Klausur zu Höhere Mathematik II BNUWWiSe 2021/2022

Gesamtzahl der Aufgaben: 6, Gesamtpunktzahl: 60, Bearbeitungszeit: 120 Minuten

- 1. (10 Punkte)
 - a) Bestimmen Sie die kartesische Form von

$$z = \frac{1 + i}{1 - i + 2(i - 1)}.$$

Lösung:
$$z = \frac{1+i}{1-i+2(i-1)} = -i$$

b) Geben Sie die Lösungen von

$$(z+1)^3 = -1$$

in kartesischer Form an. Sie können dazu die folgende Tabelle nutzen.

ϕ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
$\sin \phi$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
$\cos \phi$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Lösung:
$$z_0 = -\frac{1}{2} + \frac{i\sqrt{3}}{2}$$
, $z_1 = -2$, $z_2 = -\frac{1}{2} - \frac{i\sqrt{3}}{2}$

c) Bei dieser Ankreuzaufgabe ergibt jede korrekte Antwort +1 Punkt(e), jede fehlende Antwort 0 Punkte, jede falsche Antwort -1 Punkt(e). Sollte diese Punktesumme negativ ausfallen, so wird sie gleich Null gesetzt.

- Wahr \square Falsch Es gilt $e^{3i\pi} = -1$.
- Wahr □ Falsch Ist $z_1 = 2 3i$ Nullstelle eines Polynoms mit reellen Koeffizienten, dann ist auch $z_2 = 2 + 3i$ Nullstelle dieses Polynoms.
- \Box Wahr \blacksquare Falsch Für $z=\pi+\mathrm{i}\sqrt{2}$ gilt $\mathrm{Im}(z)=\mathrm{i}\sqrt{2}$.

- 2. (7 Punkte)
 - a) Bestimmen Sie durch den Gauß-Algorithmus die Lösungsmenge des linearen Gleichungssystems $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$ mit

$$\mathbf{A} = \begin{pmatrix} 2 & 2 & 0 \\ -2 & -1 & 1 \\ -4 & -2 & 2 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}.$$

Tauschen Sie Zeilen oder Spalten nur falls dies zwingend erforderlich ist.

Lösung: Es existiert keine Lösung.

b) Bestimmen Sie durch den Gauß-Algorithmus die Lösungsmenge des linearen Gleichungssystems ${m A}{m x}={m b}$ mit

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 6 \\ -3 \end{pmatrix}.$$

Tauschen Sie Zeilen oder Spalten nur falls dies zwingend erforderlich ist.

Lösung:
$$x = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, s, t \in \mathbb{R}$$

c) Bei dieser Ankreuzaufgabe ergibt jede korrekte Antwort +1 Punkt(e), jede fehlende Antwort 0 Punkte, jede falsche Antwort -1 Punkt(e). Sollte diese Punktesumme negativ ausfallen, so wird sie gleich Null gesetzt.

- \square Wahr \blacksquare Falsch Es gibt lineare Gleichungssysteme $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ mit $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ und $\boldsymbol{x}, \boldsymbol{b} \in \mathbb{R}^n$ die genau zwei Lösungen haben.
- Wahr □ Falsch Sind $x_1, x_2 \in \mathbb{R}^n$ jeweils Lösungen von Ax = 0 mit $A \in \mathbb{R}^{n \times n}$, dann ist auch $y = 2x_1 3x_2$ eine Lösung dieses linearen Gleichungssystems.

3. (13 Punkte) Gegeben sind

$$A = \begin{pmatrix} -1 & 0 & 0 \\ -2 & -1 & 1 \\ -4 & -4 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & -8 & 2 \\ -2 & 5 & -2 \\ 16 & 26 & -2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

a) Berechnen Sie die Eigenwerte von \boldsymbol{A} .

Lösung:
$$\lambda_1 = -1, \ \lambda_2 = i\sqrt{3}, \ \lambda_3 = -i\sqrt{3}$$

b) Berechnen Sie alle Eigenvektoren zum Eigenwert $\lambda = 3$ von \boldsymbol{B} .

Lösung:
$$\boldsymbol{v} = t \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, t \neq 0$$

c) Lösen Sie das lineare Gleichungssytem Cx = b mit Hilfe der inversen Matrix C^{-1} .

Lösung:
$$\boldsymbol{x} = \boldsymbol{C}^{-1}\boldsymbol{b} = \begin{pmatrix} -3\\2 \end{pmatrix}$$

d) Bei dieser Ankreuzaufgabe ergibt jede korrekte Antwort +1 Punkt(e), jede fehlende Antwort 0 Punkte, jede falsche Antwort -1 Punkt(e). Sollte diese Punktesumme negativ ausfallen, so wird sie gleich Null gesetzt.

- \square Wahr \blacksquare Falsch Ist $\boldsymbol{A} \in \mathbb{R}^{3 \times 2}$, dann ist $\boldsymbol{A}^T \boldsymbol{A} \in \mathbb{R}^{3 \times 3}$.
- \square Wahr \blacksquare Falsch Ist $A \in \mathbb{R}^{n \times n}$ invertierbar, dann sind die Spalten von A linear abhängig.
- Wahr □ Falsch Gilt $\det(\mathbf{A}) \neq 0$ für $\mathbf{A} \in \mathbb{R}^{n \times n}$, dann ist \mathbf{A} invertierbar.

- 4. (17 Punkte)
 - a) Gegeben sind $f: \mathbb{R}^2 \to \mathbb{R}^2$ und $g: \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$f(x_1, x_2) = (x_2, -x_1)^T$$
, $g(x_1, x_2) = (x_1x_2, 2x_1 - x_2)^T$.

Bestimmen Sie die Verfahrensvorschrift von $\boldsymbol{g} \circ \boldsymbol{f} \colon \mathbb{R}^2 \to \mathbb{R}^2$.

Lösung: $(\boldsymbol{g} \circ \boldsymbol{f})(x_1, x_2) = (-x_1x_2, 2x_2 + x_1)^T$.

b) Berechnen Sie für die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \ f(x_1, x_2) = (x_1 x_2, (x_1 + x_2)^2)^T$$

im Punkt $\boldsymbol{x}_0 = (1,2)$ die Richtungsableitung in Richtung $\boldsymbol{e} = \frac{1}{\sqrt{2}}(1,1)^T$.

Lösung: $\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{e}}(\boldsymbol{x}_0) = \frac{1}{\sqrt{2}} \begin{pmatrix} 3\\12 \end{pmatrix}$

c) Berechnen Sie für die Funktion

$$f: \mathbb{R}^n \to \mathbb{R}, \ f(x_1, x_2) = \cos\left(\frac{\pi}{2}x_1x_2\right)$$

die maximale Steigung im Punkt $\boldsymbol{x}_0 = (1,3)$. Vereinfachen Sie das Ergebnis so weit wie möglich.

Lösung: $\|\text{grad } f(1,3)\| = \pi \sqrt{\frac{5}{2}}$

d) Berechnen Sie für

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x_1, x_2) = e^{x_1 x_2}$$

die stationären Punkte. Entscheiden Sie jeweils ob es sich um eine Maximal- oder Minimalstelle bzw. um einen Sattelpunkt handelt.

Lösung: x = (0,0) ist ein Sattelpunkt

e) Bei dieser Ankreuzaufgabe ergibt jede korrekte Antwort +1 Punkt(e), jede fehlende Antwort 0 Punkte, jede falsche Antwort -1 Punkt(e). Sollte diese Punktesumme negativ ausfallen, so wird sie gleich Null gesetzt.

- Wahr □ Falsch Sei \boldsymbol{x}_0 ein stationärer Punkt einer zweimal stetig differenzierbaren Funktion $f: \mathbb{R}^n \to \mathbb{R}$. Ist die Hesse-Matrix $\boldsymbol{H}f(\boldsymbol{x}_0)$ negativ definit, so stellt \boldsymbol{x}_0 eine echte lokale Maximalstelle dar.
- \square Wahr \blacksquare Falsch Ist $f: \mathbb{R}^n \to \mathbb{R}$ im Punkt \boldsymbol{x}_0 partiell differenzierbar, so ist f in \boldsymbol{x}_0 (total) differenzierbar.
- □ Wahr Falsch Die Höhenlinien von $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x_1, x_2) = x_1^2 + x_2^2$ sind Geraden in der (x_1, x_2) -Ebene.

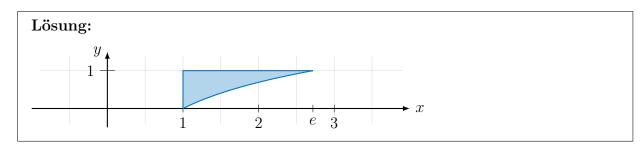
- 5. (6.5 Punkte)
 - a) Gegeben ist

$$I = \int_1^e \int_{\ln(x)}^1 x e^y \, dy \, dx.$$

i) Berechnen Sie I. Vereinfachen Sie das Ergebnis so weit wie möglich.

Lösung: $I = \frac{e^3}{6} - \frac{e}{2} + \frac{1}{3}$

ii) Skizzieren Sie den ${\cal I}$ zugrundeliegenden Normalbereich.



b) Bei dieser Ankreuzaufgabe ergibt jede korrekte Antwort +1 Punkt(e), jede fehlende Antwort 0 Punkte, jede falsche Antwort -1 Punkt(e). Sollte diese Punktesumme negativ ausfallen, so wird sie gleich Null gesetzt.

Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind.

 \blacksquare Wahr \Box Falsch Für den Flächeninhalt |U| eines Normalbereichs U gilt

$$|U| = \iint_U 1 \, dx \, dy.$$

 \square Wahr \blacksquare Falsch Ist $f: \mathbb{R}^2 \to \mathbb{R}$ stetig, dann gilt

$$\int_a^b \int_c^d f(x,y) \, dx \, dy = \int_c^d \int_a^b f(x,y) \, dx \, dy.$$

- 6. (6.5 Punkte)
 - a) Berechnen Sie die allgemeine Lösung des Anfangswertproblems

$$y' = \frac{\cos(x)}{12y^5}, \ y(0) = 2.$$

Lösung:
$$y(x) = \sqrt[6]{\frac{1}{2}\sin(x) + 64}$$

b) Berechnen Sie ein reelles Fundamentalsystem der linearen Differentialgleichung

$$y'' - 4y' + 5y = 0.$$

Lösung:
$$y_1(x) = e^{2x} \cos(x), y_2(x) = e^{2x} \sin(x)$$