Prof. Dr. Karoline Disser

Faculty 10: Mathematics and Natural Sciences
Universität Kassel
Heinrich-Plett-Straße 40
34132 Kassel
- office:
- HPS - 3318
- hours:
- wednesday 11 – 12 (by arrangement)
- tel.:
- (+49) 0561 / 804 – 4613
- e-mail:
Research Interests
Applied Analysis and Theory of PDEs:mathematical fluid dynamics, fluid-structure interaction, complex flows, geophysical flows, reaction-diffusion and bulk-interface systems, elliptic and parabolic regularity, regularity theory in non-smooth settings, variational methods for evolution
Current project:
Research Group FOR 5528: Mathematical Study of Geophysical Flow Models: Analysis and ComputationPublications
Submitted:
- K. Disser
Strong stability and the Schiffer Conjecture for the fluid-elastic semigroup.
arXiv.2509.23989 - S. Dingel and K. Disser
Global existence and uniqueness for Hibler's visco-plastic sea-ice model.
arXiv.2508.16537 - K. Disser and M. Luckas
Global existence and convergence to pressure waves in nonlinear fluid-structure interaction.
arXiv.2209.10982
Appeared:
Links may be to older versions.- F. Brandt, K. Disser, R. Haller-Dintelmann and M. Hieber
Rigorous analysis and dynamics of Hibler's sea-ice model.
J. Nonlinear Sci 32:50 (2022). - K. Disser and M. Luckas
Existence of global solutions for 2D-fluid-elastic interaction with small data.
In: M.I. Expanol, M. Lewicka, L. Scardia and A. Schlömerkemper, editors: Research in Mathematics of Material Science, vol. 31, Springer, Cham (2022), 209-238. - K. Disser
Global existence, uniqueness and stability for nonlinear dissipative systems of bulk-interface interaction.
J. Differential Equations 269 (2020), 4023-4044. -
K. Disser
Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system.
arXiv:1904.01996, doi: 10.3934/dcdss.2020326, Discrete and Continous Dynamical Systems - Series S (2019). -
K. Disser and J. Rehberg
The 3D transient semiconductor equations with gradient-dependent and interfacial recombination.
Mathematical Models and Methods in Applied Sciences (M3AS) 29 (2019), 1819-1851. - K. Disser, M. Liero and J. Zinsl
On the evolutionary Gamma-convergence of gradient systems modeling slow and fast chemical reactions.
Nonlinearity 31 (2018), 3689-3706. - K. Disser, A.F.M. ter Elst and J. Rehberg
On maximal parabolic regularity for non-autonomous parabolic operators.
J. Differential Equations 262 (2017), 2039-2072. - K. Disser, G. P. Galdi, G. Mazzone und P. Zunino
Inertial motions of a rigid body with a cavity filled with a viscous liquid.
Arch. Rat. Mech. Anal. 221 (2016), 487-526. -
K. Disser
An entropic gradient structure for quasi-steady-state approximations of chemical reactions.
Proceedings of the GAMM, 87th annual meeting, PAMM 16 (2016). - K. Disser, J. Rehberg und A. F. M. ter Elst
Hölder estimates for parabolic operators on domains with rough boundary.
Ann. Sc. Norm. Sup. Pisa XVII (2015), 65-79. -
K. Disser
Well-posedness for coupled bulk-interface diffusion with mixed boundary conditions.
Analysis 35 (2015), 309-317. -
K. Disser, M. Meyries and J. Rehberg
A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces.
J. Math. Anal. Appl. 430 (2015), 1102-1123. -
K. Disser, H.-C. Kaiser and Joachim Rehberg
Optimal Sobolev regularity for linear second-order divergence elliptic operators occurring in real-world problems.
SIAM J. Math. Anal. 47 (2015), 1719-1746. -
K. Disser and M. Liero
On gradient structures for Markov chains and the passage to Wasserstein gradient flows.
Netw. Heterog. Media 10 (2015), 235-253. -
K. Disser
Parabolic equations with mixed boundary conditions, degenerate diffusion and diffusion on interfaces.
Proceedings of the GAMM, 85th annual meeting, PAMM 14 (2014), 993-994. -
K. Götze
Strong solutions for the free movement of a rigid body in an Oldroyd-B fluid.
J. Math. Fluid Mech. 15 (2013), 663-688. -
M. Geissert, K. Götze and M. Hieber
Lp-theory for strong solutions to fluid rigid-body interaction in Newtonian and generalized Newtonian fluids.
Trans. Amer. Math. Soc. 365 (2013), 1393-1439. -
K. Götze
Free fall of a rigid body in a viscoelastic fluid.
Geophysical Fluid Dynamics, Workshop, February 18-22, 2013, 10 of Oberwolfach Reports, MFO (2013), 554-556. -
K. Götze
Maximal Lp-regularity for a 2D fluid-solid interaction problem.
Oper. Theory Adv. Appl. 221 (2012), 373-384.
Teaching Material
Notes for some past courses:
-
(Grundlagen der) Analysis I
reelle Zahlen, Konvergenz, Stetigkeit, Differentiation und Integration reeller Funktionen
lecture notes
-
(Introduction to) Calculus of Variations
classical examples and methods, Euler-Lagrange-equations, introduction to elasticity, direct method: abstract and examples, varying types of convexity
lecture notes (version of January 2025)
-
Function Spaces
interpolation theory; real and complex interpolation; examples: Lebesgue-, Lorentz-, Hölder-, Sobolev-, Slobodeckii-, Bessel potential-, Besov-, Orlicz- (and even more :-)) spaces; trace theorems
lecture notes
-
Modelling and Analysis of Non-Newtonian Fluids
internet seminar; introduction to continuum mechanics: modelling of fluid flow, constitutive laws and methods in the analysis of power-law-, Oldroyd-B-type, and viscoelastic dumbbell-type- fluids
notes: 1, 2, 3, 4.