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Chapter 1

Introduction

1.1 Historical introduction

1.1.1 The fourth-order differential and difference equation

Consider the family of monic polynomials { P, },ecar, orthogonal with respect to a linear func-
tional £ (see (2.5)). It satisfies a three-term recurrence relation (which we denote TTRR)
[Chihara, 1978]

- Bn)Pn('r) - ’ann—l(x)7 n 2 ]-7

= (
17P1(x):$_607

Poyi(z)
Py(z) =

where 3, and ~, are complex numbers with v, #0 Vn € N.
The rth associated of {P,}nen is the family of monic polynomials {Pr(f)}ne ~, defined by
the previous relation in which 3,, v, and P, are replaced by Bp4r, Yn+r and PT(LT), respectively,

{ Pézr)l(m) = (v — Bntr) P,(lr)(:c) - 'yn+TP,§T;)1(:C), n>1,
P ) =1,P"(z) =z — B,

The rth associated of the regular linear functional £ is, by Favard Theorem [Favard, 1935],

the unique linear functional £(") with respect to which {Pff)}ne A 18 orthogonal and satisfices
<‘C(T)’ 1> = Yr-

Let {P,,}nen be a family of polynomials, orthogonal with respect to the linear functional £
and S(L), the Stieltjes function of £ given by

S(E)(w) = S0) =~ 0

n>0

where M,, is the moment of order n of £: M,, = (L, z").
When S satisfies a Riccati differential equation

¢(2)S(z)" = B(z) S(z)* + A(z) S(z) + D(x),

where ¢, A, B and D are polynomials, then {P,},cn are called Laguerre-Hahn orthogonal
polynomials [Magnus, 1984|, [Dzoumba, 1985]. It is well-known [Magnus, 1984] that these
polynomials satisfy a fourth-order linear differential equation.



1.1. Historical introduction 9

Classical and semi-classical (continuous) orthogonal polynnomials are particular cases of
Laguerre-Hahn orthogonal polynomials, and they satisfy a second-order linear differential equa-
tion.

The rth associated Laguerre-Hahn orthogonal polynomials are Laguerre-Hahn orthogonal
polynomials, therefore they satisfy a fourth-order linear differential equation.

The search for these differential equations has been very intensive during the past few years.
For r = 1, Grosjean (1985, 1986) found them for Legendre and Jacobi families, and Ronveaux
(1988), has given a single equation valid for the first associated classical (continuous) orthogonal
polynomials.

For an arbitrary r, computer algebra packages have been very useful due to the heavy
computations involved. In this context we mention that Wimp (1987) has used the MACSYMA
[ref] package to construct the fourth-order differential equations satisfied by the rth associated
Jacobi polynomials (r in this case is integer or not). Belmehdi and Ronveaux (1989) devised
a REDUCE program in order to obtain these differential equations for the associated classical
orthogonal polynomials of integer (and fixed) order r.

Differential equations valid for the rth associated Laguerre-Hahn orthogonal polynomials
and for any integer r were given by Belmehdi et al. (1991) using the properties of the Stieltjes
function of the associated functional (see [Magnus, 1984], [Dzoumba, 1985]). Then, followed some
papers giving, in a simple way, the single fourth-order differential equation for the associated
classical orthogonal polynomials of any integer order r (see for instance [Ronveaux, 1991], [Zarzo
et al., 1993], [Lewanowicz, 1995]).

As it was the case for the associated orthogonal polynomial of a continuous variable, many
works have been done to give the fourth-order difference equation satisfied by the associated
classical orthogonal polynomials of a discrete variable.

Atakishiyev et al. (1996) have derived the relation (already known for classical continuous
orthogonal polynomials [Ronveaux, 1988]) giving the link between the first associated classical
discrete orthogonal polynomials and the starting polynomials, and used this relation to prove
that the first associated of the classical discrete orthogonal polynomials are solutions of a fourth-
order linear difference equation which can be factored as product of two second-order linear
difference equations.

Using the explicit representation of the associated Meixner polynomials (with the real as-
sociation parameter r > 0) in terms of hypergeometric functions, Letessier et al.(1996) gave
the fourth-order difference equation satisfied by the rth associated Meixner polynomials and
deduced by an appropriate limit process the difference equation for the rth associated Charlier,
Laguerre and Hermite polynomials.

This equation, thanks to the computer algebra system MATHEMATICA [Wolfram, 1993|
and the relation proved in [Atakishiyev et al., 1996] is given explicitly for the first associated of
Charlier, Meixner, Krawtchouk and Hahn polynomials [Ronveaux et al., 1998a].

The question one can ask is whether it is possible to give one fourth-order difference equa-
tion valid for the rth associated Laguerre-Hahn orthogonal polynomials including orthogonal
polynomials of continuous, discrete variable and also ¢-polynomials? The answer is yes and the
first part of this dissertation aimed at answering this question.

1.1.2 The non-linear difference equations

Here, we consider that the polynomials {P,},cnr, orthogonal with respect the semi-classical
linear functional £ is orthonormal ((£, P,P,) =1 Vn € N), thus, satisfying

Py, =ani1 Poy1 +by P+ anPyq, n >0, ag P-1 =0,
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where a, and b, are complex numbers with a,, # 0.

The coefficients a,, and b,, can be given explicitly for classical (continuous) orthogonal poly-
nomials in terms of the polynomials ¢ and 1 appearing in the Pearson differential equation,
%((ﬁﬁ) = L, satisfied by the linear functional £ with respect to which { P, },ear is orthogonal
(see for instance [Nikiforov et al., 1983] [Chihara, 1978, [Szego, 1939], [Lesky, 1985], [Koepf et
al., 1996]...).

These coefficients are also known for classical orthogonal polynomials of a discrete variable
and for g-classical orthogonal polynomials ([Nikiforov et al., 1991], [Szegt, 1939], [Lesky, 1985],
[Koepf et al., 1996], [Medem, 1996]...).

When the polynomials are semi-classical (instead of classical), except for some particular
cases, it is difficult to give, in general situation, the coefficients a,, and b,,.

The properties of the coefficients a,, and b,, as well as those of the polynomials P,, have been
investigated by many authors.

e Firstly, we cite for example Laguerre, who, in 1885, explored the properties of the orthog-
onal polynomials related to the weight function p satisfying

where R(z) is a rational function of z. He also studied Padé approximations and continued
fraction expansions of functions satisfying a differential equation of the form

W (a)f'(x) =2V (2)f(z) + Ulz),

where U, V and W are polynomials; and recovered orthogonal polynomials P,, as denomi-
nators of the approximants of f. He succeeded in showing that the orthogonal polynomials
P, satisfy the remarkable differential equation,

Wo,y" +[2V+W)e, -Welly + K,y=0,

where O,, and K,, are polynomials with bounded degrees, whose coeflicients are solutions
of certain (usually) non-linear equations which provide non-linear equations for a,, and b,
(see [Magnus, 1991] for more details about Laguerre equations).

e Secondly, we cite the works by Freud (see [Freud, 1976, 1977, 1986]) who investigated
the asymptotic behaviour of the recurrence coefficients for special families of measures by
a technique producing an infinite system of (usually non-linear) equations (called Freud
equations) for these coefficients (see [Magnus, 1991] for more details about Freud equa-
tions). For example, if the polynomials P, are related to the weight p(z) = exp(—xz*) on
the whole real line, then the Freud equations are reduced to [Nevai, 1983]

4“%(“314—1 —l—a%—l—a%_l) =n,n>2 ay=0, a} = (/)
b, =0, n >0.

It should be noted that other people found similar non-linear equations and identities (see for
instance [Laguerre, 1885], [Perron, 1929], [Shohat, 1939], see also [Nevai et al., 1986], [Magnus,
1991] for more details), but these authors did not study their solutions when no simple form
could be found.
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Using the Freud equations, Freud (1976) gave a conjecture about the asymptotic behaviour
of recurrence coefficients when the polynomials P, are related to the weight function
p(x) = |z|° exp(—|z|*) stating that :

Let a, and b, be the coefficients of the following recurrence relation

TPy =ani1 Poy1 +bp Py +anPy1, n >0, ag P-1 =0,

satisfied by the polynomials { P, },,cxr, orthogonal with respect to the weight p(z) = |x|* exp(—|z|%),
£ > —1, a > 0, on the whole real line. Then a,, and b, obey:

1y - 2

lim Tla/2)"

n
=0 [n/C(a)]t/e
Important investigations have been devoted to the proof of Freud conjecture as well as to the
study of the asymptotics for {P,},cn, the distribution of zeros, the sharp estimates of the
extreme zeros ... ([Chihara, 1978], [Freud, 1976, 1977, 1986|, [Lubinsky, 1984, 1985a, 1985b],
[Lubinsky et al. 1986, 1988] , [Magnus, 1984, 1985a, 1985b, 1986], [Bonan, 1984], [M&té et al.,
1985], [Mhaskar et al., 1984a, 1984b], [Nevai, 1973, 1983, 1984a, 1984b, 1985, 1986], [Sheen,
1984] ..., for more details see [Magnus, 1984, 1985a, 1985b, 1986]).

Later, Belmehdi and Ronveaux (1994) gave a systematic way to obtain non-linear equations
for the recurrence coefficients, valid for any semi-classical orthogonal polynomial of a continuous
variable. In fact, given a semi-classical linear functional £ satisfying %(gbﬁ) = L, where ¢
and v are polynomials, they were able to provide two non-linear equations for the coefficients
ap, by of the recurrence relation satisfied by the polynomials { P, },en associated to L, called
Laguerre-Freud equations (denomination borrowed from Magnus [Magnus 1985b, 1986]).

In the second part of this dissertation, we give a generalisation of the previous results [Belme-
hdi et al., 1994] by giving the system of two non-linear difference equations satisfied by the
recurrence coefficients; equations which are valid for semi-classical orthogonal polynomials of a
continuous and discrete variable, and also for g-semi-classical orthogonal polynomials (both of
class 1).

1.2 Summary of the main results

1.2.1 The fourth-order difference equation

1. Using the result in [Suslov, 1989], we prove the following:

Consider £ a regular linear functional satisfying Dy(¢L) = ¥ L, where 1 is a first degree
polynomial and ¢ a polynomial of degree at most two. D, is the Hahn operator defined by

flgz) — f(=)

D fl=) = (¢—Da

) x;é()’ Q7£07 Q#laqu(o) :f/(O)

Then, if { P, }nen is the monic family of polynomials, orthogonal with respect to £, then,
the first associated PY(LU of P, satisfies the fourth-order difference equation

k% Q;,n—l (1)
201 30— 1)2 42 [&-1(%@)} =0.
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Operators Q3%,_; and Q3,,_, are given by:

D1 = 020 — (L+a)da) + Yyt — Mo t))Gg + (¢ + v t) Iy,
s = (0@ + e ts)ld® AL+ (14 q) ) + Y t2lG)
—[4° A1 (d(2) + V(2 t2) + A3 (d(2) + ¢ A1)] G,
+q o) [0 Az + (14 q) dz) + ¥ t3)] Za,

Ao = —[nl Y +n— 1]% iq}, ]y = qq"_—11’ q#1, n>0, GP(x)=P(qx) VP eP,
biy = o(q'x), Yo =v(d'x), ti=t(dx), tx)=(¢— 1,

(14 q)dy) + Yy ti — Anpo tjz-

&
[

This result [Foupouagnigni et al., 1998d], is used to deduce the factored form of the differ-
ence equations satisfied by the first associated classical orthogonal polynomials of a discrete
variable [Ronveaux et al., 1998a] and also the factored form of the differential equation sat-
isfied by the first associated classical continuous orthogonal polynomials [Ronveaux, 1988].
We have used, also, this result to prove that under certain conditions on the parameters,
the first associated of little and big g-Jacobi polynomials are still classical. Moreover, we
deduce that if p,(z;a,b|q) (respectively P, (z;a,b,c;q)) denotes the monic little g-Jacobi
polynomials (respectively monic big ¢g-Jacobi polynomials), then they are related with their
respective first associated by:

1 z 1

p%”(w;a,q—GIQ) = d"¢"pul i ghaqla),
1 x 1
Pr(zl)(fv;a,qa’,aq) = a”Pn(E;a,aq,cq;q)'

2. We prove that the rth associated D,-Laguerre-Hahn orthogonal polynomials satisfy the
single fourth-order difference equation [Foupouagnigni et al., 1998e]

4
Z Ii(n,rq, iU)DZ P,Sr) =0,
§=0
where Ij(n,r,q,x) are polynomials in .

We use suitable change of variable and limit processes to extend the above result to the rth
associated Laguerre-Hahn orthogonal polynomials of a continuous and a discrete variable,
respectively [Foupouagnigni et al 1998b)].

We apply this result to compute explicitly the coefficients I;(n, r, g, x) for the rth associated
classical orthogonal polynomials (including classical continuous, classical discrete and ¢-
classical polynomials) [Foupouagnigni et al., 1998b, 1998c, 1998e].

1.2.2 The non-linear recurrence equations

We prove the following theorem (see 8.1) which is the main result of the second part of this
Dissertation.
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Theorem

The coefficients 3,, and =, of the three-term recurrence relation
Pn—i—l(x) = (SL‘ - ﬂn)Pn(x) - 'YnPn—l(x)a n>1, PO(-T) =1, Pl(x) =z — [,

satisfied by the Dj,-semi-classical monic orthogonal polynomials of class at most one, { Py, }nen,
can be computed recursively from the two non-linear equations

(2 + [271]%%)(% + Y1) = F1(g; 80, -+ Bns 115+ ),
(¢2 + [QTL + 1] %)ﬁnJrl'}/nJrl = F2(Q;50a ooy B Y1, 7'7n+1)~

1
q

3 . 2 )
¢; and 9; are the coefficients of the polynomials ¢ and ¢ (¢(x) = > ¢a?, Y(x) = > jal)
§=0 §=0

appearing in the Dy-Pearson equation, Dy(¢L) = ¥ L, satisfied by the regular linear functional
L. F is a polynomial of 2n+ 1 variables and of degree 2; and F3 a polynomial of 2n+ 2 variables
and of degree 3, with the initial conditions

Bo = M, a1 = —(0o).

(£,1)

We use suitable change of variable and limit processes to extend the previous theorem to
the D and A-semi-classical orthogonal polynomials of class at most one [Foupouagnigni et al.,
1998a]. We then give the Laguerre-Freud equations for the generalised Charlier and generalised
Meixner of class one and use these equations (numerical and symbolic computation with Maple
V Release 4) to give a conjecture about the asymptotic behaviour of the coefficients /3, and ~,
of the generalised Charlier and generalised Meixner polynomials of class one:

Conjecture

The coefficients 3, and ~, of the three-term recurrence relation satisfied by the monic generalised
Meixner polynomials of class one obey:

1 —1 —1 —1
lim <ﬂn +Mn7,u(061—|-0[2 )) =0, lim (’yn,u(n—i—al )(n + az )) =0,

and those of the three-term recurrence relation satisfied by the monic generalised Charlier poly-
nomials of class one obey:

lim (8, —n) =0, lim (y, —pn)=0.

n—oo n—oo

1.3 Outline of dissertation

In Chapter 2 we give some results and definitions on orthogonal and associated orthogonal
polynomials. We also prove some characterisation theorems for classical orthogonal polynomials.

Chapter 3 gives some useful properties of the operators A,, and Dy, and the proof of
some characterisation theorems for D, .-classical and D, ,-semi-classical orthogonal polynomi-
als; characterisation theorem which are valid (by limit processes) for the operators %, D, and
A.

Chapter 4 is devoted to the study of the D, -Riccati difference equation satisfied by the
Stieltjes function of the given associated linear functional. In particular, we prove that the affine
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D, .-Laguerre-Hahn orthogonal polynomials are the D, ,-semi-classical orthogonal polynomials
and conversely. In this chapter, it is also proved that the D, -Laguerre-Hahn orthogonal poly-
nomials can be obtained from the D,-Laguerre-Hahn orthogonal polynomials by a change of
variable.

In Chapter 5 we give the factored form of the fourth-order difference equation satisfied by
the first associated Dy-classical orthogonal polynomials and we deduce the difference equation
for classical orthogonal polynomials of continuous and of discrete variable. We also consider
the situations for which the first associated of the little and big ¢-Jacobi polynomials are still
classical.

Chapter 6 describes the method used to obtain, for the general situation, the single fourth-
order difference equation satisfied by the rth associated D, D, and A-Laguerre-Hahn orthogonal
polynomials. The coefficients of the fourth-order difference equation for classical situations are
also given explicitly.

Chapter 7 gives useful coefficients for classical orthogonal polynomials like 3,, vy, 15,1 and
T 2.

Chapter 8 presents the method used to obtain the two non-linear equations for the coefficients
of the TTRR satisfied by the D,-semi-classical orthogonal polynomials of class at most one. We
also show how these equations can be used to obtain the two non-linear equations for the
coefficients of the TTRR satisfied by the D and A-semi-classical orthogonal polynomials of
class at most one. The conjecture about the asymptotic behaviour of the coefficients of the
TTRR satisfied by the generalised Charlier and the generalised Meixner polynomials of class
one (conjecture obtained thanks to the two-non-linear equations) is also given.

The appendices I, IT and III contain the data for classical orthogonal polynomials as well as
the results on the fourth-order difference equations for classical situations.

It should be mentioned that:

e Chapter 2, devoted to the preliminaries, is based on [Chihara, 1978], [Guerfi, 1988], [Belme-
hdi, 1990a], [Salto, 1995] and [Medem, 1996].

e Chapters 3 and 4 generalise to the operator D, certain results given in the above men-
tioned references.

e The original results obtained in the framework of this thesis are presented in chapters 5,
6 and 8.



Chapter 2

Preliminaries

2.0.1 The notion of topology

We recall the notion of topology on polynomials and linear functional vector spaces. These
notions have been defined in [Treves, 1967], [Maroni, 1985, 1988], [Guerfi, 1988] and [Belmehdi,
1990a]. For these preliminaries, we shall exploit the works by Maroni [Maroni, 1988], Guerfi
[Guerfi, 1988] and [Belmehdi, 1990a].

Let P be a vector space of polynomials in one real variable with complex coefficients, endowed
with the strict inductive limit topology of the spaces P,. P, C P is the vector space of
polynomials of degree at most n. It satisfies

Pn C Pat1, n >0, P= | Pa,

n=0

and is endowed with its natural topology which makes it a Banach space.
Let P’ be the dual of P, equiped with its topology which is defined by the system of semi-
norms:
|I£]]5 = sup [ M|,
k<n

where M}, denotes the moments of the functional £ with respect to the sequence {z"},,: M} =
(L), = (L,z%). P and P’ are Fréchet spaces.
We consider V the vector space generated by the elements {ﬂDné}n (D = &) with its

n!

inductive limit topology. ¢ denotes the Dirac measure: (4, f) = f(0), f € C°(R).
Let F be the linear application:

F:V — P

n —1) . n .
d= E]dj%pﬂa — F(d) = z;]djxﬂ. (2.1)
Jj= Jj=

F verifies the following properties:
i) F is an isomorphism defined on V into P.
ii) The transpose ‘F of F, is an isomorphism defined on P’ into V'.
iii) *F =F on P’
Thus,
(F(L),d) = (L, F(d)),VL € P', Vd € V. (2.2)

15



16 Chapter 2. Preliminaries

Since {%D”(S}n forms a basis of P’ [Maroni, 1988], that is, any element £ of P’ can be
expressed as

£=5 ), " pns, (2.3)

=0 n!
it follows that

F(L) =Y (L)na™ (2.4)

n>0

V’ is therefore the vector space of formal series.

Remark 2.1 Let L(P,P) (respectively L(P’,P’)) be the vector space of continuous linear
applications defined on P into P (respectively on P’ into P'). The transpose of any element
of L(P,P) is an element of L(P',P’). We shall use this process to define certain elements
of L(P',P') basically by transposing those of L(P,P).

2.0.2 Notations

We understand by linear functional any element £ of P’ and denote by (L, P) the action of
L € P on P e P. We also denote by R the field of real numbers, C the field of complex
numbers and by A the set of integers. Henceforth, we will use interchangeably deg(¢) and deg
¢ to denote the degree of the polynomial ¢. The operator D represents the usual derivative
operator (D = %) while the Kronecker symbol ¢, ; is defined by

5 1 if n=j,
Y0 n#g

2.1 Orthogonality and quasi-orthogonality

2.1.1 Orthogonal polynomials

Definition 2.1 A set of polynomials { P, }nen is said to be an orthogonal polynomial sequence
(OPS) associated to the linear functional L € P if

deg(P,) = n, V nenN,
(L,P,Pn)=0 VY mmneN, m#n, (2.5)
(L, P,P,) #0 V neN.

Definition 2.2 A polynomial P is said to be monic if its leading coefficient is equal to one
(P = 2™ + b2t 4+ ...); and a monic polynomial family is a one in which any element is

monic.

Definition 2.3 A linear functional L € P’ is said to be regular if there exists an OPS associated
to L.

Remark 2.2 We state the following properties.

1. If L is a regular linear functional, then there exists a unique monic (OPS) associated to

L.

2. If { P, }nen is orthogonal with respect to L, then {Pp}nen forms a basis of P.
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3. Any polynomial family { P, }nen with deg(P,) =n  Vn € N forms a basis of P.

Remark 2.3 If {P,}nen is a set of polynomials with deg(P,) =n Vn € N and L a given
linear functional then the following properties are equivalent:

i) (L,Py,Pyn)=0 VmneN,n#mand (L, P,P,)#0 VneN.
it) (L,2™P,) =0 VYmneN,0<m<nand (L,z"P,) #0 VneN.

The following theorem, proved in [Chihara, 1978], gives a necessary and sufficient condition for
the regularity of a given linear functional.

Theorem 2.1 (Chihara, 1978) Let L be a linear functional and M, the moment of order n
of L defined by M, = (L, z").
A necessary and sufficient condition for the existence of an orthogonal polynomial sequence
for L is
A, #0 VneN,

where the determinant A, is defined by

My My ... M, M,
A, = det(Mj+k) 0<j,k<n =
Mnfl Mn s MQn M2n71
Mn Mn+1 ces Mn MQn

Definition 2.4 (Chihara, 1978) A linear functional L is called positive-definite if
(L,m(x)) > 0 for every polynomial w that is not identically zero and is non-negative for all real
x.

Theorem 2.2 (Chihara, 1978) The linear functional L is positive-definite if and only if its
moments are all real and A,, >0 Vn e N.

The following theorem, taken from [Belmehdi, 1990a] gives in a more general situation some
characterisations of a regular linear functional.

Theorem 2.3 (Maroni, 1987, Belmehdi, 1990a) Let L be any linear functional; then the
following properties are equivalent:

i) The linear functional L is regular.

i1) There exists a polynomial sequence { Py }nen (with deg(P,) =n  Vn € N) such that

det((ﬁ, P] Pk))ogj,kgn #0 Vne N.

iii) For any polynomial sequence {Qn}nen (with deg(Qn) =n  VYn eN),

det((£,Q; Qr))o<jk<n #0 VneN.
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Theorem 2.4 (Szegd, 1939, Belmehdi, 1990a) Given a reqular linear functional L, the monic
orthogonal polynomials (O.P.) associated to L are given by

(L, QoQo) (£,Q0Q1) ... (L£,Q0Qn-1) (L, Q0Qn)
) (L, Q1Qo0) (L,1Q1) ... (L,Q1Qn-1) (L, Q1Qn)
Py(r) = A~ : : : : : (2.6)
L, Quo1Qo) (L, Quo1Q1) oo {L£,Quo1Qn1) (L, Qu1Qn)
QO Ql anl Qn

where {Qn}nen is any monic polynomial family (with deg(Qn) =n Vn € N); and,

A} =det((£,Q; Qk)) o<jk<n, n >0,

with the convention A* | = 1.

2.1.2 Quasi-orthogonal polynomials

The notion of quasi-orthogonal polynomials was introduced in [Riesz, 1923] and extended by
Maroni and Van Rossum (for more information see [Belmehdi, 1990a]).

Definition 2.5 (Belmehdi, 1990a) Let £ be any linear functional and { P, }nen a polynomial
family with deg(P,) = n  Vn € N. {P,}nen is said to be quasi-orthogonal of order s with
respect to L if

(L, PyPy) =0, |In—m|>s,
dm E./\/, <£>Pmpm+s> 5&0-

{Py}nen is said to be strictly quasi-orthogonal with respect to L if

(L, P,Py) =0, |n—m|>s,
(L, Py Pris) 20 Yme N,

Remark 2.4 (Belmehdi, 1990a) 1. Conditions (2.7) are equivalent to

<£7$um+t+s> = O, Vm € N Vit Z 1,
Im EN, (L,2™P,.s) #0,

while (2.8) is equivalent to

m — >
{@i Patirs) =0, ¥meN, W1, (2.10)

(L, 2™ Prs) 20, VmeN.

2. 1t follows from the definition 2.5 that if {Py}nen is orthogonal with respect to L, then
{Pp}nen is strictly quasi-orthogonal of class s = 0 with respect to L(see also [Shohat,
1937]).

3. Notice that quasi-orthogonality of class s = 1 was investigated in [Dickinson, 1961] and
that the definition 2.5 was also given in [Chihara, 1957] and [Ronveauz, 1979] but without
the second condition: 3m € N, (L, Py Prys) # 0.
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2.1.3 Other definitions

Definition 2.6 Given a polynomial f € P and a linear functional L € P’, the product of f and
L, fL, is defined as

f£L : P=C
(fL,Py = (L,fP) VYPeP.

Given f an element of P, the application £ — fL belongs to L(P’,P’) and is the transpose of
the following element of L(P,P): P — fP.

Definition 2.7 (Maroni,1988) Given a polynomial g € P and a linear functional L € P’, the
product of L and g, Lg, is a polynomial defined as

n

Lg(x) = Z Z g (L, aF )l (2.11)

J=0k=j

where

n
g(z) =>_ gjal.
=0

Given a functional £, the application P — LP belongs to L(P,P). By transposition, we define
the product of two linear functionals £ and M as:

Definition 2.8 The product of two linear functionals L and M is defined by
(LM, P)=(L,MP), YP € P.
Definition 2.9 (Belmehdi, 1990a, Dini, 1988) The operator 0. is defined as
. : P—=P

P@-P©)

(0.P)(x) = {P,(gc e

(2.12)
where ¢ is a complex number.

The application 6. belongs to L(P,P).

Definition 2.10 Consider the linear functional L. From the above definition and by transposi-
tion (see remark 2.1), we define the linear functional (x —c)™1L, as

(x—c)' = P-=C
{(x—c)"'L,P) = (L£,0.P) VPcP, (2.13)

where ¢ € C.

Corollary 2.1 (Belmehdi, 1990a) For any complex number ¢, and for any linear functional
L the following holds:

(z—c)(x—c) L) =L, (=) (x—c)L] =L —(L,1)6,, (2.14)

where 0. is the Dirac measure at the point c.
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2.1.4 Dual basis

Definition 2.11 (Maroni, 1988) Let { P, }nen be a monic polynomial family with deg(P,) =
n  Vn € N.Then {P,}nen forms a basis of P and therefore generates a unique basis of P’,
called dual basis associated to {Pp}nen, denoted by {Pp}nen and satisfying

(P, Pp) =0pm VYm,neN. (2.15)
Any element £ of P’ can be expressed in this basis as (see [Roman et. al., 1978], [Maroni, 1988]):

L= (L ,P,)P,. (2.16)

n>0

Proposition 2.1 (Salto, 1995) Let L be a regular linear functional, { P, }nen the correspond-
ing monic orthogonal family and {Py}nen the dual basis associated to {Pp}nenr. We have

P

P,=
<£aPnPn>

L VYneN. (2.17)
Proof:  Let us write P,L = )¢, ;P;. We obtain
J

Cn,j = <£,Pnpj> = <£7Pnpn>5n,j
by the fact that {P,},cns is orthogonal with respect to £. Thus,

P,

P,= "

L.

2.2 Associated orthogonal polynomials

2.2.1 Three-term recurrence relation

We first give the following theorems which we shall use further to define associated orthogonal
polynomials. The first is taken from [Chihara, 1978] and the second from [Favard,1935] (see also
[Wintner,1929],[Stone,1932],[Sherman,1933],[Shohat,1938], [Peron,1957]).

Theorem 2.5 (Chihara,1978) Let L be a regular linear functional and {P,}nen the corre-
sponding monic orthogonal polynomials. { P, }nen satisfy a three-term recurrence relation
{ Poia () = (@ = Bu) Pa(®) = 3 Pa-a(@), m 21, (2.18)

= (
PQ(LB) 1,P1($) :ﬂj—ﬁo,

where 3, and 7y, are complex numbers with v, #0 Vn € N.

Proof:  Since {P,}nen is orthogonal with respect to £, it forms a basis of P (see Remark
2.2). We therefore expand the polynomial z P, on the basis { P, },en and obtain

n—2
P, = n+1+/8npn+’)/npn—1+z77n,jit)janzl, (219)
=0
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where v,, 8, and 7, ; are complex numbers.
To compute 7, j, we apply the linear functional £ to both sides of the equation obtained
after multiplying the previous one by P;, j < n — 2 to get

Mn,jloj = (L,aP,Pj) =0, j <n-—1,
with Io,, = (£, P,P,).

Considering the fact that Ip,, #0 Vn € N (see (2.5)), it follows from the above equation
that 7, ; =0, j < n — 1. Therefore equation (2.19) becomes

P, = n+1+ﬁnpn+'7npn—la n > 1.

Mimicking the approach used above to compute 7, j, but with the previous equation, we
express v, as
Tn IO,nfl = <‘Ca :EPnfan> = <£a PnPn> = IO,n 7& 0, n>1.

Hence vy, #0n > 1.
By convention one takes 9 = (£, 1). O
The converse of the above theorem is due to Favard (1935) (see also [Chihara,1978]) .

Theorem 2.6 (Favard’s Theorem) Let {3, }nen and {vn}nen be two sequences of complex
numbers and let { P, }nenr be the family of polynomials defined by the recurrence formula

{ Poi1(2) = (2 = Bn) Pal@) = 1 Poci1(z), n>1,
Po(x) = 1,P1(l‘) =T — ﬂo.

Then, there exists a unique linear functional L such that
(L£,1) =9 and (L, P,Py) =0 Vm,neN, n#m.
L is regular and {P,}nen are the corresponding monic orthogonal polynomials if and only if
Mm#0 VneN,
while L is positive-definite if and only if
By €R VneN, andy, >0 VneN.

2.2.2 The first associated orthogonal polynomials

Definition 2.12 Given a regular linear functional £ and the corresponding monic orthogonal
polynomials { P, }nenr, the first associated of the polynomial P, is a monic polynomial of degree
n, denoted by Pél) and defined by
PT(Ll)(x) _ i<ﬁ7 Pn+1($) — PTLJrl(t)
Y0 x—t
with vo = (£,1). It is understood that the linear functional L acts on the variable t.

) VneN, (2.20)

Lemma 2.1 (Chihara, 1978) The monic polynomial family {PT(Ll)}neN satisfies the three-
term recurrence relation

{ P (@) = (& — Bur) PV (@) — ymin P (), > 1, (2.21)

P (@) =1, PV (@) =2 = By,
where By, and 7y, are defined in (2.18).
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Proof:  Using the three-term recurrence relation satisfied by {P,}nen (see (2.18)) and (2.20)
we obtain

1. Pujo(z) — Prya(t)

Pé%@) = %w, Je— )
_ iw (2 = Bnt1)Pay1(x) — 1 Pu(z)
Y x—t
_ (t = Bnt1) Pusa(t) — 'YnJran(t))
T —t

= (z— 5%1)%(/3, Pnﬂ(xi — fn+1(t)>

Log, Pale) = Pult), ;0<£, Py (1)

_’YTL+17<£7
Y0
= (@ = Bur) PV (@) — 1 P (@) Vne N,

x—t

O
We deduce from Theorem 2.6 and Lemma 2.1 that there exists a unique regular linear
functional £(1) with respect to which {P,(Ll)}nej\/ is orthogonal with (L)1) = ~;.
Iterating the above process, we define the general associated orthogonal polynomials.

2.2.3 The rth associated orthogonal polynomials

Definition 2.13 Let £ be a regular linear functional and {P,}nen the corresponding monic
orthogonal polynomials satisfying (2.18).

The rth associated of the orthogonal polynomial P, is a polynomial of degree n, denoted Py(f)
and defined by

(r=1) (r—1)
e PO () = (o) P @ = Boy ()
n 5 P t

), n>0, r>1, (2.22)

with
(£ 1) =y, 7> 1,
assuming that vo = (£, 1), PT(LO) = P,, and £ = L; where L~V is the reqular linear functional

with respect to which {P,(LT_l)}neN is orthogonal: and it is understood that LY acts on the
variable t.

Lemma 2.2 (Chihara, 1978) If L is a regular linear functional and { P, }nen the correspond-

ing monic orthogonal polynomials, then, the rth associated polynomials {Pér)}nej\/ of {Pp}nen
satisfy the three-term recurrence relation

Pq§721(96) — (& = Boyr) P () — 7n+qu§,7;)1($), n>1, .
P(J(T)(x) - 17P1r)($) =xz—0G,r>0.

Proof: ~ 'We shall prove the lemma by induction on r. For r = 1, (2.23) is satisfied thanks to
Lemma 2.1. We suppose that (2.23) is satisfied up to a fixed integer r. Then using (2.22) we
obtain

) PV(L722(93) - PTEQQ(t)

(r-+1) _ 1
Pn+1 (:L’) - '7r<£ ’ T — 1

)
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_ i <£(7~) (z — ﬁn+r+1)Pr(Ql (z) — 'Yn+r+lpr(1r)(x)

Ir x—t

(= Burs ) PIL () = Ay P (),
r—1

L, PUL@) = PYL @)

= (z _/Bn+r+1)%<£( ), p— =

(r) (r)
1 r Pn ) — n t r r
—nerin- (0, D= Lo, b, )

= (@ = Butrs) DUV (@) = Yirsn P (@) Ve N

)

Thus {Py(f)}nej\/ satisfies (2.23) Vr e N. O
As consequence of the previous lemma, we claim the following known result (see [Magnus,
1984, [Belmehdi, 1990b]).

Lemma 2.3 (Magnus, 1984, Belmehdi, 1990b) The associated polynomials Pg) satisfy

PP+ _ pl) plrit) H Yeik =Tnp YREN, VreN. (2.24)
k=1
Proof:  In the first step we write (2.23) for P(+)1 and PV
Pi(x) = (2= Burr) P (@) — pmir Py (), (2.25)
PI (@) = (2= Buin) PV (@) = i PV (). (2.26)

In the second step we subtract the two equations obtained after multiplying (2.25) and (2.26)
by P and B{"| respectively,

PP — PO P = (P, RIS — P PIED),

Then relation (2.24) results by iterating the latter. O

2.3 Operators D, 7, D,, G, and D,

2.3.1 Operator D

The application P — DP belongs to L(P,P). By transposition, we define derivative of the
linear functional as:

Definition 2.14 Let L be a given linear functional, we define the D-derivative of L, DL, as

DL : P-—-C
(DL, P) = —(L,DP) VPeTP. (2.27)
Proposition 2.2 Let L be a regular linear functional, {P,}nen the corresponding monic or-
thogonal family and {Py},cn the dual basis associated to {Py}nen- If {Qn,i}nen is the dual
basis associated to the monic family {Qn1}tnen defined by

DPnJrl
n+1

Qn,l =

)



24 Chapter 2. Preliminaries

then we have
'DQn,l = —(n + 1)Pn+1.

Proof:  This follows from Proposition 3.5. a

Definition 2.15 The reqular linear functional L and the corresponding monic orthogonal poly-
nomials are said to be D-semi-classical (or semi-classical continuous) if there exist two polyno-
mials Y of degree at least one, and ¢ such that

D($L) = L. (2.28)

Moreover, if ¢ is a polynomial of degree at most two and v a first-degree polynomial, then, the
linear functional and the corresponding orthogonal polynomials are called D-classical (classical
continuous). For more details about D-semi-classical orthogonal polynomials can be found in
[Maroni, 1985, 1987], [Marcellin, 1988], [Belmehdi, 1990a] and references therein.

2.3.2 Class of the D-semi-classical linear functional

Let £ be a D-semi-classical linear functional satisfying

D(pL) = L, (2.29)

where ¢ is any non-zero polynomial and ¢ a polynomial of degree at least one. L satisfies
D(foL) = (¢Df 4+ 1 f)L, for any polynomial f.

Definition 2.16 (Belmehdi, 1990a) We define the class cl(L) of the D-semi-classical linear
functional L as

cl(L) = ( fgl)ienxl{maX(deg(f) —2,deg(g) — 1)},

where
X ={(f,g) € P*/deg(g) > 1 and D(fL) = gL}.

Proposition 2.3 (Belmehdi, 1990a) If £ is a D-semi-classical linear functional satisfying
(2.29), then L is of class s = max(deg(¢) — 2,deg(v)) — 1) if and only if

LT (el + 12, %5)]) # 0, (2.30)

C€Z¢

where Zy is the set of zeros of ¢. The complex number r. and the polynomials ¢, 1. are defined
by
(.’I) - C)¢C = ¢7 w - ¢c = (.7} - 6)1/10 + 7re. (231)

Proof:  For a proof see Proposition 3.4. O

Remark 2.5 It follows from the definition of the class of the linear functional that the D-
classical linear functional is a D-semi-classical linear functional of class s = 0.

Lemma 2.4 Let £ be a regular linear functional.
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i) If there exist two polynomials ¥ # 0, and ¢ such that

D(pL) =YL (2.32)
then ¢ is a non-zero polynomaial.

it) Conversely, if there exist two polynomials ¢ # 0 and 1 such that (2.32) holds, then 1 is
of degree at least one.

Proof:  For a proof see Lemma 3.1 (see also [Dini, 1988]). O

2.3.3 Characterisation of D-classical orthogonal polynomials

The following theorem which is a corollary of the theorem 3.1 gives some characterisations of
classical continuous orthogonal polynomials (see [Chihara, 1978],[Nikiforov et al., 1983], [Al-
salam, 1990], [Marcelldn et al., 1994], ...).

Theorem 2.7 Let L be a regular linear functional, {Py}nen the corresponding monic ortho-
gonal family and @y, the monic polynomial of degree n defined by

Bn,m Qn,m = DmPn—i—ma
with
(n+m)!

Bn,m = Ta Qn70 = Pn

The following properties are equivalent:
i) There exist two polynomials, ¢ of degree at most two and 1 of degree one, such that

D(¢L) = YL

ii) There exist two polynomials, ¢ of degree at most two and v of degree one, such that for
any integer m,

D(¢£m) = ¢m/37
<£ma Qj,an,m) = kn(sj,m Vj7n € Na (kn 7& 0Vn e N),

with the linear functional L., and the polynomial vy, defined, recursively, by

¢m+1 = D¢ + wﬂ% wo = wv
Ling1=0Lym, Lo=L

and given explicitly by

Ym(z) = me'(z) + Y (), (2.33)
Lo = ¢™ L. (2.34)

iit) There exist two polynomials, ¢ of degree at most two and 1 of degree one, such that
for any integer m, the following second-order difference equation holds:

O D*Qun + Y D Qun + Ny Qun =0 Vn € N,

with the polynomial 1y, given by (2.33) and the constant X}, ., given by
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AZ,mZ—n{w;ﬂr(n—l)%ﬁ}:—n{¢’+(2m+n—1)%ﬁ : (2.35)

iv) There exist two polynomials, ¢ of degree at most two and 1p of degree one, such that, for
any integer m, the following relation holds:

nD [Qn—17m+1£m+l] = - AZ7an,m£m vn S N, (236)

with the polynomial 1, the linear functional Ly, and the constant A, ,, given, respectively, by
(2.33), (2.34) and (2.35).

v) There exist a polynomial ¢ of degree at most two and three constants cpny1, Cnns Cnn—1
with ¢y p—1 7# 0 such that

¢DP, = Cn,n—l—lpn—H + Cn,nPn + Cn,n—lpn—b n > 1.

vi) For any non-zero integer m, there exist a sequence of complex numbers {unm }nen such
that

Qn,mfl = Qn,m + unfl,anfl,m + Unf2,anf2,m7 VneN — {0, 1}

Remark 2.6 Let us comment on the above properties.

For all m € N, the deriwative of order m, {Qunm}nen, of the family {Pnimnen is classical
and orthogonal with respect to the classical linear functional Ly, .

The functional version of the generalised Rodrigues formula [Nikiforov et al, 1983/, [Belmehdsi,
1990c], given below, is obtained by iterating the relation (2.36):

1

//Dn ¢n+m£_
+(+2m+n-1)% ( )

n—1
Qn,mQSmE =
M

2.3.4 Operators 7, and D,
Definition 2.17 The arithmetic shift operator 1, is defined by

7,: P — P
P — 7T,P, T,P(z) =Pz +w), weR. (2.37)

We denote Ty = T.
Definition 2.18 The difference operator D,, is defined by

D,:P — P

P — D,P, D P(x) = L@+ = P@)

w

LWER, w0. (2.38)

We denote D1 = A and D_1 = V. A and V denote the forward and the backward difference
operators, respectively.

The applications P — 7,P and P — D, P belong to L(P,P). We, therefore, use their
transposes to define the action of the operators 7, and D,, on the linear functionals.
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Definition 2.19 The action of the arithmetic shift operator 1, on the functional L is defined
by

(T,L,P)=(L,T_,P) VYPeP. (2.39)
Definition 2.20 Given a linear functional L, we define the D, derivative of L, D,L, as

D,LC . P—C
(D,L,P) = —(L,D_,P) VPeP. (2.40)

Definition 2.21 The reqular linear functional L and the corresponding monic orthogonal poly-
nomaals are said to be D,,-semi-classical if there exist two polynomials 1 of degree at least one,
and ¢ such that

D, (oL) = L. (2.41)

Moreover, if ¢ is a polynomial of degree at most two and 1 a first-degree polynomial, then, the
linear functional and the corresponding orthogonal polynomials are called classical discrete.

Using the above definitions, we obtain the following properties:

Proposition 2.4 (Salto, 1995)

7.0, = D,27,=D_,, D,D_,=D_,D,, (2.42)
T.(f9) = TofTug, T.(fL)=T.fT.L, (2.43)
Dw(f g) = fDu,g+71u9Duf =71ufDug+ g Dyf, (2'44)
Dy(fL) = fDuL+DyfToL="T,f DL+ DofL, (2.45)
wD,L = (T, —T14)L, (2.46)
Dw(fg‘c) = 7, wa(g[’) T, fDyg L+ Dw(fg) L, Vf,geP, VL€ P (2'47)
Notice that equation (2.42) means that:
7,0, = D,27,=D_,®, D,D_,»=D_,D,® VP cP,
7.D, = D,7.,9»=D_,®, D,D_,®=D_,D,®, Vo ecP.
Proof:  This follows directly from Proposition 3.1. O

The following lemma proves that the arithmetic shift of the associated orthogonal polyno-
mials (resp. regular linear functional) are the associated shifted orthogonal polynomials and
shifted regular linear functional, respectively.

Lemma 2.5 Given a regular linear functional £ and {P,}nen the corresponding monic ortho-
gonal polynomials, the rth associated Py(f) of Py and L) of L obey

(T, P =T, P (T, )" =T,£"  VrneN. (2.48)

Proof: ~ We shall give the proof by induction on r. It follows from Lemma 3.2 that {7, P, }nenr
are the monic orthogonal polynomials associated to 7, L.

Forr =0 (T, P) Y =T, P" = T, P, and (7, £)” = T, LO = T, L.
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Suppose that (2.48) is satisfied up to a fixed r. Then using (2.22) and the fact that £ acts
on the variable ¢, we get

(r) _ (r)
(7:0 Pn)(rJrl) (:1:) _ i<(’];, E)(r) : (7;) PnJrl) (-T) (7:0 Pn+1) >
r x—t
v w ) T —1
_ Lig g, BPh@ - P,
Tr 7 xr — (t — w)
Vr ’ TH+w—t
= 7, P7(LT+1)(£L').
Then,
(T, P)" =T,P"),  VneN, vreN. (2.49)
We use remark 2.3 to get
(T, )" (T, P)"Y) = 0 = (T, 0D T, PIHY), no> 1, r > 0. (2.50)
For n = 0 (see definition 2.13),
(T, )Y 1) = yopy = (T, £0F9,1). (2.51)

We combine (2.49), (2.50) and (2.51) to get
<(7:u E)(r+1) 7,ZZJPT(LT—H)> _ <,Zu L(r+1)’%P1§r+1)> Vn > 0.

Hence (7, E)(TH) = T, £+ thanks to the fact that {7, PT(LTH)}nEN, which is orthogonal with
respect to T, L0 forms a basis of P. ]
2.3.5 Class of the D -semi-classical linear functional
Let £ be a D,-semi-classical linear functional satisfying

Dy(¢L) =L, (2.52)
where ¢ is any non-zero polynomial and 1) a polynomial of degree at least one. L satisfies
D,(foL) = (¢D, f + ¥7,f)L, for any polynomial f.

Definition 2.22 (Salto, 1995) We define the class cl(L) of the D,,-semi-classical linear func-
tional L as

cl(L) = ( fgl)ien%{maX(deg(f) —2,deg(g) — 1)},

where
Xy = {(f,9) € P?/deg(g) > 1 and D,,(fL) = gL}.

The following proposition give a characterisation of the class of a D,-semi-classical linear func-
tional.
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Proposition 2.5 (Salto, 1995) If L is a D,,-semi-classical linear functional satisfying (2.52),
then L is of class s = max(deg(¢p) — 2,deg(v) — 1) if and only if

I (rew

C€Z¢

+ (£, %ew)|) # 0, (2.53)

where Zy is the set of zeros of ¢. The complex number r.., and the polynomials ¢, ). are

defined by
(T —C)pe=0, Y —de= (T +w—)ew + Tew (2.54)

Proof:  This follows from Proposition 3.4. O

More details about the class of a D,,-semi-classical linear functional can be found in [Salto,
1996] and [Godoy et al., 1997b].

Remark 2.7 From the definition of the class of the semi-classical linear functional, we deduce
that the D,,-classical linear functional is a D,,-semi-classical linear functional of class s = 0.

Lemma 2.6 The linear functional L is reqular if and only if T,L is reqular.
Proof:  For a proof see Lemma 3.2. O

Lemma 2.7 Let £ be a regular linear functional.
i) If there exist two polynomials 1 # 0 and ¢ such that
D, (¢L) =YL, (2.55)
then ¢ is a non-zero polynomial.

ii) Conversely, if there exist two polynomials ¢ # 0 and v such that (2.55) holds, then 1) is
of degree at least one.

Proof:  This follows from Lemma 3.1. O

Proposition 2.6 (Salto, 1995) Let L be a regular linear functional, { Py }nen the correspond-
ing monic orthogonal family and {Py}tnen the dual basis associated to {Pptnen- If {Qn,1tnen
is the dual basis associated to the monic family {Qn1}tnen defined by

A - Dan+1
Qn,l — n+1

)

then we have
D_yQun1=—(n+ 1Py

Proof:  For a proof see Proposition 3.5. O
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2.3.6 Characterisation of A-classical orthogonal polynomials

The following theorem which is a corollary of Theorem 3.1 gives a characterisation of the or-
thogonal polynomials of a discrete variable [Al-salam, 1990], [Nikiforov et al., 1991], [Garcia et
al., 1995], [Salto, 1995]. ...

Theorem 2.8 Let L be a regular linear functional, {P,}nen the corresponding monic ortho-
gonal family and Qy, m the monic polynomial of degree n defined by

By Qum = A" Py, (2.56)
with ( Y
n-+m):

Bn,m = T’ Qn,O = Pn- (2'57)

The following properties are equivalent:
i) There exist two polynomials, ¢ of degree at most two and i of degree one, such that

A(¢L) = ¢L.

it) There exist two polynomials, ¢ of degree at most two and ¥ of degree one, such that for
any integer m,

<£m7 Qj,an,m> = knéj,m (kn 7& 0Vn e N),

with the linear functional Ly, and the polynomial 1, defined, recursively, by

Y1 = Ao+ Ty, Yo =1,
L1 =T(¢Ln), Lo=L

and given explicitly by

o(x +m) — o(x) + Y(x +m), (2.58)

Lo = ﬁ oz + ) T™L. (2.59)

i11) There exist two polynomials, ¢ of degree at most two and ¢ of degree one, such that
for any integer m, the following second-order difference equation holds:

QZ)AV Qn,m + Q;Z)m A Qn,m + )‘:,m anm =0 Vne N,

with the polynomial ¥y, given by (2.58) and the constant Anm given by

1 1

Mo = iy + (1= DT} = —n (! + @m0 - 1) 2. (2.60)

2
iv) There exist two polynomials, ¢ of degree at most two and 1p of degree one, such that, for
any integer m, the following relation holds:

nV [anl,m+1£m+1] = - )\;,an,m»cm Vn € N, (261)
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with the polynomial ¥n,, the linear functional L, and the constant X, ,,, given, respectively, by
(2.58), (2.59) and (2.60).

v) There ezist a polynomial ¢ of degree at most two and three constants cnp+1, Cnn, Cnn—1
with cpp—1 7# 0 such that

¢VPn = Cn,n—i—lpn—‘rl + Cn,nPn + Cn,n—lpn—ly n > 1.

vi) For any non-zero integer m, there exist sequence of complex numbers {up mnen such
that

Qn,m—l = Qn,m + un—l,an—l,m + Un—27an—2,m7 Vn € N - {07 1} (262)
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Remark 2.8 1. For all m € N, the A-derivative of order m, {Qunmtnen, of the family
{Pptm}nen is classical discrete and orthogonal with respect to the classical linear func-
tional L,,.

2. The analogue of the functional version of the generalised Rodrigues formula [Nikiforov et
al., 1991], [Salto, 1995] given below, is obtained by iterating the relation (2.61)

m n—1 n+m
1
j=1 j:0¢’+(2m+j+n—1)% Jl;ll

3. If the linear functional L is represented by the positive weight p on the interval I =]a ,b],

(L,P)=> p(x)P(x) VPEeTP, (2.63)

zel

with 2" ¢(z) p(x)|2 =0 Vn € N, then we have the equivalence
A(PL) =YL <= A(¢pp) = Yp. (2.64)

2.3.7 Operators G, and D,
Definition 2.23 The geometric shift operator G, is defined by

gq : 7) — 7)
P — GP, G,P(x) =P(qz), ¢ #0. (2.65)
Definition 2.24 (Hahn, 1948) The q-difference operator Dy, called Hahn operator is defined
by
Dy:P — P
P(qz) — P(x)
(g— 1)z

The applications P — G,P and P — D, P belong to L(P,P). We, therefore, use their
transposes to define the action of the operators G, and D, on the linear functionals.

P — DyP, DyP(zx)= qER, ¢#0, ¢# 1. (2.66)

Definition 2.25 The action of the geometric shift operator G, on the functional L is defined by

1
(G4L,P) = 5(£,Q;P) VP e P. (2.67)
q
Definition 2.26 Given a linear functional L, we define the Dy-derivative of L, DyL, as

D,L : P—=C

1

(D,L,P) = —5<£,D1P> VP e P. (2.68)
q
Definition 2.27 Given a real number ¢ # 1 and an integer n, we define the real number [n],
by

¢" -1

]y = ,q#1, n>0. (2.69)
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Definition 2.28 The regular linear functional L and the corresponding monic orthogonal poly-
nomials are said to be Dy-semi-classical if there exist two polynomials 1 of degree at least one,
and ¢ such that

Dy(oL) =Y L. (2.70)

Moreover, if ¢ is a polynomial of degree at most two and Y a first-degree polynomial, then
the linear functional and the corresponding orthogonal polynomials are called Dy-classical or
q-classical.

From the above definitions, we state the following corollary of Proposition 3.1 [Medem, 1996].

Proposition 2.7 (Medem, 1996)

GD: = Dy DyGi=10Dy DiD,=qD,Ds, (2.71)
Go(fa) = GafGeg, Go(fL)=GqfGyL, (2.72)
Dy(f9) = [Deg+Ge9Def =GqfDeg+ gDy, (2.73)
Dy(fL) = [DyL+Dyf Gyl =Gy f Dyl +Dyf L, (2.74)

(q—1)D,L = z7G,L—L), (2.75)
Dy(fgL) = GqfDy(9L) — Gy fDyg L +Dy(fg) L, Vf,g € P, VL E P, (2.76)

Notice that the identities defined in (2.71) are valid when the operators G, and D, act on P and
also on P’.
2.3.8 Class of the D,-semi-classical linear functional

Let £ be a Dg-semi-classical linear functional satisfying
Dy(dL) =L, (2.77)

where ¢ is any non-zero polynomial and 3 a polynomial of degree at least one. L satisfies
Dy(foL) = (¢Dyf + G, f)L, for any polynomial f. We, therefore, define the class of the
D4-semi-classical linear functional £ as:

Definition 2.29 (Medem, 1996) We define the class cl(L) of the D,-semi-classical linear
functional L as

(L) = ( ffgierlXS{maX(deg(f) —2,deg(g) — 1)}

where
X ={(f,9) € P?/deg(g) > 1, Dy(fL) = gL}

Proposition 2.8 (Medem, 1996) If L is a Dy-semi-classical linear functional satisfying (2.77),
then L is of class s = max(deg(¢) — 2,deg(v) — 1) if and only if

LI (reql + £, ¢eq)l) # 0, (2.78)

C€Z¢

where Zy is the set of zeros of ¢. The complex number r., and the polynomials ¢, g are
defined by

(x - c)¢c =¢, Y — .= (qx - c)wc,q + 7eyg- (2'79)
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Proof:  For a proof see Proposition 3.4. |

Remark 2.9 It follows from the definition of the class of the linear functional that the Dgy-
classical linear functional is a Dy-semi-classical linear functional of class s = 0.

Lemma 2.8 The linear functional L is regular if and only if GoL (with g # 0) is regular.
Proof:  This follows from Lemma 3.2. O
Lemma 2.9 Let L be a reqular linear functional, we have:
i) If there exist two polynomials ¢ # 0, and ¢ such that
Dy(6L) = vL, (2.80)
then ¢ is a non-zero polynomial.

it) Conversely, if there exist two polynomials ¢ # 0 and v such that (2.80) holds, then 1 is
of degree at least one.

Proof:  For a proof see Lemma 3.1. O

Proposition 2.9 (Medem, 1996) Let £ be a reqular linear functional, {Py,}nen the corre-
sponding monic orthogonal family and {Pp}tnen the dual basis associated to { Py }nen -
If {Qn 1 tnen is the dual basis associated to the monic family {Qn1}nen defined by

A _ qun+1

then we have ~
'D% Qn71 = —q [n + 1]an+1.

Proof:  This follows from Proposition 3.5. O

2.3.9 Characterisation of D,-classical orthogonal polynomials

We give some characterisations for Dg-classical orthogonal polynomials. The following theorem
is a corollary of Theorem 3.1 [Medem, 1996].

Theorem 2.9 (Medem, 199) 6 Let L be a reqular linear functional, { P, }nen the correspond-
ing monic orthogonal family, and Qp m the monic polynomial of degree n defined by

By (q) Qnm = D;”PTHm,

with

m—1

Bmm(Q) = H [n +m — j]Q7 Qn,O = Pn-
j=0

The following properties are equivalent:
i) There exist two polynomials, ¢ of degree at most two and i of degree one, such that

Dq(¢£) =YL
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ii) There exist two polynomials, ¢ of degree at most two and v of degree one, such that for
any integer m,

Dq(¢£m) = YL,

<£ma Qj,an,m) = kn(sj,na Vj7n € N) (kn 7& 0Vn e N),
with the linear functional L., and the polynomial 1y, defined, recursively, by

¢m+1 = q(b + ngwmn wO = 1%
m+1 gq(¢£ )a Lo=L
and given explicitly as
¢(q"x) — ¢(x)
(¢— 1z

Ly = ﬁ P(x) G L. (2.82)

J=1

Pm(r) = +q"P(q"x), (2.81)

iit) There exist two polynomials, ¢ of degree at most two and v of degree one, such that
for any integer m, the following second-order q-difference equation holds:

¢DqDl Qn,m + wm Dq Qn’m + )\me Qn7m == 0 Vn S N,

with the polynomial 1y, given by (2.81) and the constant A}, given by

/" i

Nim = )y (Do + [0 =1 T} = Dol (0 + 2mtn =1y ). (289

iv) There exist two polynomials, ¢ of degree at most two and v of degree one, such that, for
any integer m, the following relation holds:

[n]q,D% [Qn—l,m+1£m+l] = _qA Qn mﬁ Vn € N (284)

with the polynomial m,, the linear functional Ly, and the constant A%, given respectively by
(2.81), (2.82) and (2.83).

v) There exist a polynomial ¢ of degree at most two and three constants ¢y n+1, Cnn, Cnn—1
with ¢pp—1 # 0 such that

(ﬁDan = Cn,n—l—lpn—‘rl + cn,nPn + Cn,n—lpn—l‘
q

vi) For any non-zero integer m, there exist a sequence of complex numbers {n m }nen Such
that

Qn,m—l = Qn,m + un—l,an—Lm + Un—2,an—2,m7 VneN — {07 1}

Remark 2.10 1. For all m € N, the Dy -derivative of order m, {Qnm}nen, of the family
{Pri+m}nen is q-classical and orthogonal with respect to the q-classical linear functional

L.

2. The g-analogue of the functional version of the generalised Rodrigues formula [Medem,
1996] given below, is obtained by iterating the relation (2.84):

— q
QumLm = (=1)"¢™" H e DY Lyym.
i jm+j 1
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2.4 The g-integration

In this section, exploiting the thesis of Medem [Medem, 1996], we recall the definition of the
concept of the g-integration with the assumption 0 < ¢ < 1 and give some properties. More
details can be found in [Jackson, 1919] and [Gasper et al., 1990] and [Medem, 1996].

2.4.1 The ¢-integration on the interval [0,a], a > 0

Let f be a real function defined on the interval [0,a] and P4([0,a]) the ”g¢-partition” of the
interval [0, a] defined by

P,([0,a]) = {...a¢g"™ <aq¢" < ... < aq < a}.

For any integer IV, consider the ”Riemann sum”

N N
An(f) = (ag" — ag"™) f(aq") = a(1 —q) Y _ q" f(ag").
n=0 n=0

If the limit of Ax(f) when N — oo is finite, then f is said to be g-integrable and the g-integral
of f on the interval [0, a], denoted [ f(s)dys, is given by

[ 1(6gs = i Ax(r) = alt~ ) Y- o flad®). (289

n=0

2.4.2 The ¢-integration on the interval [a,0], a <0

Let f be a real function defined on the interval [a,0] and P4([a,0]) the ”g¢-partition” of the
interval [a, 0] defined by

P,([a,0)) ={a <ag < ...aq" < ag"™' < ...} ={ag",n € N}.

For any integer IV, consider the ”Riemann sum”

N N
An(f) =D (ag"™" —ag™) f(ag™) = —a(1 — q) Y _ ¢" f(aq").
n=0 n=0

If the limit of Ax(f) when N — oo is finite, then f is said to be g-integrable and the g-integral
of f on the interval [a, 0], denoted fao f(s)dys, is given by

[ 565 = Jim Ax(9) = a1 —0) > " flaa) (2.56)

n=0

2.4.3 The ¢-integration on the interval [a,oo[, a > 0
Let f be a real function defined on the interval [a, co[ and P,([a, oo]) the ”g-partition” of the
interval [a, 00| defined by

1

Pyla, o)) ={a<ag ' <...ag7" <ag "t <..}={ag ", n EN}.

For any integer N, consider the ”Riemann sum”

N

N
AN(f) = _(aq™" ™" = ag™") f(ag™" ") = a<§ ~ )Y g7 flag™ ).
n=0

n=0
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If the limit of Ax(f) when N — oo is finite, then f is said to be g-integrable and the g-integral
of f on the interval [a, co[, denoted [° f(s)dgs, is given by

[ 56)as = Jim_An(H) = a( =)D ¢ Sag ), (2.87)
a n=0

2.4.4 The ¢-integrationon the interval | — c0,al, a <0

Let f be a real function defined on the interval | — oo, a] and P,(] — 00, a]) the ”¢-partition” of
the interval | — 0o, a] defined by

1

Pyl —o0,a)) ={a>aqg ' >...>ag7" ' >...} ={ag",n € N}.

For any integer N, consider the ”Riemann sum”

N
An(f) = (ag™" —ag ") flag ") = —aé ~ 1) ¢ " flag ).
n=0

If the limit of Ax(f) when N — oo is finite, then f is said to be g-integrable and the g-integral
of f on the interval | — 00, a], denoted [ f(s)dys, is given by

[ 56 = i Ax(r) = ~aCt - 1) > g g (289
— 00 —00 q n—=0

Remark 2.11 The g-integration is extended to the whole real line by using relations (2.85)-
(2.88) and the following rules

/bf(s)dqs = /0 f(s)dgs + /Ob f(s)dqs Va,beR,
/Oof(s)dqs = /bf(s)dqs—i—/boof(s)dqs Va,beR, a<0,b>0
/b f(s)dgs = /a f(s)dgs + /b f(s)dgs VYa,beR, a<0,b>0 (2.89)
00 a b 00
/_Oo F(s)dys = /_Oo F(5)dys +/a F(5)dys +/b f(s)dys Va,beR.

As the usual integration, the g-integration enjoys some properties. Here, we give some, which
are proved using the definition of the concept of the g-integration.

Lemma 2.10 1. If f is a real function continuous at 0, then we have
a
| Pur)dss = 1@) - 0.
2. For any function f integrable on [0, a], we have

D, [ 1(5)dys = F(a),

assuming that the operator D, acts on the variable a.
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3. If f is a real function continuous on the interval [0, a], then f is q-integrable on [0,a] and
obeys

lim /Oa f(s)dgs = /Oa f(s)ds.

q—1

4. If f and g are two real functions, q-integrable on the interval [0, al, then we have

[ 1Pags)gs = fols — [ Das () g(as)ys = £/ g — = [ 951D f(3)ds,
0 0 q.J0

with fgl§ = f(a)g(a) — £(0)g(0).

Remark 2.12 The previous lemma can be extended to the whole real line by using (2.89).



Chapter 3

The D, -semi-classical orthogonal
polynomials

3.1 Introduction

We define the operators A,, and D,.,. The first generalises the operators 7, and G, and the
second generalises the operators D, D,, and D,. We give some definitions related to these opera-
tors and then give the characterisation theorems for D, -semi-classical orthogonal polynomials;
and deduce by limit processes the characterisation theorems for D, D,, and D,-semi-classical
orthogonal polynomials.

3.1.1 Operators A,, and D,

Definition 3.1 We combine the operators 1., and G, to obtain a new operator denoted by A,
and defined by

AP — P

P — A,,P A,,P(z)=G,7,P(x) = P(qz + w), ¢ # 0. (3.1)
We denote
Azw =A1 o (3.2)
’ 9’ q

Definition 3.2 (Hahn, 1948) The difference operator Dy, is defined by
Dy,:P — P
P(gz +w) — P(x)
(¢—Dz+w

P — DguP, DguP(x) = LWER, gER, ¢#0. (3.3)

We denote

D, =D (3.4)

<€

1
Ev

The applications P — A, P and P — D, P belong to L(P,P). We, therefore, use their
transposes to define the action of the operators A, and D, on the linear functionals.

Definition 3.3 We define the action of the operator A, ., on the functional L as

(Agul, P) = —(L, A, ,P) VP eP, (¢#0). (3.5)

1
q

39
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Definition 3.4 We define the D, -derivative of a given linear functional L, Dy L, as

D,.,L : P—=C
1 *
<Dq7w£7 P> = _5<£7 Dq,wP> VP eP, (q 7& 0) (36)

Definition 3.5 The regular linear functional £ and the corresponding monic orthogonal poly-
nomials are said to be Dy ,-semi-classical if there exist two polynomials 1) of degree at least one,
and ¢ such that

Dyu(dL) = ¢L. (3.7)

Moreover, if ¢ is a polynomial of degree at most two and ¥ a first-degree polynomial, then the
linear functional and the corresponding orthogonal polynomials are called Dy, -classical.

Remark 3.1 The operators D, and D, generalise the operator % in the following way:

i%Dw = 57 ;LH%DQ = %7

while the operators %, D, and Dy can be obtained from the operator Dy, by the following limit
processes:

oljilj%) Dy =Dy, ;1_)11% Dy = D,, q—>lli,13)1—>0 Dy = %
Lemma 3.1 Let £ be a regular linear functional.
i) If there exist two polynomials ¢ # 0, and ¢ such that
Dgw(oL) =YL, (3.8)

then ¢ is a non-zero polynomial.

it) Conversely, if there exist two polynomials ¢ # 0 and ¢ such that (3.8) holds, then 1 is of
degree at least one.

Proof:  'We give the proof for the operator D, ., and extend it to the operators %, D,, and
D, by limit processes (see Remark 3.1).

i) Suppose that
Y(x) =Y e,
Jj=0

with ¢, # 0; and let { P, }nenr be the monic polynomial family orthogonal with respect to
L. If ¢ =0, we apply both sides of (3.8) to the polynomial %PT and obtain

0= <¢£a %Pﬁ = <£, PT’PT>‘

r

Then (L, P.P,) = 0. This is a contradiction because {P, }nenr is the monic (OPS) associ-
ated to L (see (2.5)). Thus ¢ is a non-zero polynomial.
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ii) Suppose that v is a constant denoted 1y and then apply both sides of (3.8) to the poly-
nomial PyPy (Py(xz) = 1) and get
Yo (L, PoPo) = (Dgw(¢L), PoFo)
1 .
= 4 (oL, Dy ,(PoPy)) = 0.

Since (L, PyPy) # 0, we deduce that 1)p = 0 and it results from (3.8) that
Dyu(¢L)=0.
The previous equation is equivalent to ¢ £ = 0. In fact,

Dyw(9L)=0 <= (D,u(¢L),P)=0 VYPcP
—
(L£,D;,P) = 0 VPeP
<~
oL = 0.

Since ¢ # 0, we pose

t
o(z) =Y ¢5al,
=0

with ¢; # 0. Then applying both sides of (3.8) to the polynomial éPt, we obtain

%Pﬁ _ Lt 6Py = (L, PP,

0=(L, Y

The previous equation gives a contradiction since {P, },ear is orthogonal with respect to
L. We, therefore, conclude that the polynomial v is of degree at least one. O

Remark 3.2 The operators D, Dy or Dy, transform any polynomial P, of degree n in a
polynomial of degree n — 1.

Lemma 3.2 If £ is a linear functional and Y one of the difference operator {71,,Gq, Agw},
q # 0, then the linear functional Y(L) is reqular if and only if L is reqular.

Proof: ' We prove the lemma for the operator A4,,, and extend it to the operators 7, and gG,.
If { P, } nen is the monic polynomial family orthogonal with respect to £, then {¢™" Aq P }nen
is the monic polynomial family orthogonal with respect to A, L.

In fact,

1
(g £ Ags Pa Ao Pr) =~ dm ¥, €N

We prove the following proposition:
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Proposition 3.1 For all qw € R, ¢ # 0, q # 1; for all f, g € P; and for all L € P’ the
following properties hold:

Z)Aq,qu,w = Aq,qu,w =14, DgwAqw = qAqwDqw, Dq,qu,w = gAq,qu,w = &D 39

)
ii)D;,quw = quLwDZ,wv Aquz,w = AZ’qu,w =14, (3.10)
i) Aqu(f 9) = AqufAqwg, Aqu(f L) = AgwfAguL, (3.11)
1) Dgw(f9) = fDgwd + AqudDewf = AgwfDgwg + 9Dgu f, (3.12)
0V)Dgo(fL) = fDgul + Dy fAqul = AgufDguwl + Dqu fL, (3.13)
vi)(g — 1) Dol = (z — 1L_q)’1(Aq,w L-1L), (3.14)
Dyw(f9L) = Agw f Dgw(9L) — Agw f Dgwg L+ Dyu(fg) L, Vf,g € P, VL€ P'. (3.15)

Proof:  Properties i) and ii) are obtained directly from the definition.

It should be noted that the identities in relations (3.9) and (3.10) are valid when the operators
Aqw and Dy, act on P and also on P'.

For iii), use of (3.5) gives

(Agu(fL), P) =

<[” Az,w(Aq,wa»

Agwl, Ago fP)
AgwfAqul, P),

thus
Ay o(fL) =AgwfAqul.

flgz +w)g(qr +w) — f(z)g(x)

Dgu(fg) = (g— 1z 4w
9(qr +w) — g(z) flgz +w) — f(=)
f(x) (D tw + g(qz + w) ((—Ditw

= f(@)Dygug(@) + 9(q +w) Dy f(2),
then reversing the role of f and g, we deduce that
Dqw(f9) = fDgwg + AqwdDgwf = AgufDgwg + 9Dgw f.
We now use i), ii) and iii) to prove iv).
(Dyul 1O P) = —(I£.D;P)
~ —{LID;LP)

1 * * *
= _6<£7Dq,w(fp) - Aq,wPDq,wf>
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Then

(fDgwl, P)

(fDygwLl, P)
(fDgwL, P)

1 « %
(DL, fP) + a<£, Dy ,fA; L P)
1
q

(DgWfL, A, L P)

Agw(Dg o, L), P)
DywfAquLl, P).

qu(fﬁ) = fDq,wﬁ + Dq,waqvwﬁ = AqvwaqvwE + Dq,wfﬁ'

For ¢ # 1 and ¢q # 0, we have

w

(@ — )" (Agwl ~ L), P)

1—g¢q

Then,

(q - 1)Dq,w£ =

(x——)

AL L—L).

The relation (3.15) follows straightforwardly from (3.12) and (3.13).

Remark 3.3 The proof of Proposition 2.4 (resp. Proposition 2.7) is obtained in the same way
Just by replacing q by one and w by zero, respectively. In particular, to derive the relation (2.46)
from (3.14), we first multiply both sides of (3.14) by (x — 1%(1), then use (2.14) to get

((¢ = 1)z + w)Dgwl = (Agw — Za)L.

Therefore, (2.46) yields by taking ¢ = 1 in the previous relation.

Proposition 3.2 If L is a reqular linear functional, and ¢ € R — {0}, then we have

with

Dyu(¢L) = L <= D (¢L) =YL,

&=$w+uq—nx+mw»

Proof:  Let ¢ and ¥ be two polynomials, then using Proposition 3.1
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we have
Dyw(¢L) = YL <= (Dgu(dL), AqwP) = (YL, AqP) VP €P
— —3<¢.c, D} AguP) = (WL, Ag,P) VP EP
— - <¢£ AguDiwP) = (WL, Ay, P) VP EP
— — (oL, pr> (WL, (g — 1)z +w]Dy P+ P) YPEP
= —((¢+[(¢— 1z +wly)L,Dy,P)= WL, P) VPP
= DG+ [la= Da+wl¥)£].P) = (L. P) VPP
= DZ,W(M) =YL,
with ¢ given by (3.17). O

Corollary 3.1 (Salto, 1995, Medem, 1996) From the above proposition, we deduce the fol-
lowing:

i) L is Dgw-semi-classical <= L is D ,-semi-classical.

i) L is Dy-semi-classical <= L is D1-semi-classical.

Indeed, ! 3
Dy(¢L) = YL <= D1(9L) = ¥L,

with )
¢= a((b + (¢ — Dzy).

i11) L is Dy,-semi-classical <= L is D_,-semi-classical. Moreover,
Dy(6L) = YL <= D_o(6L) = YL,

where

b= ¢+ wi.

Remark 3.4 If YV represents one of the operators: 1, Gq, Agw, %, D, Dy, and Dy, we
define the power of Y, Y™ as

Y =YY"t m > 1 with Y° = 1y,
where Iy is the identity operator.
Remark 3.5 One proves easily that YP € P and VYneN
Ay P(x) = P(¢"x +wln]y), G4 P(x) = P(q"x), T P(x) = P(x + nw). (3.18)

3.1.2 Class of the D, -semi-classical linear functional

Let £ be a D, .-semi-classical linear functional satisfying

Dyo(¢L) =L, (3.19)

where ¢ is a non-zero polynomial and 1 a polynomial of degree at least one. L satisfies
Dy (foL) = (¢Dgwf + Y Aqwf)L, for any polynomial f.
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Definition 3.6 We define the class cl(L) of the Dy ,-semi-classical linear functional L as

(L) = ( fgl)iellx4{maX(deg(f) —2,deg(g) — 1)}, (3.20)
where
Xy = {(f,9) € P?/deg(g) > 1 and D, (fL) = gL}. (3.21)

We state the following lemmas and propostion which we shall use to prove the proposition
characterising the class of the semi-classical linear functional.

Lemma 3.3 Consider L a reqular linear functional, ¥ a non-zero polynomial and ¢ a polynomial
of degree at least one. Then, for any zero, ¢, of ¢, we have

C—w

1 _
Dyo(#L) = YL = Dyo(@eL) = Vel = (£, Yegu) deu + P (x — p )7L, (3.22)
where
¢ = (:L' - C)¢Cv ¢ - ¢c = (qx +w— C)wc,q,w + Tc,q,w- (323)
Proof:  The proof is obtained straightforwardly by using (2.14), (3.13) and (3.23). 0

Lemma 3.4 Let L be a regular linear functional. If there exist four polynomials ¢, v, ¢ and
Y, with deg(¢ > 1), such that

Dy (#L) = %L, Dyu(96L) = 9L, (3.24)
then, for any zero, ¢, of , .
Teqw = <£7wc,q,w> =0, (325)
where, ) o } .
¢ = (:L‘ - C)¢C7 @ZJ - ¢¢c = (ql’ +w— C)@Z}c,q,w + Te,quw- (3'26)
Proof:  The second relation of (3.24) thanks to Lemma 3.3 is equivalent to
~ ~ ~ 1 C— W, 1
Dq,w(¢¢c£) = ¢c,q,w£ - <£7 Q;Z)c,q,w> 6C—Tw + g"ﬂc,q,w (33 - q ) ﬁ? (327)

where 7¢ 4. and 94, are defined by (3.26). The previous relation, used together with (3.13)
and the first relation of (3.24) gives

c—w
q

- - - 1 B
(YAqwde + Dy wde — Ve gw) L = — (L, Ve gw) (5C7Tw + p Teqw (T — y“iL. (3.28)

The multiplication of the latter equation by (z—<_#), use of (2.14) and the relation (z—a)d, = 0,

gives
c—w

(z —

- ~ ~ 1
)(¢Aq,w¢c + ¢Dq,w¢c - ¢c,qw)£ = 6 Te,q,w L.

It follows from the previous equation and the fact that £ is regular that,

(z —

C—w

~ ~ ~ 1
)(qu,wgbc + ¢Dq,w¢c - wc,qw) = 5 Te,quw-

Thus, 7.4, = 0 and ququgc + d)Dq,w(;;c — @ng = 0. We, therefore, deduce that (C, &c,qw> =0.
Od

The following proposition, already known for the operator D,, [Salto, 1995], is also needed
to characterise the class of the D, ,-semi-classical linear functional.
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Proposition 3.3 Consider &1, ®2, V1 and Vo, four polynomials such that: ®1 # 0, ®4 #£ 0,
deg(®1) < deg(P2), deg(¥y) > 1 anddeg(Vy) > 1. Let L be a regular linear functional satisfying

qu((plﬁ) = \Ifl,c, qu(q)gﬁ) = \IJQ,C, q 75 0. (329)

If ® denotes the highest common factor of ®; and ®o: & = hcf(Py, P2), then, there exists a
polynomial ¥ such that,

Dy (®L) =VL (3.30)

and

max(deg(®) — 2,deg(¥) — 1) < max(deg(®;) —2,deg(¥;) —1), j =1, 2. (3.31)

Moreover, If ®1 is not a divisor of ®o (P2 # f&1, Vf € P), then the previous relation
becomes

max(deg(®) — 2,deg(V) — 1) < max(deg(®;) —2,deg(¥;) —1), j =1, 2. (3.32)

Proof:
We shall give the proof mimicking the approach developed in [Salto, 1996] for the operator
D,,. Since ® = hef(Pq, P2), there exist two polynomials & and P9 satisfying

D =D Dy, By =P Py, (3.33)

with <i>1 and ég having no common zero.
In the first step, we combine (3.12), (3.15) and (3.29) to get

Dy(®2®1L) = Ay @01 L — Ay ®2Dy (w®1L + Dy o (®1P9)L, (3.34)
Dyw(®1®9L) = Ay y®1 Vol — Ay ®1Dyw®oL + Dy o(P2®1)L. (3.35)

In the second step, we subtract the two previous equations taking care that ®;®y = ®2®, to
get
[Agu®o(W1 — @D 1) — Ag @1 (W5 — ®Dyd2)| L = 0.

Since L is regular, we deduce that
Agw®2(V — ®D, ,P1) = Ay @1 (Vg — DD, D2).

Using the previous relation and the fact that ®; and ®» have no common zero, it follows that
there exists a polynomial ¥ verifying

Ayo®1¥ =T —®D, , &1, Ay, PV = Uy — ®D, ,Bs. (3.36)
Use of (3.33) and (3.36) transforms (3.29) in

Agw®1 Dy (PL) = Ay ®1 VL, (3.37)
Agw®2Dy 0 (PL) = Ay, VL. (3.38)
Since ®; and ®, have no common zero, there exist two polynomials (Bezout identity) hy and hq

such that ®; hy+®3 hy = 1. In the third step, we sum the two equations obtained by multiplying
(3.37) and (3.38) by A, h1 and Ay he, respectively, and get

Dyo(PL) = VL.
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The latter equation, used together with Lemma 3.1 gives deg(¥) > 1. In the fourth step, we
use (3.33) and (3.36) to get

deg(®;) = deg(®) + deg(®;), deg(¥) + deg(®;) < max(deg(¥;),deg(®;) —1), j =1, 2. (3.39)

We, therefore, deduce (3.31).
If we assume that polynomials ®; and ®5 are such that ®o #£ f &1 Vf € P, then,
deg(®) < deg(®;), j =1, 2. We finally use (3.39) to get (3.32). O
The following proposition gives a characterisation for the class of semi-classical linear func-
tional.

Proposition 3.4 If L is a Dg,-semi-classical linear functional satisfying (3.19), then L is of
class cl(£) = max(deg(¢) — 2,deg(y)) — 1) if and only if

11 (reqel + KL Yequw)l) #0, (3.40)

C€Z¢

where Zy is the set of zeros of ¢. The complex number .4, and the polynomials ¢, e q. are
defined by
(= C)pe =@, Y — P = (@ +w — )V gw + Te,gw- (3.41)

Proof: ~ We first recall the definition of the class cl(£) of £ (see (3.20) and (3.21)).

(L) = ( fgl)ien&{maX(deg(f) —2,deg(g) — 1)},

where

Xy ={(f,9) € P? /deg(g) > 1 and Dy (L) = gL}

Let (¢,v) € Xy such that there exists a zero, ¢, of ¢ verifying rc 40 = (£, %cqw) = 0. We shall

prove that,
cl(£) < max(deg(¢) — 2,deg(yp) — 1).

Equation Dg,(¢L) = 9L, thanks to Lemma 3.3 is equivalent to

Dq,w(ﬁbc‘c) = Q/)c,q,wﬁ,

therefore, (¢¢,1cqw) belongs to Xy (see Lemma 3.1). Moreover, the degree of ¢, 1, ¢, and
wc,q,w Obey

max(deg(dc) — 2, deg(vegw) — 1) = max(deg(d) — 2,deg(y)) — 1) — 1.

Thus,
cl(£) < max(deg(¢.) — 2,deg(¢egw) — 1) < max(deg(¢) — 2,deg(v)) — 1).

We conclude that for any (¢,1) € Xy such that cl(£) = max(deg(¢) — 2,deg(v)) — 1), then, for
any zero, ¢, of ¢,
re,gwl + (L, Yeqw)| # 0. (3.42)

Conversely, we shall prove that for any (¢,v) € X4 such that (3.42) holds for any zero,
¢, of ¢, then cl(£) = max(deg(¢) — 2,deg(v)) — 1). Let (¢m,¥m) € X4 such that cl(L) =
max(deg(¢m) — 2,deg(m) — 1). We assume without loss of generality that deg(¢n,) < deg(¢).
We write

p=¢m [+ R, R, feP, deg(R) < deg(om)-
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e If R # 0, then, from Proposition 3.3, there exists (¢,1) € Xy, with ¢ = hef(, ¢p) such
that

max(deg(¢) — 2,deg(¢)) — 1) < max(deg(¢m) — 2, deg(¢m) — 1) = cl(£).
This is a contradiction because (¢, 1) € Xy. Thus, R = 0.

e If deg(f) > 1, then, it yields from Lemma 3.4, that for any zero, ¢, of f (then of ¢),

7e.qw| + (£ Yequw) =0

The previous equation contradicts (3.42).

Finally, f is a constant and we have ¢ = f¢um,, ¥ = fi,,. Thus,
cl(£) = max(deg(¢) — 2,deg(¢)) — 1) = max(deg(¢m) — 2, deg(¢m) — 1).

O
The proof of the proposition is therefore complete. It should be noted that the proof of
Propositions 2.3, 2.5 and 2.8 are deduced by limit processes (see Remark 3.1).

Remark 3.6 It follows from the definition of the class of the linear functional that the Dy, -
classical linear functional is a Dy ,-semi-classical linear functional of class s = 0.

Definition 3.7 The Pearson-type difference equation (3.19) is said to be irreducible on c € Z,
if [requwl + (£, Yeqw)| # 0.

Moreover, (3.19) is said to be irreducible if it is not reducible on any ¢ € Zg.

Proposition 3.5 Let L be a regular linear functional, { Py, }nen the corresponding monic ortho-
gonal family and {Py}nen the dual basis associated to {Pp}nen- If {Qn.1}nen is the dual basis
associated to the monic family {Qn1}nen defined by

Dy Pt
Qni = = (3.43)
" n+ 1],
then, we have
D;,an,l = —q [n + 1]an+l- (344)
Proof:
<D;,an,1v Pm+1> = _Q<Qn 1, Dq me+1>
= —q[m ] <Qn 1, Qm, 1)
= —q[n+ 140,
= Q[n+1] (P n+laPm+1>’
then

DZ’mel = —q [n + 1]an+1.
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3.2 Characterisation theorems for D, -semi-classical orthogonal
polynomials
3.2.1 D,,-classical orthogonal polynomials

The following theorem characterises the D, .-classical orthogonal polynomials. It should be
mentioned that the following theorem is partly proved in [Smaili, 1987].

Theorem 3.1 Let L be a regular linear functional, { P, }nenr the corresponding monic orthogo-
nal family, and Qy m the monic polynomial of degree n defined by

( ) Qn m — Pn+ma (345)

with ,
Bum(q) = [[In+m—jlg Quo=P. VYneN. (3.46)

7=0

The following properties are equivalent:
i) There exist two polynomials, ¢ of degree at most two and 1) of degree one, such that

Dy(6L) = L. (3.47)

it) There exist two polynomials, ¢ of degree at most two and v of degree one, such that for
any integer m,

Dy u(PLm) = YL, (3.48)
<£m, Qj,QOm) = kndj,m Vi,n € N, (kn 7& 0Vn € N), (3.49)

with the linear functional L., and the polynomial 1y, defined, recursively, by

¢m+1 = Dq,w¢ + qu,wwma ¢0 = 77/}7 (3'50)
£m+1 = Aq,w(qﬁ ﬁm), [,0 =L (3.51)

and given explicitly by

P(q"x + wlmlq) — ¢(x)
(¢— 1Dz +w

PYm(z) =

H o(¢x + wj 0) Ay L (3.53)

+q" (" T + wlmly), (3.52)

ii1) There exist two polynomials, ¢ of degree at most two and v of degree one, such that
for any integer m, the following second-order difference equation holds:

¢ Dq,wD;w Qn,m + wm Dq,w Qn,m + An,m Qn,m =0 Vne N, (354)
with the polynomial vy, given by (3.52) and the constant Ay, given by

/!

A = ~[nly {Dytbm + [n— 1] ;iq}. (3.55)
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iv) There exist two polynomials, ¢ of degree at most two and 1p of degree one, such that, for
any integer m, the following relation holds:

[n]qD;w [Qn—l,m+l£m+1] = —q )\n,an,mﬁm Vn € N, (356)

with the polynomial 1y, the linear functional L, and the constant X\, ,, given, respectively, by
(3.52), (3.53) and (3.55).

v) There exist a polynomial ¢ of degree at most two and three constants cnn+t1, Cnns Cnn—1
with ¢y p—1 # 0 such that

¢DZ7an = Cn,n+1Pn+1 + Cn,npn + Cn,n—lpn—la n > 1. (3.57)

vi) For any non-zero integer m, there exist a sequence of complex numbers {unm }nen such
that

Qn,mfl = Qn,m + unfl,anfl,m + Unf2,an72,m7 VneN — {07 1} (358)

Proof: i) = ii). Suppose that the property i) is satisfied. We will show by induction
on m that the relations (3.48) and (3.49) hold. From (3.47) and the orthogonality of the family
{Pp}nen, it is obvious that the relations (3.48) and (3.49) are satisfied for m = 0. Suppose that
relations (3.48) and (3.49) are satisfied up to a fixed integer m. Using Proposition 3.1, we have

Dyu(@Lms1) = Dgu (9Agw(dLm))
= Dgw ¢Aqu(PLm) + Aguwd Dgw Agw(dLim)
= Dgw ¢Aqu(Lm) + Aguwd ¢ AgwDgw (9Lm)
= Dgw ¢Agw(9Lm) + q Agwd Agw(WPmLm)
= Dgw ®Agw(PLm) + q Agwt¥m Aguw(PLm)
= (Dgw ¢+ qAgutdm) Agw(dLm)
= Umt1Llm+1.
Thus, the relation (3.48) holds for all integers m.

Let j and n be two integers such that j < n. Using Proposition 3.1 and the fact that (3.48)
and (3.49) hold up to a fixed integer m, we have

[-7 + 1](1 [n + 1]q<£m+1a Qj,m+1Qn,m+1>
= <Aq7w(¢£m)v Dq,w QjJrl,me,w Qn+1,m>
= <Aq7w(¢£m), Dq,w [QnJrl,me,w Qj+1,m] - Aq,an+1,mD2,ij+1,m>
1. 1 \
= _6<Dq,qu,w(¢£m)7 Qn—i—l,me,w Qj-‘rl,m) - §<¢£ma Qn-‘rl,mA%ngwaj—Fl,m)
1 *
= _<Dq,w(¢£m)a QnJrl,me,w Qj+1,m> - §<£m7 Qn+1,m¢Aq,wD§,ij+1,m>

1 *
= _<[fm7 l/Jm Qn+1,m Dq,w Qj+1,m> - E<£m7 Qn+1,m¢Aq7wD§7ij+l,m>

=0,
because deg(¢ A% ,D2 ,Qjy1.m) < deg(m Dgw Qjy1m) =j+1 <n+1 (see Lemma 3.5).
Repeated use of the following relations, proved in Lemma 3.5,
[n + 1]q[n + ]-]q (»Cm—‘rla Qn,m+1Qn,m+1> = )\n—i-l,m (»Cmv Qn+1,an+1,m>7 (359)
1 2m
)\n+1,m = M)wyrprgmp 75 0 Vn, meN (3.60)

[n+ 14 2m],
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gives
m—1
Ant14jm—1—j
ms Wnmdnm) = —_— 7anan~ 61
Thus,

<£mv Qn,an,m) 7é 0 Vn, meN.
Iteration of relations (3.50) and taking into account (3.9) lead to

m—1

Ym = qungDq,w o(x) + quZ,Lw (2)
=0
m—1

= ¢ ¢ Dyl ,o(x) + " A ()

_ AL o) — Ajo(@)
= X T T (2).

Thus,
¢(g"x + wimlg) — ¢(x)
(g—Dzr+w

Ym(x) = +q" (" + wlmly).

Taking into account Remark 3.5, relation (3.53) follows directly from the iteration of (3.51).
i1) = 4ii). Assuming that the property ii) holds, it follows that for any integer m, the
monic polynomial family {Qy, m }nen is orthogonal with respect to L,; thus, {Qn m }nen forms
a basis of P.
From the following expansion

n
¢ Dq,w D;an,m + wm Dq,w Qn,m = - Z )\j,mQj,ma (3-62)
J=0

we obtain

)\j,m (ﬁmv Qj,mQj,m> - Emv ¢ Qj,me,wDZ,w Qn,m + wm Qj,me,w Qn,m>
- £m7 ¢ Qj,me,wDZ,w Qn,m> - <wm my Qj,me,w Qn,m>

(
(
= _<['m7 ¢ Qj,me,wD;;,w Qn,m> q, w(¢ Em)a Qj,me,an,m>
_<»Cm7 QZ) Qj,me7wD;,w Qn,m> + <¢ »Cma (Qj,me,an,m»

= _<['m7 ¢ Qj,me,wD;;,w Qn,m>

(D
1
q
1
6(¢£ma@jm q,an,m>

<¢ ﬁma Qj,mA;,qu,an,m»
my ¢ Qj,me,wDZ,w Qn,m> + <¢ Ema Qj,me,wDZ,an,m>
<¢ Emv Qj,mA:;,qu,an,m>

1
q
—(£
1
q
1 *

6 <¢ ‘C’ﬂh q,ij,mAq,qu,w Qn,m>
1
q

<¢ £m7 (Dq,ij,me,w Qn,m))
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<Aq,w(¢ £m)7 Dq,ij,me,an,m>
= [j]q[n]q<£m+1a Qj—1,m+1 anl,m+1>
= 0 for j <n,

by orthogonality of {@Qn m+1}tnen With respect to Ly, 11. Thus,

o Dq,wD;w Qn,m + Um Dq,w Qn,m + )\n,m Qn,m =0 Vn e N.
Identification of the coefficients of x™ in the previous equation gives

Y 0~ 0]

5 + 91, [n]g + Anm = 0.

Q=

Then using the following relation

n]1 =q¢' "nly,,  YnEN, (3.63)
we obtain o
Mo = =l + 0 = 11,50

i11) = ). Assuming that the property iii) holds, elementary computations using (3.12)
and (3.54) for m = 1 give

1+ 1g(Dy (6L) — 9L, Qur) = —;<¢L,D;,qu,w Poi1) — (0L, Dgs Pasa)

= _<[’7¢Dq7w DZ,w Pn+1+1/}Dq,w Pn+1>
= <‘Ca >\n+1,0 Pn+1>
= 0 VneN. (3.64)

Since the family {Q 1}nen forms a basis of P/, it is clear that
Dq,w (‘bﬁ) =L.

ii1) <= wvi). Computations using Proposition 3.1 show straightforwardly that given an
integer m, (3.56) is equivalent to

(¢ D(LUJD;,W Qn,m + @Z}m Dq,w Qn,m + >\n,m Qn,m)ﬁm =0 V’I’L € N

Since L, is regular (see property ii)) it is obvious that properties iii) and iv) are equivalent.
i) = v). Expanding the polynomial ¢(z)Dy P, in the basis { P }nen of P,

n+1
¢(2)D; P =Y cnjbPj,
j=0

we obtain, using (3.10),

ng (L, PiPy) = (@L, P;Dy ,Py)

<¢£’ D;,w(Aq,ijPn) - PHD;qu,ij >
—q(Dgw(PL), Aq,ijPn> —q(¢L, PnDguPj )
(L, (Y AqwP;j + ¢DgwP;) Pr)

= 0 forj<n-—1.
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Thus,
d’(l’)D;,an = Cn,n—l—an—i-l + Cn,nPn + Cn,n—lpn—l-

When we set j =n — 1 in the above equations we obtain, taking into account (3.63),

Cn,n71<£7 Pn71Pn71>
= —q(L,(YAgwPr-1+ ¢DgwlPn-1)Pn)

= (@ + = 1L, )

— W =5 E PP

)\nO

= qn : <£yPnPn>
[n]q

# 0forn>1

by relation (3.74).
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v) = i). Expanding the linear functional Dy, (¢L£) in the dual basis {Pj}nc, of the
orthogonal family { P, }nen,

Dyw(dL) =Y hyPu, (3.65)

n>0

we obtain, using (3.57),

hp = <Dq,w(¢£)apn>
— —(L,9D;P)

1
= *6<La Cn,n+lpn+1 + Cn,nPn + Cn,nflpn—1>

= 0forn>2,
then
hn =0 for n > 2. (3.66)
On the other hand,
1
ho = (Dgw(@L),1) = —§<¢L,D;7w1) =0, (3.67)
b= =L PoRy) #0 (3.68)

because by hypothesis, ¢, ,—1 # 0 for n > 1.
Use of (3.65)-(3.68) and the fact that P; = (571};#1)5 (see (2.17)) give

oL, R Po) Py
q<£7 P1P1>

Dyu(oL) = Py = (3.69)

Then the regular linear functional £ satisfies Dy ., (¢L£) = L, where

_c,o(L, PoFo)

17/}('%') = q<£,P1P1>

Pl(x)a

with deg(¢) < 2 and deg(v)) = deg(P1) = 1. Thus L is Dg,-classical, and therefore properties
i) and v) are equivalent.

i) = wvi). Since properties i) and ii) are equivalent, assuming that the property i) is
satisfied, it yields that for any integer m the monic polynomial family {Qy m }nens is orthogonal
with respect to L,,. Let m be a non-zero integer. We expand the polynomial @, ,,—1 in the
basis {Qn,m }nen of P,

n—1
Qn,m—l = Qn,m + Z uj,mQj,m
7=0

and obtain

Wimlj + Ug{Lm, QjmQjm) = [J + 1g(Lm, Qnm—1Qjm)

(L, DgwQj+1,m—1Qnm-1)

<Aq,w(¢£m—1)a Dq,w(Qj+1,m—1Qn,m—1)>
—(Agw(@Lm-1), AgwQjr1,m-1DgwCQnm-1)

<D;,w*’4q,w(¢£m—1)a Qj—l—l,m—lQn,m—l)

1
q
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(Dgw(@Lm-1),Qj+1,m-1Qnm-1)
”]q<£mvAq,ijJrl,m—lanl,m)
= (L1, Vm-1Qj+1,m—1Qnm—1)

_[n]q<£mv Aq7ij+1,m—lQn—l,m>
= 0Oforj<n-—2,

[n]q<£ma Aq,ijJrl,mlenfl,m)
[

by the orthogonality of {Qy, m }nen and {Qn m—1}nen with respect to £, and L,,,—1, respectively.
Therefore,

Qn,mfl = Qn,m + unfl,anfl,m + uan,anflm VneN — {07 1} Vm e N — {O}

iv) =>1). Let {Pp}nen and {Qpmnen be the dual basis associated to the monic families

{Py}nen and {Qn m tnenr, respectively.
In the first step we expand Qo1 in the dual basis {Qu 0 }tnen,

Qo1 =Y Qo

=0
and obtain, using, (3.58)
aj = (Qo1,Qj0)

= (Qo,1,Qj1 +uj—11Qj—1,1 + uj—21Qj—21)
= 0forj>3.

Using (2.17), we, therefore, obtain,

2 2
Qo1 =Y Qjo=)Y aP;=0¢L, (3.70)
=0 =0
where )
o Pj(x)
dlx) =) Lo (3.71)
2 1L 7 Py
In the second step, we compute Dy ,Qo 1 using (2.17), (3.44) and obtain
Dy ,(Qo1) = —qP1 =YL, (3.72)
where Pi(2)
—qix
T) = —- 3.73

Use of (3.70)-(3.72) permit us to conclude that

The previous equation, thanks to Proposition 3.2, is equivalent to

D‘lvw ((Z)E) = wﬁa

with
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We complete the proof of vi) = i). by remarking that deg(¢) < deg(P») = 2 and deg(y) =
deg(Py) =1 (see (3.71) and (3.73)).

Summing up, we have proved that i) = i) = iii) = 1), iii) <= v), i) <= v) and
i) <= wi); thus, the proof of the theorem is complete. O

Lemma 3.5 Let L be a regular linear functional satisfying Dy, (¢L) = YL, where ¢ is a poly-
nomial of degree at most two and Y a first-degree polynomial. The following properties hold:

Z) )\n+1,0 #0 Vne N, (3.74)
. [n+1]q "
>\n m = —)\n m,0 .
i) Ham = 10Ty o, Lm0 (3.75)
i) Dyuthm 0 VmeN, (3.76)
iv) {n + 1](2]<£m+1a Qn,m+1Qn,m+1> = )\n—l—l,m <£mu Qn+1,an+1,m>a (377)

with Lo, Anm and Qpnm defined in Theorem 3.1.

Proof: i) From the relation

n
Dy ,x" = [n] "4 > ay (g w) ",
j=2

Q=

where aj, ;(q,w) are complex numbers given by
wo_ = k
a%@mz%w*éfQ_J, (3.78)
we obtain,
Dy, w(¢ ) = VL <= (Dgw(9L),2") = (YL,2") VneN
<q§£, Dy ,x") = (WL, 2") YneN

//

< —
¢$w+u¢ My = z@. Vn € N (3.79)

)\n—i-l 0
- n j v ’
= | 41 = Z fiM nenN

where M; = (£,27) is the moment of order j of the linear functional £ and f; are complex
numbers easily computed as function of coefficients a;, ; and those of the polynomials ¢ and .
Since L is regular, to have all its moments given in the unique way by the previous ones, it is
necessary to have

)\n—i-l,() 75 0 VneN. (380)
ii) The D, ,-derivative of (3.52), taking into account (3.63), gives
QS//
Dq,wqpm = ¢;n = [2m] + quw
_ omy o 1-2m ¢”
= ¢"(W +q [2m]q2_q)



3.2. Characterisation theorems for Dy ,-semi-classical OP 57

then
¢// 2m

Dyuthm = (W + [2m]1 ) = 1

— Ao, . .81
19 [2m+1]q)\2 +1,0 VYm e N (3 8 )

We, therefore, conclude using (3.80) that for any integer m, 1), # 0 and 1, is a first-degree

polynomial.
iii) use of (3.55), (3.63) and (3.81) give

)\n,m = _[n]q{@b,,n—i‘ [TL— 1]%%}
o oy ot ¢” "
= _[n]q{qz (¥ + [2m]%2—q) +[n— 1]52_(1

= [l (' + (2m]y + a7 - 1))

= —[n], qu{w' +[2m+n-— 1]5 2_q
[n]q q2m

= —— A .
[n+2m]q n+2m,0

We derive the relation iv) using Proposition 3.1, the second property of Theorem 3.1 and the
orthogonality of the family {Q, m tnen with respect to L,,. In fact,

[n + 1]!1[” + 1]q<£m+17 Qn,m—i—lQn,m—i—l)
= <Aq7w(¢£m)’ Dq,an+1,me,an+1,m>
= <Aq7w(¢£m)a quw(Qn-ﬁ-Lme,an—i—l,m) - Aq,an+1,ng,an+1,m>

1 *
= _6<Dq,qu,w(¢£m)7Qn+1,me,an+1,m>
1 *
_6<¢£m - Qn+1,mAq7wDinn+l,m>

1 *
— _<£ma wanJrl,me,anJrl,m) - &<Lma ¢Qn+1,me’qu,an+l,m>

1/

= —[TL + 1]q¢;n<£ma Qn+1,an+1,m> - [n + 1]q[n] % 2_q<£m7 Qn+1,an+1,m>

= _[n + 1]q{¢;n + [n]%Q_q}<[’m7 Qn+1,an+1,m>

- /\n+1,m <£m7 Qn+1,an+1,m>-

3.2.2 D,.-semi-classical orthogonal polynomials

Let £ be a regular linear functional and {P, },ear the corresponding monic orthogonal family.
When the linear functional £ is D, ,-semi-classical of class s > 0 satisfying (3.47), the charac-
terisation theorem (see Theorem 3.1) is not valid anymore. In particular, the derivative Dy, P,
of P, is not orthogonal with respect to A, (¢L) but quasi-orthogonal of class s with respect to
Aqw(oL). The following theorem, which generalise some results in [Salto, 1995] and [Medem,
1996], gives some characterisations for D, .-semi-classical orthogonal polynomials.
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Theorem 3.2 (Smaili, 1987) Let L be a regular linear functional and {P,}nen the corre-
sponding monic orthogonal family. The following properties are equivalent:
i) There exist two polynomials: 1 of degree at least one and ¢ such that

Dy (oL) =yL. (3.82)

i1) There exists a polynomials ¢ # 0 and an integer s with deg ¢ < s+ 2 such that

<AQ7W(¢£)7 Qm,lQn,1> =0, ’n - m| > s (3 83)
<Aq,w(¢)£), Qm,lQm+s,1> ?é 0, VYm > 1, :

where polynomials Q.1 are defined in theorem 3.1.
i11) There exists a polynomial ¢ # 0 and an integer s with t = deg ¢ < s+ 2 such that

n+t—1
¢D; Pu= > &;Pjn>s+1, (3.84)
j=n—s—1
with
Enn—s—17#0, n>s+ 1. (3.85)

Proof: i) = ii). Suppose that (3.82) is satisfied. Then ¢ # 0 by Lemma 3.1 and (3.82).
Let m and n be two integers such that n > m+ s and pose s = max{deg(¢) — 2, deg(¢)) — 1}.
Using (3.82) and Proposition 3.1, we get

[m +1]q [n + 1¢(Agw(¢L), @ni@m,1)
= (Agw(dL), Dy Pmt1Dgw Prt1)
(Agus(0L), Dy [Prs1Dgo Pms1] — AqoPrs1 D}, Prs1)

1 1
= _E<D;,w‘4q,w(¢£)a Pry1Dg Pm+1> - 5<¢£7 Pn+1AZ,wD2,me+l>

1 *
= —(L, Pat1¥) Dy Prt1) — 5(@ Po1¢A; ,Ds  Prii)
—0,

because deg(% AL D2 Pni1+v9Dgy Pppl) <m+s+1<n+1.
Given non-zero integer m, we have, from the previous computations,

<Aq7w(¢)£), Dq,w Pm-i—qu,w Pm+s+l>
1 *
= _<[’7 Pm+s+1¢ Dq,w Pm+1> - 6<[f7 Pm+s+1¢Aq7ng,me+l>
= —{[m+ 1]q7/’p5p78+1 + [m]q[m + 1]q qlim %5t,s+2}-[0,m+5+1

= —[m+ 1]q {wp(sp,s—&-l + %[m]%fst,s—&-?}‘fo,m-i-s—i—lv (3.86)

where I, is defined by
Iom = (L, Py Pp), m >0, (3.87)

and the polynomials ¢ and v are given by

d(x) = jal, v(x) = v;ad, (3.88)
=0 J=0
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with |¢[[¢hp] # 0.
It results from (3.86) that (Agw (L), Dyw Pmt1Dgw Pmtst1)Tontst1) L = U(m, s), takes
one of the three values:

i):t<s+2 p=s+1,
U(m,s) =—[m+1]g¢s41 #0, m >0,

i): t=s4+2, p<s+1,

Ulom, ) = =[]y [+ 1), 222 20, m > 1,

1
q

i) t=s+2, p=s+1,

Uim, ) = ~fm + 1) {1 + 2222 ).

U(m, s) for the case iii) is not zero by the regularity of the linear functional L.

In fact, mimicking the approach used in (3.79), we conclude that if £ is regular and satisfies
(3.82), with ¢ and ¢ given by (3.88) and ¢t = p + 1, then we have

¥y + ¢”q“ [m]s 20 VYm e N. (3.89)

We deduce that (Ag.(¢L), Qm,1Q@m+s,1) 70 Vm > 1 and therefore that the property ii)
is fulfilled.

ii) = 7ii). We assume that 4i) holds and expand ¢Dj P, on the basis { P, }nen
n+t
oD} Pr = &nj P,
7=0

where t = deg(¢), and get

&n,jlo,5

(pL, P; D;,WP@

<¢£’ A;7w(Aq7ij Dq,wpn)>

= q[n]q(Agu(dL), AgwP; Qn-11)
= 0Oforn>j+s+1,

by (3.83).
Moreover, for n > s+ 1,

gn,nfsfljo,nfsfl = Q[n}q<Aq,w(¢E)7 Aq,anfsfl Qn71,1> #0

also by (3.83).

iii) = ).

Let {P, }nen be the dual basis associated to the monic family { P, },en and ¢ the degree of
o.

We expand the linear functional Dy, (¢L) in the basis {Pp }nenr

Dyu(¢L) =) an Py

n>0
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and get

Qn = <Dq,w(¢£)apn>
1 *
_7§<£>¢1)%w}10
s+t—1

<£7 Z g”:jpj>

1
q j=n—s—1
= Oforn>s+1.
Then

s+1
qu(gbﬁ) = Zaj Pj
7=0

= si:lw B L
2L PP
= 17[)5

thanks to Proposition 2.1. We deduce from the previous equations, Lemma 3.1 and the fact that
¢ # 0, that v is of degree at least one. The linear functional L is, therefore, D, .-semi-classical.
O



Chapter 4

The formal Stieltjes function

4.1 The Stieltjes function and the Riccati difference equation

4.1.1 Some definitions

Definition 4.1 The formal Stieltjes function S(L) of a given linear functional L € P’ is defined

by
S(e)@) = - Y Dk (41)

k>0

where (L), = (L, z*), represents the moment of order k of the linear functional £ with respect
to the sequence {x"},>0.

We define the action of the operators D, 7, Dy, G4, Dy, D, Agw and D, on the Stieltjes
function S(L£) as is done in [Medem, 1996] (for more information see [Medem, 1996, p. 357]).

Definition 4.2 (Medem, 1996) The operators 1, Dy, Gq, Dq, D, Aqw and Dy, act on the
Stieltjes function S(L) of the linear functional L in the following ways:

L)
TS = S o) =~ 2
G,5(0)w) = S(E)a) == AT a0,
n>0
B ) (L)
DS(L)@) = Yt 1)\
n>0
S(L)(qx) — S(L)(x n+ 1]y (L)n
R P
S(L)(x +w) — S(L)(x) 1 1 1
D.S(L)@) = e a)) i >:_7§](£)n; <($+w)”+1 _x”+1)’
_ SOz +w) = SKL)(x) 1 1 1
DowS(L)(e) = -z +w N rg(ﬁ)n(Q—l)Hw ((qx+w)”+1 »”C”“)'

61
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Definition 4.3 The formal Stieltjes function S(L) = S (see (4.1)) of the regular linear func-
tional L satisfies a Riccati differential equation if S satisfies an equation of type [Magnus, 1984],
[Dzoumba, 1985]

6(2)DS(x) = A()S(x)? + B(x)S(z) + C(a), (4.2)

where ¢ is a non-zero polynomial and A, B and C are polynomials.
When A = 0, the Riccati differential equation is called the affine Riccati differential equation.

Definition 4.4 The formal Stieltjes function, S(L) = S, of the reqular linear functional L
satisfies a D,,-Riccati difference equation if S satisfies an equation of type

¢z +w)D,S(z) = G(z;w)S(2)TS(z) + E(z;w)S(x)
+F(z;w)1,S(x) + H(z;w), (4.3)

where ¢ is a non-zero polynomial and E,F,G and H are polynomials in the variable x and
depending on w.

When G = 0, the D,-Riccati difference equation is called the affine D, -Riccati difference
equation.

Definition 4.5 The formal Stieltjes function S(L) = S of the regular linear functional L satis-
fies a Dy-Riccati difference equation if S satisfies an equation of type

¢(qz)DyS(z) = G(259)S(2)GyS () + E(x;9)S(2)
+F(2;9)GqS (x) + H(z; q) (4.4)

where ¢ is a non-zero polynomial and E,F,G and H are polynomials in the variable x and
depending on q.

When G = 0, the Dy-Riccati difference equation is called the affine Dy-Riccati difference
equation.

Definition 4.6 The formal Stieltjes function, S(L) = S, of the reqular linear functional L
satisfies a Dy ,-Riccati difference equation if S satisfies an equation of type

d(qr +w)Dy o S(z) = G(z;q,w)S(2)AgwS () + E(z;,q,w)S(x)
+F(x;,q,w)AqwS(x) + H(z; q,w), (4.5)

where ¢ is a non-zero polynomial and E,F,G and H are polynomials in the variable x and
depending on q and w.

When G = 0, the Dy ,-Riccati difference equation is called the affine Dy ,-Riccati difference
equation.

Definition 4.7 Let Y be any one of the four operators {D, D,,, Dy, Dq.}. Then, the reqular lin-
ear functional L and the corresponding monic orthogonal polynomials belong to the Y-Laguerre-
Hahn class (resp. affine Y-Laguerre-Hahn class) if the Stieltjes function of L satisfies a Y-Riccati
difference equation (an affine Y-Riccati difference equation). The regular linear functional and
the corresponding orthogonal polynomials belonging to the Y-Laguerre-Hahn class are called Y-
Laguerre-Hahn linear functional and Y-Laguerre-Hahn orthogonal polynomials, respectively (see
[Magnus, 1984/, [Dzoumba, 1985], [Guerfi, 1988], [Medem, 1995], [Salto, 1996], [Marcellin et
al., 1998]). It should be mentioned that the affine Y-Laguerre-Hahn linear functionals (resp.
Orthogonal polynomials) are precisely the Y-semi-classical linear functionals (orthogonal poly-
nomials).
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Remark 4.1 Let Y be any one of the four operators {D, D, Dy, Dgw}. Then, the affine Y-
Laguerre-Hahn orthogonal polynomial is a Y-semi-classical orthogonal polynomial, and con-
versely (see [Guerfi, 1988]).

4.1.2 Some properties

Proposition 4.1 The formal Stieltjes function, S(L), of a given linear functional L € P’ obeys
the relations

i) S(al + M) = aS(L) + BS(M) Va,8e€C, YMeP (4.6)
i) S(fL) = fS(L) + LOof, VfeEP, (4.7)
i11) Agw S(L) = S(Agw L), (4.8)
iv) S(Dgwl) = DgwS(L). (4.9)

Proof: i) Let a, 8 be two complex numbers and £, M two linear functionals. Then,

k
S(aL+pM) = =-% @5;@14,;5 )

k>0

= —a), <xk+1 ﬂZ xk+1

k>0 k>0

= aS(L) + BS(M).

ii) Let k be an integer; we shall prove that
S(z*L) = 288 (L) + LOpa* VEe N

and use property i) to deduce that (4.8) holds for any f € P.
In fact,

o0 .%'k "
S(akL)(z) = —Z%
n=0

£ wn+k>

= = z:o wn—l—l

= =Y <ﬁ7—k+i (taking k +n =m)
x

m=k

> (L, ™ k=1 L, z™
— _xk(zz:o <xm+1> o Z (xm+1>)

k-1
= 2FS(L)(x) + Z(ﬁ gm)gh1mm

k
= Z NaI=t (taking k —m = j)
Eeol’

= 2*S(L)(x) +
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For property iii),

S(Aguwl)(z) = 72 Aqgcnﬁl“
E A* TL
= __Z xn—l—l >
_ .y M

- nz% (qw)n—&-l

= 72 (qx) n+1 Zx]< ) )T J>
L j(ﬁ,az>
S

n=0 j=0
where ' o
n\ _ ] gy Hism (4.10)
J 0 if j > mn.
Then,
i (L,a)
S(Agwl)(x Z()Z()( ) (q:c)n+1‘ (4.11)
n=0
On the other hand, using the series expansion of W,
L&y i
e S 2
we obtain
ALY = =3 et
_ _ii ("37) (=) (£, 2)
ovar o q:c n+p+1

Then changing the variable n 4+ p = j, the previous equation gives

AguS(L)(@) = _ZZO i asd
7j=0n=0
= S(A4uL)(),

by (4.11) after reversing the role of n and j.
To derive relation iv), we compute both sides of (4.9) and remark that they are the same.
In fact,

st - -5 et

1 & (L, DE 2"

= - Z Togntl

q.,

1 00 (:v_w)n_xn

= - Z .CE”'H <£’ JZ—_W >

qTLZl q — T
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Then, using the relations (derived by induction on n),

(@a+b)” = > (") AV Va,beC VneN, (4.13)
—0 \J
7=0
n—1 ) )
a"—bv" = (a—0b)Y b7 VabeC VneN, (4.14)
=0
we obtain
1 00 n—1 k )
9,217 1=0j=0

On replacing n by n 4 1, we obtain,

) 1 n k
$0pe0)0) =3 11 23 ()t (@15
=0 %" k=0j=0
Let us compute D, ,S(L)(x).
= 1
Dq,wS(‘C)(x) = - Z<‘Camn>Dq,wW
R n Doz
= 7;)<£7 T >.%'n+1 (qx + w)n+1
_ i (qx 4 w)n—H o J:”'H (E,$n>
B gr+w —x antl (qr + w)n

n=0

Use of (4.14) transforms the previous relation into

DS = 3 +<5’>fffi Sy
= j=

z")
ZZ qx_’_wn ]+l$j+l

n=0j5=0

Rewriting this equation, taking into account the series expansion of W (see (4.12)),

leads to

- (L) & n+k—j k
DowS(0)@) = ZZ<xj+1>Zk'(< - )(‘(Qz:)g‘“f)ﬂ+1

> (n+k-— [,:c”
Zk+ 7)! (=w)*( >

The change of variable, n + k = ¢, transforms the latter equation into

oo t t—k )k<£ .’L't_k>

DygwS( = 22> k:' t— _j)lxt+2qt L

t=0 k=0 j=0
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We obtain after replacing in the previous equation t — j by m that

DS = S5y ML
qw r) = oy
=0 k=0 m— kk'(m k Ltz gt
= izt: Xt: CZ) t+2 <£+1w >
=0 k=0 m—Fk z
- yyy WCere
=0 k=0 m=0 ‘THZ ml
-y y e
=== xt+2 m-+1
Again, replacing m — k by [ in the above equation, we obtain
t m m )(—w)m_l<£,xt+l_m>
DgwS(L)(x) = Z Z L2 gt
t=0 m=0 [=0
i zt: i m )mfl<£ xt+lfm>
Pt g2 gm+1
= S(Dgwl) (),

by (4.15); hence the proof of Proposition 4.1 is complete. OWe give some consequences of the
previous proposition, already given in [Guerfi, 1988], [Salto, 1995], [Medem, 1996].

Corollary 4.1 The formal Stieltjes function S(L) of a given linear functional L € P’ obeys the
relations:

1,5(L) = S(T.L), S(DuL) = D,S(L),
GqS(L) = S(94L), S(DyL) =DyS(L).
We announce another corollary of Proposition 4.1. This result has been given for the operators

D, D, and D, (see [Dzoumba, 1985], [Guerfi, 1988], [Medem, 1996]).

Theorem 4.1 Let L be a regular linear functional. L belongs to the affine Dy ,-Laguerre-Hahn
class if and only if L is Dy ,-semi-classical.

Proof:  Suppose that £ is Dy -semi-classical and satisfies Dy, (¢L) = L, where ¢ is a
non-zero polynomial and 1 a polynomial of degree at least one. We first use Propositions 3.1
and 4.1 to compute S(Dy ., (¢L)) and obtain

S(Dq,w(¢£)) = S(Aq,wngq,wE + Dq,w¢£)
= AgwdS(Dyul) + (Dguwl)0oAqwd + DqudpS(L) + LOgDy
= AgwdDgwS(L) + (Dguwl)boAgwd + DquwdS(L) + LODy 0.

Secondly, we use again Proposition 4.1 to compute S(¢)£) and we obtain
S(WL) =pS(L) + LOpy.

Since Dy, (¢L) = L and ¢ is a non-zero polynomial, we deduce from the above computations
that S(L) satisfies the affine D, ,-Riccati difference equation

P(qz +w)DgwS(L)(z) = (Y(x) — Dgwo(x))S(L)(x) + LOoy(x)
—(DgwL)bod(qr + w) — LOg Dy wp(z).
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Thus, £ belongs to the affine D, -Laguerre-Hahn class.
Conversely, assume that the Stieltjes function S(L) of the regular linear functional £ satisfies
an affine D, -Riccati difference equation

A(2)DgwS(£)(x) = B(x)S(L)(x) + C(x),

where B and C are any polynomials and A is a non-zero polynomial. Using Propositions 3.1
and 4.1 we obtain

A(x) Dy S(L)() B(xz)S(£)(z) + C(x)

—
S(A(z)Dgwl)(x) — (Dguwl)boA(x) = S(B(z)L)(z) — LOB(xz)+ C(x)
—

S(A(z) Dyl — B(x)L)(x) (Dywl)BoA(x) — LOB(z) + C(a).

The right hand-side of the previous equation is a polynomial while the left hand-side is, by
definition of the Stieltjes function of a given linear functional, an infinite (unless it vanishes)
linear combination of {xn%, n € N'}. Therefore, both sides of the previous equation vanish and
we obtain

A(x)Dg L — B(x)L =0 (4.16)

and
(DgwLl)boA(z) — LOB(x) +C(x) =0 VreR. (4.17)

Again, we use Proposition 3.1 to deduce that (4.16) is equivalent to
1
Dy w(Ay,AL) = (B + gD;"wA)ﬁ. (4.18)

The previous equation, used together with Lemma 3.1 taking into account the fact that A # 0,
allows us to conclude that the degree of B + éD;}wA is at least one. Then the regular linear
functional £ is D, ,-semi-classical. O

4.2 D, .-Laguerre-Hahn orthogonal polynomials as D,-Laguerre-
Hahn orthogonal polynomials

In this section we prove that the D, ,-Laguerre-Hahn orthogonal polynomials can be deduced
from D,-Laguerre-Hahn orthogonal polynomials by a change of variable and then we give some
consequences.

Theorem 4.2 Let L be any reqular linear functional, then we have:

i) L is a Dy ,-Laguerre-Hahn linear functional if and only if Aa,% L is a Dy-Laguerre-Hahn
—q
linear functional. This means that the Stieltjes function S(L) of L satisfies

Pz +w)DgwS(L)(z) = G(z;39,w)S(L)(2)AgwS(L)(z) + E(x; ¢, w)S(L) ()
+F(z;q,w)Aq S (L)(x) + H(x; q,w), (4.19)
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where a is any non-zero real number, ¢ is a non-zero polynomial, E,F,G and H are
polynomials in the variable x, if and only if the Stieltjes function S(A(LILE) of Aa’%ﬁ

—q —q
satisfies

HanIDSE)) = Olasq,@)S(E)@)Gy S(E)) + Blazg,)S(E)(a)
+F(x;q,w)GyS(L)(z) + H(x; q,w), (4.20)
where ¢ = a~ 1Aa7¢, o= Ay e @forq)e{ﬁ E, F, G, H}.

ii) Let L be a Dg,-Laguerre-Hahn linear functional satisfying (4.19). If { Py }nen and {P}nen
represent the monic orthogonal families associated to L and AQULE, respectively, then we
—-q
have the following results:

By(z) =a" Pn(a:c+1L) V€ R, (4.21)

/Bn(Q7w7¢7E7FaG7H):agn(q707(£7Evpaé7ﬁ)+1w )
—q

Vn(q7w7¢7E7F7G7H):GQ&n(q707q~57E7ﬁ17é7g)7

where Brn, Yn, ﬂn and 7, are coefficients of the three-term recurrence relation satisfied by
{Pn}nGN and {Pn}nef\/

Pn+1(l’) (‘T 7ﬂn(Q7w ¢7E F G H))Pn(ﬂf) ’Yn(q,w ¢ ~G ;H)~Pn 1( ) n = 0

Poi1(z) = (x — Ba(q, 0, (b,E F.G, H) Po(2) — An(q, 0,0, E, F,G,H)P,_1(2), n >0, (4.22)

Pi(x) =0, Py(x) =1, P_y(x) = 0, By(z) = 1.

Proof: i) We use the relation [Guerfi, 1988], [Medem, 1996]
Aaq%qu,w:a_l,DqAa,l%q’Aq Agw =G4 A a, 72> q#1, a#0 (4.23)

and get

Blaz +w)DguS(L)(x) = Gl g, w)S(L)(2) AguS(L)(x) + E(w; 0,0)S(£)(2)
+F(z;q,w)AqwS(L)(x) + H(z; q,w)
<
Aa,ﬁAq,wd)(x) Aa,l%qu,wS(‘C)(x) = G(-rv q, W)Aa,ﬁs(ﬁ)(x)A TqA S(ﬁ)(ﬂj)
+E(25¢,w) A, 2 S(L)(2) + F(25¢,w) A, 2 AqoS (L) (2) + H(w; q,w)
<
07 Gy A 000 Dy A S(E)(w) = G ,0) A 2, (L)) Gy A =, S(£)(2)
+B(2:.q,w) Ag 2 S(L)(2) + F(23q,w) Gy Ag, 1= S (L) () + H(z3q,w)
—
Han)DyS(£)(x) = Cla;0,0)S(£)(2)Gy S(E) (@) + Bla:0,0)S(£) )
+F (%3 q,w)G¢S (L) () + H(w; ¢, w),

by the relation (4.8): S(Ayw L) = Aqu S(L).

ii) Since the family {Aaq%an}neN is orthogonal with respect A“’%q L (see Lemma 3.2), we

deduce that P, = a™" A, %Pn, thanks to the uniqueness of the monic orthogonal polynomial
’1—q
family associated to a given regular linear functional.



4.2. Dy -Laguerre-Hahn OP as D,-Laguerre-Hahn OP 69

Since { P, }nen is orthogonal with respect to the linear functional £, it satisfies
Pn—i—l(SU) = (37 - ﬂn(%wy o, E, F,G, H))Pn(x) - ’Vn(Qa w, ¢, B, F,G, H)Pn—l(‘r)v

where 3, (¢, w, ¢, E, F,G,H), v,(¢q,w, ¢, E, F,G, H) are complex numbers depending on ¢, w, ¢,
E, F, G and H.
After applying the operator Aa’ll to both sides of the previous equation, we obtain that
—q

Aa—Pn-H( ) (aw+1— /Bn(%w b, w))

T1—

Pn($) - fyn(qv W, ¢7 w)Aa,lL_q Pn—l(x)'

a,l P

This latter equation, used together with (4.21), gives

Pua(2) = (4 s = (0. 0. Pafa) = 0..0.0) P 2.

We complete the proof of the theorem by identifying the coefficients of the previous equation
with the ones of the three-term recurrence relation satisfied by family { P, },ecar, orthogonal with
respect to the D,-semi-classical linear functional ALL% L

—q

Pn-i-l(x) = ($ - /én(qa Oa é? i))pn(x) - :YTL(Q7 Oa &7 @)Pn—l(x)a n Z 0,
with ¢ and ¢ defined by (4.24). O

Remark 4.2 Since the results stated in Theorem 4.2 are wvalid for any real number a # 0,

without loss of generality, we choose a = 1. In this case Al,% = TIL and we, therefore, get
—q —q

the following consequences:

Corollary 4.2 Let £ be any regular linear functional, {P,}nen and {Pn}ne_/\/’ represent the
orthogonal families associated to L and TIL L, respectively. Then, we have the following results:
—q

1. L is Dy ,-semi-classical if and only if TIL,E is Dy-semi-classical, i.e.,
—q

Dyu(¢L) =9 <= Dy(¢L) =9 L,

where ¢ is any polynomial and Y a polynomial of degree at least one, with

L=Teu L, 0l@)=ola+ =), 9() =¥+ ) (4.24)

2. The coefficients of the TTRR satisfied by { Py }nenr and { P, }nen are related by
~ . - w
5TL(Q7 w, (;5, 1/’) = ﬂn(% 07 ¢7 ¢) + 1—_q7
V(s ws &, 9) = (4, 0, 6, ),

where Brn, Vn, B, and Yn are coefficients of the three-term recurrence relation

Pn+1( ) (x_ﬁn(Qa 7¢ ?))P( ) n(qaw ¢ @ZJ) n— 1($), nZOa

w gl
Py (z) = (& = Bn(q,0,0,9)) Po( > %(q,o ¢, 0) Por(@), n >0,
Pfl(gj) =0, PO(:E) =1, P,1($) (l’)

and ¢, ¥ given by (4.24).
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Proof:  The proof is similar to the one given for D, ,-Laguerre-Hahn case. In particular,
we have,

qu(gf) [,) =Y <= leTq qu((]ﬁ ,C) = Tl%q 1/)71%(1 L
<~ Dqu%q (¢£):Tﬁ¢7ﬁ£
— ’Dq(Tl%q gZﬁTl%q ﬁ) = Tl%q Q/JleTq L.



Chapter 5

Difference equations for the first
associated classical orthogonal
polynomials

5.1 Introduction

In this chapter we derive the single fourth order difference equation satisfied by the first associ-
ated of the g-classical orthogonal polynomials. We give this equation in the factored and simple
form, we then use Theorem 4.2 to deduce the single fourth order difference (resp. differential)
equation satisfied by the first associated of the classical orthogonal polynomials of a discrete
variable and continuous variable, respectively.

Although the main result of this section is contained in the general theory given in the next
chapter, this method is worth to be communicated because it uses the properties of the functions
of a discrete variable of the second kind [Suslov, 1989] rather than the properties of the Stieltjes
function which are used in the next chapter. It also allows us to have a factored and simple
form for the fourth-order difference equation and to confirm the results obtained by the general
theory.

5.2 ¢-classical weight

Let p(x) be a positive weight function defined on the interval I =|a,b] and let £ be a linear
functional defined by

(£, P) = [ P(s) pls)dys. (5.1)
The orthogonality weight p (defined in the interval I) is said to be g-classical if p satisfies:

i) There exists a monic polynomial family {P,},ear, orthogonal with respect to p, i.e.,

/I Po(s) Pon(s) p()dgs = kn s Vnom € Ny (kn 20 Yn € N). (5.2)

ii) There exist two polynomials ¢ of degree at most two and ¢ of degree one such that

Dy (¢ p) = p, (5.3)

71
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with
2" ¢(z) p(z))b =0 VYneN. (5.4)

Lemma 5.1 The linear functional L represented by the q-classical weight p (see (5.1)) is Dy-
classical and satisfies

Dy(¢ L) = b L. (5.5)

Proof: If P is any element of P, we use (5.1)-(5.4) and get,

(Dy(6L), P) = —3<¢z,m P)

= ——/qﬁ p(s)dgs

=~ [(D1(6(a5) pl45) P(s)) — D (6(a)0(05)) P(5))ds
q I«

1
q

= —/(Dq(¢(8) p(s) P(s/q)) + Dy(d(s)p(s)) P(s))dgs

I
= —¢(s) p(s)P(s/q)|Z+/]¢(S)P(3)P(S)dq3
= [otom
= (WL, P).

Hence, Dy(¢L) = L. We complete the proof by remarking that {P,},cn is orthogonal with
respect to £ (see (5.2)). O
The monic polynomials {P,},cn, orthogonal with respect to £, satisfy the second order g-
difference equation (see Theorem 3.1),

Qan ly(x)] = [¢Dy D% + YDy + M oZd] y(x) =0, (5.6)

an equation which can be written in the ¢-shifted form,

(o) + Yy t1)Ge — (L4 q) 1y + Yyt — Ao £1)Gq + ady Zaly(z) = 0, (5.7)
with
_ ; ¢//
Mo = =[nf{d" +[n—1]1 E}’ (5.8)

b@) = od'x), Yo =v(dn), ti=t(d), tx)=(¢- 1)

(1)

5.3 Fourth-order ¢-difference equation for P,”,(x; q)

The first associated P,El_)l(x; q) of P,_1(x;q) is a monic polynomial of degree n — 1 defined by

(1) 1, . Pu(siq) — Pa(iq), 1 / Pa(s;q) — Pu(z;9)
P x;q) = —(L, = — s)dys, 5.9
O (aia) = S e CI L)
where g is given by v = (£,1) = [ p(s)dys.
T
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Relation (5.9) can be rewritten as

P\ (;9) = p(x) Qu(w:q) — Pal; 9)p(2) Qol; q), (5.10)

where

L1 P,(s;q) s
Qulaza) = —— s [ D p(s)dys

It is well-known [Suslov, 1989] that Q,(x;q) also satisfies Equation (5.6); hence, by (5.10)

.
Qon Po(@:0) + Pou(z;¢)Qo(x; Q)] = 0. (5.11)

p(x)

In a first step, we eliminate p(z) and Qo(x;q) in Equation (5.11) using Equation (5.3) and
Equation (5.6) for P,(x;¢q). This can be easily carried out using a computer algebra system—we
used Maple V Release 4 [Char et al., 1991]—and gives the relation

(6 + Py 1) Qsn [P (2:0)] = [e Gy + f L) Pala: q), (5.12)
with

D = 020 —(1+9Q)o0) +¥mytt — Ao t)Gq +q (¢ + 1) Iy, (5.13)

/!
e = (5~ W) (1 + q)a) + Payts — Anot3) 1,
/!

f= —(? — ") (g + Doy + ) t1) tr.

In a second step, we use Equations (5.12), (5.13) and the fact that the polynomials P, (x; q) satis-
fy Equation (5.6), again. This gives—after some computations with Maple V.4—the operator
Q37,1 annihilating the right-hand side of Equation (5.12),

Q1 = (¢ +ve ta)ld® AL+ (1 +q) do) + Vo) t2]G;
—[° A1 (b2) + Vo) t2) + A3 (d2) + 7 A1) G, (5.14)
+q b [¢° Az + (1+ q) by + U3 t3)] Za,
where A; = (1 + q)dy) + Yt — Ano t?.
We, therefore, obtain the factored form of the fourth-order ¢-difference equation satisfied by
each Prgi)l (x;q),

*
skok Q2,TL—1 [

_ =2n-1 [p(1) . _
2n=1 2 (q—1)%a2 Py (@ Q)} 0. (5.15)

5.4 Applications

5.4.1 The first associated Little and Big ¢-Jacobi polynomials
For the Little g-Jacobi polynomials, p,(x;a,blq) [Area et al., 1998al,[Koekoek et. al, 1996]

— —a abg®> — 1) x
(b(x)::):(x 1)’w($):1 q+ (abg® — 1)

q q(q—1)

Y
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and for the Big g-Jacobi polynomials, P, (x;a,b,c;q) [Area et al., 1998a],[Koekoek et. al 1996]

o (o e T ey = At aal = (b+e)g) + (abg® — D)z
a) = acq = (a+ o+ = 4(a) = o) ,

the constant ¢” — 21 is equal to Q(Iq:alb 9 Therefore, the first associated of the Little g-Jacobi
polynomials (resp. Big g-Jacobi polynomials) is still in the Little g-Jacobi (resp. Big g-Jacobi)
family when abq = 1.

Let B,(a,blq) and v, (a,b|q) ( resp. Bn(a,b,c;q) and vy, (a, b, c;q)) be the coefficients of the
three-term relation (see (2.18)) satisfied by the Little g-Jacobi polynomials p,(x; a,blq) and the

Big g-Jacobi polynomials P, (z;a,b, c;q), respectively.

It follows immediately from Lemma 7.1 that they obey:

1 1 1 1
Bni1(a, va [0) = ga B>, adqlq), (e, a lg) = ¢* a* (- aqle),

1 1 1 1
Brt1(a, —,¢;q) = aBu(=,aq,¢q;q), mii(a, —,c;q) = a*yu(=,aq,cq;q).
qa a qa a

The previous equations used, together with (2.23), give:

Theorem 5.1 (Foupouagnigni, 1999) The monic Little q-Jacobi (resp. monic Big q-Jacobi)
polynomials and their respective first associated are related by

1 rz 1
P @ie e = " pa( i saala), (5.16)
1 z 1
PW(z;a, ﬁ,c; q) = ada" P”(E; LT q). (5.17)

5.4.2 The first associated D-classical orthogonal polynomials
Since lini D, = %, from Equations (5.13) and (5.14), we recover by a limit process the
q—)

factored form of the fourth-order differential equation satisfied by the first associated Pél_)l(:c)
of the (continuous) classical orthogonal polynomials P,_; [Ronveaux, 1988],

*xC *c 1
QZ,nfl 2,n—1 [P£21($)] =0, (5.18)
with
35 1 d? d
xe = 1 ___—enTl — Hh— 2 I e "o n I
Q2,n—1 q1_>Hi qg(q — 1)2$2 ¢d$2 + ( ¢ ¢) dz + (gb Y+ A ) d>
1 o4 d? d
hxe l L == I ! - ! )\n I
Qain—1 4¢(z) 401 ¢2(q — 1)222 ¢daz2 (g w)dz: + (W An)Ta,
where

(b”
Ap = lim Ao = —n|(n—1)—= +].
q—1 ’ 2
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5.4.3 The first associated D, -classical orthogonal polynomials

In this subsection we apply the result of Theorem 4.2 to deduce the fourth-order difference
equation satisfied by the D, .-classical orthogonal polynomials and then deduce the difference
equation for classical orthogonal polynomials of a discrete variable.

In the first step we replace in (5.15), the polynomials ¢ (resp. ¢ and PSJ1 ) by Tﬁ b, Tﬁzﬁ

and T P( )

.1, respectively, i.e.,

6 =Te b v=Tet PV (59 = To PV (z:q,0) (5.19)

and get an equation which multiplied by ’le , taking into account (4.23) and Corollary 4.2,

—q
gives

*% Q n =
QQ,;—fl ((q 12)1' j_ w)g {Pélf)l(xa %w)} - 0, (520)

where

Qo1 = opy A?W — (L4 @)bp) + Pyt — Ano #)Agw +q(d+191) 1y,
Q3 = (b3 + ¥ B3)[0° AL + (1 + q) Py + Yz E2] A

—[q° A1 (dp2) + Yy T2) + A3 (P + ¢ A1) Ag

+qdp1 [@° A2 + (1 + q) dp3) + i3y 3)] Za,

with the notations

jx)=A (1+Q)¢[J]+¢[g]tj Ao b3, oy = oz + wlily), vy = (¢ =+ wljly),
i=q T—_t( )=¢ (= Dz +w), fh=tx)=(¢— Dz +w.

1—q

SH :3>\

Since { P, }nen is Dy-classical with respect to £ (see (5.5)), it follows immediately from Theorem

4.2 that {P, }nen (with Py (z;q,w) = 7T -w Py(x;q)) is Dy -classical with respect to L =7 - L,
_ 1—q _ _ 1—q

where the linear functional £ satisfies Dy ., (¢L) = L. Therefore (5.20) is the factored form of

the fourth-order difference equation satisfied by the first associated P pl )1(38 ¢,w) of the Dy -
classical orthogonal polynomial P,_1(z;q,w) .

5.4.4 The first associated A-classical orthogonal polynomials
1)

a discrete variable, P,,_1, orthogonal with respect to the classical linear functional £ (with £
satisfying A(¢L) = ¢ L) [Atakishiyev et al., 1988], [Ronveaux et al. 1998al, [Foupouagnigni et
al., 1998b] by limit processes ( llim 1Dq,w =A):

q_> b w—

We obtain the difference equation satisfied by the first associated P,’; of the polynomial of

Kk 1
Q519501 [P( L@ )} =0, (5.21)
where
Q;,dn—l = lim Q;—;—l

= S T%— (200 + ) — )T + (d0) + ¥(0))Za
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and

QET#A w—>11i,ng—>1 QZ,*;H
= (d@) +¥E) (A —200) — Yy — 20@) — @) T
o) (2@ +4a) + 290y — 2Mn) + by (26) + ) + Uz — 2 M)
+2 001y (P2) + U3y — An) + W2y + 93) (W) — An) + An (A — ¥0))]T
+o1)(An — 202) — Y2) — 20(3) — V3))Zd,

with the notations

¢//

o) = +34), Yy =v(+7), A= ;quAn,o =-n@ +Mn—1)= )

The results given in this chapter (see Equations (5.12) and (5.14)), which agree with the
ones obtained using the Stieltjes properties of the associated linear functional [Foupouagnigni
et al., 98e19], can be used for connection problems (see [Askey, 1965, 1975], [Askey et al.,
1984], [Lewanowicz, 1995, 1996], [Godoy et al., 1997a] [Area et al., 1998b]) , expanding the

first associated P( )1 in terms of P, in the same spirit as in [Lewan0w1cz 1995]; and also in
order to represent ﬁmte modifications inside the Jacobi matrices of the g-classical starting family
[Ronveaux et al., 1996]. We have also computed the coefficients of the fourth order g-difference
equation satisfied by the first associated g-classical orthogonal polynomials appearing in the
g-Hahn tableau. In particular, from the Big ¢-Jacobi polynomials, we derive by limit processes
[Koekoek et al., 1996] the fourth-order differential (resp. g-difference) equation satisfied by the
first associated classical (resp. g-classical) orthogonal polynomials.

For the Little g-Jacobi polynomials, for example, the operators Q3 ,,_; and Q3",_; are given
below, with the notation: v = ¢".

Q;,n—l = QUC[( )QQ—V (— V—au—i-qzxabuz—i—qx)gq
+a(—-1+bqgx)Zy,
an 1 =V ~1gta? [ a(—1+bq4a:) X

(q zabv + ¢drabv® + ¢av + ¢*x — qu — qav — v — au)gg
— Z/_I(q5x2 +av?® + @ — ¢av® — Prab® + ¢ 22?03
— Frd®? — Prab? + ¢?d*v? — Prabr? — q5xa2by2 + Par?
— q5xa2bV3 — Qzav — ¢*zav — Pav — ¢ av — Prav + P2y
— Pav+ ¢ 22?0t + ¢Crlaby — ¢*rd®b? + qd®V? — Prar?
2¢52%ab? + ¢Sz2abv® + 2qar? + 1% — q4:caby3)’];
(=1 + qz)(¢*zabv + ¢*zabv® + Pav + Pz — qu

— qav —v —av)Iy.



Chapter 6

Difference equations for the rth
associated Laguerre-Hahn
orthogonal polynomials

6.1 Introduction

Using the properties of the Stieltjes function of a given Laguerre-Hahn linear functional, we
derive the single fourth-order difference equation satisfied by the rth associated D4-Laguerre-
Hahn orthogonal polynomials [Foupouagnigni et al., 1998d, 1998e]. We deduce by the limit
process, ;qu Dy = %, the fourth-order differential equation satisfied by the rth associated D-

Laguerre-Hahn orthogonal polynomials [Belmehdi et al., 1991].

Moreover, we use Theorem 4.2 to give the fourth-order difference equation satisfied by the
rth associated D, -Laguerre-Hahn orthogonal polynomials. Then follows, immediately, the
fourth-order difference equation satisfied by the rth associated A-Laguerre-Hahn orthogonal
polynomials [Letessier et al., 1996], [Foupouagnigni et al., 1998b, 1998c¢].

6.2 The associated D,-Laguerre-Hahn linear functional

6.2.1 The associated D,-Laguerre-Hahn linear functional is a D,Laguerre-
Hahn linear functional

Theorem 6.1 (Guerfi, 1988; Medem, 1996; Foupouagnigni et al., 1998e) The associated
of any integer order of the regular linear functional belonging to the Dy-Laguerre-Hahn class be-
longs to the Dy-Laguerre-Hahn class.

The proof of the above theorem is given by induction on the order of association using the
following proposition.

Proposition 6.1 (Guerfi, 1988; Medem, 1996; Foupouagnigni et al., 1998e) Let L be
a gwen reqular linear functional; £ the associated of order r of £ and Sp(= S(E(T))) the
Stieltjes function of L),

If S, satisfies the Dy-Riccati difference equation,

?(qz)DySr(z) = Gr(x;9)S: ()G Sr(2) + Er(;9) S, (2)
+  Fr(2;9)G45, (%) + Hr(z59), =0, (6.1)

77
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where ¢ is a non-zero polynomial and E,., F,, G, and H, are polynomials in the wvariable x

depending on q, then the same property holds for Syy1:

¢(q2)Dgw Sr41(x) = Gri1(@;9)Sr41(2)Gg Sr41 ()
+E1(2;9)Sr41(x)
+Fr i1 (7 Q)gq Sry1(w) + Hry1 (75 9),

with
H,
GT‘+1 - DR
Tr
H,
Ern = (qx - ﬂr)’y_ - F,
H,
F.yh = (1' - ﬁr)_ — ki,
Hr+1 = —¢(qx) + 'YT’GT - (qﬂ? - ﬂT)E’I‘ - (.Z' - ﬁr)Fr
H,
+(z — Br)(gz — /87")7_

Proof:  Application of the D, -derivative rule

flaz) _ f(=)
/ p) = 9@ 9@ _ 9(@)Dq f(z) — f(2)Dq g(x)
2 (5) =2 9@g(e) |
to (6.21) gives
Dq Sr(l’) _ Tr [1 + Dq ST+1 (l’)]

(qz = Br + Gg Sr41(2)) (x = Br + Sppa(x))
Using (6.21), (6.1) and (6.8), we obtain the D, -Riccati difference equation for S,

H,
¢(qx)DqST‘+1 = 7 7“+1qu7“+1

H, H,
+(gz — By)— — Fo|Sr1 + [(x — Br)— — Er]GgSrta

—¢(qz) + 7Gr — (qv — Br) Er — (x — B) Fy.

Identification of the previous difference equation with (6.2) completes the proof.

Remark 6.1 Use of (6.4)-(6.6) gives the following properties:

i)
H,
Eryi — Fopi—E+Fo=(q— 1)z ==,

Tr

H,
Bl + Fra+E +F="(14qx—28,),

-
& + HrHrJrl

r Tr

ET+1FT‘+1 — E.F. = ng(q:c) - Hr G’r‘
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ii) Knowing polynomials ¢, FEo, Fy, Go, Hy, Bn and v,, n > 0, we can compute the
coefficients E;, F; and H; for all i > 1 using equations (6.4)-(6.6).

Note that the coefficients (3, and v, of the three-term recurrence relation (see (2.18)), for
Dy-semi-classical orthogonal polynomials of class one are given by Theorem 8.1.

Let £ be a regular D,-Laguerre-Hahn linear functional. By Theorem 6.1, the rth associated
of £, £, belongs to the Dy-Laguerre-Hahn class and its Stieltjes function S, satisfies the
following D, -Riccati difference equation

¢(qx)DqS,~(x) = Gp(w; q)ST(x)quT(w) + E,(x;9) Sy ()
+ FT(x;q)qur(:U) + H.(2;q), r>0,

where ¢ is a non-zero polynomial and E,, F.,G, and H, are polynomials in the variable z
depending eventually on g. The following proposition proves that the degrees of the polynomials
E,. F,., G, and H, are bounded.

Proposition 6.2 (Guerfi, 1988; Medem, 1996; Foupouagnigni et al., 1998e) The poly-
nomial coefficients E,., F,., G, and H, satisfy:

deg(H,) <m—1, deg(E,) <m and deg(F,) <m, r >0, (6.12)
where m is giwven by m = max{deg(Ep), deg(Fy), deg(Hp) + 1}.

Proof:  For r = 0, (6.12) holds by hypothesis. Suppose that (6.12) holds up to a fixed
integer r. Then using (6.4), we obtain

deg(Ey41) = deg((qz — m% _F)<m, (6.13)

r

by the above hypothesis. Likewise, using (6.5), we have deg(F,;+1) < m. Finally use of (6.4)
and the fact that the last two inequalities of (6.12) hold for any integer r, give

deg(HT’-‘rl) +1= deg(Fr—H + ET+2) < m.

Corollary 6.1 Let L be a Dy-semi-classical linear functional satisfying
Dy(¢L) =YL, (6.14)

where ¢ is any non-zero polynomial, ¥ a polynomial of degree at least one, and E,., F,.,G, and
H, are defined by (6.1). Then the following properties hold:

deg(H,) < max{deg(v), deg(¢)—1}—1 VrenN,
deg(E,) < max{deg(y), deg(¢p)—1} VreN, (6.15)
deg(F,) < max{deg(y), deg(¢p)—1} VreN.

Proof:  We shall give the proof by showing that
m = max{deg(Ey), deg(Fp), deg(Ho) + 1} < max{deg(¢), deg(¢) — 1},

then use Proposition 6.2.
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In fact, since L is Dy-semi-classical satisfying (6.14), we deduce from Theorem 4.1 that £ is
a Dg-Laguerre-Hahn linear functional and its Stieltjes function Sy satisfies
d(qx)DySo = GoSoGySo + EoSo + FoGySo + Ho,
where
Eo(z;q) = ¢(x) — Dyop(x),
Fo(x;q) = Go(w;9) =0, (6.16)
Ho(x;q) = LO(x) — (DgL)b0d(q) — LO6Dyp(2).
From (6.16) results immediately
deg(Fy) < deg(Bo) < max{deg(1), deg(@) — 1}. (6.17)
It follows from (2.11) and (2.12) that
deg(LOoy) < deg(¥) — 1, deg(LODy¢) < deg(¢) — 2. (6.18)

To show that
deg((DyL)b0p(qz) < deg(9) — 2, (6.19)

we assume

P(qz) = pja’
=0
and deduce that
n—1 )
od(qr) = > ¢,
=0
n—1 B )
(DeL)bod(qr) = > dsal,
=0
with
n—1
(z)j = Z ¢k+1 <Dq£7xkij>‘
k=j

It turns out that )
¢n—1 = ¢n<Dq£a 1> = _a¢n<£7D;1> = 07

then deg((DyL)006(g)) < deg(9) — 2.
Using (6.18) and (6.19), we deduce that

deg(Hp) < max{deg(v)), deg(¢)—1} — 1. (6.20)
It results from (6.17) and (6.20) that
m = max{deg(Ey), deg(Fp), deg(Ho) +1} < max{deg(), deg(¢) —1}.

The previous equation, combined with Proposition 6.2, completes the proof of the corollary. O
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6.3 Fourth-order difference equation

Through the following steps, we will show that the rth associated Laguerre-Hahn orthogonal
polynomials are solution of a single fourth-order linear difference equation with polynomial
coefficients. To do this, we shall need the following identities giving relation between S, and the
associated orthogonal polynomials.

Lemma 6.1 (Sherman, 1933, Maroni, 1986a) Let L be a given regular linear functional;
{P, }nen the corresponding monic orthogonal polynomials satisfying (2.18); L") the rth associ-
ated of £ and S,(= S(LM)) the Stieltjes function of L") ; then, we have

_ —Ir
S0 = ey e (6.21)

where By, and 7y, are defined in (2.18).

Lemma 6.2 (Dzoumba, 1985) Let L be a given regular linear functional; { Py }nen the cor-
responding monic orthogonal polynomials satisfying (2.18); L") the associated of order r of L;

{qur)}nej\/ the orthogonal polynomials associated to L) and S,(= S(L(")) the Stieltjes function
of L), Then, the following identity holds:

Pr(LrJrl) + Sn+r+1P7ET_+11)
P(Jr)l + Sn+r+1P7(Lr)

S, = —, (6.22)

where By, and 7y, are defined in (2.18).

We suppose that £ is a regular linear functional belonging to the D,-Laguerre-Hahn class,

that £ is the rth associated of £, and that {Pér)}ne A is the family of monic polynomials,
orthogonal with respect to £, If S, represents the Stieltjes function of £, then by Theorem
6.1, for any integer r, S, satisfies a Dy-Riccati difference equation (see (6.1)). We first apply the
difference operator G, to (6.22) and obtain

Pnr—i—l + . T+1)
gq Sr = —7 gq gq + +1gq n . (623)
gq +1 + gq n+r+1gq Pn

Secondly, we apply the quotient rule (see (6.7)) to (6.22) and obtain

D, S,
Yr

L

( Yt Spprpa P ) (gq i1+ Gg Sniri1Gq B )
— (gq pP{+Up, P — g, P(T)lpq Pértl)) Siri

(G PY5VDy Py = Gy YDy PV Gy S

(gq PS)Dq Pnrﬁl) Gq P, (TH D P(T)) Sn+r+1Yg Sntrt1
~ G, P D, PUY 4G, PI+UD, P (6.24)
+ (gq PG, B - G, P(TH Yq n+1) Dy Spirs1-

Further, we replace S,, GS, and D,S;, given by (6.22), (6.23) and (6.24), respectively, in (6.1)
and obtain after taking into account (2.24), the Dy-Riccati difference equation for Syq,41; an
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equation which when compared with
#(qx)Dy Sntr41(2) = Gnir+1(259) Sntr+1(2)Gg Sntrt1(7)
+En+r+1 (CC; Q)Sn—i-r-‘rl (l')
+Fntr+1(759)Gg Snvr1(7) + Hygr11(759),

gives the following proposition:

Proposition 6.3 (Foupouagnigni et al., 1998e) The coefficients of the Dy-Riccati differ-
ence equation for Spyr+1 are given by

Tn,r En+r+1 = _¢(qx) ( P(T—H)Dq Pr(zr) gq P7§:-1/Dq P?ET—EI)>
r+1 r r r
—E, P( + )gq PT(L+1 FTP( gq P( +1) (625)

Gy P +1 + 7 Gr P(Tﬂ)g Py,

7r
Tn,r Foiri1 = ¢( ) (ng D P(T-H gq P(T—H Dq PT(L:)l)

~E, PG, P — F,P g, Pty (6.26)

n

TP,Engq Pnr + Gr Pnr+1 gq Pér-iil)7

o e = 00 (6,0, P, 0, L )

~E.PUYG, PM — F, Pn’“jlgq pirty (6.27)

H T r T
P( )1gq n+1+7rG P +1g P +1)

Tn—1,r Hn-i-r = _¢(qx) (gq nTﬁl)D P gq P(T Dq P(Tﬁ1)>

n

~E.P" Mg, P — F.PG, PIY (6.28)

H’I" r r T 7"
+2 PG, P 44, G, P VG, PO

T TL Lo
where m, . is given by (2.24).
We combine (2.24) and (6.25)-(6.28) to obtain:
Theorem 6.2 (Foupouagnigni et al., 1998e) The associated polynomials obey:

¢(qx)Dq P?ET) = - n+r+lgq P(T) — Iy P(r)
HTL T '8
G, P+ G PUHY, (6.29)
’Yn—l—r
¢(qz)Dy Pér——gl) = —Enyrn1g P(H—l) + Er P(H_l)
+H”+7"g plrtl) &pp, (6.30)
Yn4-r Tr
(b(qu)Dq ngl = Futr1Gg P, r(zcr)l F Pﬁ)l
—Hpir31Gq P + 7, G, B, (6.31)
#(qz)Dy Pty = Foiri1Gy Py H) +E,P{tY

- n+7"+1gq nT—H) ’YTPT(,Ql. (632)

T
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Proof:  We subtract the two equations obtained after multiplying (6.25) (and (6.28), re-

spectively) by Qan , GoP, nrﬁl) and obtain

oo Enir+1G¢ P, 7(LT) — Tn—1,rHn i1 Gq Pr(:-?l
= —6(qz) ( G, P T) g P (r+1) g P(T) gq (7"+1)) D, P( r)

n

—(G,P{VG,PI*Y — G, )G, P, ’"“>)F j2 (6.33)
r r T (r+1 r+1
+ (9, PG P = Gy PG P ) i G PR
Then use of the relation obtained from (2.24)
Gy PGy P = GuPLGo P = o (6.34)
and the fact that -
Tn—1,r = ol ,
Tn+r

transform (6.33) in (6.29).
Again, we multiply both sides of (6.25) (and(6.28), respectively) by G,P, nrtl , QqP(TH) nd
obtain two equations which subtracted give

(r+1) ('r+1)

— 1, HyrGy Py
= —olax) (G, PG, P = Gy PG, P ) D P

+ (G4 PG, PV — G, P G PV ) B, PIY (6.35)
H,
T

7Tn,rE‘nJrr+1 gq P

(gq r)g P (r+1) _ g P +1ng(r+1)> P( r)

Then use of (6.34) transforms (6.35) in (6.30).
Equations (6.31) and (6.32) are obtained in the same way by combining (6.26), (6.27) and
(6.34). |
For the sake of simplicity and uniformity we shall present difference equations in terms of
powers of the operator Ay, instead of D,,. This is possible because for ¢ # 1 or w # 0, all

powers of the operator D, can be expressed in terms of the powers of A4, and conversely. To
do this we present the following lemma (proved by solving system of equations).

Lemma 6.3 The powers of the operators Dy, and Aq,, are linked by the following relations:

DY, = A), =1y
((g—Dz+w) Dy = Agw —Ta,
(@q—Dz+w)?DZ, = ¢ A2, —[2gq " Agw +La,
(g-Daz+w)?iDd, = ¢2A3, —[8lua A2, + 3] Agw — Zu,
(g—Dz+w)'Dy, = ¢ Ay, —(@—1)[Hgq A2, +1+¢")Blgq° A7,
—[4]qq Agw +1a,
(g—Ve+w)’ Dy, = ¢ A, —Blag " Ag, + (1+¢°) [Blyg™ 45,

(1+Q)[] 7A +[]qq_4Aq,w* ds
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A, = Dy, =1

Agw = ((@—1Dz+w)Dyy + 1y,

A2, = qllg—De+w)?D;, 4+ (1+q) ((g— Dz +w)Dyw + La,

A5, = @ ((g—Dz+w)’ Dy, +q8ly (g — Dz +w)? D;, + 8y (¢ — 1) +w) Dy + L,
A = ¢ ((g-Dr+w)? ¢’ (¢ =14y (¢ — Dz +w)’> D,

+q(1+6*) [38¢ (¢ = Dz +w)?DF , + (¢ — 1) [4]¢ (¢ = D)z + w) Dy + Zu,
Ay = ¢ (= Dz +w)’ Dy, +¢°[5lg (¢ — Dz +w) Dy,
+¢° (1+ %) By (¢ = Dz +w)* D, + ¢ (1+ ¢%) By (¢ = Dz + w)* D,
+[5lg ((¢ — D)z + w) Dy + Za-
Remark 6.2 If we take w =0, ¢ # 1 (resp. w # 0, ¢ = 1) in the previous lemma, we find the
link between the powers of the operators Dy and Gy (resp. D, and T,,).

Theorem 6.3 (Foupouagnigni et al., 1998e) Let L be a regular linear functional belonging

to the Dy-Laguerre-Hahn class, L") the rth associated of L and {Py)}n@\/ the family of monic
polynomials, orthogonal with respect to L), If S, represents the Stieltjes function of L), by
Theorem 6.1, for any integer r, S, satisfies a Dy-Riccati difference equation (see (6.1)). The

associated polynomials PT(LT) satisfy

Dy [PD] = Ny [PV, (6.36)
Dryin [PV = Mo [P (6.37)
where the operators Dy, Nyyin—1, @rﬂ,nﬂ and /\77«771 are given by
D, = a2 gq2 +a1Gy +aoZy, Negin—1=a1Gg +aoZy, (6.38)
Dit1n-1 = b2 93 +b1Gy +b0Za, Nyw =b1G, +boZy (6.39)

The coefficients aj, bj, a; and l~)j are defined as

ay = K30(K11 K71 — K31 Kg1), by=K3o(Ki1K71—Kz1Kg1)

a1 = —Ko1(K30K71 + Ki9K3z1), by =—Ks51(K30K71+ Ki10K31)

ap = K31 (K20 K21 + K41 Ke0),  bo = K31(K5,0 K51 + Ka0 Ke,1) (6.40)
a1 = Ky1 (K30 K71+ Ki10K31), b= Ke1 (K30 K71 + K10 K3,1)

agp = —Kg’l(KQJ K4’0 + K4’1 K570>, bo = _K3,1(K5,1 Kﬁ,O + Kﬁ,l K2,0)7

where the coefficients K; j are given below with the notations:

Ki EKi,O(x;T7n7Q) :Ki<x;r7n7Q)7 ) (6 41)
Kij = Kij(x;r,n,q) = GIKi(x;m,n, q) = Ki(¢z;7,n, q). '
P(qz o(qx
Ky = ﬁ + Enyryi(z;q), Ko = e (_ 1; — F(x;9),
H . He_1(@q)  r0. >
K3 = Ma Ky =y, Gr(x; C_I) = T Ir—1 ZfT‘ 21 R (6.42)
Yrtr Y0 Go ifr=20
Hy(x;
Ks= 29 g g, K = @0
(q - 1)I Tr
( ) Hn-i—r-i—l(x; Q)
"= G-1e ntr+1(259), Ks = —Yntrt1 o
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Proof: Use of the relation

(¢ — 1)aDyP(x) = GgP(x) — P(z) VP eP,

transforms relations (6.29)-(6.32) in

85

Ki1G P") = Ky PY) + K3G, P, + Ky PV, (6.43)
K1G, P ,f“) = K5 P 4 K3 G, PUHY 4 Ko P, (6.44)
K76, P, n+1 = K2P7§421+K8gq )+ Ky PHY, (6.45)
KrGy POt = Ky PUY + Ko, PUYY 4 K P, (6.46)

where K are given by (6.42).

In the first step, we solve equations (6.43) and (6.44) in terms of G, P,

obtain

K1G, P\ — K, P\ — K, Y

gq n—gl =

K ’

K, gq nr—i—l) Ks P(T—H) K P1(lr)

gq P7(Lr+1)

In the second step we apply the operator G, to both sides of (6.45) and (6.46) and get

K7192 7?21 = K16, n+1+K81g2
K1 G2PU™Y) = Ks51G, PUY + Ksy G2 PRI + Ko i Gy P

K3

(r)
+1

") 4+ Ky1 Gy PV,

PATH) and

(6.47)

(6.48)

Then, we replace G, P, +)1 and G, P( r+1) given by (6.47) and (6.48) respectively, in the two

previous equations and obtain

(Ko Ko1+ K Kaq)

G P n+1 = K—7:1 G5 P + mgq Py~ K3 K7 £k
2]]211 g, pr+h _ (K K?g}f K1) pers1) (6.49)
GIRIY = g—: G2 PV + 2—?’5% Py - e For e

In the third step we apply the operator G, to both sides of (6.43) and (6.44) and obtain

D+ K31 G2 P+ Kaa G P,
1
r+1) +K3 1 g2 7‘+1) +K6,1 gq Pér)

Kng2 ) = K1G, P,
2 (r+1 .
K116, P, = K516, P,

3/—\3/—\

Finally, use of (6.49) and (6.50) transforms the two previous equations in

Ks30(K11 K71 — K31 K8,1)g§ P — Ky (K39 K71+ K10 K31)G, P
+ K31 (K0 Koy + Kuy Ko o) P =
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K (K3 Kry + K10 K31)Gq PYY — K1 (Ko Kao + Ka Ks,0)PUY

n—1 >

Kso(K11 K71 — K31 Kg1)Go P,(:El) — K51(K30 K71+ Ki1,0K31)G P,Ef_tl)
+ K31 (K50 K51+ Kap K6,1)P(r+1) =

n—1

Ke1(K30 K71+ Ki10K31)G, P\") — K31(Ks.1 Koo+ K. KQ,O)P,ST_JEI)?

thus the proof of Theorem 6.3 is complete. O
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After proving Theorem 6.3, we have now all ingredients to derive the single fourth-order

difference equation satisfied by P7(LT).

In fact, we apply the operator G, to both sides of (6.36) and eliminate G, QPTET_?) in the
equation obtained, by using (6.37) and obtain
3G,°P") + 3G, 2P + ¢ Gy P + ¢ P
= &G, P 4 prh, (6.51)
with polynomials ¢; and ¢; given by
c3 = baagy, ca=byayy, ¢1 =byagy — bidry
co = —bpay, ¢1 =bapy —biay, co = —boay 1,
where Xij = g(]IXl for Xi € {ai, bi, C~LZ', i)l}
(r+1)

By the same process, we apply the operator G, to both sides of (6.51) and eliminate G, ’p
in the equation obtained, by using (6.37) and get

dy G, P+ d3Gy P 4+ dy G, 2P + dy Gy P + do P

n

= 4G, P +do P, (6.52)
with
di = babyyagy, d3 =babyyar, do = bo(agibay — a1.1b11),
di = (bi1b1a1, — biaoaba,1 —baboiar,), do = (a1,1b1,1 — @o,1b2,1)bo,
di = (bi1bi11a1,1 — b1 aoaba1 —babo1ar,1), do = (G1,101,1 — Go,1 b2,1)bo-

We, therefore, deduce from (6.36), (6.51) and (6.52) the following result:

Theorem 6.4 (Foupouagnigni et al., 1998e) The associated polynomials P,E"), for any in-
teger n and for any integer r, satisfies the single fourth-order difference equation

a2 G2P\" + a1 G, P + “ P(” o
3 G3PY) + s G2P" + ¢ gq D 4 P“) & G | =0, (6.53)
dy g;LPnr) +d3 gan + do quPn +di G P +do Py dy

which by Lemma 6.3 can be written in the two different forms:

4

> Ii(r,n,g;2) G5 P () = 0, (6.54)
§=0

4 .

Z I (r,n, q;x) D) PV (2) = 0, (6.55)

i
o

where I;(r,n, q; ), I;-k(r, n,q;x) are polynomials in the variable x and depending on r,n and q.
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6.3.1 Fourth-order differential equation for P{")

We deduce from the previous results and by the limit process, lin% D, = %, the fourth-order
q—)

differential equation satisfied by the rth associated orthogonal polynomial of the D-Laguerre-
Hahn class [Belmehdi et al., 1991]. Moreover, we recover relations used in [Belmehdi et al., 1991]
to derive the fourth-order differential equation satisfied by the rth associated D-Laguerre-Hahn
orthogonal polynomials.
From (6.55) and by the limit process we get
- o @ by
Z I (r,n, 1) g P (x) =0, (6.56)
7=0
where Ij’-k(r,n, Lix) = ;eri I;f(r, n,q;x).
To compare more easily the equations obtained from (6.29)-(6.32) by this limit process with
those given in [Belmehdi et al., 1991], we state the following lemma:

Lemma 6.4 If E.(x;1), F,(x;1) are the limit when ¢ — 1 of E.(x;q) and F,(x;q) respectively,
we have
Eniri1(x;1) — Eo(231) = Fpgp1(x;1) — Fro(2;1) VneWN. (6.57)
Proof: ~ We shall prove the lemma using the relation
Erpi(2;1) — Ep(231) = Fraa(a;1) = Fr(z; 1),

easily derived by limit process from (6.9).
In fact, use of the previous relation gives:

EWHmU—Emn::Z i1 (23 1) — By (23 1)

= Z Fitry1(z;1) = Fjg(z31)
i=0

= Fn+r+1(x; 1) - Fr(x; 1)'

|

When we take the limit of equations (6.29)-(6.32) as ¢ — 1, we obtain, taking into account the
previous lemma [Magnus, 1984], [Dzoumba, 1985] [Belmehdi et al., 1994],

d n+r r Dyyr (r r r
¢—P") = _MPY(L ) 4 Znt p7§+)1 L D,_ pT(le)j
L 2 Tn+r Tr—1
oL prin __Cririn = Cr gty | Dnir periny - Dr pio)
dr n—1 2 n—1 Yrtr n v n o
d T Cn T - Or T r r T
¢%P75+)1 — %péll_l)nwﬂp()_i_ ’VlD pirl),
d r Cn+r+1 + Cr r r—+1 DT T
A

where the polynomial coefficients C, and D, are given by

Cr =Cr(x) = Er(2;1) + Fr(x;1), Dy = Dy(x) = ;LII% H,(z;q). (6.58)
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Notice that the previous four differential equations, already known earlier [Magnus, 1984],
[Dzoumba, 1985], are exactly those which allow Belmehdi et al. (1991) to derive the fourth-order
differential equation satisfied by the associated orthogonal polynomial of the D-Laguerre-Hahn
class. The coefficients C;. and D,, for the associated D-classical orthogonal polynomials, are
given by
Cr = (o= B)@rda 1) = &', 5 = (2r = o + v,
T

where ¢ and v are the polynomials appearing in the Pearson differential equation satisfied by
the regular linear functional £: D(¢L) = ¢ L, with

d(x) = ¢po2® + ¢17 + ¢o, Y(x) = Y17 + Yo

6.3.2 Fourth-order difference equation for the rth associated D, -Laguerre-
Hahn orthogonal polynomials

We deduce the difference equation satisfied by the associated D, .-Laguerre-Hahn class from
Theorem 6.4.
Consider £ a D,-Laguerre-Hahn linear functional and {P, },en the corresponding family of

monic orthogonal polynomials. Let P,&'") and £ be the rth associated of P, and L, respectively.
The Stieltjes function S, of L") satisfies (6.1):

¢(qa:)DqST(x) = Gp(w; q)Sr(x)quT(x) + Er(2;9)Sr(x)
+ Fo(2;9)G¢Sr(x) + Hr(z59), 7>0,

where ¢, F,., F,., G, and H, are polynomials in x and depending on ¢q. It follows from Theo-
rem 6.4 that P,(Lr) satisfies the fourth-order g-difference equation (6.54) where the polynomials
Ii(r,n,q;x) depend on the polynomial coefficients ¢, E, F,, G, and H,. To be more explicit,
we denote I;(r,n,q;x) = I;(r,n,q;z; ¢, B, Fy., Gy, Hy).

It results from Theorem 4.2 and Lemma 2.5 that the polynomials {P, }neps, with P, =
Tf_w P,, are orthogonal with respect to £ = Tf_w £ and that the Stieltjes function S, of £

—q —q

satisfies

(g +w)DywSr(x) = Gp(w;q,w)S (1) AywSy(x) + Er(x;q,w) Sp()
07

+ Fr(a:;q,w)AqMS’r(J:) + ﬁr(x;q,w), r >
where ¢ = T—o ¢, and ®(z;q,w) = T ®(x;9), ® € {E,, F,,G,, H,}.
1—q 1—q
We state the following

Theorem 6.5 The rth associated PT(LT) of the polynomial P, satisfies the fourth-order difference
equation

4
> I(rn,qw;x) Al P (2) = 0, (6.59)
j=0

where the polynomial coefficient [;7(7', n,q,w;x) depending on (5, E,., F., G,, H, and denoted

IJQ(T,TL, q,Ww; J}) = I;»](T,TL, q,wW;T; (57 EmFra G, Hr)7 are gwen by

w

Ig(r,n, Qaw;x;d;a EMFWGM-HT) = Ij(r,n,q;m - 1
—q

j ;QbaEraFraGraHr)'
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Proof: ~ We replace in (6.54) Py) by Tli 15,5’"), ie.,
—q

and obtain an equation which multiplied by the operator T —w gives
—q

Z T—w Ii(r,n,q;2) T —w gg T PM(z)=0.
] -0 1—q 1—q

We therefore use the relation (4.23): 7 -« gg Te = Ag » to transform the previous equation in
1—q —q ’

S I(rn g e — ——) Al B (x) = 0.
N —q ’

We complete the proof by identifying the coefficients of A{IIM PT(LT) (z) in the previous equation
with the ones of (6.59). O

6.3.3 Fourth-order difference equation for the rth associated A-Laguerre-
Hahn orthogonal polynomials

;From the fourth-order difference equation satisfied by the rth associated orthogonal polynomial
of the Dy -Laguerre-Hahn class, we deduce, again, by the limit process the fourth-order dif-
ference equation satisfied by the rth associated orthogonal polynomial of the A-Laguerre-Hahn
class [Foupouagnigni et al., 1998b]

4
Z (ryn;a) T P (2) =0,

with

I®(rn;z) = lim I(r,n, q,w; x; ¢,E,, F.,G., H,).

J w—1, q—1

6.4 Application of difference equations to classical situations

6.4.1 Coefficients F,, I, and H, for classical situations

Here we suppose that the regular linear functional £ satisfies the Dg-Pearson linear functional
equation, Dgy(¢ L) =1 L, where ¢ is a polynomial of degree at most two, and 1 is a first-degree
polynomial given by

P(x) = doa® + b1z + do, Y(x) = Y12+ Yo, [¥1](|d2| + |¢1] + [dol) # 0

It follows from Proposition 6.2 that H, is constant and F, and F;, are polynomials of degree at
most one.

Let us compute first polynomials F,, F,, and g’" in terms of ¢ and 1. The first D, -derivative
of (6.4), (6.5) and the first and second Dy-derivative of (6.6) give, respectively,

H,
DyE,11 = q7 —DyF,, r>0, (6.60)

r
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D,Fry1 = if— ~DyE,, >0, (6.61)
qB, + F. = —qGyDy ¢ — (q2$ — B:)Dq Er — (qx — 3;)Dy F,
+(1+q)(gz — @»)%, r >0, (6.62)
r
¢D,E. + D,F, = q% — ¢ o, 7> 0. (6.63)
.

In the first step, we solve equations (6.60), (6.61) and (6.63), taking into account the initial
conditions (6.16)

Ho(z,q) = LOp(x) — (DyL)0op(qx) — LODytp = (Y1 — $2)70,
Dy Eo(z,q,w) = W - ng)(l’) =11 — (1+q) ¢2,
Fo(LU, q) = 07

and obtain [Foupouagnigni et al., 1998¢]

Dy Er = g1+ ([rlg — [2]g) b2,
DyFr = ¢*"[r]yoe, (6.64)
H _
— = ¢V +q " ([2r]g - Den.
Ir
In a second step, we compute the coefficients E, and F, using (6.62), (6.64) and the equation
obtained after iterating (6.9):

r—1

B -F=(g-10)Y T4y Dy

k=0 Tk
and we get huge expressions for F, and F.. Finally, use of Maple V.4 and the simplification pro-
cedures for g-hypergeometric terms developped in [Boing et al., 1998] allow us to have readable
expressions for F, and F, [Foupouagnigni et al., 1998¢],
Er(zq) = (@ =)o+ d" hi(a-1))(¢" —a) (" zqg—d z+2¢ —xq) b (6.65)
+@-1)(@ - +q¢ (¢—1)(¢"zq¢1 +qo— ¢ zih —%Z)o))/
(a=1* (@ =) (@ +a) b2+ (¢") ¢ (g - 1)),

Friq) = (14 (-2 —qd vq+x® —2¢*) ¢” + (6.66)
(¢" (-1 (¢ )¢>1+CJ( 1)(qrwq21/}1*woqQ*qqu¢1+qwo))¢z
+91 (@) (0= 1) 61)a /(¢ (0= (0" =) (¢ +0) 2+ (a7)* 1 (g — 1).

Remark 6.3 1. For g-classical situations, coefficients K3, Ky, K¢ and Kg (see (6.42)) are
constant with respect to the variable x.

2. Forr =0, K4y =0, then it follows from (6.40), (6.42) and (6.64)-(6.66) that (6.36) and
(6.37) (for r =0 and for Dy-classical situations) are, respectively, equivalent to equations
(5.7) and (5.12).

3. When the reqular functional L is Dg-semi-classical, Ky = v Go = 0 (for r = 0). This
allows us to obtain the factored form of the fourth-order difference equation for the first
associated Dy-semi-classical orthogonal polynomials.



92 Chapter 6. Difference equations for the rth associated OP

6.4.2 Results on general associated D,-classical orthogonal polynomials

The coefficients I;(r,n,q;x) (see (6.53)) can be computed using the algorithm described in
(6.21)-(6.53). But this involves heavy computations due to huge expressions containing powers
of ¢ which need to be factored. To avoid these difficulties, we again used Maple V.4 to compute
symbolically the coefficients I;(r,n,¢;x) and to simplify common factors as was done for the
associated classical discrete orthogonal polynomial [Foupouagnigni et al., 1997¢] to obtain

Theorem 6.6 (Foupouagnigni et al., 1998c, 1998e) The coefficients I;(r,n,q;x) of the
fourth-order g-difference equation satisfied by the rth associated Dy-classical orthogonal poly-
nomials are given by

Iy = Ky o(K10,0K10,1 — K12,0K12,1),
I3 = Kio,2 (Ki2,0 (k2,3 K121 + K13,1) — K100 K10,1 (K2,3 + K5,2)) + Kg,1 K10,0 K12, 2,
I, = Kio,1 (K102 (K10,0 K101 + Ki3,0 — K51 K12,0)

— Ky 1 Ki0,0) — K12,1 (K12,2 K13,0 + k11,2 K12,0), (6.67)
I = Kio0Kiz2,2 (k2,2 Ki2,0 + K13,0) + K10,2 K12,0 (K9,0 — K10,0 K10,1),
In = Ky 1 (Ki0,1K10,2 — Ki12,1K12,2),

where the coefficients K; j are obtained from (6.41), (6.42) and

Ko(z) = Kr(qr)Ki(qr) — K3(x)Ks(z), Kio(z) = K7(qz) + Ki(2),
Ki(z) = Ka(qr)Kae(x) + Ka(2)Ke(x), Kiz2(z) = Ka(qz) + Ks(2),
Kiz(z) = Ks(qr)K5(x) + Ka(2)Ke(v), Kia(z) = Ks(qz) + Ka(z),

with coefficients E,, F,, and 7—: given by (6.64)-(6.66).

X

~— —

Notice that coefficients I;(r,n,q; x), are given in appendix III, for some Dy-classical orthog-
onal polynomials.

6.4.3 Fourth-order differential equation for the rth associated D-classical or-
thogonal polynomials
From the relation lim D, = d_ and by the limit process, we recover using Maple V Release 4 the
ng
fourth-order differential equation satisfied by the rth associated classical continuous orthogonal
polynomials (see [Belmehdi et al., 1991], [Zarzo et al., 1993]) [Lewanowicz, 1995], [Foupouagnigni
et al., 1998e]). This equation is given in terms of the factored form of the fourth-order differential
equation satisfied by the first associated classical continuous orthogonal polynomials as already
done earlier [Lewanowicz, 1995].

O°(r,n; 2) P\ (z) = 0, (6.68)
where
4 .
O(r,n, g;x) =Y Ij(r,n,¢;2) G
7=0
and

L O ga)
2¢(x) n(r,n) =1 ¢*(q — 1)*a?
= Q**C C (1 - T‘)((TL, T) Q%,n’ (669)

O¢(r,n;x) =



6.4. Application of difference equations to classical situations 93

with

. &2 d
QQ,n 2(,25@ + 3@%)/% - TZ(TZ + 2)(;3”1-[1,

C(T7 n) = ((n +r— 1)¢// + 2w/)7
n(r,n) = (n+1)((n+2r—2)¢" +2¢").

Q5% and Q5 are given by (5.13) and (5.14).

6.4.4 Fourth-order difference equation for the rth associated A-classical or-
thogonal polynomials

We first deduce the fourth-order difference equation for the rth associated D, -classical orthog-
onal polynomials using Theorems 4.2 and 6.6, then deduce the difference equation for the rth

associated A-classical orthogonal polynomial by the limit process: lilm ) Dy, =A.
w— ,q—)

We assume that {P,},cnr, orthogonal with respect to L, is Dy-classical with £ satisfying
Dy(¢L) = 1L where ¢ and 1) are polynomials of degree at most two and degree one, respectively.

The rth associated P,S’") satisfies Theorem 6.6. It yields from Theorem 4.2 and 6.6 that {Pn}ne A
with P, = 7_-o P,, is orthogonal with respect to £ = T_» £ and £ is D, -classical satisfying
1—q

1—q

quw(ggﬁ) = L, where ¢ = Tf_wgb and ) = T-u 1. Again, we use Theorem 4.2 and 6.6 to
—q 1-q

conclude that the rth associated 15,9) of the D, -classical orthogonal polynomial P, satisfies
the fourth-order difference equation

4
Z Ij(r, n,q,w;x; (57 1;) Aq,wj Pér) (l’) = 0.
=0

We, therefore, use the limit process to state the following:

Theorem 6.7 (Foupouagnigni et al., 1998c) Let B, be the classical orthogonal polynomials
of a discrete variable associated with the linear functional L satisfying A(¢) = L. Then, the

rth associated 157(;«) of P, satisfies the fourth-order difference equation
4 . ~
> IjA(r, n;x) T9 P\ () = 0,
§=0

where the coefficients IjA are given by

I = Ko o(Kio,0Ki0,1— Ki2,0K12,1),
I8 = Ko (Ki2,0 (ka3 Ki2,1 + K13,1) — K10,0 Ki0,1 (K2,3 + K3,2)) + Ko.1 K10,0 K12,2,
5 = Kio,1 (K102 (K10,0 K10,1 + K13,0 — K5,1 K12,0)

— Ky 1 Ki0,0) — K12,1 (K12,2 K13,0 + k11,2 K12,0), (6.70)
It = KooK (ka2 Koo+ Ki3.0) + K102 K12,0 (K90 — K10.0 K10.1),
I§ = Ko _1(Ki0,1K102— Ki2.1K12,2),

with the notation: K;j = ki(x + j). Coefficients k; read as:

ki(z) = é(x+1) + Enpr1(2), kao(2) = d(z + 1) — Fo(2), k3(z) = g:::’
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~ Heoqo -
kaz) = {g’@}—lr:@forzl ks(2) = d(a +1) + En(x), ke(z) = —f—
ki) = §(a+1) = Fura(2), ks(e) = ~Huprpr, o(x) = r(a + D + 1) = ks(@)ks (@),

k‘lo(l‘) = k7(£L‘ + 1) + k‘l(l‘), kn(aj‘) = k2($ + 1)k2($) + ]{?4(.7))]{76(1‘), k‘lg(ﬂi) = k‘z(l‘ + 1) + k5($),
k‘lg(l’) = /{75(1' + 1)/{75(1') + k‘4(:17)k‘6(l'), ]4}14(1') = ]4}5(1? + 1) + k‘g(l’),

with ¢(x) = 2 % + d1 2 + do, U(x) = P12 + 1y and

En(x,¢,9) = lim E(x—l—T gZ)T 1/1)

w—1,g—1
= (don—2¢o+)a
+(¢~52n—2¢~52+%/~)1)(€272n2—¢~53+<l~51~n+¢~)1n—<51+@50)
2(n—1) g2+
Fn(asqu,ﬂ) = lim F(ac—li’f gi),'T 1/})

w—1,q—1

)

= dazn
n(dadr +3¢3+ 3n? —4d3n — 2oty — ¢2¢1n+w1n¢2+¢2¢o—w1¢1>
2(n — 1) gg + 1

5 = = w—lif,?al ?(x— E T ¢ T ¢) ((2r — 1)¢2 + 1)

It should be mentioned that E,, F, and H, are given by (6.64), (6.65) and (6.66), respectively.
The coefficients By, vn are given in Lemma 7.1.

Bn = Bl ) = Jim (Bu(Te, 6, Te ¢>+—>

2 (U1 +2¢1)n - (¥ jr2</51) (—1 +<~/52)n~— Yo (1 + 2 do)
(Y1 +2¢2n)(2(n—1) ¢+ 1) 7

= —((n—2) (n—l) s
+(A(n—2) (n—1)2¢o+ (n—1)2 (3 n® +2nhy — 8¢ n — 4o +51)) §3 +
(—(n=2)(n=1)?¢f =1 (n=2) (n—1)* 1 + 491 (n — 1) (=3 +2n) g
+ (o + 1 n — 1) (niho — 200 + 491 — T + 391 n?)) 3
(=1 (n = 1) (=3+2n) ¢ — 1 (=51 n+ 3¢ — 29 + nibo + 21 n*) ¢
+ 47 (=6 +5n) go + 91 (o + P1n — ¥1)%)da — UF (n — 1) 7 — DF (Yo + Y1 n — 1) ¢
0 J(2n— 1) da + 1) (=24 21) G+ §)* (=3 + 2) o + ).

Remark 6.4 The coefficients 15 (r,n,z), as well as operators Dy, Nyn, f)r,n and /\Tnn (see

Theorem 6.3), are given in Appendiz II for all classical orthogonal polynomial of a discrete
variable. They are obviously deduced from those of q-classical case by Theorem 4.2.
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Three-term recurrence relation
coeflicients for classical situations

7.1 Introduction

We describe the method used to compute the coefficients 3, and -, for the D,-classical case.

This method, already used in [Koepf et al., 1996] but for classical continuous and classical
discrete cases, consists to derive from the second order difference equation satisfied by { P, }nen
(3.54) a system of equations satisfied by T}, 1, Ty 2 and A, o [Foupouagnigni et al., 1998a], then
solve these equations and deduce coefficients 3,, and ~,.

7.2 Three-term recurrence relation coefficients for D, -classical
situations

7.2.1 Coefficients T,,; and T, -
Let £ be a Dy-classical linear functional satisfying

Dy(¢L) = YL, where ¢ is of degree at most two and ) a first-degree polynomial i.e.,

$(x) = o a® + ¢ & + do, % (x) = P12+ o, [¥1|(P2] + |¢1] + |dol) # 0. (7.1)
It follows from Theorem 3.1 that { P, },enr satisfies

¢DyD1 Py + Dy Py+ Ao P.=0 VneN, (7.2)
q

with A, o given by (3.55).
Use of the expansions (see [Foupouagnigni et al., 1998al, see also (8.8)),

n
P,(z) = Z T, ", Dya™ = [n]qx”_l
i=0

allows us to write (7.2) as

n
> dpja" 7 =0. (7.3)
j=0
We compute the first three coefficients d,, ; and obtain, with p = ¢",

dno=q"p(@a—1"Xo—¢ " (p—=1) (—p+ @) 2+ ¢ p(p—1) (¢ — 1) 9,

95
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dng = (" pla=12 o+ (—p+a)(=p+d*)d2—p(a—1) (—=p+q)1h1) Tna
—¢*(p=1)(—p+q) ¢ +q*p(p—1)(qg—1)¢o,
dno = (26 (=p+q)(—p+a*) 1 —2¢*p(q—1) (—p+q) %) Tnn

+ 2" pla—1)*Mo+2¢ (—p+ ) (@®—p)d2 =28 pla—1) (—p+¢*) 1) Tno
—2¢* (p—1)(=p+q) do

We solve the equations d,, 0 =0, dp,1 = 0 and dy, 2 = 0 in terms of A\, o, 15,1 and T}, 2 and get

 (p=1)(=p2p+p¥1—qpi1+daq)
Am() - : p(q_l]_)g ! : __[n]q(¢1+[n_l]
(=14 p)q(qg—1)(q—p) o1 — pq(q—1)* (=1 + p) o
(g —1)2(q? 2 — 1 q p* + b1 p?> — P2 p?) ’
Tho = %(2q2(—1+p)(q—1)3(q+p)(q—p)2¢o¢z
—2¢° (=1+p) (=1 (—p+d*) (g —p)* &1*
+2¢°p(=1+p) (a— 1> (q—p) (—2p+ ¢* + q) Yo h1
—202¢* (—1+p) (4= 1) (g p) Y1 60 — 297 * (=14 p) (¢ — 1)* (4 = p) %) /

((q+1) (¢ — D" (=1 gp* + ¢ p* + d2@® — d2p*) (@° b2 — Y1 q p* + Y1 p* — P2 p?)).

2
q),

1
q

7.2.2 Coefficients 3, and v, for D, -classical orthogonal polynomials

We use the following identities already given in [Foupouagnigni, 1998a] (see also (8.8))

ﬂn = T’rL,l - Tn+1,1> Tn = TTL,Q - Tn+1,2 - /Bn Tn,l (74)

to compute the coefficients 3,,, v, and get:

Lemma 7.1 (Medem, 1996) The coefficients 3, and v, of TTRR satisfied by the polynomials
{Py}nen (see (2.18)), orthogonal with respect to the Dy-classical linear functional L, satisfying
Dy(PL) = YL, where ¢ and ¢ are defined in (7.1), are given by:

Bu(ag:0.9) = —p((=(g+1)(=1+p) (—qg+p)¢1 — (a—1) (—pa® +q—ap+ p*) o) b2
—p(a=1)(a+1) (=14 p) 161 = p* (g —1)* Yo th1) /
(=14 p) (p+1) g2+ p* (g = 1) 1) (—(=q + p) (¢ + p) b2 — p° (g — 1) ¢n),

(a,0,0) = —(=14p)(=p+*) d2 — (¢ = 1) pv1)((—=q+ p)* (g + p)* do ¢2°
(—ap(—q+p)? $1® —ap(q—1) (=g + p)* o b1

20% (q—1) (—q+p) (q+ p)¥1 do + ¢ p* (¢ — 1)* Yo”) 2
—p%q(q—1)(—q+p) 1 ¢1% —qp® (g —1)* Yot 1

a2 00)pa /(=g + p?) 62 + p* (¢ — 1) 1)

((g—p) (@+p) b2 — p* (g — 1) 1)* ((¢* — p*) b2 — p* (¢ — 1) ¢1)).

+ o+

+
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7.3 Three-term recurrence relation coefficients for D-classical

7.3.1

situations

Coefficients Tm and Tn’g

If we denote by ’fml and ng the coeﬁ‘icients~ Tn1 and T, o when the linear functional £ is
D-classical satisfying D(¢L) = L, we obtain T}, ; and T, 2 by limit process [Koepf et al., 1996]:

Y ~n((n—=1)¢1 + o)
Tn,l—(}LH%Tn,l— 2(n—1)¢2+¢1 >

Tn 2 = lim Tn,g
q—1
1

= §m2m—1P%¢Tun—m@p4ﬂ¢ﬁ+¢wn—n@n—a¢1

+ 1 (n—1) o+ to® (n = 1)) /(20 = 3) b2 + 1) (210 = 2) P2 + ¥1)).

We, therefore, use (7.4) to deduce coefficients 3, and %, and get [Lesky, 1985], [Koepf et al.,

1996]. .

7.4

(21 (n —1) ¢1 —290) P2 + 2 P11 n 4P Y1
(Y1 +2¢2n) ((2n —2) 2 + 1) ’

Bn = lim ﬁn = -
q—,1

Yoo = Bm oy =—n(deo (n=2) (n=1) 62" + (=(n = 2) (n = 1)*&1”

)

+ 4(n—1)(2n—=3)Y1¢o+ (n —2)1h*) ¢2” + (=11 (n — 1) (2n — 3) ¢

+ (2—n)Yov1 1+ (=6 +5n) 11 do + Yo’ Y1) Po
12 (—n+ 1) 1% = Yo b1 t1® + dovn®) /
((2n—1) g2 + 1) ((2n — 2) g2 +11)*((21 — 3) da + 1b1)).

Three-term recurrence relation coefficients for A-classical

situations

We state the following:

Lemma 7.2 (Smaili, 1987; Salto, 1995; Koepf et al., 1996) Let {P,}nen be a family of
monic polynomials, orthogonal with respect to the A-classical linear functional L satisfying
A(pL) = L. If B, and 7, are the coefficients of TTRR satisfied by {Py}nen, then, they

are given by

G2 (1 +2¢1)n? — (Y1 +2¢1) (=1 + ¢2) n — Yo (—P1 + 2 62)

(Y1 +2an) (2(n—1) g2+ 1) 7
((n—2) (n—1)" 3 x
+Am—=2)(n—1)2¢g+ (n—1)2 (B n +2ndy — 8¢1n — 4y + 51)) &
H(=n—=2)(n=12¢ —h1 (n=2) (n— 1) ¢1 + 491 (n — 1) (=3 +2n) §g
+ (Yo + 1 n — 1) (niho — 20 + 491 — T n+ 311 1?)) @3
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+(—1 (n—1) (=3 +2n) ¢] — 1 (—5?%171-1:31;{—21504-73?/30 -1121%1”2)551 o
+ 97 (=6 +5n) g + 1 (Yo + 11— 1)?) g2 — f (n — 1) @2 — F (sho + Y1 — 1)
+ o0 [(((2n—1) 2+ 1) (=2 +2n) o + 1) (=3 + 2n) §o + 1)).

The corresponding coefficients Tml and Tn’g are deduced by the same way [Koepf et al., 1996].



Chapter 8

Laguerre-Freud equations for the
recurrence coefficient of the
semi-classical orthogonal
polynomials of class one

8.1 Introduction

We assume that £ is a regular linear functional satisfying

with polynomials ¢ and v given by
$la) =D ¢jat, d(x) =D wjal, p =1 |ullihy| #0. (8.2)
§=0 §=0

We suppose that (8.1) is not reducible and that the class of the linear functional £, cl(£) is
cl(£) = s = max{deg(¢) — 2,deg(v)) — 1}. {P,}nen, which is a family of monic polynomials
orthogonal with respect to L, satisfies the TTRR:

{ Pry1() — Bn)Pa(%) = WmPn-1(x), n>1, (8.3)

= (
Py(z) =1, Pi(z) = x — fo,

where 3, and ~, are complex numbers with v, #0 Vn € N.

When £ is D, D, or A-classical, the coeflicients 3, and 7, can be given explicitly in terms
of polynomials ¢ and v appearing in (8.1) (see the previous chapter).

But if £ is D, D, or A-semi-classical of class s > 0, it is very difficult to give the coeflicients
B and 7, explicitly in terms of the polynomials ¢ and .

We propose a method which enables us to compute them recursively when the linear func-
tional £ is Dg-semi-classical of class s = 1. Then, we use limit processes and Theorem 4.2 to
extend this result to the D and A-semi-classical orthogonal polynomials of class 1.

This method consists to derive two non-linear equations satisfied by 3, and -~,, called
Laguerre-Freud equations.

99
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8.2 Starting the Laguerre-Freud equations

The initial form of the Laguerre-Freud equations is obtained by applying both sides of (8.1) to
the polynomials P, P, and P, P,1, respectively

<Dq,w(¢£>v PPy = (WL, PuPy),
(Dgw (L), PnPry1) = (YL, PnPoyr).
Then, we apply the rules (3.6) and (3.12) to the previous equations and obtain
(L, qu%Png%Pn) + (L, QZ)D%P,L P,) = —q (WL, P,P,), (8.4)
(£,6D1 P11 Pa) + (£,6D1 Pa Pagt) = —q (0L, PaPos). (8.5)

The respective right-hand sides of the previous equations are given by

Lemma 8.1 (Belmehdi et al., 1994)

(WL, PaPp) = [¥(Bn) + Y2 (yn + ’7n+1)]IO,na (8.6)
(WL, PoPry1) = [1 + 2(Bn + Bt Vn+1lon- '

Proof:  Using the three-term recurrence relation (8.3), we first derive the relation
Io7n+1 = ’Yn-l—lIO,n Vn e N (87)
and then use it together with (8.3) to prove the lemma. In fact, use of (8.3) and (8.7) give

<£ Pn+1Pn+1>

(L, Pos1((@ — Bn) P — Pu-1))
= (L,Py12Py,)

(L, Po(Poy2 + Basv1Pot1 + 1))
= Yn+1(L, PnPr)

= 'Vn—&-lIO,n-

IO,n—l—l

Using (8.7) we obtain

(WL, PoPy) = tho(L, PuPp) + 1 (L, 2P, Py) + 12 (L, 22 P, P,)
= Yolon + V1(L, (Pot1 + BnPn + v Lrn1)Pn)
+p2(L, (Pny1 + BnPr + Yn P 1)2>
= tolon + ¥1Budon + Y2(Tops1 + Balon + velon-1)
= [Y(Bn) + Y2(ym + '7n+1)]10,n~

(YL, PyPry1) = o(L, PyPry1) + V1L, 2Py Ppy1) + o(L, 2°Ppy1 Py)
= Ql)1< ( nt1 + BnPn + YnPo— 1)Pn+1>
+p2(L, (Pot2 + Bot1Put1 + Y1 P0) (Pat1 + BaPn + ynPo-1))
= Yilopnt1 + V2(Bnrilonr1 + Ynr168n)lon
= [P1 +2(Bn + ﬁn-l—l)]’Yn—i-lIO,n
0

In order to express all terms of (8.4) and (8.5) in terms of 3, and 7,, we need to expand the
polynomials P, in the basis {z"},cn with coefficients depending on (3, and 7.
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8.3 Intermediate coeflicients

8.3.1 Coefficients T, ;

Lemma 8.2 (Foupouagnigni et al., 1998a) All basic coefficients T, ; in the ezpansion of

n
Pu(z) =Y Ty (8.8)
1=0
can be computed recursively from the relations:
Ti1 = —Po,

Tho = 1, n>0, (8.9)
Tot11 = Ty —bBp, n=>1, (8.10)
Tnt1y = Tng— Bulnj—1 — WmIn-1-2, 2<j<n, (8.11)
Tovins1 = —BuTnn—Tn-1n-1, n>1 (8.12)

Proof: ~ We use the relation (8.8) and the three-term recurrence relation (8.3) to obtain

n n+1 n n—1

1—i _ +1—i —j —1-k
g Tn,iZCTH— ' = § Tn+1,ixn '+ B § Tn,jxn I+ Tn § Tn—l,kxn .
i=0 i=0 §=0 k=0

We replace the variable j and k in the previous equation by j — 1 and k& — 2, respectively, to
obtain

n n+1 n+1 n+1
n+l—i n+1—1i n+l1—j n+1—k
Z Tn,ix - Z Tn—l—l,ix + /871 Z Tn,j—lx J + Vn Z Tnfl,k72$ )
=0 =0 j=1 k=2

an equation which is equivalent to
(Tn—l—l,O - Tn,O)xn+1 + (Tn—l—l,l - Tn,l + /BnTn,O)xn

n

+ Z(Tn—l-l,k - Tn,k + ﬁnTn,k—l + rYnTn—l,k—2)35n+1_k + Tn+1,n+1 + ﬁnTn,n
k=2

+7nTn—1,n—1 =0.

From the relation Py = Thgx + T11 = x — [, it follows that T1 o = 1 and T11 = —(y. We
complete the proof by identifying to zero all coefficients of the polynomial on the right hand-side
of the previous equation. O

Corollary 8.1 Using Lemma 8.2, we compute the coefficients Ty, j j = 0,3 as:

n
Tor1p = = Bi, n=>0,
i=0
n
Tn+1,2 = Z ﬁl/@j - Z’Yu n > 1; (813)
0<i<j<n =1
n
Tor1s = — >, BiBiBe+ D, (3Bi+58my)+Bo Y i
0<i<j<k<n 1<i<j<n =1

n
> By, n>2.
i=1
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All other terms can be computed in the same way, but for class s = 1, only these 3 terms will
be used.

Let us emphasise that the two terms 7),; and T, are already given in [Chihara, 1978];
the computation of the higher order coefficients allows to generate Laguerre-Freud equations
for any arbitrary class s > 1. These coefficients play the role (but in a simpler way) of the
Turén determinants introduced in [Belmehdi et al., 1994] showing the interest of Laguerre-Freud
equations.

8.3.2 Coefficients B*

The coefficients BZYL appear from the action of the linear functional £ on the polynomial 2"+* P,
= (L,a"** By), (8.14)
with the initial condition
=(L,2" P,) = (L, P, Py) = Ipp.

From the relation 0 = (£, P4k Pp,); k > 1 and (8.8) we deduce that

k

.
=Y ThiriBy
=1

We use the previous equation to compute, recursively, the coefficient Bﬁ. In particular, we have:

Brlz = - TL+1,1IO,77,7
B = (Tns11Tny21 — Tnr2.2)lom, (8.15)
By = (Tr+1,1(Tht32 — Tnt21Tn+31) + Tnas1Tnr2,2 — Thts,s) Lon.

Notice that the connection between B and the coefficients C7), introduced in [Belmehdi et al.,
1994],

2n+k
TL+/€P Z Cn+kP
is obviously
= CyiF .
8.3.3 Structure relations
We first recall the structure relation (3.84):
ntt—1
¢D1P = Z fnJ-IDju ) 7'L>S+].,
a j=n—s—1

with ¢ = deg(¢), &nn—s—1 # 0, n > s+ 1 and then apply the linear functional £ to both sides
of the equation obtained when multiplying the previous one by P; and get

fn,jf()’j:(gf),C,PjD;Pn%n—S—lSan—f—t—l. (816)
q
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Then, using (8.2), (8.14) and the previous equation we get

én,jIO,j = ((ZﬁE,Pj'D%Pn)

t n

= (L, Pj(z $ix") Y [n+1— k] Ty g 2™ F)

1
q

with
n+t—1

cr(q) = Z Gi[j + 11 Thn—j—1.
itj=k,i<t,j<n—1 ?

Thus,
n+t—1

s
niloj = > cx(q)B; 7.

k=j
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(8.17)

(8.18)

Once (8.18) is derived, we are now able to compute the coefficients &, ; in terms of 3,, v, and
the polynomials ¢ and 9, by using (8.2) (8.15) and (8.18). To be more precise, we assume that

the linear functional £ is of class at most one, this implies that
¢(x) =Y djal, p(z) = v;al,
§=0 §=0

with
(|pol + |@1] + [d2]| + @3)(|¢1] + [¢2]) # O.

We use the method described above to compute the coefficients &, j, n —1 < j <n+2 and get

fn,n+2 = [n}%qb?n

5n,n+1 = ql—n {[[n]n(ﬁn + ﬁnJrl) - Tn,l]¢3 + [n]quZ}a

gn,n = qlin {[n]qd)l + [[n]qﬁn - Tn,1]¢2 + [[n]q(’Yn + Yn+1 + ﬂ%)

+T3,1 — BnThy — (1+4q) Tn,2]¢3}7

San1 = ¢ "{nlg¢o — Tnadr + [Ty — (14 q) Tz + [0l a2
+[—TS’1 + (1 + Q)Tn,Q — Tn Tn,l - [3]q Tn,S + [n]q ’Yn(ﬁnfl + ﬁn)]d’i’)}

The search for &, ,—2 requires the constant 7;, 4 which is huge and needs heavy computation.

To get rid of this difficulty we, again, use (3.12), (8.1) and (8.16) to get

gn,jIO,j = <¢£, P] 'D%Pn>
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= (0L, D1[AgoPiPn] = D1 Ay Py Pr)
= _Q<Dq(¢£)7 ngj Pn> - Q<¢‘C7 Dqu Pn>
= —q(L, VG P Ppn) — q(oL, D, P; Pr)
= —Q<£a (7/’ngj + ¢Dqu)Pn>v
hence
gn,jIOJ = —q<£, (1/1Aq7ij + ¢DqIDJ)Pn> (819)

It follows immediately that

gn,n—2IO,n—2 = _Q<£a (qn_Q% + [n — 2]q¢3)l’npn>

We use (3.63) and (8.7) to simplify the expression of &, ,,—2 and get

unoz =~ W2+ o= 2 Dy (5.20)

73
q

+

In the same way, we compute another expression for &, ;,—1 which we denote by 7, 4

5:{771_1[0,7171 = *Q<'C’ (¢Aq7an,1 + ¢qunfl)Pn>
= —q(L, (o + 13+ 1b2a?) (¢" 2" + ¢ A T 2" 2)
+(po + 1 + ¢oa® + ¢3a®)([n — 1g 2" + [n — 2 Trm11 2" 72)| Py)

and get, after simplifications,

7—1_,7171 = qln—1gmTha¢s — q(ln — 2]¢Th-1,1 + [n — 1gBn) 13
—q[n — Ugmd2 + " Tn1tb2 — (@1 + q2Bn + Tno11%2)n "

8.4 Final form of the Laguerre-Freud equations

We prove the following theorem which is the main result of this chapter.

Theorem 8.1 The coefficients 3, and v, of the three-term recurrence relation
Poyi(z) = (z = Bp) Pr(x) — mPr-1(x),n =2 1, Bo(x) = 1, Pi(z) = = — fo

satisfied by the Dy-semi-classical orthogonal polynomials of class at most one, { Py }nenr, can be
computed recursively from the two non-linear equations

{ (¢2 + [2n]l%)(’}’n +’YTL+1) = FI(CL ;/807 cee 7571;717 e 777’1)7
a (8.21)

(1/}2 + [271 + 1]%%)ﬂn+17n+1 = FQ(q;;ﬂ07 oo 7/377,;’}/17 v 7771-"-1)-

¢j and ; are the coefficients of the polynomials ¢ and ¢ appearing in the Pearson equation,
Dy(oL) = YL, satisfied by the regular linear functional L. Fy is a polynomial of 2n+1 variables
and of degree 2 and F» a polynomial of 2n+2 variables and of degree 3, with the initial conditions

(£, )

Bo = W7 Yoy = —w(ﬂO)- (8-22)
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Proof:  In the first step we use the structure relation (3.84) to transform Equations (8.4)
and (8.5) as

gn,n—2<£7 gan Pn—2> + 57—1_,”*1<£’ gl Pn Pn—1> + (1 + qin) gn,n IO,n

= —q(L,Y P, P), (8.23)
£n+1,n71<£7 g% Pn Pn71> + £n+1,n q_n IO,n + En,nJrl IO,nJrl
= —q(L, % Py Ppt). (8.24)

In the second step we compute (£,G1 P, P,—1) and (£,G1 P, P,,_2) using (8.8) and get

(L,G1 Py Pty = (L(q " 2" +¢" " Tp12a™ ") Ppy)
q
= ¢ "Bp_1+q" " Thilop
= ¢ "(q¢—1)Th1lon1,
<[" g% Pn Pn—2> = <[’7 (qfnxn + qlin Tn,l linil + (127" Tn,2 35”72) Pn—2>

= ¢ "By o+ 4 "TuiBy o+ ¢ " Tralon-o.

In the third step we use (8.6) and the previous equations to simplify (8.23) and (8.24) and
obtain:

" (4 + [20]; qff’) (9 + 1) = 62 [2ng B2 + ala + ") (T2 1 — BuTn1)

—(q 4+ 1)(¢* + ¢*") T 2163 + [4°12n]4Bn — alg + ") Tna)d2 + ¢*[2nlg61 + ¢*" 267 (8.25)
+q2n (q - 1)7/12 [ng,l — qﬂn Tn71 — (1 + Q)Tn,Q] + q2n+1[qﬂn o (q _ 1)Tn,1]7/}1 + q2n+2w0,

M (W 204 100 ) Bt = {8+ (g~ DB T

. q

H@+ 2w — (=D T3+ (¢* = 1) Tz + (1 + 20+ 1g)vn41]n (8.26)
(¢ = DTt + Blg Bu-1)mm — Tia + [(a+2) Tuz — (14 ¢ D ynga] Tua — [3g Tna} b3
HB+ (= DB T+ (q+ D+ Toq — (¢ + 1) Tnz + 20+ gyt }d2 + (Bn — Tnia)ér
+n+ Ugdo + ¢ Buvns1vve — (g — D1 Tnathe + ¢yt

The first initial condition is obtained by applying the linear functional £ to P, = x — By while
the second comes from the application of both sides of (8.1) to the polynomial PyFy.
In fact, it follows from (8.1) that

(WL, PyPo) = (Dy(6L), PoPy) —é(qﬁﬁ,D%PoPo) _o.

The previous equation used together with (8.6) gives ¥(5y) + y1¢2 = 0.
We complete the proof of the theorem by saying that:

1. For any non-zero integer n, the coefficients 1o + [j]l%, j =2n, 2n + 1 of the right-hand
q
sides of the two previous equations, thanks to the fact that the D,-semi-classical linear
functional £ is regular (see (3.89)), are non-zero (except if ¢35 = 1po = 0).
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2. The right-hand sides of the previous equations contain only constants, sums and products
of coefficients ; and ;. Polynomials F and F, are obtained by replacing 75, ;, j = 1,2,3
in equations (8.25) and (8.26) by (8.13).

|

Notice that we can also obtain the second Laguerre-Freud Equation (8.26) by identification of
the two expressions &, ,,—1 and & n—1-

Equation (8.25) gives, hnearly, Yn+1 in terms of 3;, j = 0,n and ~;, j = 1,n; when (8.26)
gives (3,41 in terms of 38, j = 0,n, 7;, j = 1,n and the previous 7,41 via the non-linear term

(Y2 +[2n + 1]1 %)@wl%ﬂ-

q
The fact that (3,41 is not obtained linearly (except for the classical case) in terms of the

previous (3; and vy; exemplify the fundamental barrier between semi-classical of class s > 0 and
classical situation in which both ¢3 and v» are zero. For Dy-semi-classical of class s > 0, both
relations (8.25) and (8.26) must be used simultaneously, starting with the initial values given by
(8.22). In the classical situation Equations (8.25) and (8.26) can be decoupled.

8.4.1 Laguerre-Freud equations for D, -classical orthogonal polynomials

When we take ¢35 = 1 = 0 in Equations (8.25) and (8.26), we obtain the Laguerre-Freud
equations for Dg-classical orthogonal polynomials:

n—1
" (Y1 + [271]%%) B + (L4 D2+ (q— )¢ ] Y B
§=0
+ [2n)g01 + ¢ tebo = 0, (8.27)
P+ R 1) v+ (90 Y (3.25)
=0
Zﬁg ¢2 + (¢ — 1)$26n — ¢1] Zﬁg
7=0

n—1
Hg—=1)d2 Y. BiBi— 28 — ¢1 80 — [n+ 1g 0.

0<i<j<n—1

Remark 8.1 Using Maple V.4 and the simplification procedures for q-hypergeometric terms
developped in [Boing et al., 1998], we have solved (8.27) with the initial condition By = —% to
get Bn.

Taking into account the (3, obtained above, we have solved (8.28) with the initial condition

v = —g%{}}l to get vn. Obuiously the coefficients B, and v, obtained coincide with the ones

given in Lemma 7.1.

8.5 Applications to D, D, and D, -semi-classical orthogonal
polynomials of class one

8.5.1 Laguerre-Freud equations for D-semi-classical orthogonal polynomials
of class one

We obtain these equations by computing the limits of (8.25) and (8.26) as ¢ — 1 to obtain
[Belmehdi et al., 1994], [Foupouagnigni et al., 1998a)
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n—1 n—1
$(Bn) + 4¢3y vi+2D 05,6(8) = —(¥2 + 2n3) (Y + i),

i=1 i=0

Do) + 363 %i(Bii+Bi) + |20+ Dynsa +2Y | b2+ 2041 (B + Y Bi)ds

i=0 i=1 i—1 i=0

+  [Y1 +P2Bn] V1 = —[Yh2 + (2n + 1)¢3]Bnt17m+1, (8.29)
where
e = 82) = 9a)
r—a
with the initial conditions
L
Bo = mv Yo y1 = (o).

8.5.2 Laguerre-Freud equations for D -semi-classical orthogonal polynomials
of class one

It follows from Theorem 4.2 that the Laguerre-Freud equations for D, semi-classical linear
functional of class one is obtained just by replacing ; (resp. ¢ and ¢ ) in (8.25) and (8.26) by

B — %_q (7. ffq‘ﬁ and 7. 1f—q¢ respectively). For this reason, we need to control the behaviour of

Tn1, Th2 and T, 3 when f3; is replaced by 3; — %_q.
Lemma 8.3 If the coefficients ij, Jj = 1,2,3 represent the coefficients Ty, j, j = 1,2,3 in

which (B; is replaced by (3; — 1%(1, then, they are related by

_ nw
Tn,l - Tn,l +—
l—gq
_ (n—1w w? n
Tho=T, —T,  rE— 8.30
n,2 n,2 + 1 q n,1 + (1 — q>2 9/’ ( )
_ (n—2)w w? n—1 w3 n
Th3=1T, —T —_— T .
A e e A W T R Fe
Proof:
The proof follows immediately from (8.13). O

We replace ¢ and 1 in (8.25) and (8.26) by Tl%ng and TluTq 1, respectively (and implicitly 3;
by 8; — li_q), taking into account the previous lemma and obtain the Laguerre-Freud equations
for the recurrence coefficients of the D, ,-semi-classical [Azatassou et al, 1998] orthogonal poly-
nomials { P, },ear. These polynomials are orthogonal with respect to the linear functional £, of
class at most one, satisfying Dy ,,(¢L£) = L. Hence we take the limit of these two equations as

q — 1 and obtain:

Theorem 8.2 (Foupouagnigni et al., 1998a) The coefficients 3; and v; of the three-term
recurrence relation,

PnJrl:(l'_ﬁn)Pn_'YnPnfla nZO, P,lzo, P0:17
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satisfied by the monic polynomials {Pp}nen, orthogonal with respect to the D,,-semi-classical

linear functional L, of class at most one, satisfying D, (¢L) = YL, are given by

n—1 n—1
w(ﬁn) + 4¢3271+220ﬁn /Bz +wzeﬂn /Bz +2<3> ¢

=1 =0 =0

T (Z) why = — (Y2 + 2n¢3) (Yo + 1),

where
ey - )=
and
YooB) + |@n+ Dy +2) vl b2+
i=0 i=1

+ 303 ) %i(Bic1 + Bi) + 21 (nBn + Y Bi) o3

i=1 =0

n—21—1>w<;51+ nwz& (n—i—l) 21@
- [ Z 6zﬂ]+n2ﬂzﬂz n—l)Z%—i-n’ynH] ¢3

0<i<j<n i=1

+ [( ) QZﬁz <n+ 1) 5 o3+ [¢1 +w2ﬁn]7n+1

= —[hpo + (2n + 1)#3] Bnt1Yn+15

+ Vgl — <

with the initial conditions
(L, x)

Bo = o

. Y2y = —¥(Bo).

8.5.3 Laguerre-Freud equations for D, -classical orthogonal polynomials

(8.31)

(8.32)

The Laguerre-Freud equations obtained in (8.31) and (8.32) contain, obviously, the classical
cases when 12 = ¢3 = 0. We use the notation of [Salto, 1995] so that we can compare more

easily with the results therein.
p(x) =az’ +br+c and ¥(z)=pr+q.

Equations (8.31) and (8.32) reduce to:

n—1
Y(Bn) + 2a Z Bi + 2nb + 2naf, = —nwp,
i=0
S o) +  |(2n41) g +2 Z%] a— (n ;L 1>wb
i=0 i=1

nwzﬁl (n N 1) 2‘| a4 = —PVn+1-

(8.33)

(8.34)
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Rewriting the second equation with n — n — 1 and subtracting we get:
d(Bn) + [p+ 2n+ 1)alynsr — [p+ (2n — 3)a]y,

n—1
—nwb — anwp, — () = o. .
nwb — anw/3 awz/B + aw <2> 0 (8.35)

1=0

Using symbolic computation with Maple V.4 we have checked positively that for the classical
discrete orthogonal polynomials, the coefficients (3,, and =, given explicitly in terms of polyno-
mials ¢ and ¢ (see Lemma 7.2), are solutions of Equations (8.33) and (8.34) (with w = 1).

Equations (8.33) and (8.35) are exactly the ones derived in the thesis [Salto, 1995] taking
into account the D,, derivative of the linear functional given by definition 2.20 and the one used
in [Salto, 1995]. Let us remark, however, that in [Salto, 1995] the v, equation is obtained using
the so-called D, representation, expanding a classical orthogonal polynomial P, as a sum of
(see (2.62)) (maximum three) D, P;(i =n+ 1,n,n —1). This technique cannot be extended to
the class 1, because of the non-existence of such a representation for semi-classical orthogonal
polynomials of class s > 0.

8.6 Applications to generalised Charlier and generalised Meixner
polynomials of class one

8.6.1 Laguerre-Freud equations for the generalised Meixner polynomial of
class one

These polynomials with ¢ parameters were introduced in [Ronveaux, 1986] in order to show the
quasi-orthogonality character of the D,, derivative (with w = 1). The weight p is given by:

i J4
p(i) = (5)6 T(i+a;), 0<p<l,a;>0),i=012, .. (8.36)
DE
Generalised Meixner polynomials are denoted by m%&’“ ), where @ = (a, ..., ag), which reduce,

of course, to the well-known classical Meixner polynomials when & is the scalar a (¢ = 1).
Ifl=2, a1 #1 and ao # 1, the weight p obeys

A(pp) = p,

with
o(x) = z? and Y(x) = (u— 1)332 + (a1 + ag)px + pagas. (8.37)

The family is, therefore, discrete semi-classical of class one.
In fact, we have

¢(x) = x do(x), P(x) = do(x) = (= + 1)bo1(x) + 70,1,
with
do(x) =z, Yo1(x) = (p—Dz+p(ar +az—1), ro1 =plag —1)(ag — 1). (8.38)

Since the only root of ¢ is zero, it follows from Proposition 2.5, and the fact that ro; # 0 (for
(o — 1)(a2 — 1) # 0), that for £ = 2 and for (a; — 1)(ag — 1) # 0, the generalised Meixner
polynomial is of class one.
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Of course, when a; = 1 (or ag = 1), the class reduce to 0 and we obtain the classical Meixner
polynomials mﬁlaz’“ ) [Nikiforov et al., 1991]. In particular for oy = ao = 1, the generalised
Meixner polynomials of class 1 reduces to the particular case of the Meixner polynomials, called

discrete Laguerre polynomials and denoted [Chihara, 1978]
la, (z) = m{H (x). (8.39)

We have checked, positively, the Laguerre-Freud equations when w — 1 with the known G,,, v,
of the classical Meixner polynomials and the discrete Laguerre polynomials.

It should be noted that for ¢ =2 and for arbitrary positive oy and o, the weight given
by Equation (8.36), is not a polynomial modification of the Meixner weight, except when «a; or
ap is an integer.

Replacing in Equations (8.31) and (8.32) w by one and polynomials ¢ and 1 given by
Equation (8.38), we obtain the Laguerre-Freud equations for the generalised Meixner polynomial
of class s=1:

(1= w0 + 1) = (u—1><<’;> +62)+ (L+

n—1

(o + az)) B+ (14 1) Y B;
1=0
+u(ar + ag) n + pagag, (8.40)

(=) (Bn 4 Brt1) 1t = —n Y Bi+ (L + pm)n+ plon + o2) + 1) Yyt
=0
+<n;rl> +Xn:ﬁ?+2 Zn:'y (8.41)
1=0 =1

with initial values

My pon ag oFi(1+an, 14 0925 1) ¥ (Bo)

_ R , 8.42
bo My 2 F1 (o1, 03 15 ) n 1—p (8.42)

8.6.2 Laguerre-Freud equations for generalised Charlier polynomial of class
one

The generalised Charlier polynomials introduced in [Hounkonnou et al., 1998] are discrete semi-
classical orthogonal polynomials associated with the weight

©*
p(:n):(x!)N,NZI, (b>0),z=0,1,2,.... (8.43)

The generalised Charlier weight p is semi-classical and satisfies the Pearson equation

A(pp) = 1p,

with

p(z) =2 and (z) =p—2. (8.44)
If N = 2, the orthogonal polynomial family associated to the weight p(x) = % is discrete
semi-classical of class one (and called generalised Charlier polynomials of class one).
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Replacing in Equations (8.31) and (8.32) w by one and the polynomials ¢ and v given by
Equation (8.44) (but with N = 2), we obtain the Laguerre-Freud equations for the generalised
Charlier polynomials of class one:

n—1
n
Tt Yt = — <2> — B2 4B + Z Bi + i, (8.45)
i=0
(Bn+ Bnt1)Ynt1 = —n Z,Bi +nyps1 + 3 + Z B +2 Z% + Ynt1, (8.46)
i=0 i=0 i=1
with initial values
M 11 (2 Fy(2;
By = _1:\//71( \//7):/1«0 1(.7M)’ (8.47)
My Io(2 /1) oF1 (15 )
Y1 = M — ﬂ(2)7

where Io(x) and I;(z) are the modified Bessel functions of order 0 and 1, respectively.

Remark 8.2 The polynomials P,, have been computed for the generalised Meixner and Charlier
polynomials of class one, up to n =10 from (,,v, generated by the Laguerre-Freud equations
given above and also from the Hankel representation of polynomials (see (2.6)) which requires
the computation of the moments M; up to j = 19. These moments were computed from the
moment recurrence relation for the generalised Meizner and Charlier polynomials of class one,
respectively:

(1= p)Mpyo = aroouMy + (a1 + ag) My

k k
- (-1 (j) Mii2-j,

k
-k
Mypy = pMp =Y (-1) <j>Mk+2j-

j=1

The polynomial coefficients in both approaches are written in terms of My and M using the
initial values of the Laguerre-Freud recurrence given by Equations (8.42) and (8.47). The poly-
nomials obtained in these two ways coincide, of course, and the Laguerre-Freud approach is
obuviously more efficient.

8.6.3 Asymptotic behaviour

In the first step we compute numerically, up to n = 100000, the coefficients (3, and =, Using
(8.40) and (8.41), for several values of the coefficients a1, as and p and the result of the
plot for all cases indicates that the sequences Z—E and %” are convergent. Assuming that they

converge, their limits, a(u) and b(u)

1% 1+ p
alp) = ——, b(p) = ——, 8.48
) = g b = (3.48)
are obtained using Maple V.4 and Equations (8.40), (8.41) with the approximations:
Y 2 a(p)n? and B, = b(u)n, for n large.
In the same way, but with 3, and ~, replaced by 3, — b(u)n and v, — a(u)n?, respectively,

using numerical and symbolic computation with Maple V.4 and analysis of Equations (8.40) and
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(8.41) [Foupouagnigni et al., 1998f], we observe the asymptotic behaviour for the coefficients /3,
and .

The same process, applied to (8.45) and (8.46), allows to observe the asymptotic behaviour
for the generalised Charlier polynomials of class one. We, therefore, give the following conjec-
ture about the asymptotic behaviour for the generalised Charlier and Meixner polynomials of
class one. These results, obtained by the Laguerre-Freud equations with Maple V.4, are under
investigation [Foupouagnigni et al., 1998f] in order to give a suitable proof.

Conjecture 8.1 The coefficients B, and 7y, of the three-term recurrence relation satisfied by
the monic generalised Meixner polynomials of class one obey:

1 —1 —1 —1

<5n— —i—un_,u(ozl—i-aQ )>:0, <%_,u,(n+oz1 )(n2—|—a2 )):O,
L—p 1—p (1—p)

and those of the three-term recurrence relation satisfied by the monic generalised Charlier poly-

nomials of class one obey:

lim
n—oo

lim
n—oo

lim (8, —n) =0, lim (v, —p)=0.

n—oo n—oo
It should be mentioned that the coefficients (,, and -, of the generalised Meixner polynomials of
class 1, are known when «; or as is an integer [Ronveaux et al., 1998b]. They obviously confirm
the asymptotic behaviour of the coefficients (3, and -, stated in the previous conjecture.
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Conclusion and perspectives

We first list our main contributions to the theory of orthogonal polynomials, then give some
open problems which can be investigated as the continuation of this work.

9.1 Conclusion

Chapter 1 introduces the work while Chapter 2 recalls some known materials on orthogonal
polynomials.

The main results of Chapter 3 are theorems 3.1 and 3.2. Theorem 3.1 gives a general carac-
terisation of classical orthogonal polynomials. This result gives a more general caracterisation
of classical orthogonal polynomials, and is valid for classical orthogonal polynomials of a con-
tinuous variable, classical orthogonal polynomials of a discrete variable and also for g-classical
polynomials. It constitutes a unified theory for classical orthogonal polynomials.

Theorem 3.2 caracterises the semi-classical orthogonal polynomials. It gives some links be-
tween the semi-classical aspect of the orthogonal polynomials, the quasi-orthogonal aspect of
the derivative of these orthogonal polynomials and the structure relations satisfied by these
polynomials.

In Chapter 4, we study the properties of the formal Stieltjes function. We mention two
results. The first is the theorem 4.1, stating that the affine D, ,-Laguerre-Hahn orthogonal
polynomials and the D, -semi-classical orthogonal polynomials are the same. This result is
used to obtain the coefficients of the affine D, ,-Riccati difference equation and the coefficients
of the fourth-order difference equation satisfied by the associated Laguerre-Hahn orthogonal
polynomials.

The second result is theorem 4.2. It proves that the D, ,-Laguerre-Hahn orthogonal poly-
nomials can be deduced, using a suitable change of variable, from the D,-Laguerre-Hahn ortho-
gonal polynomials. This result is very interesting and could have lot of applications. We have
used it to deduce the coefficients of the fourth-order difference equation satisfied by the rth
associated A-Laguerre-Hahn orthogonal polynomials from the coefficients of the fourth-order
difference equation satisfied by the rth associated D,-Laguerre-Hahn orthogonal polynomials.
The Laguerre-Freud equations for the recurrence coefficients of the D, -semi-classical orthogonal
polynomials of class 1 have also been obtained using theorem 4.2.

In Chapter 5 we use a result by Suslov [Suslov, 1989] to obtain the factored form of the fourth-
order difference equation satisfied by the first associated Dg-classical orthogonal polynomials.

113



114 Chapter 9. Conclusion and perspectives

We have again used theorem 4.2 to deduce the factored form of the fourth-order difference
equation satisfied by the first associated A-classical orthogonal polynomials.

We mention that equation (5.12) can be used to obtain some families of classical orthogonal
polynomials for which the first associated is still classical. These families:

1- For classical continuous orthogonal polynomials we note the Grosjean polynomials [Ron-
veaux et al., 1996] of the first kind G% for which the first associated is a Grosjean polynomial
of the second kind g% [Grosjean, 1985, 1986], i.e.,

(@)W =g 1 <a<0,

where G%(z) = P,ﬁ“"l‘“)(x), —1<a<0and gg(z) = Pr(fx’l_a)(:v), —-l<a<2.
P}f“ﬁ ) represents the monic Jacobi polynomials with the parameters o and 5.

2- For the classical orthogonal polynomials of a discrete variable, we note that the first
associated of the monic Hahn polynomial H,(z,«, 3, N) with o+ 4+ 1 = 0 is classical and is

related to the Hahn family by [Area et al., 1996]
Hy(z, 0,3, N)Y = Hy(z —a—1,—a, 1+ a, N — 1).

3- For the ¢-classical polynomials, we have already pointed out the situations for which the
first associated little g-Jacobi polynomials p, (z; a, b|q) and big ¢g-Jacobi polynomials P, (z;a, b, ¢; q)
are still classical.

The monic little g-Jacobi (resp. monic big g-Jacobi) polynomials and their respective first
associated are related by

1 r 1

p%”(w;a,q—alq) = a”Q”pn(a—q;a,aQIQ),
1 x 1
Pﬁ”(l’;a,ﬁw;q) = a"Pn(g;a,aqjcq;q)'

In Chapter 6 we have proved (see theorem 6.1 and proposition 6.1) that the associated of
any integer order of the Laguerre-Hahn linear functional is a Laguerre-Hahn linear functional.
We also gave upper bounds for the degrees of coefficients E,, F;, G, and H, of the D,-Riccati
difference equation satisfied by the Stieltjes function S, of the rth associated £ of £ (see
proposition 6.2).

Theorem 6.3 gives fondamental relations which lead to the fourth-order difference equation
for the rth associated D,-Laguerre-Hahn orthogonal polynomials

4
> Ii(r,n, q;2)Gl P =0,
=0

given in theorem 6.4. Theorem 6.3 and 6.4 are valid for D-Laguerre-Hahn orthogonal polynomials
(by limit process) and for A-Laguerre-Hahn orthogonal polynomials (via theorem 4.2). We have
also given explicitly coefficients E,, F,., G,, H, and I;(r,n,q;z) for classical situations.

Chapter 7 contains known materials needed for this work.

The main result of Chapter 8 is theorem 8.1 which shows that it is possible to compute
recursively via two non-linear equations, coefficients 3, and ~, of the three-term recurrence
relation satisfied by the Dg-semi-classical orthogonal polynomials of class one. This new result
(theorem 8.1 ) is used, together with theorem 4.2 and lemma 8.3, to obtain Theorem 8.2 giving
the Laguerre-Freud equations for the recurrence coefficients of the D,,-semi-classical orthogonal
polynomials of class one.
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Using theorem 8.2, we have given a conjecture about the asymptotic behaviour of the coeffi-
cients (3, and 7, of the three-term recurrence relation satisfied by the generalised Charlier and
generalised Meixner polynomials of class 1.

9.2 Perspectives

As the continuation of this work, many investigations can be done:

1.

Theorem 4.2 proves that the A-Laguerre-Hahn orthogonal polynomials can be obtained
from the D,-Laguerre-Hahn orthogonal polynomials. In principle, this result means that
any result obtained for the Dy -Laguerre-Hahn orthogonal polynomials can be extended to
the A-Laguerre-Hahn orthogonal polynomials. It will be interesting to see how these results
are extended and see their consequences in the applications of orthogonal polynomials.

. It might be possible to simplify and writte the fourth-order difference equation for the D,-

classical orthogonal polynomials in the compact form as was done for D-classical orthogonal
polynomials (see (6.69)) [Lewanowicz, 1995].

. One can use the fourth-order difference equation satisfied by the rth associated Dg-classical

orthogonal polynomials Pér)

4
M(r,n,q;z) B{" = 3 Ij(r.n. q:2)G) P =0,
7=0

to expand the rth associated PT(LT) in the basis { P, }nen
n
P (x) =" C(n,j) Py,
j=0

as was done for D-classical orthogonal polynomials and A-classical orthogonal polynomials
(see [Lewanowicz, 1996,1997], [Area et al. ,1998a, 1998b], [Godoy et al., 1996], [Askey
1965,1975],[Askey et al, 1984] ...).

. The fourth-order difference equation can be established for the general Laguerre-Hahn

orthogonal polynomials. We mention for example that Bangerezako [Bangerezako, 1998],
had derived the fourth-order difference equation for the Laguerre-Hahn polynomials or-
thogonal on special non-uniform lattices (snul).

. The Laguerre-Freud equations for class s > 1 can be obtained by mimicking the approach

developed in this thesis. This generalisation is already under investigation [Azatassou et
al., 1998].

. The conjecture obtained using the Laguerre-Freud equations need to be proved and exten-

ded to the semi-classical orthogonal polynomials of class s > 1. For this purpose, It may
be hepful to have a look at the papers giving the proof of Freud’s conjecture (see the
Introduction).
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Appendices

10.1 Appendix I

10.1.1  About D-classical orthogonal polynomials

We give the polynomials ¢ and 1) appearing in the Pearson equation satisfied by the weight p
(D(¢p) = 1p) defining the classical orthogonal polynomials of a continuous variable [Chihara,
1978], [Nikiforov et al., 1983, 1991], [Szegd, 1939).

1. Jacobi PP (2), a> 1, B> —1:
p(x) =1-2% Y() = —(a+B8+2)z+6—a
2. Laguerre L% (x), o> —1:
d(z) =z, Y(x)=—T+a+1

3. Hermite H, ()
b(r) =1, $(x) = —22

4. Bessel Bgy(x)
o) = %, P(x) = ~2(az +1)

10.1.2  About A-classical orthogonal polynomials

We give the polynomials ¢ and ¢ appearing in the Pearson equation satisfied by the weight p
(A(¢pp) = 1p) defining the classical orthogonal polynomials of a discrete variable [Chihara,
1978], [Nikiforov et al., 1983, 1991], [Szegd, 1939).
1. Hahn A{™? (x)
px)=x(N+a—-zx), Y(@)=-(a+F+2)z+(B+1)(N -1
2. Meixner m,({"“)(x), v>0,0<pu<l:

p(z) =z, Y(x) =+ (p—1)x

116
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3. Krawtchouk kﬁlp) (), 0<p<1:

4. Charlier ¢!/ (), p>0:
P(x) =z, Y(x) =p—x

10.1.3 About ¢ polynomials

We give the polynomials ¢ and ¢ appearing in the Pearson equation satisfied by the weight p
(Dy(¢p) = 1pp) defining the g-classical polynomials appearing in the g-Hahn tableau. [Koekoek
et al, 1996], [Koornwinder, 1994]. Notice that these polynomials ¢ and v were already given
case by case in [Medem, 1996] and [Ivan et al, 1998].

1. Big ¢-Jacobi P,(z;a,b,c;q)

cg—z+aq(l—(b+c)g+bqx)

o) = (aq — 2)(cq — 2), Y(z) = =1

2. Little ¢-Jacobi py,(z;a,b|q)

l—xz+aq(bgr—1)

¢(x) =z (x = 1), ¥(x) q—1

3. Big ¢g-Laguerre P,(x;a,b;q)

—(a+b)qg+abg® +x

¢($) = (x - G’Q)(bq - x)v 1/)(.%) = g—1

4. g-Meixner M, (x,b,c;q)

d(x) = c(x — bq), P(x) = c(bg —1) +q(z —1)

g—1
5. Alternative ¢-Charlier K, (x;a;q)
o) = (1~ ), 9(a) = 0L
6. Little g-Laguerre/Wall p,(z; a|q)
$(z) = (1—x), Y(z) = %

7. Moak L (x;q)
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8. Al-salam-Carlitz I UT(La) (z;q)

rT—a—1
Pp(z) = (1 —z)(z —a), Y(z) = -1

9. Al-Salam-Carlitz IT V,{*) (x;q)

r—a—1
P(z) = a, MCE):?

10. Stieltjes-Wigert S, (x; q)
qr — 1

qg—1

¢(x) =z, Y(xr) =

11. Discrete g-Hermite I h,(x;q)

12. Discrete g-Hermite II hy,(z; )

10.2 Appendix II

10.2.1 Results on general associated classical discrete polynomials

Appendices

We use Theorem 4.2 and 6.3 to obtain operators D, ,, Nr—i—l,n—ly 15T+1,n_1 and /\77% for the
classical orthogonal polynomials of a discrete variable (see Foupouagnigni et al. 1998b]. These
basic operators (see (6.38) and (6.39)) and the coefficients of the fourth order difference equation
for associated classical discrete orthogonal polynomials (see (6.7)) are written down in each case

(for notations see [Nikiforov et al.,1991]).

Charlier case CH(z), pu >0
o(z) ==z, ¢(x)=—x+p
Drp = p(2+2)T?°—2+z—r)(z—n—r+1+p)T
—(=3x—2+43r—22+2xr — 12 +rp) Iy,

Netinar = —rp(le—n—r+1+p0)7T +rp(p+2+z—r)I,

= p4+2)T*—px—n—r+1+p)T +pu(—r+p) Iy
New = —(—z+n+r-1-p)T —(pta+1-r)I,
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Iy(r,n,z) = p(l+z)(-2+n+2R),

Ii(r,n, z) (2zpu+2R+4u—2R*+nR—-3nR*>—n’R),

L(r,n,z) = Qepu+2R+4pu—5pun—2zpun—4pzR+4R> —10uR — 6 R?,
—4nR+6nR?>+4n*>R —n® +n?),

L(rn,z) = +(—2zp—4R—6u—2n—2R*+6R*+7TnR—-3nR*—n?R+2n?),

Iy(r,n,z) = pd+x)(n+2R),

where R is given by R=r —ax — u — 2.

Meixner case M\ (), v>0, 0<pu<1

¢(x) =5 (x) = (p— D + pv,

Dpp = pE+2)(x+14+v)(u—1)7T?
+H2—-z+r)Ql+z—r—n+pv+apt+rp+np+p) (p—10T
—~(—rp+rpv+rip—3z—r*+2xr -2 —2+37) (n—1)Z,

Nejinar = +r(v+r=1)(Q+z—r—ntpuv+zpu+ru+np+ p)puT
—riv+r—1)(prvt+aep+x—r+ru+2)uly,

Driin-1 = p(x+2) ($+1+V)T2
—(z+1+v+r)(l+z—r—ntpv+ap+rp+np+p)p?
+r—rvtaptrp+riptpr 2t pt2epv+2rpy
2z pr + pv — 1)y,

New = —=(p=-1D)AQ+z—r—n+pv+aop—rp+nu+p7
Hp—D)(zp+p+pvtrp—r+o+1)Z,

Iy(r,n,z) = —p(-3pu+M+2R-3)(x+v)(z+1),

L(r,n,z) = —6p’e—22%p® —4p® —4p’v—22p*v—3uR>—3uMR—6zxp
22y —Ap—4dpv—2xpuv—3MR—-3R*+ M?R+3R>M + 2R3,

L(r,n,z) = —4R>—6p>—4M?R—-9p°v—14p>2 —4pR—2uM —5M — M3
—6p—4x?p? -4 p—Adcpv—AdaxpPv—1dep—9puv+2+16Rzpu+10Ruv
+12uR?+4R> p+ 4R pv+8uMa+12u MR+12MR+24% +4M? —104% R
+5Mpv—6REM +222 M — 5> M +2zpv M —10R + 12 R + 4 M?,
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Iy(r,n,z) = 2R3+ M?R4+6p2v+10p22+24p R+ 12 M + 6 M + 222 142

222 p+2zcpp+2zcpPv+10cpu+6pury —4—9puR2—9uMR—-9NR— 443

—OM?+ 12 R+3R2M +6>° M +12R —9R? — 2 M?,

Ii(r,n,z) = —(z+4)(z+3+v)(—p+M+2R—1)pu,
where R=r—2—2—pu(r+z+v), and M= (n+1)(1— p).

Krawtchouk case k,(Lp)(a:), p>0,¢>0,p+qg=1

o(z) = 2, () = 3((1 — )N - ),

Drp = (¢—1)(x+2)(—z—1+N)T?
+(2—-z+7)(-2¢—229g+gN-N+z+r+14+n)T
+(—3arq—2q—qu+r—r2—w2q+TN+2:cq7“+2rq)Id,

Nesinar = (=1D)(N—=r+1)(-2¢—22q+gqN—-N+ax+r+1+n)rT
+(q—1)(N—-r+1)(gN—-N—-2q—2xq+71r+x)rI

Dryin1 = q@—1(x+2)(—z—1+N)T?
Hg-DWN —z—r—-1)(-2¢-22¢+qN-N+z+r+1+n)7T

—(q—1)(—2xgN +qN? —gN+2rq+2zqr+2°q+zxzq—Nrqg+2rN

—r? —r—2zr — N>+ N+ 2Nz —2* - 2)I,

New = —(—z—r—qN+2¢+22q—n—1+N)T —(—22q—2q+qN+r+z—N+1)I,,

Iy(r,n,z) = q(1+z)(x—N)(g—1)(2R+n),

Li(r,n,z) = (6zqg+9ng—4Nqg—12¢>
— 42 N+2n* -2 Nqg+22°¢-8¢* N+ 122¢° + 42?2 ¢* + 8¢
—9ng®?+4¢—2n—4R-3n*¢+12¢* N+62¢* N —182¢*> — 622 ¢°

—12nqR—3nR*—2R*—18R¢®>—12qR* —n> R+ TnR+ 18 Rq+ 6 R?),

L(r,n,z) = —(10zq—8nqg—6Nq—42¢>
—5nN@F+8z¢n—4z@FN+22°ng*> +5nNqg+2xNgn+n?

—22Nq+22%¢—12¢* N+20x¢® +42°¢> =22 N ¢®>n + 28¢> + 61 ¢
+14g—2R—8xqn—n>—4n?q+18¢* N +62¢* N —30z¢*> —22%ngq
—622¢> —12nqR—42°qR—6nR*—4R}*+12R¢* —12qR?> —4n®*R

+4nR—12Rq+6R*—-10¢? NR—162qR+162¢? R—42¢* NR
+42NqR+10NgR+422¢*R),
Li(r,n,z) = —(10xq+nq—6Nqg—42¢> —4x¢> N -2 Nq+222¢—12¢*N
420> +42° 2 +28¢° —=3n¢®? +14qg—2R—n’q+18¢* N+ 62 ¢*> N
—30x¢*— 622> +3nR*+2R*—6R¢*+n*R—nR+6Rq),
Li(r,n,z) = qd+x)(x+3—-N)(g—1)(n—2+4qg+2R).
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where R is given by R=7r+4+x —2zq+ qN — 5¢ — N + 2.
Hahn case h,(la”g)(:z:,N) a>-—1, > -1,

px)=z(N+a—=z), Y(x)=@E+1)(N-1)—(a+F+2)z

The rth associated Py) of the Hahn polynomials, with n + r < N, is annihilated by the
following difference operator, by a decomposition already used in the r associated Meixner case
(see [Lewanowicz, 1997]).

4 4
EZ (ryn, x) s Din+ r—lz (r,n, ) (10.1)
7=0 7=0
where from (5.21) ,
DY, = (x+2)(a+N—z—2)7?

+(7T+nB+n+a)-3N+6z—(a+2N)z+222+80B+n+z—N)T
Ha+B8+1) (N -z —1)Iy,

Dif = (@+4+4B8)(N—2-4)(2043n+n? =8N —4(N — 1)z + 427
+8(06+n—2N+2x)+a(n—2x—2)7T?
+ (360 + 141n 4 5602 + 61° + n' — 260 N' — 45 N n — 15 N n? + 44 N*
—2(52+3n(34+n) —20N) (N —5)z
+2(3n(3+n)+152+4(=15+ N)N)z? — 16 (N — 5) 23 + 82*
+a*(n—2-2)(n—22-2)+B*B+n+2—-N)(n+8—-2N +22) + o
2n3 +2n? —3n%x —2(x+1)(38 — 12N + 23z — 4 Nz + 42°)
4+n (35— 15N + 21z — 6 N z + 6 2?)
+82n2+Tn—3Nn+4(N—z—4)(z+1))+p2n?

n*(17—3N +3z) +n (80 +39x + 622 —24N — 6 N x)

+2(N — 2~ 4) (=23 4+ 9N +4Nz — 172 — 42%))) T
+x+1)(z+1-N—-a)(-n(B+n)+a(d—n+2z)-F(n+8—-2N +2x)
—40+12N—24x+4Na:—4x2)1d,

Io(r,n,z) = 2@ +1)(z+1-N)(z+1-N-a)(z+6+1) (r++n+1+a),

L(rn,z)= (r+B8+n+1+a)(840x —24r Na+18a N B+4afr+ 74np
— 234N B+588r+58ar+50na—30N 3% —10ar?+14r3?
—24Nr?+20n% 45812 +366%2+90N? +2r* +270 8 — 420 N — 150 o
+40n + 60022 + 19223 + 24 2% +58rn —42a 5+ 66 N o + 14 3712
+1202 —24r N3 +563xn+48 N2 +6 N2 32 +dard +2r2 32+ 4673
+ 62232 +348 3z — 2522 a0 — 13222 v + 156 22 B+ 30 8% & + 48 12
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+24823 — 2423 a+ 122212 + 6220’ +1820® — 107 a® + 2% r?
—600Nz—6rNaf+4ar?f—6r NS —6NG*r+243 Nz
—122%2apf+122%8r+122%ar — 122 Nz —48zaf+84aN«x

— 204Nz +24Nz2a+48zar+48xFr —48 6 N z? — 6z ar?

— 122N 4+6z208r2+68%2r —128Nzr—12aNzr+12aNzf
—6za’r+24n’r+48nx+24N? 2?2 —12Nn? + 16 n2? + 8n? 22

— 48N 23 —24Nn—288Nz? +14n2 +rPn+4r3n+3rin? +rn?
+98n? —10na® —3an’*+a?n?> +n B2 +n®B+nda+rnd + 962 N?
—8Nn?z—16Nnz—6NBn+38%rn+7r*nB+15rnB+4anf
— AN +48rn?+3a’rn+Tar’n+4arn®+2a8n’+6arnp
—6NanB—-6NrnB—-32NpBn—9arn—24Nan—24Nrn
+632zn+48zn? —6za’n—4zan®+40zan+122%2an
+12228n+1222rn+48zrn—6zxarn+6xrnf —12aNzn

— 126 Nxn — 12z N rn + 450),

L(r,n,z)=-2(r+0+n+1+a)(1540x —30r Na+19a NS +4afr
+140n 3 —326 N 3+ 8831 + 88 ar +60na — 36 N 32 — 13 ar?
+17r 3% —30Nr? +131n% + 8872 + 5432 + 133 N2 + 274 + 4758
— 770N — 295 + 2381 + 858 22 + 2202 + 22 2% + 88rn — 55a 3
+103Na+178r2+24a%> —30r NG+ 765xn+553N? +6 N2 32
+4ar?+2r2 32+ 4683 + 62252 + 48982 — 369z o — 15322
+ 177228+ 36 822+ 602 r> +2282% — 2223 o+ 1222 1% + 622 o2
+24xa2—13ra2+2a27"2—858Nx—6rNozﬁ+4om“2ﬂ—6r2Nﬁ
—6NFPr4+228N2z—1022aB+ 1222 6r+1222ar —123° N«
—50zafB+98a Nz —2326Nz+22Nala+60zar+60z3r
—448Nz*—6zar?—122Nr?+6x6r°+65%°zr—128Nar
—12aNzr+10aNzB—6za’r+12n +80n% 2+ 3n* +160nx
+22N?22 40N n? +32n2? + 16n*2? — 44 N2 — 80 Nn — 330 N
+19n 82+ 92 n+4rn+7r2n? +9rn? +356n% —11na® — 5an?
+2a2n?+2n2 32 +5n38+5nda+5rnd+ 1102 N2 — 16 Nn’z
—32Nnz—6N3Fn+3382rn+7r’nB+26rnB+8anB—8N 3n?
+88rn®>+3a’rn+T7ar’n+8arn?+4afBn’+6arnB—6Nanp
—6Nrnf—46Npn—4arn—30Nan—30Nrn+662zn+88xn?
—6xa2n—8xan2+44:can—|—12$2an+12x2ﬂn+12:627"n
+60xrn—6xarn+6xrnf—12aNzn—-126Nzxzn—12xzNrn
+ 1093),

Is(r,n,z)= (r+684+n+14+a)(2760x —36r Na+30aNG+4afr
+150n 8 —486 N S+ 118 8r + 118ar +94na — 42N 32 — 16 ar?
+207 3% —36 Nr2+100n2 + 11872 + 7232 + 210 N2 + 274 + 8103



10.3. Appendix IIT 123

Li(r,n,z) = —

— 1380 N — 570 v 4+ 200 n + 1320 22 + 288 2° + 24 2* + 1187 n — 102 a3
+17TANa+2087% 4360 —36r NS +808xn+ 723 N>+ 6N? 32
+4art+2r2 32 +468r3 + 62252+ 73202 — 588z o — 204 2% o

+228 22 B+ 422+ T2xr? + 2462 — 2423 a4+ 1222 r? + 622 o
+30za® —16ra*+2a*r* —1320Nz —6rNafB+4ar’*B—6r° N3
—6NFr4+243N2z—1222aB+ 1222 Br+1222ar — 122 N«
—T72zaB+132aNz—3008Nz+24Nz2a+T2zxar+ 72z 0r

— 483N z* —6zar? — 122 Nr?+6x6r°+66%°zr—123Nar
—12aNzr+12aNzB—6za’r +2250+56n°z + 112nz + 24 N2 22
—28Nn?2+16n2?+8n°2?> —48N x> —56 Nn — 432N 22 +20n 6% +r?n
+4r3n+3r2n2+rn?+178n%2 —16na® —1lan’+a?n® + 0282 +n3
+nla4+rn®+ 1442 N> —8Nn?2 — 16 Nnz—6NB*n+36%rn
+7rnB+2lrnf+4anf—4ANpn2+48rn2+3a’rn+T7ar’n
+4arn?+2apn’+6arnf—6NanB—6Nrnf—44N f3n
—15arn—36Nan—36Nrn+632zn+4pxn?>—6za’n—4zan?
+6dizan+1222an+12228n+122%rn+ 72zrn—6zarn
+6xrnf—12aNzn—-12Nxn—12x Nrn),

20z +4)(x+4—N)(@+4—N—-a)(z+4+0) r+B+n+1+a).

10.3 Appendix III

We give the coefficients I;(r,n,q; ) of the fourth-order difference equation satisfied by the rth
associated Dg-classical orthogonal polynomials. ¢; and 1); are the coefficients of the polynomials
¢ and v, both related to the g-Pearson equation: Dy(¢p L) = ¢ L.

Coefficients I;(r,n,q;z) for some g-classical orthogonal polynomials

For the discrete g-Hermite and Stieltjes-Wigert cases [see Koekoek et al., 1996], we compute
the coefficients I;(r,n, ¢; x) using the results given in Theorem 6.6 and obtain after cancelling
common factors the following results with the notations: v = ¢" and p = ¢".

1. Discrete g-Hermite case (¢p(z) = 22 — 1, ¢(z) = %

IO(T7 n,q; J")

Il(r7n7 q; $)

1—q )

= @Pp+d P —Cvp—drp—vpg—vp)
(gz—1)(qz +1),
— (q15x6_V3p2+2y2p2q10x2+2y2pq9x2_q8ypx4

20208 £ 2650202 2 4202 2 B — 20 p gt at

+qd' vV pa+qtp
+2V2p2x2q7—21/pq13x4+2V2pq8$2+21/2p2q91’2—Vp2q13$4
Mt 02ty p 4202 S a? — P pat + 222 p12
+I/2,02q11$2+1/2pq10332—1/3p2q9$2+v2p2q5$2—V3,02q8£€2

+l/3p2x2q5—1/,02q14:L‘4—|—21/2,0:L‘2q7—Vq12m4—q11:1741/+x6pq16

B2 E 38 4B PP -3 R — 208 P g — 208 R )
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p g,
IQ(T,TL,Q;ZE) — —(q17$6+31/202q10$2+3q63327/2[32+47/292q8$2
gt 1 42 2T — 20 pg P at 4 A% 20 2 — 2w p? g o

CM a0t g+ 42 P P 42 P 0 202 2 gt
1222 2u gt — P — g P w3 gl

F 2Pt S Bt 2 P Mt — w2 g et — v gt

oy Mt 2B Bt — 208 03 102 4 402 B 10 42
1202081222 — 208 3 T2 4302 g1 P — v pat gt — 208 )P B
120208002 — 28 3022 + 302 P T — 20 P Pt 1 12 p2 g2 ot

g et gt — 2 Ot — u g Pt ¢ 2 p + g1 S 2

BB PP A PR — A PP — 508 Pt — B P — 208 P
_2]/3,03q_i_(]201,6p3)1/—2p—2q—57
Is(rn,gr) = (= p*+20°p°¢"02* + 207 pg’ 2® + ° 2?07 p?

12222 1202 0202 — 20 pgBat 1202 pPa? + 202 2 0 2?
122 S 122 p 2P + 202 g a? £ 202 pgl0a? — 13 o2 B
vttt 1202 pa T+ P — vt g P — 20 pgthat — v pat g

g2 B2 38 2 — 4P PP — 308 2 — 208 o2 g

2 2P Bt — gt — gt — g Tt — B 2

+V2pq11$2+V3p2q11372+1/3p2q12$2+V2p2q123?2+q21$6p)
v2p g ",

Lirn,gz) = @Ppd+d2*—dPvp—dvp—vpg—vp)
(¢*z = 1) (¢*z+1)g°

2. Stieltjes-Wigert case ( ¢(z) = 7, t(z) = gr_ )

q(g—1)
Irn,gz) = (Prvp+aved+q+1)qu,
Lrn,gz) = —('p*2® P +¢" 2?2V p* + P2V p+2¢° 17 pa?

Y Pevp—Prtavd+@ita+ @t

+qz* P p+vpgr+1+zr+a)g,
L(rn,qgz) = (14+2¢+2¢* 2 pa? +0 2202 p* + 21 2® + 2qzv
0P+ 2 p PP 22 2 P - 2P+ PP pad 4+ P R
L2 pg? 2 3 2 3,2 2 3 4,2 2
P +q +2¢°zvp+2zvqg+2¢° 2 v +2¢°xv+q¢ v

B B BV - ST B SR - B O BN P L S

p+upq2x+q+qmy

—vpg'a® —vgatp+2qzvp),

Is(ry,n,q;x) = —(V3p2x3q7+1/3pq6x3+V2pq6w2+V2p2q5w2
—|—x2pvzq5+q4xup+q4x+2q4u2px2+q3m2yz+q3xu+q3xz/p
~Crtavd+vplr+qtqrv+1),

Li(r,n,qgz) = (wpdz+q+qarv+1)¢a.
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