Nachname:	
Vorname:	
Matrikelnummer:	

Klausur zu Höhere Mathematik I BNUW WiSe 2022/23

Gesamtzahl der Aufgaben: 6, Gesamtpunktzahl: 60, Bearbeitungszeit: 120 Minuten

- 1. (8 Punkte)
 - a) Geben Sie die Mengen

$$I_1 = ((1,2) \cup [0,1]) \cap (0,2]$$

und

$$I_2 = \{x \in \mathbb{R} \mid |x+1| \le 2\}$$

als Intervalle an.

b) Berechnen Sie den Lotfußpunkt P^* des Punktes $P_1 = (1, 0, -1)$ zur Geraden

$$g \colon \boldsymbol{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \lambda \in \mathbb{R}.$$

Berechen Sie außerdem den Abstand a von P_1 zu g.

c) Bei dieser Ankreuzaufgabe ergibt jede korrekte Antwort +1 Punkt(e), jede fehlende Antwort 0 Punkte, jede falsche Antwort -1 Punkt(e). Sollte diese Punktesumme negativ ausfallen, so wird sie gleich Null gesetzt.

Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind.

- \square Wahr \square Falsch Es gilt $\sqrt{12} = 6\sqrt{2}$.
- \square Wahr \square Falsch Es gilt (n+1)! = (n+1)n! für alle $n \in \mathbb{N}$.
- 2. (13 Punkte)
 - a) Berechnen Sie jeweils den Grenzwert der Folge $(a_n)_{n\in\mathbb{N}}$.

i)
$$a_n = \frac{n^2 - 1}{2n^3 + 3}$$

ii)
$$a_n = \left(1 + \frac{2}{n}\right)^n$$

b) Gegeben ist die Folge $(b_n)_{n\in\mathbb{N}}$ mit

$$b_n = 1 + \frac{(-1)^n}{2n}.$$

- i) Zeigen Sie, dass $(b_n)_{n\in\mathbb{N}}$ weder monoton wachsend noch monoton fallend ist.
- ii) Geben Sie Infimum, Supremum, Minimum und Maximum der Folge $(b_n)_{n\in\mathbb{N}}$ an, falls diese existieren.

c) Berechnen Sie den Grenzwert der Reihe

$$\sum_{k=5}^{\infty} \frac{2^{3k-9}}{3^{2k-6}}.$$

d) Bei dieser Ankreuzaufgabe ergibt jede korrekte Antwort +1 Punkt(e), jede fehlende Antwort 0 Punkte, jede falsche Antwort -1 Punkt(e). Sollte diese Punktesumme negativ ausfallen, so wird sie gleich Null gesetzt.

Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind.

- \square Wahr \square Falsch Die Folge $((-1)^n)_{n\in\mathbb{N}}$ hat die beiden Grenzwerte -1 und +1.
- □ Wahr □ Falsch □ Das Produkt einer beschränkten Folge und einer Nullfolge ist eine Nullfolge.

3. (12 Punkte)

a) Bestimmen Sie den maximalen Definitionsbereich D der Funktion

$$f: D \to \mathbb{R}, \quad f(x) = \frac{2\ln(x+1)}{2-x^2}.$$

b) Wir betrachten die Funktion

$$g: \mathbb{R} \setminus \{-1, 0\} \to \mathbb{R}, \quad g(x) = \frac{x^3 + 1}{x^2 + x}.$$

- i) Entscheiden Sie ob g in x = 0 stetig fortsetzbar ist oder ob x = 0 eine Polstelle von g ist. Geben Sie im Fall einer Polstelle an, ob ein Pol mit oder ohne Vorzeichenwechsel vorliegt.
- ii) Berechnen Sie $\lim_{x\to-\infty} g(x)$.
- iii) Berechnen Sie die Asymptote von g.
- c) Wir betrachten die Funktionen

$$u: [0, \infty) \to \mathbb{R}, \quad u(x) = 1 + \sqrt{x}$$

und

$$v \colon \mathbb{R} \to \mathbb{R}, \quad v(x) = \sin(x)$$

mit den Wertebereichen

$$u([0,\infty)) = [1,\infty), \quad v(\mathbb{R}) = [-1,1].$$

Entscheiden Sie jeweils ob die Verkettungen $u \circ v$ und $v \circ u$ existieren und geben Sie diese gegebenenfalls an.

d) Bei dieser Ankreuzaufgabe ergibt jede korrekte Antwort +1 Punkt(e), jede fehlende Antwort 0 Punkte, jede falsche Antwort -1 Punkt(e). Sollte diese Punktesumme negativ ausfallen, so wird sie gleich Null gesetzt.

Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind.

- \square Wahr \square Falsch Die Funktion $f \colon \mathbb{R} \to [1, \infty), f(x) = x^2 + 1$ ist bijektiv.
- \square Wahr \square Falsch Eine Polynomfunktion vom Grad $m \ge 1$ hat genau m reelle Nullstellen.

4. (11 Punkte)

a) Berechnen Sie die Ableitung der Funktion $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ mit

$$f(x) = \frac{2^x}{x}.$$

b) Geben Sie für

$$f: [-1,1] \to \mathbb{R}, \quad f(x) = \sqrt{1-x^2}$$

möglichst große Teilintervalle von [-1,1] an, auf denen die Funktion streng monoton wachsend oder streng monoton fallend ist.

c) Bestimmen Sie alle lokalen Extremalstellen von

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x^2 e^{2x}$$

und entscheiden Sie jeweils ob eine lokale Maximal- oder eine lokale Minimalstelle vorliegt.

d) Berechnen Sie den Grenzwert

$$\lim_{x \to \infty} \frac{x \ln(x)}{x^2 + 1}.$$

e) Bei dieser Ankreuzaufgabe ergibt jede korrekte Antwort +1 Punkt(e), jede fehlende Antwort 0 Punkte, jede falsche Antwort -1 Punkt(e). Sollte diese Punktesumme negativ ausfallen, so wird sie gleich Null gesetzt.

Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind.

- \square Wahr \square Falsch Die Funktion $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ hat in x = 0 eine Sattelstelle.
- \square Wahr \square Falsch Die Funktion $f: \mathbb{R} \to \mathbb{R}, \ f(x) = |x|$ ist in x = 0 differenzierbar mit Tangente T(x) = 0.
- 5. (9 Punkte)
 - a) Berechnen Sie das Integral

$$\int_0^2 x e^x \, dx$$

mit partieller Integration.

b) Berechnen Sie das Integral

$$\int \frac{1}{(\frac{x}{2} - 1)^2} \, dx$$

mit der Substitution

$$x = h(t) = 2t + 2.$$

c) Bei dieser Ankreuzaufgabe ergibt jede korrekte Antwort +1 Punkt(e), jede fehlende Antwort 0 Punkte, jede falsche Antwort -1 Punkt(e). Sollte diese Punktesumme negativ ausfallen, so wird sie gleich Null gesetzt.

Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind.

□ Wahr □ Falsch Der Ansatz für die Partialbruchzerlegung von

$$\frac{1}{x^2(x^2+1)}$$

lautet

$$\frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 1}.$$

- \square Wahr \square Falsch Mit dem unbestimmten Integral $\int f(x) dx$ wird die Menge aller Stammfunktionen von f bezeichnet.
- 6. (7 Punkte)
 - a) Bestimmen Sie das Taylor-Polynom 2. Ordnung in $x_0 = 0$ der Funktion

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \cos(x)^2$$
.

b) Berechnen Sie mit Hilfe der geometrischen Reihe die Taylor-Reihe der Funktion

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{1}{2 + 8x^2}$$

im Entwicklungspunkt $x_0 = 0$.

c) Bei dieser Ankreuzaufgabe ergibt jede korrekte Antwort +1 Punkt(e), jede fehlende Antwort 0 Punkte, jede falsche Antwort -1 Punkt(e). Sollte diese Punktesumme negativ ausfallen, so wird sie gleich Null gesetzt.

Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind.

 \square Wahr \square Falsch Es gilt

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

für alle $x \in \mathbb{R}$.

 \square Wahr \square Falsch Wenn $f: \mathbb{R} \to \mathbb{R}$ eine unendlich oft differenzierbare Funktion ist, so hat die Taylorreihe von f den Konvergenzradius $r = \infty$.