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Online Demonstrations with
Computer Algebra

[ will use the computer algebra system
Maple to demonstrate and program the
algorithms presented.

* Of course, we could also easily use any
other system like Mathematica or MuPAD.

* We first give a short introduction about the
capabilities of Maple.




Scalar Products

e (Given: a scalar product

(f.2)= [ f(D)gdu(x)

with non-negative measure [ supported in an
interval [a,b).
 Particular cases:

— absolutely continuous measure du(x) = p(x)dx,
— discrete measure P(x) supported by Z,

— discrete measure P(x) supported by gZ.



Orthogonal Polynomials

* A family P (x) of polynomials

Px)=kx"+kx"" +k'x"" +.-., k #0

n

1s orthogonal w. r. t. the measure H(x) 1f
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Classical Families

(=

* The classical orthogonal polynomials can be
defined as the polynomial solutions of the
differential equation

0(x)P(x) +1(x)P.(x) +A,P,(x) = 0.
 Conclusions:

— n=1 implies T(x) =dx+ e, d Z0
—n=2 implies O(x)=ax*+bx +c
— coefficient of x*  implies A, =—n(a(n-1)+d)




Classification

The classical systems can be classified
according to the scheme (Bochner 1929)

o(x)=20 powers x”

ox)=1 Hermite polynomials
Oo(x)=x Laguerre polynomials

o(x) = x? powers, Bessel polynomials

o(x)= x*—1 Jacobi polynomials



Weight function

* The weight function p(x) corresponding to
the differential equation satisfies Pearson’s
differential equation

< (0(1)p(0))=1(x) ()
X

* Hence it 1s given as .
r(x
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Classical Discrete Families

* The classical discrete orthogonal polynomials can
be defined as the polynomial solutions of the

difference equation

0(x)A0P, (x) + 1 (x)AP, (x) +A,P,(x) = 0.

 Conclusions:
—n=1
- n=2

— coefficient of x”

m

m

1my

liest(x)=dx+e,dZ0
liesao(x)=ax*+bx+c

lies A, =—n(a(n-1)+d)

D



Classification

The classical discrete systems can be classified

according to the scheme (Nikiforov, Suslov,
Uvarov 1991)

o(x)=0 falling factorials
o(x)=1 translated Charlier pols.
Oo(x)=x falling factorials,
Charlier, Meixner,
Krawtchouk pols.

deg (0(x), x) =2 Hahn polynomials



Weight function

The weight function p(x) corresponding to
the difference equation satisfies Pearson’s
difference equation

Ao (x)p(x))=1(x)p(x)

Hence it 1s given as
pLr+1) _0(0)+1(x)
p(x)  o(x+l)




Hypergeometric Functions

* The power series
Bgl’m’ap H: - )
pFal b, T RS
whose coefficients 4, have rational term ratio
A,z _ (k+a)---(k+a,) o
A.z" (k+b)---(k+b,) k+1
1s called the generalized hypergeometric function.

The summand A4, z¢ is called a hypergeometric
term.




Coefficients of
Hypergeometric Functions

For the coefficients of the hypergeometric
function we get the formula

e HE (@) (a,), 2
g qula"'abq _:| =0 (bl)k"'(bq)k k-

where (a), = a(atl)---(atk-1) 1s called the
Pochhammer symbol (or shifted factorial).



Examples of
Hypergeometric Functions

e”=F,(z)
—_ ZZ
simz=z[JF;H |——
B/2| 4

Further examples: cos(z), arcsin(z),
arctan(z), In(1+z), erf(z), L (9(2), ..., but for
example not tan(z), ...



Classical Discrete Orthogonal
Polynomials of Hahn Class as
Hypergeometric Functions

* From the difference equation, one can
determine a hypergeometric represention.

* As an example, the Hahn polynomials are
given by

Fn,—x,n+1+a+ [
a+l, - N

Qn(x;aalgaN) - 3F2




Notation

To define g-orthogonal polynomials, we need
some notation.

The operator (Hahn 1949)
x)— f(gx
b, fxy =L @)= 1 @)
(1-g)x
1s called Hahn’s g-difference operator.
The g-brackets are defined by

ok
[k]q:1 1 :1+q+"'+qk_1°



Classical g-Families

* The g-orthogonal polynomials of the Hahn
class can be defined as the polynomial
solutions of the g-difference equation

0(x)D,D,,,P,(x) +1(x)D,P,(x)+A,P,(x) = 0.
 Conclusions:

—n=1 implies T(x) =dx+ e, d Z0
—n=2 implies O(x)=ax*+bx +c
— coefficient of x”  implies A =-a[n),, [n-1] -d[n],



Classification

The classical g-systems can be classified
according to the scheme

o(x)=20 powers and g-Pochhammers
ox)=1 discrete g-Hermite II pols.
o(x)=x g-Charlier, g-Laguerre pols.
o(x)=x-b g g-Meixner polynomials

deg (0(x), x) =2  g-Hahn polynomials,
Big g-Jacobi polynomials



Weight function

The weight function p(x) corresponding to
the g-difference equation satisfies the g-
Pearson difference equation

D,(0(x)p(x))=1(x)p(x)

Hence it 1s given as
plgx) _ 0(x)+(g ~Dx1(x)
P(x) g(gx)




Basic Hypergeometric Series

* Instead of considering series whose coeffi-

cients 4, have rational term ratio 4, /A4,
Q(k), we can also consider such series

whose coefficients 4, have term ratio
A /4, € Q(gH).
 This leads to the g-hypergeometric series

1,...,ar B 00 i
o e g
1° > s =0




Coeftiicients of the Basic
Hypergeometric Series

* Here the coefficients are given by

k

4 =lasq)(a,3q), X
Y b)), (4:9),

where
k-1

7=0

%-l)"qgé

|

)

(@), =[] -aq’

denotes the g-Pochhammer symbol.
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g-Orthogonal Polynomials of
Hahn Class are Hypergeometric

 All classical orthogonal systems have
(several) g-hypergeometric equivalents.

* E.g., the Little and the Big g-Jacobi
Polynomials, respectively, are given by

—n , abqnﬂ
pn(x;a,blq)%q@g q;qx
aq

_n,aban,X
Pn(X;a,b,c;q):s%ﬂg q;qﬂ

aq.cq

?




Computing Difference Equation
from a Recurrence Equation

* From the differential or (g)-difference
equation one can determine the three-term
recurrence equation for P (x) in terms of
the coefficients of o(x) and T(x).

» Using this information in the opposite
direction, one can find the corresponding
differential or (g)-difference equation from
a given three-term recurrence equation.



The software used
here was developed
1n connection with
my book
Hypergeometric
Summation,

Vieweg, 1998,
Braunschweig/
Wiesbaden

and can be
downloaded

from my home page

Woltram Koepft ' m

Hypergeometric
Summation

An Algorithmic Approach to
Summation and
Special Function Identities

http://www.mathematik.uni-kassel.de/~koepf



Example 1

* (Given the recurrence equation
P,(x)=(x=n=1PF,, (x)+a(n+1)°P,(x)=0

one finds that for a = 4 translated Laguerre
polynomials, and for a < %4, Meixner and
Krawtchouk polynomials are solutions.



Example 2

* (Given the recurrence equation
})n+2 (X) - x})n+1 (.X') ta qn (qn"‘l - I)Bq (X) — O

one finds that for every a there are g-
orthogonal polynomial solutions.



Associated Orthogonal
Polynomials

e A monic orthogonal system
P(x)=x"+kx"" +k'x"" +...
satisfies a recurrence equation of the form
Pa(x)=(x=p5,)F,(x)=),b(x).
* The polynomials defined by
called the rth associated orthogonal polynomials,
are orthogonal by Favard’s Theorem.



Representation of the Associated
Polynomials

* As examples, we consider the classical
discrete polynomials.

e It turns out that the associated polynomials
can be represented as linear combinations

) P_.(x P(_l) X
PO == ey -2 e (),
r—1 r—1

where I, is definedby ' = |_| V..




The Function of the Second Kind

e [et
0(x)A0P,(x) +1(x)AP,(x) + A,P,(x) =0.

» This difference equation has a second
linearly independent solution given by

1 p(s)P ()
0.(9= =35 2




Fourth Order Difterence
Equation

 The associated polynomials y(x) = P, ")(x)
satisfy a fourth order recurrence equation of
the form

R y(x) = zJ (x,))N* y(x)

= i]k(x,n)y(x+k) =0.

with polynomials J,(x,n) € Q[x,n].



Factorization of Difference
Operator

* By linear algebra, one can prove that the
difference operator a multiple of R ) can
be factorized as product of two difference
operators of second order

X(o,1,P_,A_)DR" =S"T"

(Joint work with M. Foupouagnigni and
A. Ronveaux, 2002).



Charlier Polynomials

* By computer algebra, in each specific case
this factorization can be given explicitly.

* For example, we consider the Charlier
polynomials and their associated.

e The monic Charlier polynomials are given

by
P(x)=(~a)"c)” (x) =(~a)", F,

—n,—X




Second Solution

* A second linearly independent solution of
the corresponding difference equation

XADP, (x) + (a = X)AP, (x) + nP,(x) = 0

1s given by

- ~ (—a) 1,1
0, () _(x+1)(n+1)2F2_; +2,x+2a§




Associated Charlier Polynomials

» The fourth order difference equation of the

associated Charlier polynomials 1s given by

(a(n+22)(x +4)N*

+(2ax—-4{ =20 +2n° —6a+67° -3nl* —-n’d +7nd —-2n)N’

+(2ax—5an+20 +4{° —n’ —4lax-10{a+n’ +4a—-6{"

+6n’> +4n° —4n{ —2axn)N’
+(ax+2{ -2 +4a-3nl* —-n’{ +nl)N
+a(n-2+20)x+D)I)P"(x)=0 with {=r-x-a-2.



Factorization

» The factorization yields the second order
right factor

T = (P, (x +DP_, (x)(x +2)*aN’
H(~(x+ D)+ +D(x+2)P (1)} ={(n+{ +D(x+2)P_ (x +)P_ (x))N
+(=a(x+D(x+2)P_ (x+DP_ (x) - a(x +2)P_ (x +1))])

where P (x) denotes the monic Charlier
polynomial.



Solution Basis of Fourth Order
Difference Equation

« Using the right factor 7,\"), one can find a
solution basis for the fourth order difference
equation of the associated polynomials:

A" (x) = p(x)P_, (V)P,,, (x).

B (x) = p(x) P, (0)0,, (%)
C(x) = P(x)Q, (X)P,,, (%),
D (x) = P(0)Q, -, (X)0,, (x).



Similar Situations

e In a similar manner, the fourth order
difference equations and their factorizations
of the generalized co-recursive and the
generalized co-dilated polynomials can be
detected.



Epilogue

Software development 1s a time consuming
activity!

Software developers love when their
software 1s used.

But they need your support.

Hence my suggestion: If you use a
computer algebra package for your
research, please cite its use!



