 f ly=12(qy:
the operator norm of A~ is uniformly bounded on [qo, ¢1], which is (5.2). O

Example 5.5. The equations of linear elasticity as well as the Cosserat-model fit into this frame-
work. In the case of linear elasticity, the vector-function u : Q@ — RY (i.e. m = d) denotes the
displacement field. Typically, the Dirichlet-boundary is the same for all components of u. Hence, we
define W(Q) = I, W5”(Q), where D C 99 is a closed (d — 1)-set. The operator of linear
elasticity is defined through the form (Au,v) = [, Ce(u) : e(v) dx for u,v € W3 (), Here,
e(u) = 3(Vu+ Vu') is the symmetrised gradient and C € L>(Q; Lin(R&x?, R2x?)) denotes the

sym ) —“sym
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fourth order elasticity tensor. It is assumed that C is symmetric and positive definite on the symmetric
matrices: for all F}, Fy € R%*4 it holds

sym
CFliFQZCFQIFl, CF1 IFlzC,{’F1|2.

In order to have Korn’s second inequality at our disposal, in addition to (A1) we assume that €2 is a
Lipschitz domain. Korn’s second inequality states that the standard norm in WBQ(Q) and the norm
Jull| == |lullr2@) + lle(w)]|r2(q) are equivalent, cf. [15] and the references therein. Moreover, if
meas(D) > 0, then standard arguments relying on the compact embedding of W3*(Q) in L*(Q)
show that also Korn’s first inequality is valid and assumption (A2) is satisfied. Hence, Theorems 5.2
and 5.3 are applicable.

In the Cosserat models, additionally to the displacement fields the skew symmetric Cosserat-microrotation-

tensor R € Rkae‘,?; plays a role. Via the relation

axl R := axl(—eq 0 :?) = (7‘?’)’

—r2 —r3 0 —T1

R2X3 is identified with R3. Assume that Dg;, Dg C OS2 are nonempty, closed 2-sets describing the
Dirichlet boundary for the displacements and the tensor R, respectively. The state space is defined as
WiQ) = [, Wl’:’(Q) x 12, W[l)f(Q) A typical differential operator occurring in the theory

of Cosserat models is given by the following weak form for (u, R), (v, Q) € W (Q):

(A(%),(0)) = / 2ue(u) : e(v) + Adivudive
Q
+ 2pu.skew(Vu — R) : skew(Vo — Q) +yVaxl R : Vaxl Q dz.

If in addition to (A1) the domain is a Lipschitz domain and if for the Lamé-constants \, y, the Cosserat-
couple modulus . and the parameter v it holds ;& > 0, 2p0 + 3A > 0, . > 0 and v > 0, then
condition (A2) is satisfied, see [48, 38], where also more general situations are discussed. Obviously,
(A3) is satisfied as well, and hence Theorems 5.2 and 5.3 are applicable.

Remark 5.6. We finally remark that on the basis of the previous example the results from [30] for
nonlinear elasticity models can be extended to the more general geometric situation discussed here
by repeating the arguments in [30, Section 3].

6. APPLICATIONS

In this chapter we intend to indicate possible applications, which were the original motivation for this
work.

It is more or less clear that the results of this paper cry for applications primarily in spatially two-
dimensional elliptic problems. We suggest that in almost all applications resting on [23] the geometric
conditions can be relaxed to those of this paper, and the results still hold, (see e.qg. [41], [8], [34], [46],
[71,[12], [18], [14], [35], [31] to name only a few).

Moreover, the generator property for an analytic semigroup gives the opportunity to deal also with par-
abolic problems. When employing the main result from [10] and then applying the classical semilinear
theory, see e.g. [29, Ch. 3], one should be able to treat also semilinear ones. Generally, the ng’q—
calculus allows for right hand sides of the equations which contain distributional objects as e.g. surface
densities which still belong to the space ng’q(Q). In particular, in the 2d-case one may even admit
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functions in time which take their values in the space of Borel measures, since the space of these
measures then continuously embeds into any space ng’q(Q) with ¢ < 2, compare also [3].

Moreover, the elliptic regularity result enables a simpler treatment of problems which include quadratic
gradient terms: the a priori knowledge Vu € L% with ¢ > 2 improves the standard information
|Vul? € L' to |Vu|? € L" with r > 1 — what makes the analysis of such problems easier, compare
[31, 39].

Let us at the end sketch an idea how one can exploit the gain in elliptic regularity in a rather unex-
pected direction: Let ¢ > 2 be a number such that (4.4) is a topological isomorphism and (4.4) is also
a topological isomorphism if 1 is there replaced by the adjoint coefficient function, then providing the
adjoint operator in L?(£2). We abbreviate A := V- iV |2(q). Itis known, see [10], that the semigroup
operators etd possess kernels which admit upper Gaussian estimates. Obviously, these kernels are
bounded, and, consequently, all semigroup operators are Hilbert-Schmidt and even nuclear. Conse-
quently, ¢34 : L2(Q) — L%(Q) admits a representation

eéA@D = Z i, fidre@) g
J

with || fillz2@) = llgjllz2@@) = 1 and 3~ |A;| < oo, see [37, Thm. 1.b.3]. Hence, et admits the
following representation via an integral kernel.

ZA es4 5 fi) L2(Q) €%Agj = Z/\j eéAgj & e%A*fj. (6.1)
J
Let us estimate the Wl’q-norm of the elements e34g; and 34" f;, respectively:
1 ia A
H€3 QJHW” < A+ D 7 e pagay, W59(Q) Jes Hc L2(Q);L4(Q H —A+1 Hﬂ(L2(Q))
since ||gj|/z2(0) = 1. Let us discuss the factors on the right hand side: the first is finite due to

our supposition on ¢ and the embedding L7({2) — ng’q(Q). The second is finite because the
semigroup operators are integral operators with bounded kernels. The third factor is bounded because
A generates an analytic semigroup on L?(2), what is well known.

The estimate for e34” f; is quite analogous, this time investing the continuity of (—A* + 1)~ :
L) — WH(S).
convergence of the series ), €%Agj ®esA f; inthe space Wh4(Q2x §2). Thus, the semigroup op-

erators have kernels which are even from 17 1(2 x ) with ¢ > 2. We will discuss the consequences
of this in a forthcoming paper.

7. CONCLUDING REMARKS

Remark 7.1. i) As the example in the above figure suggests, admissible constellations for the
domain {2 are finite unions of (suitable) Lipschitz domains, the closures of which have nonempty
intersections. Thus, generically, the boundary is the finite union of (d — 1)-dimensional Lipschitz
manifolds with the corresponding boundary measures.

i)y The W 1P-regularity result is also of use for the analysis of four-dimensional elliptic equations
with right hand side from 1/, "(2), p > 4. Namely, the information that the solution a priori
belongs to a space W,%)’q with ¢ > 2, allows to localise the elliptic problem within the same class
of right hand sides, cf. [26].
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iii) The regularity results on the spaces Wé’p(ﬂ) in case of p < 2 provide a frame where spatially
two dimensional elliptic and parabolic equations with measure-valued right hand sides can be
treated. This rests on the fact that in case of two space dimensions the space of bounded Radon
measures on €} continuously embeds into any space ng’p(Q) if only p < 2, compare also

[3].
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