
3 The generalized Newtonian model

In the �rst part of the notes, we introduced the notion of a Stokes �uid in (1.5), which
has a deviatoric stress tensor of the form

S = αId + βD(v) + γD2(v),

where v is the velocity, D(v) is the symmetric part of the velocity gradient or the defor-
mation tensor, and where α, β, γ are functions of the invariants of D, i.e. the quantities
tr(D), (tr(D))2−tr(D2) and det(D), which are the three coe�cients of the characteristic
polyomial pD(λ) = det(λId−D) of D, except for the �rst coe�cient, 1. In rheology, the
notations ID,IID and IIID are used for these invariants. Because they do not depend
on the choice of coordinates, they are also called objective quantities. By Assumption 1
in 1.3, S was constructed in this way so that its dependence on D is also objective.

If in addition, the incompressibility constraint is taken into account, then ID = 0 and
IID = −tr(D2) = −D : D.1 The �uids modelled by the remaining tensor

S = φ0(IID, IIID)Id + φ1(IID, IIID)D(v) + φ2(IID, IIID)D2(v) (3.1)

are called Reiner-Rivlin �uids. They are the most general �uids satisfying Assumptions
1-3 in 1.3 and incompressibility. Maybe at this point, we should put the most emphasis
on the homogeneity Assumption 3. It says that the stress tensor is not a function of
the position we are at in the �uid and that it does not depend on time. These are
constitutive assumptions which exclude a particular structure of the �uid and, maybe
more importantly, memory e�ects. It separates the models for Newtonian and generalized
Newtonian �uids from models for truly viscoelastic �uids2. This assumption implies that
the model cannot account for typical normal stress e�ects like the ones from the second
chapter. This can be shown by a calculation in simple shear �ow, cf. e.g. [16, pp. 19].
Normal stresses and the corresponding viscoelastic e�ects can be accounted for e.g. by
the Oldroyd-B model, so they will appear in the next part of the notes. In this context,
it has to be noted that, although the generalized Newtonian �uid model is widely used
in engineering, in application and in mathematics, it has also been criticized by several
authors. Therefore, it would be safe to say that it is a �starting-point� for the analysis,
cf. [2, p. 380] or [4, pp. 226], which may be more easily accessible then others.

1This was imprecise in the �rst part of the notes!
2There is also seperate literature on inhomogeneous �uids, but this seems to be independent of the

modelling here?
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3 The generalized Newtonian model

3.1 The generalized Newtonian stress tensor

From (3.1), three arguments lead to the constitutive equations for the stress tensor of
generalized Newtonian �uids. The �rst two are based on experimental data, cf. [16,
Section 3.2],

1. If we assume φ2 6= 0, in particular in simple �ow, this �ow behaviour contradicts
experiments on non-Newtonian �uids, so it is assumed that real �uids satisfy φ2 = 0.

2. Likewise, measurements suggest that the dependence of S on IIID is negligible.
In simple �ow, it holds that IIID = 0, so that a second problem is that many
rheometers cannot measure IIID.

3. By 1 and 2, (3.1) is reduced to S = φ0(IID)Id + φ1(IID)D. In the third step, we
include φ0(IID) in the spherical, pressure part of T , so that

S = φ1(IID)D.

The last step is simply to introduce a new notation. The invariant IID is always negative.
Instead, we use the quantity γ̇ =

√
−4IID, which is called the shear rate and we de�ne

η(γ̇2) := φ1(IID).

Assumptions 1-3 on (3.1) now imply that for real �uids, the relation

T = −pId + η(γ̇)D(v) (3.2)

is a good generalization of Newtonian �ow, if the �uid is assumed to be homogeneous.
Fluids governed by a constitutive law of this kind are called generalized Newtonian �uids.

The function η is called the (generalized) viscosity of the �uid, as in the de�nition in
(1.6). If η is constant, the �uid is Newtonian. In addition, from the second law of
thermodynamics, it follows that T : D = ηtr(D2) ≥ 0, so that η should satisfy η ≥ 0 in
any case, cf. e.g. [16, Section 3.3] and the references therein.
There are very many ways to de�ne η, depending on di�erent numbers of material

parameters, in order to model a particular �uid. Some ideas and examples are given in
the next section. Note that in general, we see that the viscosity of the �uid will change
with its rate of shear. Roughly speaking, it may increase with increasing γ̇, or decrease.
Both phenomena appear, whereas the latter is more common. Fluids which increase their
viscosity as shear increases are called shear-thickening or dilatant, if they decrease their
viscosity instead, they are called shear-thinning or pseudoplastic.
An explanation for shear-thinning of polymeric solutions is that the macromolecular

particles, the molecules, which have a chain-like structure will align with the �uid velocity
as the shear increases, causing the �uid to ��ow more easily�.
A typical example of a shear-thickening �uid is a solution of corn starch in water. If a

lot of stress is applied, the �uid is squeezed out from between the starch and the whole
material becomes almost solid. Blood is a �uid which exhibits, among other properties, an
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3 The generalized Newtonian model

interesting shear-thinning behaviour. Whereas it has a high viscosity under low strain
rate, it keeps a constant viscosity in a wide higher strain rate region. This is due to
clustering and breaking up of clusters under low and higher strain rates, respectively, cf.
[10, p. 196].

3.2 Examples

The simplest and �rst type of generalized Newtonian �uids are the power-law �uids of
Ostwald and de Waele, where the viscosity is given by

η(s) = κ0s
(d−2)/2, (3.3)

where κ0 and d are positive constants. In particular, the power-law exponent d should
satisfy d ≥ 1. If d = 2, the �uid is Newtonian. If d < 2, it exhibits shear-thinning
behaviour, if d > 2, it is shear-thickening. Most models, references and analysis are
about/to power-law type �uids, cf. also the next chapter. There are some defects to this
model: if the �uid is shear-thinning, the viscosity becomes in�nite for zero shear rate and
if it is shear-thickening, the viscosity will become zero. This does not match experiments
with real �uids. The second problem can be overcome if a model of the form

η(s) = κ1 + κ0s
(d−2)/2 (3.4)

is considered instead. This was done �rst by Ladyzhenskaya, e.g. in [11], where �uids of
exponent d ≥ 9

5 were considered. Fluids of this type are therefore also called Ladyzhen-

skaya �uids. One further problem is that for power-law �uids of this type, the viscosity
is unbounded.
Both issues are resolved by di�erent modi�cations of (3.3) found in the literature. The

Cross model uses the relation

η(s)− η∞
η0 − η∞

=
1

1 + (κ2
0s)(2−d)/2

,

where η0, η∞ are parameters which model a viscosity limit at 0 or in�nite shear rate in
both shear-thinning and shear-thickening cases (for the latter, the notation η0, η∞ should
be reversed). The Ellis model is a simpli�cation of the Cross model, where η∞ = 0,

η(s) =
η0

1 + (κ2
0s)(2−d)/2

.

Two more variations of the Cross model are the Yasuda model, where even one more
modelling parameter a is included,

η(s)− η∞
η0 − η∞

=
1

(1 + κa
0s)(2−d)/a

,

and the Carreau model, which is the Yasuda model with a = 2. This model is often
written in the form

η(s) = η∞ + (η0 − η∞)(1 + κ2
0s)

(d−2)/2
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3 The generalized Newtonian model

and it is often used and referred to in analysis.
Examples of models for η which are not power-law type are the Powell-Eyring model,

where

η(s) = η∞ + (η0 − η∞)
sinh−1(

√
sλ)√

sλ
,

and the Prandtl-Eyring model, where η∞ = 0 in the Powell-Eyring model.
A di�erent type of models are given for Bingham �uids. In general, it is assumed that

they behave like a solid until a yield stress τy is reached. If the yield stress is surpassed,
the �uid �ows in a Newtonian way. There are modi�cations of the Bingham model, e.g.
the Herschel-Bulkley model, which is for shear-thinning yield stress �ow. The yield stress
may be reached locally in parts of the �uid and therefore a Bingham �uid can be �owing
in some parts and at the same time remain solid in others.

4



4 The generalized Navier-Stokes

equations

In the last chapter, we de�ned the stress tensor of a generalized Newtonian �uid. The
corresponding system of equations, the generalized Navier-Stokes equations has the form


ρ(∂v

∂t + (v · ∇)v)− div S(D(v)) +∇q = f, in R+ × Ω,

div v = 0, in R+ × Ω,

v|∂Ω = 0, on R+ × ∂Ω,

v|t=0 = a, on Ω,

(4.1)

cf. (1.8) in the �rst part. The main di�erence to the Navier-Stokes equations is that in
general, the dependence of S on v will not be linear but given by one of the models for
η from the last section. In the next two sections, we look at two di�erent approaches to
solving (4.1) in the literature.

The �rst is about �nding strong Lp-solutions to (4.1), like the strong solutions for the
Stokes problem, cf. Theorem 1 in Section 1.3.4. It was used by Bothe and Prüss in [2].

The second is more prominent in the mathematical research and it is based on the
theory of monotone operators. It yields di�erent results on strong solutions and especially
results on global weak solutions. I know much less about this family of methods and hope
that we can discuss about it on the seminar day. Some ideas are in Section 4.2.

What can be seen from both methods, in di�erent ways, is that for this generalization
of the Navier-Stokes equations, it is so far necessary to work in the Lp-framework and
leave Hilbert spaces.

4.1 The result by Bothe and Prüss - the generalized NSEs

as a quasi-linear parabolic problem

In the original paper, there is a more general version of the result given in this section,
which covers also di�erent types of boundary conditions. Roughly speaking, the idea is
to look at (4.1) as a quasi-linear second-order parabolic problem. More precisely, we can
calculate div S(D(v)) and de�ne the operator as follows:
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(A(v)v)i := (divS(D(v)))i =
3∑

j=1

η(|D(v)|22)∂jd
(v)
ij + ∂j(η(|D(v)|22))d

(v)
ij

=
3∑

j=1

[
η(|D(v)|22)∂2

j vi + 2η′(|D(v)|22)(
3∑

k,l=1

d
(v)
kl ∂jd

(v)
kl d

(v)
ij )

]
= η(|D(v)|22)∆vi + 2η′(|D(v)|22)

3∑
j,k,l=1

d
(v)
ik d

(v)
jl ∂k∂lvj ,

where we use the notation d
(v)
ij = (D(v))ij = 1

2(∂ivj + ∂jvi) and γ̇ =
√∑

i,j(d
(v)
ij )2 =:

|D(v)|2. Clearly, if η were constant, A(v) would just be η∆, regardless of v. The
operator is quasi-linear second-order if we consider everything in η and in the d(v)'s as
�coe�cients�. Moreover, from this de�nition it can be seen that some regularity is required
of the function η. More precisely, we impose that η ∈ C1,1(R+; R), i.e. the function has
a Lipschitz-continuous �rst derivative and the correspoding norm is bounded. Secondly,
the positivity and �growth� conditions

η(s) > 0 and η(s) + 2sη′(s) > 0 for all s ≥ 0 (4.2)

have to be satis�ed. We will see below where these conditions come from in the analysis.
Note here that both assumptions are physically reasonable. The positivity of the viscosity
was already claimed in Section 3.1, the growth condition can be derived if we claim that
the norm of the viscous stress |S|2 = η(γ̇2)γ̇ should increase with increasing rate of strain
γ̇2. Taking the derivative yields |S|′2(γ̇) = η(γ̇2) + 2γ̇2η′(γ̇2).
Under these assumptions, the following is the main theorem on local existence of strong

solutions.

Theorem 1. Assume p > n + 2, and that Ω is a domain in Rn with compact boundary

of class C2,1. Given a ∈ W 2−2/p,p(Ω), div a = 0 and a|∂Ω = 0 and f ∈ Lp(R+;Lp(Ω)),
there exists a maximal interval JT ∗ = (0, T ∗), T ∗ > 0, such that problem (4.1) admits a
unique strong solution

v ∈ XT
p,p := Lp(JT ∗ ;W 2,p(Ω)) ∩W 1,p(JT ∗ ;Lp(Ω)),

q ∈ Lp(JT ∗ ; Ŵ 1,p(Ω)).

Moreover, T ∗ can be characterized as follows: if T ∗ < ∞, then limt→T ∗ v(t) does not

exist in W 2−2/p,p(Ω).

Remark 2. The result holds true regardless of the space dimension (only the condition
on p changes). This follows from the general technique used for solving the problem.
However, it only gives a criterion, not a result on global solutions in any dimension.
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4 The generalized Navier-Stokes equations

Remark 3. We have to check which types of generalized Newtonian �uids are included in
the conditions on η. A �rst and important observation (from the paper) is the following:
The power-law-type functions

η(s) = κ0(1 + s)(d−2)/2

satisfy (4.2) for every d ≥ 1. This model is used in analysis, because it does not have
the defects of (3.3) at γ̇ → 0. It follows that for this model, shear-thinning (d < 2) and
shear-thickening (d > 2) can be covered, for all relevant exponents. Other models from
Section 3.2 should be checked, cf. the questions at the end of the notes.

The remainder of the section is for sketching the proof of Theorem 1. In a �rst step, the
quasi-linear problem is linearized by freezing the coe�cients of A at a reference solution
to the corresponding Stokes problem, which we obtain from Theorem 1 in Section 1.3.4.
Let this solution be called v∗. This gives us a linear second-order operator A∗ with time-
and space-dependent coe�cients,

(A∗v)i : = (A(v∗)v)i = η(|D(v∗)|22)∆vi + 2η′(|D(v∗)|22)
∑
j,k,l

d
(v∗)
ik d

(v∗)
jl ∂k∂lvj

=:
∑
j,k,l

aij
kl∂k∂lvj , (4.3)

where
aij

kl := η(|D(v∗)|22)(δklδij) + 2η′(|D(v∗)|22)d
(v∗)
ik d

(v∗)
jl .

The corresponding linear generalized Stokes equations are
ρ∂v

∂t −A∗v +∇q = f, in R+ × Ω,

div v = 0, in R+ × Ω,

v|∂Ω = 0, on R+ × ∂Ω,

v|t=0 = a, on Ω.

(4.4)

For this system, the authors obtain a maximal regularity result, similar to Theorem 1 in
Section 1.3.4. It is by using general theory for maximal regularity of parabolic problems,
modi�ed to �t the additional incompressibility constraint and pressure term.
Two non-linearities then remain to be added by a �xed point argument, cf. Subsection

4.1.2.

4.1.1 Ellipticity of A∗

One of the main ingredients for solving (4.4) is the result by Denk, Hieber and Prüss
[5] on maximal Lp-regularity for parabolic boundary value problems. We look at (4.4)
without the pressure or divergence condition. Following [5], roughly speaking, it has to
be shown that

1. A∗ is strongly elliptic,
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4 The generalized Navier-Stokes equations

2. the Lopatinski��-Shapiro-condition is satis�ed and

3. the coe�cients of A∗ are bounded in space and time,

to get that the corresponding parabolic initial boundary value problem has maximal
regularity.
We check that these conditions are met in our case.

1. A∗ is strongly elliptic: By (4.3), the symbol A∗# of A∗ is given by

A∗#(x, ξ) =
∑
k,l

aij
kl(x)ξkξl.

To show strong ellipticity, we check that for all x ∈ Ω, ξ ∈ Rn and µ ∈ Cn such
that |ξ| = |µ| = 1, Re(A∗#(x, ξ)µ, µ) ≥ c for some positive constant c > 0. Indeed,
abbreviating η(|D(v∗)(x)|22) by η∗(x), we get

(A∗#(x, ξ)µ, µ) =
∑
i,j,k,l

aij
kl(x)ξkξlµjµi

=
∑
i,j,k,l

η∗(x)δijδklξkξlµjµi + 2η′∗(x)d(v∗)
ik (x)d(v∗)

jl (x)ξkξlµjµi

= η∗(x)|ξ|2|µ|2 + 2η′∗(x)|(D(v∗)ξ, η)|2.

From (4.2), it follows that η∗ > 0 and we see that this condition is necessary for
strong ellicpticity. It would be su�icient if η′∗ ≥ 0. Suppose that η′∗ < 0, then

η∗|ξ|2|µ|2 + 2η′∗|(D(v∗)ξ, η)|2 ≥ η(|D(v∗)|22)|ξ|2|µ|2 + 2η′(|D(v∗)|22)|D(v∗)|22|(ξ, µ)|2

≥ c|(ξ, µ)|2

by the Cauchy-Schwarz inequality and by the growth condition in (4.2). If |(ξ, µ)|2 =
0 or close to 0, the �rst inequality already yields the claim.

2. The Lopatinski��-Shapiro-condition makes the boundary value problem elliptic by
ensuring that somehow the boundary condition matches the operator, cf. e.g the
monograph [17]. Here, it refers to Dirichlet boundary conditions for A∗, cf. the
short appendix. For the proof for several types of boundary conditions in our case,
we refer to [2, p. 386] It is not so di�cult.

3. The coe�cients aij
kl of A∗ depend on η, η′ and on D(v∗). In the full quasi-linear

problem, they are functions of the the solution v . In [5], boundedness is required.
Here, we see that aij

kl ∈ C([0, T∗]× Ω) because

XT∗
p,p ↪→ C(JT∗ ;W

2−2/p,p(Ω)), (4.5)

see the short appendix and by Sobolev embedding,

W 2−2/p,p(Ω) ↪→ C1(Ω) (4.6)
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4 The generalized Navier-Stokes equations

if p > n + 2, so that D(v) and D(v∗) are continuous, as well as η and η′. Thus
the requirement that p > n + 2 arises from the dependence of the viscosity on the
�rst-order derivatives of the velocity �eld.

It is technical and di�cult to transform the knowledge on the parabolic problem without
pressure and incompressibility to the generalized Stokes problem and we refer to [2,
Sections 5-7] for the proof. Here, we can only see that the frozen generalized Stokes
operator yields a good parabolic problem. But moreover, the arguments show where the
basic assumptions in the main theorem come from and how they connect to the modelling
of the �uid. In particular, it shows that the conditions (4.2) on η are exactly the right
ones for this kind of analysis, where at the same time, they are physically reasonable.

4.1.2 Fixed-point-argument

It is a standard technique for quasi-linear parabolic problems to use a maximal regularity
result on the linearized system and a �xed point argument. For abstract results on this
technique, we refer e.g. to [1].
In some of the �xed-point-argument is done explicitly. Solving the linear problem is

really the di�cult part.
We look at (4.1) and assume p > n + 2, η,Ω as in Theorem 1. We �x a time T0 > 0.

We can use the embedding XT
p,p ↪→ C(JT ;W 2−2/p,p(Ω)) ↪→ C(JT ;C1(Ω)) from (4.5) and

(4.6) for all 0 < T < T0, only the embedding constant blows up as T → 0. Therefore, we
want to do the �xed point argument in the space 0X

T
p,p = {u ∈ XT

p,p : u(0) = 0}, where
this does not happen. Let the data a and f be as in Theorem 1. For this data, we solve
the Stokes problem (1.10) from the �rst part, Theorem 1 in Section 1.3.4 for viscosity
µ = 1 to get a solution v∗ ∈ XT

p,p and q∗ ∈ Y T
p,p. For a would-be solution v, q of (4.1), we

de�ne u := v − v∗ and p = q − q∗. By plugging in the Stokes problem and adding some
zeroes, this gives a system of equations in u, p, which is equivalent to (4.1),

ρ∂u
∂t −A∗u +∇p = F (v∗, u), in R+ × Ω,

div u = 0, in R+ × Ω,

u|∂Ω = 0, on R+ × ∂Ω,

u|t=0 = 0, on Ω,

(4.7)

where

F (v∗, u) := −∆v∗−A∗v∗−(v∗·∇)v∗+[A∗−A(v∗+u)](v∗+u)−[(v∗·∇)u+(u·∇)v∗+(u·∇)u].

By de�nition, F (v∗, u) belongs to Lp(0, T ;Lp(Ω)). For R > 0 let BT
R := {u ∈0 XT

p,p :
‖u‖XT

p,p
≤ R}. Then every �xed point u of the map Φ : BT

R →0 XT
p,p given by

Φ(ū) = U(F (v∗, ū), 0)

and its associated pressure will solve (4.7) and vice versa. Here, U(F, 0),P(F, 0) are the
solution operators for the generalized Stokes problem (4.4) with right hand side F and
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4 The generalized Navier-Stokes equations

initial data 0. By the Banach Fixed Point Theorem, it remains to be shown that Φ is a
self-map and that it is contractive, for some R, T > 0. We only show the latter in detail,
as the arguments are nearly the same for both types of estimates.

Let ū1, ū2 ∈ BT
R. By maximal regularity of (4.4), we know that

‖Φ(ū1 − ū2)‖XT
p,p
≤ K‖F (v∗, ū1)− F (v∗, ū2)‖p,p,

for some constant K > 0 independent of R and T . Furthermore,

‖F (v∗, ū1)− F (v∗, ū2)‖p,p

≤ ‖[A∗ −A(v∗ + ū1)](ū1 − ū2)‖p,p

+ ‖[A(v∗ + ū1)−A(v∗ + ū2)](v∗ + ū2)‖p,p

+ ‖(v∗ · ∇)(ū1 − ū2) + ((ū1 − ū2) · ∇)v∗ + (ū1 · ∇)ū1 − (ū2 · ∇)ū2)‖p,p

=: I + II + III

We use the abbreviation XT := C([0, T ];C1(Ω)). For the estimates of I, II, III we use
the following facts:

• η and η′ are Lipschitz by assumption (1),

• ‖ūi‖XT ≤ CR for a constant C independent of T ,

• KT
∗ := ‖v∗‖XT

p,p
→ 0 for T → 0 and ‖v∗‖XT ≤ ‖v∗‖XT0 ≤ C‖v∗‖

X
T0
p,p
≤ C0 for some

constant C0 depending on the data a and f .

It follows that

I ≤ C sup
i,j,k,l

‖aij
kl(v

∗)− aij
kl(v

∗ + ū1)‖∞,∞‖ū1 − ū2‖XT
p,p

,

where

‖aij
kl(v

∗)− aij
kl(v

∗ + ū1)‖∞,∞

≤ ‖η(|D(v∗)|22)− η(|D(v∗ + ū1)|22)‖∞,∞

+ ‖η′(|D(v∗)|22)d
(v∗)
ik d

(v∗)
jl − η′(|D(v∗ + ū1)|22)d

(v∗+ū1)
ik d

(v∗+ū1)
jl ‖∞,∞.

For the �rst part on the right hand side, we see that

‖η(|D(v∗)|22)− η(|D(v∗ + ū1)|22)‖∞,∞ ≤ Cη sup
i,j
‖(d(v∗)

ij )2 − (d(v∗)
ij + d

(ū1)
ij )2‖∞,∞

≤ CηR(R + 2C0)

and by the same arguments for the second part, it follows that

I ≤ CηR‖ū1 − ū2‖XT
p,p

.

10



4 The generalized Navier-Stokes equations

Calculating in a similar way, we get

II ≤ Cη(‖v∗‖XT + ‖ū1‖XT + ‖ū2‖XT )‖ū1 − ū2‖XT
p,p
‖v∗ + ū2‖XT

p,p

≤ (C0 + R)(KT
∗ + R)‖ū1 − ū2‖XT

p,p

and
III ≤ (KT

∗ + R)‖ū1 − ū2‖XT
p,p

.

In conclusion, if R and T are chosen to be su�ciently small, then

‖Φ(ū1 − ū2)‖XT
p,p
≤ K · CT

R‖ū1 − ū2‖XT
p,p

for some CT
R < 1

K and thus Φ is a contraction.
The unique �xed point u and the corresponding pressure p solve (4.7), therefore v =

v∗ + u and q = q∗ + p is a solution of (4.1) in the correct function spaces. If the map

t 7→ ‖v(t)‖W 2−2/p,p(Ω)

remains bounded, then it yields initial values for problem (4.1), which allow to extend the
solution. This argument explains the characterization of the maximal time of existence
of solutions in Theorem 1.

4.2 Literature on (4.1) and weak solutions

The classical approach to problem (4.1) goes back to Ladyzhenskaya, [11]1 and it is con-
nected to the development of monotone operator theory for partial di�erential equations.
One result of Ladyzhenskaya is that for p > 9

5 , there is a global weak solution of (4.1)
under the assumption that the viscosity satis�es (3.4). Ladyzhenskayas result has been
extended and the theory has developed in many directions. I have a very limited overview
of the literature, so only some contributions are mentioned here. The references in the
references will probably not even give a complete picture.
There is literature on improving the condition on p by various methods, but, the

best ist 6
5 in three space dimensions, using also di�erent notions of weak solutions, cf.

[12],[15],[13],[8] and the survey [14], and for more general (inhomogeneous) models, [3]
and [9]. On regularity of the solutions, cf. e.g [7] on stationary solutions and e.g. [6] on
the existence of strong solutions for p > 7

5 . There are also several results on numerical
methods.
In this part of the notes I put some basic ideas about the weak formulation, which

hopefully show the connection between p and d and why it is not clear how to go to d = 1
for the problem in three space dimensions.
In order to give a weak formulation of (4.1), one can de�ne the solenoidal function

spaces that �t the boundary condition, Lr
σ(Ω) and

Vr(Ω) := {v ∈ W 1,r
0 (Ω) : div v = 0}.

On the deviatoric stress S(D(u)), there are several assumptions,

1and earlier works, but I cannot �nd them...
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4 The generalized Navier-Stokes equations

• growth: there is a constant c > 0, such that for all A ∈ Rn×n
sym , |S(z)| ≤ c(1+ |z|)p−1,

• p-coercivity: there is a constant c0 > 0 such that for all A ∈ Rn×n
sym , S(z) : z ≥ c0|z|p,

• monotonicity: for all A 6= B, A,B ∈ Rn×n
sym , (S(z)− S(y)) : (z − y) > 0.

These assumptions in particular include the power-law model and the Carreau model.
These are just examples of assumptions from the literature and they may be modi�ed. To
get a weak formulation, (4.1) is multiplied by a test function ϕ ∈ C∞

c (0, T ;C∞
c,σ(Ω)), and

integrated over Ω and (0, T ). By using integration by parts, formally, a weak formulation
of (4.1) is

� T

0

�
Ω

u · ϕt +
� T

0

�
Ω

S(D(u)) : D(ϕ) +
� T

0

�
Ω

u⊗ u : ∇ϕ =
� T

0

�
Ω

f · ϕ. (4.8)

In order for the expression to be well de�ned, all parts should be integrable. From
the growth condition on S, we get integrability of the second term for ϕ ∈ Vp , so
the corresponding operator A : Lp(0, T ;Vp(Ω)) → Lp′(0, T ;V ′

p(Ω)) given by (Av,w) =� T
0

�
Ω S(D(v)) : D(w) is well-de�ned (with additional arguments). The growth condition

thus de�nes the function spaces in which to work, and d = p. A weak solution of (4.1)
is a function u ∈ Cw([0, T );L2

σ) ∩ Lp(0, T ;Vp) such that (4.8) and the initial value is
satis�ed by u. In order for this formulation to work, the space Vp(Ω) must compactly
embed into L2

σ(Ω), so that a weak solution can be obtained by approximation and the
Aubin-Lions lemma. This is the case if p > 2n

n+2 . Monotonicity and coercivity of the
operator A follow from the corresponding assumptions on S.
In order for the third term

� T
0

�
Ω u⊗u : ∇ϕ to be well-de�ned, also if a solution u ∈ Vp

is inserted for ϕ, the embedding Vp(Ω) ↪→ L2p′
σ (Ω) must hold. This is the case if p ≥ 3n

n+2 .

In three dimensions, the critical exponents are thus 6
5 and 9

5 and in order to improve
the restrictions they put on the power-law exponent d = p, especially for shear-thinning
behaviour, special methods have to be applied.

12



5 Related questions and small appendix

• In Section 3.2, we have seen several examples of generalized Newtonian �uid models.
In the fourth chapter, mathematical requirements on η are formulated, based on
the methods used for solving the generalized Navier-Stokes problem. How do these
requirements �t the examples, created from experimental data and considerations
from mechanics?
Example: Bingham �uids do not �t the requirement η ∈ C1,1(R+) in (4.2). As a
minimum of regularity, in the modelling, it is assumed that the stress is at least
piecewise continuous in space and time, so this should apply to all η in Section 3.2.

• How do the requirements on S or on η in Sections 4.1 and 4.2 compare? Is one of
them strictly more general?

• Professor Necasova said that there is a mistake in Ladyzhenskaya's work. Is this
somehow well-known?

• In Section 3.2, models for η are just stated, not compared. This is a possible project
for the seminar, which would be very much on the modelling side.

• Again, calculations in simple �ow on some of the models in Chapter 3 would be
interesting.

Appendix

Maximal Lp-regularity and strong solutions Consider the abstract Cauchy problem{
u′(t)−Au(t) = f(t), t ∈ JT ,

u(0) = 0,
(5.1)

where (A,D(A)) is a closed, densely de�ned linear operator in some Banach space
X with domain D(A) and f ∈ Lp(JT ;X), p ∈ (1,∞) and T ∈ R+. The operator
A is said to admit maximal Lp-regularity on JT in X, if for every f ∈ Lp(JT ;X)
there exists a unique strong solution u of (5.1). A function u is a strong solution
of (5.1), if and only if u ∈ W 1,p(JT ;X) ∩ Lp(JT ;D(A)), u has vanishing trace at
time zero and u satis�es (5.1) for almost all t ∈ JT . We use the short form

XT
p := W 1,p(JT ;X) ∩ Lp(JT ;D(A))

for the space of strong solutions of the abstract Cauchy problem which is also called
the space of maximal regularity of the operator A. Let now Zp := {u(0) : u ∈ XT

p }

13



5 Related questions and small appendix

be the time trace space of XT
p . In [1, Section III.4.10] it is shown that if A admits

maximal Lp-regularity on an interval JT , T > 0, Zp can be characterized by

Zp = (X, D(A))1−1/p,p

and that XT
p admits the continuous embedding

XT
p ↪→ C([0, T ];Zp).

For the initial value problem{
u′(t)−Au(t) = f(t), t ∈ JT ,

u(0) = u0,
(5.2)

it can therefore be shown that if A admits maximal Lp-regularity on JT0 , T0 > 0,
then for every u0 ∈ Zp and T ∈ JT0 there exists a unique solution u ∈ XT

p of (5.2)
such that

‖u‖XT
p
≤ C(‖f‖Lp(JT ;X) + ‖u0‖Zp

),

where the constant C is independent of T, f, u0. In this sense, it is often said
that the initial value problem (5.2) has maximal regularity or the term is used for
systems of equations, if they yield a solution operator for strong solutions in the
appropriate sense, cf. e.g. the problem (4.4).

Lopatinski��-Shapiro Condition Here, this condition has the following form: Show that
for every ξ, ν ∈ Rn, |ν| = 1 and (ξ, ν) = 0 and Re(λ) ≥ 0, the ODE{

λw(y) + A#(ξ − νDy)w(y) = 0, y > 0,

...w(0) = 0,

has only w = 0 as a solution in C0(R+; Cn), cf. [17].
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