
Elimination in Operator Algebras

By

Anen Lakhal
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

(Dr. rer. nat.)
im Fachbereich Mathematik

der Universität Kassel

Ph.D. thesis supervised by:

Prof. Dr. Wolfram Koepf
University of Kassel, Germany

July 2014

Tag der mündlichen Prüfung
14. Juli 2014

Erstgutachter

Prof. Dr. Wolfram Koepf
Universität Kassel

Zweitgutachter

Prof. Dr. Werner Seiler
Universität Kassel

Acknowledgement

Completing my PhD degree is probably the most challenging activity of my life. The best and
worst moments of my doctoral journey have been shared with many people, whose contribution
is obvious. My first debt of gratitude must go to my dear advisor, Prof. Dr. Wolfram Koepf for
supervising my work. He provided me with insightful discussions, a lot of encouragement and the
necessary advices and suggestions in order to proceed through the doctorial program. I am greatly
indebted for his invaluable support with helping me to find financial resources for my PhD. Special
thanks to all my colleagues at the Department of Mathematics at the University of Kassel for their
unconditional help and especially for the friendly atmosphere that we shared for years. At the end,
I wish to thank my dear parents, Omar Lakhal and Manana Mahjoub and my two brothers Aref and
Majdi. Their love and their perpetual support were my driving force in this special academic and
personal experience. In particular I would like to thank my soul mate, my wife Meriam Gazzah.
Her encouragement, quiet patience, big love and her faith in my abilities were the engine of my
doctoral journey. During these past several years and thanks to my PhD we both learned how to be
strong and determined to reach our target and to live life to the fullest.

Contents

1 Introduction 1

2 Ore Algebras 3
2.1 Ore extensions . 3
2.2 Action of Ore algebras . 8
2.3 Skew Euclidean Division . 10

3 Noncommutative Gröbner Bases 17
3.1 Algebras of Solvable Type . 17

3.1.1 Notations and Preliminaries . 17
3.1.2 Definition and Properties of Solvable Algebras 18
3.1.3 Examples of Solvable Algebras . 22
3.1.4 Hilbert’s Basis Theorem for Solvable Algebras 23

3.2 Gröbner bases in Solvable Algebras . 24
3.2.1 Left Reduction . 24
3.2.2 Left Buchberger’s Algorithm . 28
3.2.3 Applications . 32

4 ∂-Finite and Holonomic Functions 39
4.1 ∂-Finite Functions . 39

4.1.1 Definition and Characterization . 39
4.1.2 Closure Properties . 41

4.2 Holonomic functions . 50
4.3 Conclusion . 59

5 Algorithms for Summation and Integration 63
5.1 Creative Telescoping . 63

5.1.1 Zeilberger’s Slow Algorithm . 65
5.1.2 Takayama’s Algorithm . 73

5.2 Chyzak’s Algorithm . 82
5.2.1 Indefinite case . 83
5.2.2 Definite Case . 88

Bibliography 95

List of Algorithms 99

1

Chapter 1

Introduction

Computer algebra is a scientific area that refers to the study and development of algorithms and
software for manipulating mathematical expressions and mathematical objects. A particularly in-
teresting class of objects is the class of holonomic functions which are solutions of systems of
linear difference-differential equations with polynomial coefficients. Holonomic functions are in-
teresting since they can be uniquely determined by a finite number of informations, namely the
coefficients of the equations and a finite number of initial conditions. Holonomic systems were in-
troduced and studied by Bernstein and they form the foundation of Zeilberger’s approach to prove
special function identities using the method of creative telescoping. Later, Frédéric Chyzak ex-
tended this approach to the closely related class of ∂-finite functions which concerns all kinds of
operators and not only differential and difference operators and allows the algorithmic execution
of their closure properties like addition, multiplication and certain substitutions.

In his holonomic systems approach, Doron Zeilberger used an adaptation of Sylvester’s dialytic
elimination method which is time and space consuming. Finally, he stated that the use of Buch-
berger’s concept of Gröbner bases in the noncommutative context of operator algebras may make
it possible to perform this elimination much faster.

Since the work of Zeilberger in the early 1990s, many packages performing noncommutative
Gröbner basis computations were implemented in different computer algebra systems, for instance,
Ncpoly in Reduce (by Herbert Melenk), Groebner in Maple and Plural in Singular (by Viktor
Levandovskyy). The Maple package is rather designed for computations in operator algebras (Ore
algebras), whereas Ncpoly and Plural deal with more general algebras. This progress opened the
door to the exploration of noncommutative Gröbner basis applications in different fields of mathe-
matics.

This thesis deals with the exploration of elimination via Gröbner bases techniques and its ap-
plications in the special case of Ore algebras.

To carry out the main concepts of Gröbner bases theory from commutative to noncommutative

2 Chapter 1. Introduction

algebras, the latter should satisfy certain conditions which make the computability of Gröbner
bases possible. Towards an implementation in a computer algebra system, there are at least two
approaches of the conditions that these algebras should satisfy. The first approach gives rise to the
algebras of solvable type which were introduced by Kandri-Rody and Weispfenning. Later, Heinz
Kredel generalized their axiomatic description by allowing that the variables operate on the coeffi-
cients. The second approach was introduced by Viktor Levandovskyy and deals with G-algebras.
These two approaches apparently seem to be different. However, they are complementary and this
apparent difference comes from the application scopes of each. An important part of this thesis is
dedicated, after examination of these approaches, to the presentation of Gröbner bases theory in a
way taking advantage of each and fitting them to the context and the purposes of this thesis.

Relying on Zeilberger’s holonomic system approach and the theoretical as well as the algorith-
mic extension of this approach made by Frédéric Chyzak, one objective of this thesis was the
implementation in the computer algebra system Singular, using its kernel extension Plural, of a
package in the spirit of Mgfun of Maple. This package should deal with the algorithmic aspect
of ∂-finite and holonomic functions. The main reason that prevented the achievement of this task
is that the implementation of Gröbner bases in Plural does not take in consideration rational non-
commutativity, for instance rational Ore algebras which are crucial for the algorithmic treatment
of the class of ∂-finite functions. For this reason, a part of this thesis is restricted to the reinvesti-
gation of the notions of ∂-finite and holonomic functions focusing on the presentation of the main
definitions, properties and algorithms related to them in an algebraic point of view of modules and
graded modules.

The method of creative telescoping consists of computing recurrence or differential equations sat-
isfied by sums or integrals of special functions. The idea of this method is originally due to Celine
Fasenmyer and was brought into a more general setting by Doron Zeilberger. A part of this thesis
is devoted to investigate and to test how far noncommutative Gröbner basis elimination techniques
may be efficiently applied to perform this method in the general setting described by Zeilberger.

This thesis is organized as follows. Chapter 2 deals with Ore algebras, where an overview of
their main properties are given and a special focus is made on their action on the algebras of func-
tions. This allows the description of these functions through their annihilating ideals which is the
framework of Gröbner bases techniques. Chapter 3 gives an overview on how the main concepts
and results of Gröbner bases theory can be generalized from commutative to noncommutative al-
gebras and illustrates with examples some applications of Gröbner elimination techniques in Ore
algebras. Chapter 4 introduces the notions of ∂-finite and holonomic functions, where their main
algebraic characterizations are presented and the algorithmic aspect of the computation of their
closure properties is investigated. The need to introduce these two classes is explained at the end
of this chapter. Chapter 5 presents algorithms for summation and integration of functions lying
in the intersection of both classes of holonomic and ∂-finite functions and which make use of the
method of creative telescoping.

3

Chapter 2

Ore Algebras

The theory of Ore algebras gives the opportunity to consider linear ordinary differential, difference,
q-difference equations and mixed ones from a uniform point of view. This theory was proposed by
Ore [Ore33], who described, in particular, a uniform theory of operator factorization which gener-
alizes the differential case. In this dissertation we present algorithms which apply to summation, as
well as integration, and may involve operators of different kinds. This fact makes the study of Ore
algebras attractive since it not only allows to prove more general statements concerning operators
of various kinds, but also gives the ability to design algorithms in a unified way in terms of Ore
operators which are afterwards adjustable to specific forms of operators. Bronstein and Petkovs̆ek
used the theory of Ore algebras in computer algebra in [BP96], where a general-purpose algorithm
for factorization in an arbitrary Ore algebra over a field was described. In the first section of this
chapter, we present how polynomial Ore algebras are defined and give an overview of their main
properties. In the second section, we are concerned with the action of such polynomial Ore alge-
bras on algebras of functions. This action allows to consider those functions as algebraic objects
through their annihilating ideals which are the framework of Gröbner bases techniques. Finally, in
the last section, we describe the Euclidean algorithm in Ore Algebras and how it can be used for
elimination purposes.

2.1 Ore extensions
Linear Ore operators generalize among other the differential and difference operators. In their
action on a product of two elements of a given ring, they satisfy a skew Leibniz rule which is
a generalization of the differential product rule. For a better perception of the ideas behind this
generalization, let’s first observe and analyze the differential and finite difference cases.
On one hand, the product rule for two functions f and g of a differential algebra A states

(fg)′ = fg′ + f ′g. (2.1)

For A = K[x] we define the differential operator with respect to x by

D : A→ A, g 7→ D(g) = Dg =
dg

dx
.

4 Chapter 2. Ore Algebras

For a given function f ∈ A we define the operators

f : A→ A, g 7→ f(g) = fg

and

Df : A→ A, g 7→ Df (g) = Dfg =
df

dx
g

which stand for the multiplication by f and df
dx

, respectively. With this notation the product rule
(2.1) is equivalent to

(D ◦ f)(g) = (f ◦D)(g) +Df (g) (2.2)

which may be expressed in terms of operators to be applied to g as follows

Df = fD +Df , (2.3)

where the product represents the composition of operators. On the other hand, in the case of finite
differences we have the following functional identity

(fg)(x+ 1)− (fg)(x) = f(x+ 1)[g(x+ 1)− g(x)] + [f(x+ 1)− f(x)]g(x) (2.4)

which is equivalent to
(∆ ◦ f)(g) = (Sf ◦∆)(g) + (∆f)(g), (2.5)

where S,∆, f, Sf and ∆f denote the following operators

S : A→ A, g 7→ S(g) = Sg = g(x+ 1),

∆ : A→ A, g 7→ ∆(g) = ∆g = g(x+ 1)− g(x) = (S − 1)g,

f : A→ A, g 7→ f(g) = fg,

Sf : f : A→ A, g 7→ Sf (g) = f(x+ 1)g(x)

and
∆f : A→ A, g 7→ ∆f (g) = [f(x+ 1)− f(x)]g(x).

In terms of operators to be applied to g the rule (2.5) is expressed as follows

∆f = Sf∆ + ∆f . (2.6)

In a similar way the shift operator satisfies the equation

[S(fg)](x) = f(x+ 1)g(x+ 1) (2.7)

which reads in terms of operators to be applied to g as follows

Sf = SfS (2.8)

2.1. Ore extensions 5

If we observe the commutation rules (2.3), (2.6) and (2.8), we note that they satisfy the following
pattern

∂f = σ(f) ∂ + δ(f). (2.9)

Since we are essentially interested in linear operators, σ and δ should be also linear. Moreover, the
composition of operators which we expressed as a product in the previous commutation rules must
be associative, i.e.

(σf) g = σ (fg)

which by applying (2.9) leads to

σ(f) ∂g + δ(f)g = σ(f)σ(g) ∂ + σ(f) δ(g) + δ(f) g = σ(fg) ∂ + δ(fg). (2.10)

Equating the coefficients of ∂ on the left and on the right hand side of the second equation of (2.10),
we deduce that σ should be a ring homomorphism. Furthermore, δ is linear and it is related to σ as
follows

δ(fg) = σ(f) δ(g) + δ(f) g. (2.11)

Now, we are ready to formulate the general setting of Ore extension. Let K be a field and A a
ring (not necessarily commutative) which is endowed with a K-algebra structure. Moreover, we
consider an injective ring endomorphism σ : A→ A, then

Definition 2.1 (σ-Derivation)
A derivation with respect to σ is a K-linear map δ : A→ A satisfying the following skew Leibniz
rule

δ(ab) = σ(a) δ(b) + δ(a)b for any a, b ∈ A. (2.12)

Definition 2.2
The set of constants with respect to σ and δ is

Constσ,δ := {a ∈ A; σ(a) = a, δ(a) = 0}

which is a subfield of K.

Example 2.3
Let K be any subfield of C and A = K[x]. We denote by 1A the identity map of A.

1. If σ = 1A then δ = d
dx

and the rule (2.12) is the classical Leibniz rule for derivation w.r.t. x.
In this case the pair (A, δ) is called a differential K-algebra.

2. Let σ be any injective endomorphism of A, then it is easy to prove that the map δα =
α(σ − 1A) for α ∈ K defines a σ-derivative called in the literature inner derivation. In
the special case of α = 1, σ induces a difference K-algebra (A, δ1) with the associated
difference operator denoted by θ = σ − 1A.

The following lemma describes the relationship between σ and δ.

6 Chapter 2. Ore Algebras

Lemma 2.4
Let A be a K-algebra and δ a σ-derivation of A.

i) If σ 6= 1, then there is an element α ∈ A such that δ = α(σ − 1).

ii) if δ 6= 0, then there is an element β ∈ A such that σ = βδ − 1

An Ore extension adds a new symbol ∂ to the base ring A to get a new polynomial ring

Definition 2.5 (Skew polynomial ring)
A univariate skew polynomial ring S = A[∂;σ, δ] over A given by σ and δ is the ring of polynomi-
als in ∂ over A with the usual polynomial addition and a multiplication given by the rule

∂a = σ(a) ∂ + δ(a) for any a ∈ A. (2.13)

Remark 2.6
• An element p(∂) ∈ A[∂;σ, δ] is of the form p(∂) =

m∑
i=0

ai ∂
i with ai ∈ A for i = 1, . . . ,m.

• If we define a degree function on A[∂;σ, δ] to be deg(p) = max{i; ai 6= 0}, then this function
should satisfy

1. deg(p) ≥ 0 if p 6= 0 and deg(0) = −∞.

2. deg(p+ q) ≤ max(deg(p), deg(q)).

3. deg(pq) = deg(p) + deg(q).

The third property of the degree function is ensured only if σ is an injective endomorphism
of A.

• The multiplication defined by (2.13) can be uniquely extended to an associative multiplica-
tion on monomials by

(a ∂ α)(b ∂ β) = (a ∂ α−1)(∂b) ∂ β = (a ∂ α−1)(σ(b) ∂ β+1 + δ(b) ∂ β) for α > 0. (2.14)

Furthermore, letA, B ∈ A[∂;σ, δ]\{0}with leading monomials a ∂ α and b ∂ β , respectively.
Then, by (2.14), the leading monomial of AB is a σα(b) ∂ α+β .

• Let A be a commutative ring and we denote by A〈 ∂〉 the free associative A-algebra gener-
ated by ∂, then the skew ring S = A[∂;σ, δ] is isomorphic to A〈 ∂〉/(∂ − σ∂ − δ). Further-
more, if σ is the identity and δ is the trivial derivation 0, then S = A[∂; 1, 0] is the polynomial
ring A[∂] .

• Let ∂ = {∂1, . . . , ∂n} be a set of symbols, σ = {σ1, . . . , σn} a set of ring endomorphisms
of A and δ = {δ1, . . . , δn} the set of the corresponding σi-derivatives. We denote the mul-
tivariate or also iterated skew polynomial ring by A[∂;σ, δ] := A[∂1;σ1, δ1] · · · [∂n;σn, δn],
whose elements are finite sums of the form p(∂) =

∑
α∈Nn

aα ∂
α.

In the rest of this dissertation we will mean by a skew polynomial ring (also K-algebra) such
an iterated skew polynomial ring.

2.1. Ore extensions 7

Now we are interested in a subclass of skew polynomial rings, where we require other conditions
between the operators ∂, σ and δ. They are called Ore Algebras.

Definition 2.7 (Ore algebras)
A skew polynomial ring A[∂;σ, δ] = A[∂1;σ1, δ1] · · · [∂n;σn, δn] is called Ore K-algebra and
denoted by O when

i) the σis and δjs commute for any 1 ≤ i, j ≤ n with i 6= j

ii) and satisfy σi(∂j) = ∂j and δi(∂j) = 0 for i > j.

Remark 2.8
• In the previous definition the conditions on σi’s and δi’s imply that the ∂i’s should also

commute which means ∂i∂j = ∂j∂i for all 1 ≤ i, j ≤ n.

• In the general definition of Ore Algebras, it is not required that the ∂i’s commute and they
satisfy the following commutator relations:

∂i∂j = σ(∂j)∂i + δi(∂j).

We opt for Definition 2.7 because it fits better to the kind of operator algebras that we will
consider throughout this dissertation.

• We use Op and Or to denote polynomial (A = K[x1, . . . , xs]) and rational (A = K(x1, . . . , xs))
Ore Algebras, respectively.

Example 2.9 (Weyl algebras)
The Weyl algebras are the associative algebras of linear differential operators with polynomial co-
efficients denoted by Ar(C) = 〈x1, . . . , xr, Dx1 , . . . , Dxr〉, where Dxi denotes the partial deriva-
tive with respect to xi. They are noncommutative and given by the relations Dxixi = xiDxi + 1.
In fact they represent also a special case of polynomial Ore Algebras as follows

Ar(C) = K[x1, . . . , xr][Dx1 ; 1, Dx1] · · · [Dxr ; 1, Dxr].

Example 2.10 (Shift Ore algebras)
Let A be K[n1, . . . , nr] or K(n1, . . . , nr) with ni ∈ Z for 1 ≤ i ≤ r. Moreover, by Sni

we
denote the forward shift operator defined by Sni

f(ni) = f(ni + 1) which satisfies in terms
of operators the relation Sni

ni = niSni
+ Sni

. Hence, the corresponding Shift Ore algebra is
A[Sn1 ;Sn1 , 0] · · · [Snr ;Snr , 0].

Example 2.11 (q-Shift Ore algebra)
Let A be K(q1, . . . qr, x1, . . . , xr). We denote byQi the q-shift operator defined byQif(x) = f(qx)
which in terms of operator satisfies the relationQix = qxQi. Hence, the corresponding Ore algebra
is A[Q1;Q1, 0] · · · [Qr;Qr, 0].

8 Chapter 2. Ore Algebras

Table 2.1: Examples of Ore operators
A Case σ δ

Differential 1 d
dx

Q(x) Eulerian 1 x d
dx

Shift S 0
Difference S S − 1

q-shift Q 0
Q(q, x) q-difference Q Q− 1

q-differential Q Q−1
x(q−1)

2.2 Action of Ore algebras
Let F be a K-algebra of functions (e.g., sequences, power series etc) and A a subalgebra of F .
In this section, we describe the action of the Ore algebra O = A[∂;σ, δ] on F . In other words,
how a multiplication of an element of O by an element F should be defined so that F turns into an
O-module. This module structure allows to see an element f ∈ F as an algebraic object by means
of the ideal in O generated by the annihilating operators of f .

Definition 2.12 (Left-module)
A left R-module M over a ring R is an abelian group (M,+) with an operation · : R×M →M
called scalar multiplication such that for all r, s in R and x, y in M we have

1. r·(x+ y) = r·x+ s·y.

2. (r + s)·x = r· x+ s·x.

3. (rs)·x = r·(s·x).

4. 1R·x = x if R has a multiplicative identity 1R.

Depending on which operation we want to emphasize in F we may define the action of O on F as
follows.

Definition 2.13
Let F , A and O be as before. The operation · : O×F →M given by

a·f = af for all a ∈ A
∂i·f = δ(f) if δ 6= 0

∂i·f = σ(f) if δ = 0

defines a scalar multiplication acting by composition of operators which gives a left-module struc-
ture to F .

2.2. Action of Ore algebras 9

The interpretation of an algebra of functions F as O-module motivates the study of the ideals of
the Ore algebra O. We are especially interested in the annihilating ideal of an element f ∈ F
which is defined as follows.

Definition 2.14
Let F be a K-algebra of functions, O = A[∂;σ, δ] an Ore algebra acting on F by a scalar multi-
plication ”·” and f ∈ F , then the set

AnnO(f) = {P ∈ O; P ·f ≡ 0}

is an ideal in O called annihilating ideal of f .

Remark 2.15
• By means of the ideal AnnO(f) we correspond to f an algebraic structure that characterizes

it and enables its interpretation as an algebraic object. Moreover, this ideal structure plays a
crucial role in the application of Groebner bases techniques to answer questions (sometimes
coming form analysis) related to f , for instance, to verify or prove identities satisfied by f .
In most algorithms that we present in this dissertation, we are concerned among others with
the determination, using noncommutative Groebner bases methods, of a set of generators of
AnnO(f) satisfying special properties.

• The action of O on a function f defines a left submodule O·f of O which is isomorphic to
O/AnnO(f).

• All the algorithms that we present in this dissertation do not necessarily require the con-
crete existence of an algebra F . They may be formulated at the level of ideals I of O and
submodules O/I, where the role of f is played by the generator 1 of O/I.

Example 2.16 (Legendre polynomials)
A class of orthogonal polynomials are the Legendre polynomials

Pn(x) =
n∑
k=0

(
n

k

)(
−n− 1

k

)(1− x
2

)k
. (2.15)

They are elements of the algebra of formal power series F = Q(n)[[x]] and solutions of a second
order differential equation

(x2 − 1)P ′′n (x) + 2xP ′n(x)− n(n+ 1)P ′n(x) = 0, (2.16)

a second order recurrence equation

(n+ 2)Pn+2(x)− (2n+ 3)xPn+1(x) + (n+ 1)Pn(x) = 0, (2.17)

and a mixed difference-differential equation

(x2 − 1)P ′n+1(x)− (1 + n)(xPn+1(x)− Pn(x)) = 0. (2.18)

10 Chapter 2. Ore Algebras

If we act on F the Ore algebra

Or = A[Sn;Sn, 0][Dx; 1, Dx] with A = C(n, x),

then the operators
G1 = (x2 − 1)D2

x + 2xDx − n(n+ 1), (2.19)

G2 = (n+ 2)S2
n − (2n+ 3)xSn + (n+ 1), (2.20)

G3 = (x2 − 1)SnDx − (1 + n)(xSn − 1). (2.21)

are elements of AnnOr(Pn) and translate the above equations in terms of operators. Furthermore,
with the initial conditions

P0(0) = 1, P1(0) = 0, P ′0(0) = 0, P ′1(0) = 1 (2.22)

the operators G1 and G2 describe the Legendre polynomials uniquely.

2.3 Skew Euclidean Division
We have seen in Remark 2.6 that in a skew ring S = A[∂;σ, δ] a degree function is well de-
fined, since the endomorphism σ is injective. Such a degree function makes possible to define an
Euclidean division and thereafter to compute the greatest common divisor or the least common
multiple of two elements of S. The main results of this section are due to Oystein Ore [Ore33]
and the explicit formulation of the Euclidian algorithm was made by Frédéric Chyzak in [CS96].
Firstly, we consider the Euclidean division in the special case of S = K[∂;σ, δ], where the field K
may be noncommutative and additionally satisfies a certain computability condition. Secondly, we
present a generalization to the case of S = A[∂;σ, δ].

Definition 2.17 (Skew field)
A field K which may be noncommutative is called skew if the following two conditions are satis-
fied.

a) The usual ring operations (addition and multiplication) are computable.

b) For all 0 6= α, β ∈ K we can compute α′, β′ such that α′α− β′β = 0.

In the commutative case, the second condition is obtained by taking, for example, α′ = β and
β′ = α.

Let S = K[∂;σ, δ] be a skew ring over an effective field and A and B two polynomials in S \ {0}
such that

A = a ∂ α + lower order terms w.r.t. ∂ with a 6= 0 (2.23)
B = b ∂ β + lower order terms w.r.t. ∂ with b 6= 0. (2.24)

2.3. Skew Euclidean Division 11

Moreover, w.l.g. we suppose that α ≥ β and we denote ∂ γ = ∂ α−β . By a left multiplication of B
by ∂ γ we get a new polynomial with leading monomial (see Remark 2.6-3) given by

∂ γb ∂ β = σ γ(b) ∂ α.

Moreover, since K is skew, we may compute u and v such that

ua− vσ γ(b) = 0

and we get
uA− v∂ γB = R0, where R0 ∈ S and deg∂(R0) < α.

We apply recursively this division step to B and R0 and so on until we obtain

uA = QB +R with deg∂(R) < deg∂(B) (2.25)

Definition 2.18 (Skew euclidean right division)
The process described above is called skew Euclidean right division, where Q and R denote the
right quotient and the right remainder of A and B, respectively.

Remark 2.19
• Since K is a field, in the division step described previously, we may divide by u to get a more

familiar expression of Euclidean division A = QB + R. However, we opt for the notation
(2.25) which is also appropriate for the general case of a skew ring over a ring.

• We can analogously define a skew left Euclidean division by applying, in the division step,
a right multiplication by ∂ γ to obtain uA = BQ+R.

• ForA andB one can find the greatest common right divisor gcrd(A,B) by the right euclidean
algorithm and least common left multiple lclm(A,B) by the extended Euclidean algorithm
which also returns u and v such that gcrd(A,B) = uA+ vB.

• The computation of the greatest common left divisor gcld and the least common right multi-
ple lcrm can be reduced to the computation of the gcrd and the lclm by the adjoint which is
presented in the following definition.

Definition 2.20
Let S = K[∂;σ, δ] be a skew ring and we suppose that σ is an automorphism of K. The adjoint of
S is the skew ring S∗ = K[∂;σ∗, δ∗], where

σ∗ = σ−1, δ∗ = −δσ−1. (2.26)

Let A =
n∑
i=0

ai∂
i ∈ S. The adjoint polynomial A∗ is defined by the formula

A∗ =
n∑
i=0

∂ iai ∈ S∗ (2.27)

12 Chapter 2. Ore Algebras

Note that the product ∂ iai must be computed in S∗. It is easy to show that

Constσ,δ(K) = Constσ∗,δ∗(K), (σ∗)∗ = σ, (σ∗)∗ = δ. (2.28)

One can also verify that the adjoint is a linear (over Constσ,δ(K)) bijective mapping and

(A∗)∗ = A, (AB)∗ = A∗B∗. (2.29)

Moreover,
gcld(A,B) = (gcrd(A∗, B∗))∗, lcrm(A,B) = (lclm(A∗, B∗))∗. (2.30)

Table 2.2: Examples of adjoint Ore operators
A Case σ∗ δ∗

Differential 1 − d
dx

Q(x) Eulerian 1 −x d
dx

Shift S−1 0
Difference S−1 S−1 − 1

q-shift Q−1 0
Q(q, x) q-difference Q−1 Q−1 − 1

q-differential Q−1 Q−1−1
x(q−1)

We summarize the results of this part in the following theorem which was proved by Ore
[Ore33] in the case of a commutative field K and is still true in the noncommutative case.

Theorem 2.21 (Oystein Ore)
Let A and B be two elements of the skew polynomial ring S = K[∂;σ, δ] over an effective field K,
then the extended Euclidean algorithm computes polynomials u, v,D and U, V 6= 0 such that

uA+ vB = D and UA+ V B = 0, (2.31)

where D = gcrd(A,B), UD = B, −V D = A and UA = −V B = lclm(A,B).

Definition 2.22 (Left Ore ring)
A ring A is called a left Ore ring if the ideal intersection Aa ∩Ab is not empty, that is, there exist
at least two elements 0 6= U, V in A such that Ua = V b.

Remark 2.23
• In the sense of Definition 2.22 and according to Theorem 2.21, every skew polynomial ring

over an effective field is also a left Ore ring.

The proof of Theorem 2.21 in [Ore33] leads to the following result

Corollary 2.24 (Oystein Ore)
If A is a left Ore ring, then S = A[∂;σ, δ] is a left Ore ring as well.

2.3. Skew Euclidean Division 13

Analogously to an effective field, we may define an effective Ore ring as follows

Definition 2.25 (Effective Ore ring)
A ring A is called effective if the usual ring operations are computable as well as the pair (U, V)
involved in the equation (2.31).

Corollary 2.26
Let S = A[∂;σ, δ] be a polynomial skew ring over an effective ring A and A and B two elements
of S. If there exist (u, v) ∈ S2 and c ∈ A \ {0} such that

uA+ vB = c, (2.32)

then the triple (u, v, c) may be computed by the extended Euclidean algorithm.

Remark 2.27
• It is obvious to note that the triple (u, v, c) may be computed only if A and B are coprime,

that is gcrd(A,B) = 1.

In the following example we show how the Euclidean algorithm, throughout the results of Corol-
lary 2.24 , may be applied for elimination purposes.

Example 2.28 (Euclidean algorithm and elimination)
We reconsider the annihilating operators of the Legendre polynomials involved in Example 2.16

G1 = (x2 − 1)D2
x + 2xDx + n(n− 1) (2.33)

G2 = (n+ 2)S2
n − (2n+ 3)xSn + (n+ 1) (2.34)

G3 = (x2 − 1)DxSn − (n+ 1)(xSn − 1) (2.35)
= ((x2 − 1)Dx − (n+ 1)x)Sn + (n+ 1) (2.36)

which are elements of the left Ore ring S = Q(n, x)[Sn;Sn, 0][Dx; 1, Dx]. In what follows we
explain how we may proceed by means of the Euclidean algorithm to eliminate the variable ”Sn”
between G2 and G3 to get a pure differential operator like G1 (i.e., up to a multiple factor in
Q(n, x)). We consider G2 and G3 as polynomials in the left Ore ring

A[Sn; 0, Sn], where A = Q(n, x)[Dx; 1, Dx].

Since G2 and G3 are coprime, Corollary 2.26 states that we may compute, by application of the
(extended) Euclidean algorithm, a polynomial G ∈ A \ {0} such that

uG2 + vG3 = G, whereu, v ∈ A[Sn; 0, Sn].

Let’s see howGmay be concretely computed. We note that the polynomialsG2 andG3 considered
as polynomials in Sn with coefficients in A have degrees 2 and 1, respectively. First, we left
multiply G3 by Sn to get a polynomial with leading monomial of degree 2 in Sn and cancel it by
means of skew division with the leading monomial in Sn of G2.

SnG3 = ((x2 − 1)Dx− (n+ 2)x)S2
n + (n+ 2)Sn (2.37)

14 Chapter 2. Ore Algebras

and apply the (extended) Euclidean algorithm to get

αG2 + βSnG3 = C1Sn + C2, (2.38)

where

α = (x2 − 1)Dx − (n+ 2)x, (2.39)
β = −(n+ 2), (2.40)
C1 = −(2n+ 3)x(x2 − 1)Dx + (n+ 1)((2n+ 3)x2 − (n+ 1)) and (2.41)
C2 = (n+ 1)(x2 − 1)Dx − (n+ 2)(n+ 1)x (2.42)

are elements of A = Q(n, x)[Dx; 1, Dx] and C1Sn +C2 is a linear combination of G2 and SnG3 of
same degree in Sn as G3.
In the next step we want to eliminate the variable ”Sn” between G3 and C1Sn +C2. We denote by
C3 ∈ A the leading coefficient of G3 in Sn

C3 = (x2 − 1)Dx − (n+ 1)x. (2.43)

Therefore, by applying once again the (extended) Euclidean algorithm but this time in A we obtain
(see Theorem 2.21)

α′C1 + β′C3 = 0, whereα′, β′ ∈ A. (2.44)

Since gcrd(C1, C3) = 1 then
α′ = C3 and β′ = −C1. (2.45)

Finally, the polynomial

α′(C1Sn + C2) + β′G3 = αα′G2 + (α′βSn + β′)G3 (2.46)

is free of the variable ”Sn” since the monomials involving ”Sn” are canceled by the relation (2.44).
Hence, the polynomial G we are looking for is

G = (n+ 1)(x2 − 1)2Dx + 2(n+ 1)(x2 − 1)xDx − n(n+ 1)2(x2 − 1) (2.47)
= (n+ 1)(x2 − 1)G1. (2.48)

The previous example illustrates how the skew_elim command of the Maple package Ore_
algebra internally works. In fact, skew_elim(p,q,x,A) tries to eliminate the indeterminate
x between the skew polynomials p and q. It returns a nonzero polynomial ap+ bq free of x, if such
a polynomial exists. Otherwise, a nonzero polynomial ap + bq of least possible degree in x is
returned.

Maple Session 2.1 (Skew elimination: Legendre polynomials Pn(x))

We load the package.
> with(Ore_algebra):

We define the skew algebra where the skew elimination will be performed.

2.3. Skew Euclidean Division 15

> A:=skew_algebra(shift=[Sn,n],diff=[Dx,x]);

A := Ore algebra

We consider the following annihilating operators of the Legendre polynomials.
> G1:=(xˆ2-1)*Dxˆ2+2*x*Dx-n*(n+1);

G1 :=
(
x2 − 1

)
Dx 2 + 2xDx − n (n+ 1)

> G2:=(n+2)*Snˆ2-(2*n+3)*x*Sn+(n+1);

G2 := (n+ 2)Sn2 − (2n+ 3)xSn + n+ 1

> G3:=(xˆ2-1)*Dx*Sn-(n+1)*x*Sn +n+1;

G3 :=
(
x2 − 1

)
Dx Sn − (n+ 1)xSn + n+ 1

Now, we apply skew_elim to G1 and G3 to deduce up to a multiple factor the operator G2
> collect(skew_elim(G1,G3,Dx,A),{Sn},factor);

(−n− 2)Sn2 + (2n+ 3)xSn − n− 1

which is the operator −G2.
Similarly, we can apply skew_elim to G2 and G3 to deduce up to a multiple factor the operator G1

> collect(skew_elim(G2,G3,Sn,A),{Dx},factor);

− (x− 1) (x+ 1)Dx 2 − 2xDx + n (n+ 1)

which is the operator −G1.

In the following Maple session, we show that skew elimination can be performed on more com-
plicated orthogonal polynomials such as Jacobi polynomials P (a,b)

n (x), where additionally sym-
bolic parameters a and b occur.

Maple Session 2.2 (Skew elimination: Jacobi polynomials P (a,b)
n (x))

The Jacobi polynomials may be expressed as a formal power series, where the summand is:
> jacobiterm:=1/2ˆn*binomial(n+a,k)*binomial(n+b,n-k)*
> (x-1)ˆ(n-k)*(x+1)ˆk;

jacobiterm :=

(
n+a
k

)(
n+b
n−k
)
(x− 1)n−k (x+ 1)k

2n
To compute an annihilating operator system of the Jacobi polynomials, we load the package hsum15.

> read "hsum15.mpl";

‘Package "Hypergeometric Summation", Maple V - Maple 15‘

‘Copyright 1998-2012, Wolfram Koepf, University of Kassel‘

First we compute a recurrence equation
> sumrecursion(jacobiterm,k,S(n));

2 (n+ 2) (n+ a+ 2 + b) (a+ 2 + b+ 2n)S (n+ 2)−
(2n+ 3 + a+ b) (xa2 + a2 + 2 bxa+ 4xan+ 6xa+ 8x+ 4xn2 + 6 bx− b2+
b2x+ 12xn+ 4 bxn)S (n+ 1)+
2 (4 + 2n+ a+ b) (n+ b+ 1) (n+ a+ 1)S (n) = 0

then a differential equation
> sumdiffeq(jacobiterm,k,S(x));

16 Chapter 2. Ore Algebras

(x− 1) (x+ 1)

(
d2

dx2
S (x)

)
+ (2x+ a+ bx− b+ xa)

d

dx
S (x)− n (n+ a+ 1 + b)S (x) = 0

and finally a derivative rule
> sumdiffrule(jacobiterm,k,S(n,x));

∂

∂x
S (n, x) = −(n+ a+ 1 + b) (xa+ a+ 2x+ bx+ 2xn− b)S (n, x)

(x− 1) (x+ 1) (a+ 2 + b+ 2n)

+2
(n+ 1) (n+ a+ 1 + b)S (n+ 1, x)

(x− 1) (x+ 1) (a+ 2 + b+ 2n)
In operator notation, the above equations lead to the following operator system:

> DE := (1-xˆ2)*Dxˆ2+(b-a-(a+b+2)*x)*Dx+n*(n+a+b+1);

DE :=
(
1− x2

)
Dx 2 + (b− a− (2 + a+ b)x)Dx + n (n+ a+ 1 + b)

> RE := 2*(n+2)*(n+a+2+b)*(a+2+b+2*n)*Snˆ2-
> (2*n+3+a+b)*(x*aˆ2+aˆ2+4*x*a*n+2*x*a*b+6*x*a+4*x*n*b+4*x*nˆ2+
> 6*b*x-bˆ2+8*x+bˆ2*x+12*x*n)*Sn 2*(2*n+a+4+b)*(n+b+1)*(n+a+1);

RE := 2 (n+ 2) (n+ a+ 2 + b) (a+ 2 + b+ 2n)Sn2−
(2n+ 3 + a+ b) (xa2 + a2 + 2 bxa+ 4xan+ 6xa+ 8x+ 4xn2 + 6 bx− b2+
b2x+ 12xn+ 4 bxn)Sn + 2 (4 + 2n+ a+ b) (n+ b+ 1) (n+ a+ 1)

and by multiplying the derivative rule by the common dominator we get
> DR := (x-1)*(x+1)*(b+2+a+2*n)*Dx-2*(n+1)*(n+a+b+1)*Sn+
> (n+a+b+1)*(2*n*x+x*a+x*b+2*x+a-b);

DR := (x− 1) (x+ 1) (a+ 2 + b+ 2n)Dx − 2 (n+ 1) (n+ a+ 1 + b)Sn+
(n+ a+ 1 + b) (xa+ a+ 2x+ bx+ 2xn− b)

We load the package Ore_algebra and define the skew algebra in which the skew elimination will be
performed.

> with(Ore_algebra):

> A:=skew_algebra(shift=[Sn,n],diff=[Dx,x],polynom={a,b}):
We apply skew_elim to the operators RE and DR to get:

> G1:=collect(skew_elim(RE,DR,Sn,A),{Dx},factor);

G1 := (x− 1) (x+ 1) (a+ b+ 4 + 2n) (a+ 2 + b+ 2n)2 Dx 2+
(a+ b+ 4 + 2n) (a+ 2 + b+ 2n)2 (2x+ xa+ a+ bx− b)Dx−
n (a+ b+ 4 + 2n) (n+ a+ 1 + b) (a+ 2 + b+ 2n)2

which is the operator DE up to the multiple factor
> normal(G1/DE);

− (a+ b+ 4 + 2n) (a+ 2 + b+ 2n)2

Applying skew_elim to the operators DE and DR leads to:
> G2:=collect(skew_elim(DE,DR,Dx,A),{Sn},factor);

G2 := 2 (n+ 2) (a+ 2 + b+ 2n) (n+ a+ 2 + b) (n+ a+ 1 + b)Sn2−
(2n+ 3 + a+ b) (n+ a+ 1 + b) (xa2 + a2 + 6xa+ 2xab+
4xan+ 8x+ 4xn2 + 4xnb+ 6 bx+ b2x− b2 + 12xn)Sn+

2 (n+ b+ 1) (n+ a+ 1) (a+ b+ 4 + 2n) (n+ a+ 1 + b)

which is the operator RE up to the multiple factor (n+ a+ b+ 1).

17

Chapter 3

Noncommutative Gröbner Bases

In this chapter, we will give, based on the works of H. Kredel [Kre93], F. Chyzak [Chy98] and
V. Levandovskyy [Lev05], an overview on how the main concepts and results of Gröbner bases
theory may be generalized from commutative to non commutative algebras. This generalization
concerns the so called solvable algebras (also denoted by G-algebras in [Lev05]) which is a class
of algebras satisfying certain conditions making Gröbner basis computable.
First, we will give an overview on characterization and main properties of solvable algebras. Then,
we will show how Buchberger’s algorithm may be carried out to these algebras. Finally, we will
give some applications of Gröbner elimination techniques in Ore algebras which is a subclass of
solvable algebras.

3.1 Algebras of Solvable Type

3.1.1 Notations and Preliminaries
Let K be a skew field, that is a not necessarily a commutative field. Let R be the polynomial ring
R = K[x1, . . . , xn] over the field K in the commuting variables x1, . . . , xn for some n ∈ N, n ≥ 0.
All elements of K are assumed to commute with the variables x1, . . . , xn but K need not to be itself
commutative.

Definition 3.1
Let T denote the set of terms (power-products of the variables) in the variables x1, . . . , xn

T := {xe = xe11 . . . xenn ; ei ∈ N, 1 ≤ i ≤ n}.

For a subset X ⊂ {x1, . . . , xn} we denote by T (X) the set of terms in the variables of X , and for
an element f ∈ R we denote by T (f) the set of terms occurring in f with non-zero coefficient.

Definition 3.2
(i) Let Nn denote the set of all n-tuples of natural numbers. A componentwise partial order≤n

on Nn is defined as follows

for e = (e1, . . . , en), e′ = (e′1, . . . , e
′
n) ∈ Nn, e ≤n e′ ⇔ ei ≤ e′i , for all 1 ≤ i ≤ n.

18 Chapter 3. Noncommutative Gröbner Bases

(ii) Let xe, xf be two terms of T . We say that xe divides xf and denote xe | xf if there exists
xe
′ ∈ T sucht that xf = xe

′
xe which is equivalent to e ≤n f .

An important property of the divisibility relation of terms and the componentwise order of Nn is
known as Dickson’s lemma (see [BKW93]) which is fundamental for most termination proofs of
polynomial algorithms.

Lemma 3.3 (Dickson 1913)
Let Nn be endowed with the componentwise order ≤n. Then every subset M of Nn has a finite
subset B of Nn such that for every m = (m1, . . . ,mn) ∈ M , there exists b = (b1, . . . , bn) ∈ B
with b ≤n m.

There is a bijection e : T → Nn which describes a one-to-one correspondence between the ele-
ments of T and their exponents in Nn, defined by e(xe11 . . . xenn) = (e1, . . . , en). By means of this
bijection and Definition 3.2-(ii) one may prove the following corollary.

Corollary 3.4
Let T be the set of terms partially ordered by divisibility |. Then every subset S of T has a finite
subset V of T such that for every s ∈ S there exists v ∈ V with v | s.

Definition 3.5 (Admissible order)
A linear order ≺ on the set of terms T is called admissible if for all r, s, t ∈ T

(i) 1 ≺ r.

(ii) r ≺ s =⇒ rt ≺ st (compatible with term-multiplication).

Definition 3.6
Let ≺ be an admissible order on T . Any non-zero element f ∈ R = K[x1, . . . , xn] can be written
uniquely as f = cxe + g, with c 6= 0 and xe′ ≺ xe for any non-zero monomial c′xe′ of g. We define

lt(f) = xe, the leading term of f
lm(f) = cxe, the leading monomial of f,
lc(f) = c, the leading coefficient of f,
le(f) = e, the leading exponent of f.

3.1.2 Definition and Properties of Solvable Algebras
Kandri-Rody and Weispfenning in [KRW90] introduced a polynomial solvable algebra as a poly-
nomial ring R = K[x1, . . . , xn] equipped with a new noncommutative multiplication ? satisfying
certain axioms. These axioms guarantee that the difference between xi ? xj and a suitable scalar
multiple of xixj is smaller than xixj w. r. t. an arbitrary but fixed admissible term order. In their
approach, they supposed that the field K is commutative and the elements of K commute with the
variables x1, . . . , xn. Heinz Kredel in [Kre93] generalized the axiomatic description of solvable

3.1. Algebras of Solvable Type 19

algebras in which he allowed that the variables operate on the coefficients, by requiring an addi-
tional condition on the product xi ? a, where a ∈ K. By this condition, the field K need not to be
commutative and its elements should not commute with the variables x1, . . . , xn.

Definition 3.7 (Solvable polynomial algebra)
Let K be a skew field andR = K[x1, . . . , xn]. For a fixed term order≺ on the set of terms T , (R, ?)
is called solvable polynomial algebra for an admissible term order ≺ if ? satisfies the following
axioms:

(i) (R, ?) is an associative ring with 1.

(ii) (a) For all a, b ∈ K, t ∈ T (x1, . . . , xn), a ? b ? t = a ? (bt) = (ab)t = abt.

(b) For all 1 ≤ i ≤ n, s ∈ T (x1, . . . , xi), t ∈ T (xi, . . . , xn), s ? t = st.

(iii) For all 1 ≤ i < j ≤ n there exist 0 6= cij ∈ K and dij ∈ R with lt(dij) ≺ xixj such that

xj ? xi = cijxixj + dij. (3.1)

(iv) For all 1 ≤ i ≤ n and all 6= a ∈ K there exist 0 6= cai ∈ K and dai ∈ K such that

xi ? a = caiaxi + dai. (3.2)

Solvable polynomial algebras will be denoted by K{x1, . . . , xn;Q;Q′}, where Q and Q′ denote
the commutation rules (3.1) and (3.2), respectively.

Remark 3.8
• Any admissible order ≺ satisfying condition (iii) of Definition 3.7 is called ?-compatible.

• If we assume that the elements of K commute with the variables x1, . . . , xn, that is in Q′

cai = 1 and dai = 0, then we drop Q′ and denote the solvable algebra by K{x1, . . . , xn;Q}.

• The set of all terms xi1?· · ·?xik with i1 ≤ i2 ≤ · · · ≤ ik is a K-basis of K{x1, . . . , xn;Q;Q′}
and the map xi1 ? · · · ? xik 7→ x1x2 · · ·xk is a K-automorphism mapping the new basis into
the standard basis.

• In the Definition 3.7 it is required for K to be a skew field. We may make this requirement
less restrictive and define solvable polynomial algebras over any domain R satisfying the
following condition: there exists a subfield L ⊂ cen(R) := {a ∈ R; ar = ra, for all r ∈
R} such that all cij, cai are contained in L. In other words, the cij and cai must be invertible
and commute with all elements of R. A solvable algebra S = R{x1, . . . , xn;Q,Q′}, over a
ringR satisfying the previous conditions, is called centred commutation rules.

Definition 3.9
Let≺ be the lexicographical order T defined by x1 < x2 < · · · < xn and S = K{x1, . . . , xn;Q;Q′}
be a solvable algebra w. r. t. ≺. S is called of strictly lexicographical type if for the commutator
relations Q in Definition 3.7 we have dij ≺ xj , that is dij ∈ K[x1, . . . , xj]. Furthermore, if cij = 1
then S is called of strictly monic lexicographical type.

20 Chapter 3. Noncommutative Gröbner Bases

Definition 3.7 describes the computation of ?-products of variables and coefficients, and now we
are interested in the extension of this computation to arbitrary polynomials of R. The following
lemma determines left multiplication with field elements and right multiplication by special terms.

Lemma 3.10
Let S = K{x1, . . . , xn;Q;Q′} be a solvable algebra.

1. Let a ∈ K and f ∈ S, then a ? f = af .

2. Let 1 ≤ i ≤ j ≤ k ≤ n and f ∈ K[xi, . . . , xj], t ∈ T (xj, . . . , xk), then

f ? t = ft ∈ K[xi, . . . , xk].

The following lemma considers products of polynomials with increasing set of variables

Lemma 3.11
Let S = K{x1, . . . , xn;Q;Q′} be a solvable algebra, ≺ be a ?-compatible admissible term order,
1 ≤ i ≤ j ≤ k ≤ n, f ∈ K[xi, . . . , xj] and g ∈ K[xi, . . . , xk], then there exists 0 6= c ∈ K and
h ∈ K[xi, . . . , xk] with lt(h) ≺ lt(fg) and such that

f ? g = cfg + h.

In particular f ? g ∈ K[xi, . . . , xk] and lt(f ? g) = lt(fg)

Remark 3.12
• The result of the previous lemma still true in the special case of g = a ∈ K and we get:
f ? a ∈ K[xi, . . . , xj] and lt(f ? a) = lt(f).

• If the coefficients commute with the variables, then f ? g = fg and f ? g ∈ K[xi, . . . , xk].

Lemma 3.10 and Lemma 3.11 and a constructive proof by case distinction leads to the following re-
sult which describes the ?-multiplication of arbitrary two polynomials in S = K{x1, . . . , xn;Q;Q′}.

Proposition 3.13
Let S = K{x1, . . . , xn;Q;Q′} be a solvable algebra, ≺ be a ?-compatible admissible term order
and f, g ∈ S, then there exists h ∈ S and 0 6= c ∈ K such that

f ? g = cfg + h and lt(h) ≺ lt(fg).

Moreover, c and h are uniquely determined by f and g.

Corollary 3.14
Let S = K{x1, . . . , xn;Q;Q′} be a solvable algebra and ≺ be a ?-compatible admissible term
order, then the ?-multiplication is uniquely determined by Q and Q′.

3.1. Algebras of Solvable Type 21

The following lemma plays a crucial role in a straightforward translation of many tools and proper-
ties of Gröbner basis theory from the classic commutative case to the case of solvable algebras (see
Section 3.2). In this sense, solvable algebras are intermediate between general noncommutative
free associative algebras and commutative polynomial algebras.

Lemma 3.15
Let S = K{x1, . . . , xn;Q;Q′} be a solvable algebra, ≺ be a ?-compatible admissible term order
and f, g ∈ S. Then

1. lt(f ? g) = lt(fg) = lt(f)lt(g) = lt(g)lt(f) = lt(gf) = lt(g ? f),

2. there exists 0 6= c ∈ K, such that lm(f ? g) = clm(f) lm(g),

3. for h ∈ S, lt(f) ≺ lt(g) implies lt(f ? h) ≺ lt(g ? h) and lt(h ? f) ≺ lt(h ? g).

From the previous lemma follows immediately.

Corollary 3.16
Let S = K{x1, . . . , xn;Q;Q′} be a solvable algebra and ≺ be a ?-compatible admissible term
order, then S is an integral domain.

Remark 3.17 (Associativity)
The conditions (ii)-(iv) of Definition 3.7 alone do not guarantee the associativity of the ?-product.
For this aim we need rather complicated conditions on Q. These conditions were implicitly
described by Kredel in [Kre93, Proposition 3.3.6], and explicitly determined by Viktor Levan-
dovskyy in [Lev05] who called them non-degeneracy conditions.

Remark 3.18 (Computability)
Computability means the existence of a Turing machine which takes the appropriate inputs, per-
forms a finite number of steps and terminates after producing the searched output.

• A field K is computable means that its basic operations (addition, multiplication and di-
vision) may be performed algorithmically. Moreover, the computability of K implies the
computability of a commutative polynomial ring over K.

• A term order ≺ is computable (or decidable) means that for any two terms t, s ∈ T it can be
decided by means of an algorithm if s = t or s ≺ t.

• One can compute in a solvable algebra if the commutator relationsQ andQ′ are computable.
This requires that K is computable and the maps a 7→ caia and a 7→ dij may be given
algorithmically.

22 Chapter 3. Noncommutative Gröbner Bases

3.1.3 Examples of Solvable Algebras
Ore Algebras

Let O = A[∂;σ, δ] = A[∂1, σ1, δ1] · · · [∂n, σn, δn] be an iterated Ore algebra (see Definition 2.7).
A multiplication ? on O is defined by (see Definition 2.5)

(Q′) : ∂i ? a = σi(a) ∂i + δi(a) for any a ∈ A and 1 ≤ i ≤ n

= caia ∂i + dai.

Moreover, the conditions required on the σi’s and δi’s imply the commutation of ∂i’s (see Remark
2.6), that is,

(Q) : ∂i ? ∂j = ∂j ? ∂i = ∂i ∂j for any 1 ≤ i, j ≤ n.

It follows that {O;Q,Q′} is a solvable algebra w.r.t. any term order ≺.

Poincaré-Birkoff-Witt Extensions

In this subsection we give an example of a solvable algebra, where we require that K is commuta-
tive and the variables xi do not act on the elements of K. That is, this example fits rather into the
framework developed by Kandry-Rody and Weispfenning [KRW90] than the general framework
of Kredel [Kre93].
Bell and Goodearl [BG88] introduced the Poincaré-Birkoff-Witt extension (for short PBW exten-
sion) for two associative rings R ⊆ P . We formulate the definition for the special case where R
is a field K and we additionally require that the variables commute with the coefficients.

Definition 3.19 (PBW extension)
Let K be a commutative field and (P , ∗) an associative ring with 1 such that K ⊆ P . The ring P
is called a finite PBW extension (also PBW algebra) of K if there exist x1, . . . , xn ∈ P such that

(i) the standard monomials xe = xe11 · · ·xenn form a K-basis of P as a K-vector space,

(ii) xi ? a = a ? xi for each 1 ≤ i ≤ n, and any a ∈ K.

(iii) xi ? xj − xj ? xi = dij ∈ Kx1 + · · ·+ Kxn.

We note in Definition 3.19-(iii) that deg(dij) ≤ 1 < 2 = deg(xixj). If we define the commutator
relation (Q) as follows:

(Q) : xj ? xi = xixj + dij,

then (P , Q) is of solvable type w.r.t. any degree term order ≺deg.

Remark 3.20
• A classical example of a PBW extension is the universal enveloping algebra U(L) of a

finite-dimensional Lie-algebra L over K. In fact, U(L) is a unitary associative K-algebra
containing L. Moreover, The Poincaré-Birkoff-Witt Theorem [Jac62] asserts that the stan-
dard monomials form a K-basis of U(L) which also explains the name PBW extension.

3.1. Algebras of Solvable Type 23

• In the general definition of a PBW extension, given by Bell and Goodearl in [BG88], it is not
required in condition (ii) of Definition 3.19 that the variables commute with the coefficients.
According to that definition, a PBW extension is not necessarily of solvable type. For exam-
ple, the skew enveloping algebras R#U(L) where R is a K-algebra on which the elements
of L act as derivations is not of solvable type (see [MR87, Sect. 1.7.10]).

3.1.4 Hilbert’s Basis Theorem for Solvable Algebras

Hilbert’s basis theorem is an important and well known property of commutative polynomial rings
R[x1, . . . , xn]. It plays a central role in the theory of Gröbner bases, in the sense that it is the
decision criterion for the termination of Buchberger’s algorithm. In this subsection, we will see
that solvable algebras satisfy this property under certain conditions.

Definition 3.21 (Noetherian ring)
A ringR is called a left (right) Notherian ring if it satisfies the following equivalent conditions.

ACC There does not exist an infinite ascending chain of left (right) ideals, that is, an infinite
sequence of left (right) ideals such that each ideal is properly contained in its successor.

MAX Every non-empty family of left (right) ideals ofR has a maximal element.

HIB Every left (right) ideal ofR is finitely generated.

If the ringR is both left and right noetherian it is simply called noetherian.

In the following we describe Hilbert’s basis theorem in the general context of solvable algebras
over a ringR with centered commutator relations (see Remark 3.8).

Theorem 3.22 (Hilbert’s basis theorem [Kre93])
IfR is a left (right) noetherian ring, then any polynomial ring of solvable type S = R{x1, . . . , xn;Q,Q′}
with centred commutation rules, such that the maps σi : a 7→ caia are automorphisms of R, is left
(right) noetherian.

Remark 3.23
• The condition that the maps σi : a 7→ caia are automorphisms of R is necessary for S to be

Noetherian. In fact, Mc Connel and Robson gave in [MR87] a concrete counter-example of
a univariate solvable polynomial ring violating this condition and which is neither left nor
right noetherian.

• Throughout this dissertation, we will consider operator algebras (Ore algebras) of solvable
type (see Subsection 3.1.3) with bijective σi’s (see Tables 2.1 and 2.2), thereby they are
noetherian.

24 Chapter 3. Noncommutative Gröbner Bases

3.2 Gröbner bases in Solvable Algebras
Throughout this section let S = K{x1, . . . , xn;Q;Q′} denote a solvable algebra over a computable
field K with respect to a fixed but arbitrary admissible and decidable term order ≺. T denotes the
set of terms in the variables x1, . . . , xn (see Definition 3.1) and K∗ = K \ {0}. Furthermore, since
we are essentially concerned with operator algebras (Ore algebras) acting by left multiplication, in
this section we will present an overview of the theory of left Gröbner bases in solvable algebras.
A theory of right (two-sided) Gröbner bases is analogously described in [Kre93] and [Lev05].

3.2.1 Left Reduction
One of the pillars of the commutative Buchberger algorithm is the reduction which describes ”the
multivariate division”. In this section, we present its left-analogue in the case of solvable algebras.

Definition 3.24 (Left reduction)
• For f, g, r ∈ S, we say that f is left reducible to r modulo g if there exists a monomial
m = cxα with c ∈ K∗ such that

lm(f) = lm(m ? g) and r = f −m ? g.

We note that lt(r) ≺ lt(f). Moreover, if no such a monomial m exists, then f is left irre-
ducible modulo g.

• Let G ⊂ S be a set of polynomials. An element f is left reducible modulo G if it is left
reducible modulo an element g ∈ G.

Definition 3.25 (Notations)
Throughout this section we use the following notations

1. f −→g r if f is left reducible to r modulo g.

2. f −→G r if f is left reducible to r modulo G.

3. f ∗−→G r, if f = r or there exists a finite sequence g1, . . . , gs of elements of S such that

f −→g1 · · · −→gs r.

Furthermore, if r is irreducible modulo G, then it is called a left normal form of f with
respect to G and denoted by LNF(f | G).

4. The left ideal generated by a set of polynomials G ⊂ S is denoted by

S〈G〉 := {f =
s∑
i=1

si ? gi ; si ∈ S, gi ∈ G}

3.2. Gröbner bases in Solvable Algebras 25

5. The left ideal generated by the leading terms of the elements of a subset G ⊂ S is denoted
by

L(G) := S〈{lt(g) ; g ∈ G}〉,
and is called leading ideal of G. Analogously, we denote by L(I) the leading ideal of a left
ideal I ⊂ S.

Remark 3.26
• A left normal form LNF(f | G) it not necessarily unique, every different finite sequence
g1, . . . , gs may lead to a different LNF(f | G). In Lemma 3.30, we will see when a left
normal form is unique.

It is easy to check that a left normal form satisfies the following properties.

Lemma 3.27
1. LNF(0 | G) = 0.

2. LNF(f | G) 6= 0 ⇒ lt(LNF(f | G)) /∈ L(G).

3. f − LNF(f | G) ∈ S〈G〉.

Definition 3.28 (Reduced set)
• A subset G ⊂ S is called minimal, if 0 /∈ G and lt(g) /∈ L(G \ {g}) for each g ∈ G.

• We say that an element f ∈ S is completely left reduced with respect to G, if no monomial
of f is contained in L(G).

• A subset G ⊂ S is called left reduced, if 0 /∈ G, each g ∈ G is reduced with respect to
G \ {g} and g − lc(g)lt(g) is reduced with respect to G.

Definition 3.29
Let G = {g1, . . . , gs} ⊂ S be a finite set of polynomials. A representation of f ∈ S〈G〉

f =
s∑
i=1

si ? gi

satisfying lt(si ? gi) � lt(f) for all i = 1, . . . , s, is called a left standard representation of f with
respect to G.

Lemma 3.30
Let G ⊂ S be a set of polynomials.

1. f ∗−→G 0 implies that f has a left standard representation with respect to G. In particular
f ∈ S〈G〉.

2. If LNF(f | G) is completely left reduced, then it is unique.

Proof:

26 Chapter 3. Noncommutative Gröbner Bases

1. follows immediately by construction from Definition 3.24 and Definition 3.25-(3).

2. Let f ∈ S and assume that r and r′ are two reduced normal forms of f with respect to G, then
it follows that r − r′ = (f − r′) − (f − r) ∈ S〈G〉 (see Lemma 3.27). If r − r′ 6= 0, then
lt(r− r′) ∈ L(G), which contradicts the fact lt(r− r′) is a term of either r or r′ which should not be
contained in L(G) (see Definition 3.28).

2

Definition 3.31
Let xα and xβ be two terms of T . For each 1 ≤ i ≤ n, set µi = max(αi, βi) and µ = (µ1, . . . , µn).
Then the lcm of xα and xβ , denoted by lcm(xα, xβ), is the term xµ which is in particular divisible
by xα and xβ .

An important tool of Buchberger’s algorithm are the so called S-polynomials. They can be analo-
gously defined in the context of solvable algebras.

Definition 3.32 (Left S-polynomials)
Let f, g ∈ S \ {0} with lt(f) = xα and lt(g) = xβ . Let µ ∈ Nn such that xµ = lcm(xα, xβ). The
left S-polynomial of f and g is defined by

LSP(f, g) := xµ−α ? f − lc(xµ−α ? f)

lc(xµ−β ? g)
xµ−β ? g.

We note that lt(SLP(f, g)) ≺ lt(f ? g).

Remark 3.33
• We note in Definition 3.32 that if lt(f) is divisible by lt(g), then lcm(xα, xβ) = xα and the

left S-polynomial of f and g is

LSP(f, g) = f − lc(f)

lc(xµ−β ? g)
xα−β ? g.

Moreover, in this case LSP(f, g) is nothing else but the left reduction of f modulo g.

• If the polynomial f is not monic (i.e. lc(f) = 1), then to perform a left reduction of f modulo
a polynomial g we should divide by the leading coefficient of f . Hence, an implementation
of an algorithm computing a left normal form by successive left reductions should manage
fractions which may be a source of inefficiency. First, because dividing is time consuming
compared to other arithmetic operations. Second, because managing fractions may lead to
an intermediate exponential growth of the coefficients. For these reasons it is better, in each
left reduction step, to get rid of the dominators. With this strategy the obtained left normal

form is defined up to a factor c ∈ K, that is, LNF(f | G) = cf −
s∑
i=1

si ? gi.

Proof: (Algorithm 3.1).

3.2. Gröbner bases in Solvable Algebras 27

Algorithm 3.1: Left normal form: LNF
Input : S a sovable algebra with respect to ≺, f ∈ S and G ⊂ S a finite subset of S;
Output: r := LNF(f | G);

begin
Initialization: r ←− f ;
while r 6= 0 and Gr = {g ∈ G; lt(g) | lt(r)} 6= ∅ do

choose any g ∈ Gh;
r ←− LSP(r, g);

end
return r

end

• Termination:
Let r0 = f and in the i-th step of the while loop we compute ri = LSP(ri−1, g). Since lt(ri) =
lt(LSP(ri−1, g)) ≺ lt(ri−1) (see Definition 3.32), we obtain a set {lt(ri)} of leading terms of ri,
where lt(ri+1) ≺ lt(ri). Since ≺ is an admissible term order (see Definition 3.5), this set has a
minimum, hence the algorithm terminates.

• Correctness:
Suppose that this minimum is reached at the step s. Let r = rs. Making a backward substitution we
obtain the expressinon

r = f −
s−1∑
i=1

si ? gi,

where si are monomials in S and gi ∈ G. This expression satisfies

lt(f) = lt(s1 ? g2) � · · · � lt(si ? gi) � · · · � lt(r).

By construction, if r 6= 0 then lt(r) /∈ L(G). Hence, correctness follows.

2

We can easily extend LNF algorithm (Algorithm 3.1) to a reduced LNF algorithm (Algorithm 3.2).
Proof: (Algorithm 3.2)

• Termination:
Since lt

(
g − lc(g)lt(g)

)
≺ lt(g) and ≺ is an admissible term order, the algorithm terminates.

• Correctness:
Follows from the correctness of the LFN algorithm.

2

28 Chapter 3. Noncommutative Gröbner Bases

Algorithm 3.2: Reduced left normal form: RedLNF
Input : S a sovable algebra with respect to ≺, f ∈ S and G ⊂ S a finite subset of S;
Output: r := RedLNF(f | G);
begin

Initialization: r ←− 0, g ←− f ;
while g 6= 0 do

g ←− LNF(g | G);
r ←− r + lc(g)lt(g);
g ←− g − lc(g)lt(g);

end
return r

end

3.2.2 Left Buchberger’s Algorithm
In 1965, Bruno Buchberger in ([Buc65], [Buc85]) introduced the notion of Gröbner bases for com-
mutative polynomial ideals, and gave an algorithm for their computation, known as Buchberger’s
algorithm. In this section, we present the left analog of this algorithm in the noncommutative
context of solvable algebras.

Definition 3.34 (Left Gröbner basis)
Let S be a solvable algebra with respect to ≺, I ⊂ S a left ideal and G ⊂ I a finite subset. Then,
G is called a left Gröbner basis of I if and only if L(G) = L(I) as vector spaces. In other words,
for any f ∈ I \ {0} there exists g ∈ G satisfying lt(g) | lt(f).

Lemma 3.35
Let S be a solvable algebra with respect to ≺, I ⊂ S a left ideal and G ⊂ I a Left Gröbner Basis
of I . Then,

1. for any f ∈ S we have f ∈ I ⇔ LNF(f | G) = 0.

2. If J ⊂ S is a left ideal such that I ⊂ J , then L(I) = L(J) implies I = J . In particular, G
generates I as a left ideal of S.

Proof:

1. If LNF(f | G) = 0 then f ∈ I (see Lemma 3.30).
If LNF(f | G) 6= 0, then lt

(
LNF(f | G)

)
/∈ L(G) = L(I). Hence, LNF(f | G) /∈ I which implies

that f /∈ I .

2. We want to prove that J ⊂ I . Let f ∈ J and we assume that r := LNF(f | G) 6= 0. Furthermore,
from Lemma 3.27 it follows that lt(r) /∈ L(G) = L(I) = L(J), which contradicts the fact that
r = f −

∑
si ? gi is an element of J . Hence, r = LNF(f | G) = 0 and f ∈ I by (1).

2

3.2. Gröbner bases in Solvable Algebras 29

Remark 3.36
• Let I ⊂ S be a left ideal and f ∈ S. Decide whether f is an element of I or not is called the

left ideal membership problem (LIMP). From the first statement of Lemma 3.35, we note
that the LIMP may be solved algorithmically by means of the LNF-algorithm (Algorithms
3.1 and 3.2) if the input is a Left Gröbner Basis of the ideal I .

The following theorem proves the correctness of Buchberger’s algorithm for the computation of a
Left Gröbner Basis.

Theorem 3.37 (Buchberger’s left criterion)
Let S be a solvable algebra with respect to ≺, I ⊂ S a left ideal a S and G = {g1, . . . , gs} ⊂ I a
finite subset of I . Then the following statements are equivalent

1. G is a Left Gröbner Basis of I .

2. LNF(f | G) = 0 for all f ∈ I .

3. Each f ∈ I has a left standard representation with respect to G.

4. LNF
(
LSP(gi, gj) | G

)
= 0 for 1 ≤ i, j ≤ s.

Proof:

• The implication (1⇒ 2) follows from Lemma 3.35-1.

• The implication (2⇒ 3) follows from Lemma 3.30-1

• For the implication (3 ⇒ 1), we see that if f has a left standard representation with respect to

G: f =
s∑
i=1

si ? gi, then lt(f) must occur as the leading term of si ? gi for some i. It means that

lt(gi) | lt(f), hence by Definition 3.34 G is a Left Gröbner Basis of I .

• To prove (3 ⇒ 4), we note first that rij = LNF
(
LSP(gi, gj) | G

)
∈ I which means if rij 6= 0 that

lt(rij) ∈ L(G) and contradicts the second property of LNF in Lemma 3.3.

• The implication (4 ⇒ 1) is the left Buchberger criterion which allows checking and construction
of Gröbner bases in a finite number of steps in the case where S is left noetherian (see Theorem
3.22). The proof of this implication uses syzygies, for more details the reader may refer to ([Lev05],
Theorem 4.8).

2

Proof:

• Termination:
By Lemma 3.27-(2), we know that if rij 6= 0 then lt(rij) /∈ L(G). Therefore, S〈G〉 ⊂ S〈{G, rij}〉
and we obtain a strictly ascending chain of left ideals in S. Since S is noetherian, this chain stabilizes
(see Definition 3.21). This means that, after finitely many steps all LSPs reduce to zero and the set P
becomes empty.

30 Chapter 3. Noncommutative Gröbner Bases

Algorithm 3.3: Left Buchberger’s algorithm
Input : S a noetherian sovable algebra with respect to ≺, F ⊂ S a finite subset of S;
Output: G a Left Gröbner Basis of the left ideal I = S〈F 〉;
begin

Initialization:
G←− F ;
P ←− {(gi, gj); gi, gj ∈ G, gi 6= gj};
while P 6= ∅ do

Select (gi, gj) ∈ P ;
P ←− P \ {(gi, gj)};
rij ←− LNF

(
LSP(gi, gj) | G

)
;

if rij 6= 0 then
P ←− P ∪ {(rij, gk); gk ∈ G};
G←− G ∪ {rij};

end
end
return G;

end

• Correctness:
Follows from Theorem 3.37

2

Remark 3.38 (Reduced left Gröbner basis)
• If in the While loop of Algorithm 3.3 we perform the RedLFN algorithm (Algorithm 3.2)

and we have as input a reduced set F (see Definition 3.28), then we obtain a reduced Gröbner
basis G as output. If F is not reduced, we may apply the RedLFN algorithm afterwards to
(g | G \ {g}) for all g ∈ G in order to obtain a reduced Gröbner basis.

Buchberger’s algorithm has a high complexity which depends on the number of variables n of the
polynomial algebra and the maximal degree d of the polynomials in the input. In the commutative
case this complexity is dO(n2) (see [Laz92], [FGDM93]). This high complexity is essentially due
to the cost of reductions which depends on the size of the polynomials and may exponentially
increase along the steps of the while loop. Hence, in order to optimize Buchberger’s algorithm, it
is natural to look for a selection strategy that predicts critical pairs before executing reductions.
By critical pairs, we refer to those whose LSP reduces to zero and thereby, they do not intervene
in the construction of the output or the pairs with a high reduction cost. In the following we will
give an overview on some known selection strategies in the commutative case and discuss how far
they may be generalized to the noncommutative context of solvable algebras.

3.2. Gröbner bases in Solvable Algebras 31

Buchberger’s Normal Strategy

The normal strategy of Buchberger consists of two criteria.

1. Product criterion (Pcrit): for a pair (gi, gj) ∈ G×G we have

lcm(lt(gi), lt(gj)) = lt(gi)lt(gj)⇒ LNF
(
LSP(gi, gj) | G

)
= 0.

It follows that in Algorithm 3.3 we omit the reduction of pairs (gi, gj) ∈ P satisfying the
condition of the previous statement.

2. Chain criterion (Ccrit): in Algorithm 3.3, we omit the reduction of a LSP of a pair (gi, gj),
if there exists gk ∈ G such that lt(gk) divides lcm(lt(gi), lt(gj)) or the pairs (gi, gk) and
(gk, gj) have been already reduced by the algorithm.

Although the Ccrit may be applied in the context of solvable algebras, it is not quite the case for
the Pcrit. We illustrate this fact in the following example.

Example 3.39
Let K[x][Dx; 1, Dx] be the Weyl algebra endowed with the lexicographical term order ≺lex, where
x ≺lex Dx. Furthermore, f = x and g = Dx with lcm(lt(f), lt(g)) = lt(f)lt(g). We note that
LSP(f, g) = Dxf − xg = 1 does not reduce to zero, which contradicts the statement of the Pcrit.

The contradiction of the previous example with the statement of the Pcrit is due to the fact that
lt(f) = x and lt(g) = Dx do not commute. Hence, we may extend the Pcrit to the noncommutative
context, if we add the condition that lt(gi) and lt(gj) commute. That is, the variables of lt(gi)
commute with all the variables of lt(gj), which may happen, for instance, in Ore algebras (see
3.1.3).

”Sugar” Strategy

The Buchberger normal strategy works fine if the term order is degree compatible, but it’s quite
bad for the lexicographical term order. This motivates the ”Sugar” selection strategy presented by
A. Giovini and T. Mora in [GMN+91]. Before we give an overview on this strategy, we need to
introduce some definitions.

Definition 3.40 (The ”Sugar”)
Let R = K[x1, . . . , xn] be a polynomial ring. The ”Sugar” is defined to be the map

s : R −→ N, f 7−→ s(f) = d,

where d is the total degree of f . It is clear that the ”Sugar” satisfies the following properties

(i) s(fg) = s(f) + s(g)

(ii) s(f + g) = max(s(f), s(g))

32 Chapter 3. Noncommutative Gröbner Bases

Definition 3.41
(i) A polynomial f ∈ K[x1, . . . , xn] is called homogeneous of degree d, if every term of f with

nonzero coefficient has a total degree d.

(ii) A non-homogeneous polynomial f ∈ R may be homogenized by introducing a new variable
y and defining

h
(
f(x1, . . . , xn)

)
= ydf(

x1

y
, . . . ,

xn
y

),

where d is the total degree of f .

The ”Sugar selection strategy” is generally combined with Buchberger’s normal strategy, and con-
sists of two steps before each reduction in Algorithm 3.3.

1. Homogenize the set of polynomials G

2. Perform the normal strategy, and after that select the pair
(
h(gi), h(gj)

)
such that LSP(h(gi), h(gj))

has the smallest ”Sugar”.

We note that the ”Sugar” selection strategy may be generalized to the context of solvable alge-
bras, since the homogenization by a commutative variable does not interfere with the commutator
relations.

Trace Lifting

The trace lifting strategy, presented by Traverso in [Tra89], has drastically improved Buchberger’s
algorithm in the case of polynomial rings over transcendental field extension, for instance, K =
Q(α). This strategy can be applied in the commutative case, as well as in the noncommutative
context of solvable algebras. The idea of this strategy is to give temporary a numeric value to α,
say α0, and perform reduction with this value. Obviously, the computation with a numeric α0 is
much faster than the generic computation in α. If the result of the reduction for α0 is nonzero, then
it is likely the case for a generic α thus, the reduction is immediately performed. Otherwise, the
reduction is delayed.

3.2.3 Applications
Elimination of Variables
Definition 3.42
Let S = K{x1, . . . , xn;Q,Q′} be a solvable algebra with respect to a ?-compatible admissible
term order ≺. Let 0 ≤ m ≤ n and define

Sm = K{xm+1, . . . , xn;Qm, Q
′
m}, where

Qm = Q ∩K[xm+1, . . . , xn],

Q′m = Q′ ∩K[xm+1, . . . , xn].

Then Sm is a solvable subalgebra of S, since by definition and Lemma 3.11 is closed under the ?
multiplication inherited from S. The algebra Sm is called the m-th elimination subalgebra of S.

3.2. Gröbner bases in Solvable Algebras 33

Definition 3.43 (Elimination term order)
A term order ≺ on T (x1, . . . , xn) is called elimination term order for {x1, . . . , xm}, if it satisfies
{x1, . . . , xm} � {xm+1, . . . , xn}. Such a term order is characterized by

f ∈ K[xm+1, . . . xn]⇔ lt(f) ∈ T (xm+1, . . . , xn)

Definition 3.44 (Elimination problem)
Let S = K{x1, . . . , xn;Q,Q′} be a solvable algebra with respect to a ?-compatible admissible
term order ≺, Sm ⊂ S an elimination subalgebra and I ⊂ S a finitely generated left ideal. The
determination of a set of generators of the left ideal I ∩ Sm is called elimination problem.

The elimination problem can be solved algorithmically by means of the following lemma.

Lemma 3.45
Let S = K{x1, . . . , xn;Q,Q′} be a solvable algebra with respect to a ?-compatible elimination
term order ≺ for {x1, . . . , xm}. Let Sm ⊂ S be an elimination subalgebra of S and I ⊂ S a left
ideal given by a Gröbner basis G. Then, a Gröbner basis of I ∩ Sm is Gm = G ∩ Sm.

In the previous lemma, we note that the elimination term order≺must be ?-compatible, that is, the
commutator relations xj ?xi = cijxixj +dij must satisfy lt(dij) ≺ xixj . Otherwise, no elimination
is possible. We illustrate this fact in the following example.

Example 3.46
Let O = K[x, u][Dx; 1, Dx] be the Ore algebra defined as an extension of the Weyl Algebra
K[x][Dx; 1, Dx] by introducing an additional commutator relation

Dx ? u = uDx − u2.

An elimination term order for Dx should satisfy Dx ≺ u. However such a term order is not
?-compatible, since u2 � uDx. Therefore, no elimination of Dx is possible.

Intersection of Ideals

The intersection of two left ideals of a solvable algebra S may be reduced to the intersection of an
ideal with a subalgebra (elimination problem: Definition 3.44) by means of the following lemma.

Lemma 3.47
Let S = K{x1, . . . , xn;Q,Q′} be a solvable algebra with respect to a ?-compatible admissible
term order ≺. Let I and J given by the left Gröbner bases GI = {f1, . . . , fr}, GJ = {g1, . . . , gs},
respectively. We consider the left ideal D := tI + (1− t)J in St = S ⊗K K[t] viewed as solvable
algebra, where t commutes with S. If≺ is an elimination term order for t on St, then I∩J = D∩S.

Proof:

• D ∩ S ⊆ I ∩ J
Let f ∈ D ∩ S. Then f can be presented as a sum

f =

r∑
i=1

t ri ? fi +

s∑
i=1

(1− t) si ? gi, where ri, si ∈ S

34 Chapter 3. Noncommutative Gröbner Bases

If in this sum we substitute t = 0 we get

f =

s∑
i=1

si ? gi ∈ J,

and if we substitute t = 1 we get

f =
r∑
i=1

ri ? fi ∈ I.

Hence, f ∈ I ∩ J .

• I ∩ J ⊆ D ∩ S
Let f ∈ I ∩ J . Then f can be represented in two ways

f =
r∑
i=1

ri ? fi =
s∑
i=1

si ? gi.

Since t commutes with S, consider

f = tf + (1− t)f =

r∑
i=1

t ri ? fi +

s∑
i=1

(1− t) si ? gi ∈ D ∩ S.

Hence, f ∈ D ∩ S and I ∩ J = D ∩ S.

2

At the end of the last chapter we mentioned the notion of derivative rules without explaining how
they are defined and for which purposes they are used. A family of functions fn(x) is called
admissible (see [Koe95]) if it satisfies a recurrence equation of the form

m∑
k=0

rk fn+k(x) = 0 (3.3)

with polynomial coefficients rk ∈ K[n, x], and a derivative rule of the form

f ′n(x) =
∂

∂x
fn(x) =

m−1∑
k=0

rk fn−k(x) or f ′n(x) =
m−1∑
k=0

rk fn+k(x), (3.4)

where the derivative with respect to x is represented by a finite number of lower or higher indexed
functions of the family, and where rk ∈ K(n, x) are rational function in n and x. The two types
of derivative rules are called backward and forward derivative rules, respectively. The rather rigid
property of admissibility has many interesting consequences, that can be used to generate and
verify identities for these functions by linear algebra techniques. In the next Maple sessions, we
will show how Gröbner basis elimination techniques can be used to determine such derivative rules.
Moreover, we will show that using Gröbner elimination we can get same results as those obtained
by skew elimination.

3.2. Gröbner bases in Solvable Algebras 35

Maple Session 3.1 (Gröbner elimination: Whittaker functionsMn,m(x))

We load the packages we need
> with(Ore_algebra):

> with(Groebner):

and define the algebra where the Gröbner elimination will be performed.
> A:=skew_algebra(shift=[Sm,m],diff=[Dx,x], comm=n,polynom=x);

A := Ore algebra

The Whittaker functions are annihilated by the following differential and recurrence operators:
> DE:=4*xˆ2*Dxˆ2-xˆ2+4*n*x-4*mˆ2+1;

DE := 4x2 Dx 2 − x2 + 4nx− 4m2 + 1
> RE:=(1+2*m)*(2*n-3-2*m)*(3+2*m+2*n)*x*Smˆ2+16*(1+m)*(2+m)*(3+2*m)
> *(2*n*x-3-8*m-4*mˆ2)*Sm+16*(1+m)*(2+m)*(1+2*m)*(3+2*m)ˆ2*x;

RE := (1 + 2m) (2n− 3− 2m) (3 + 2m+ 2n)xSm2

+ 16 (1 +m) (2 +m) (3 + 2m) (2nx− 3− 8m− 4m2)Sm

+ 16 (1 +m) (2 +m) (1 + 2m) (3 + 2m)2 x
We compute a Gröbner basis w. r. t. an elimination term order ≺1 that eliminates as far as possible the
variable x and the derivative operator Dx. For this purpose, we choose ≺1 to be the lexicographical term
order with Sm ≺1 Dx ≺1 x.

> T1:=MonomialOrder(A,plex(x,Dx,Sm));

T1 := monomial order

> GB1:=Basis([DE,RE],T1);

GB1 := [−864 + 16Sm2mn2 − 832Smmn− 576Smm2 n− 128Smm3 n

− 4752m− 10224m2 − 11200m3 − 6656m4 − 2048m5 − 9Sm2

+ 4Sm2 n2 − 48Sm2m− 88Sm2m2 − 64Sm2m3 − 384Sm n

+ 16Sm2 n2m2 + 576Dx Sm − 16Sm2m4 + 2784Dx Smm

+ 4960Dx Smm2 + 4160Dx Smm3 + 1664Dx Smm4

+ 256Dx Smm5 − 256m6,−4xSm2 n2 + 9xSm2 + 30xSm2m

+ 28xSm2m2 − 8xSm2mn2 + 8xSm2m3 − 192Sm nx+ 288Sm

+ 1392Smm+ 2480Smm2 − 416Smmnx+ 2080Smm3

− 288Smm2 nx+ 832Smm4 − 64Smm3 nx+ 128Smm5 − 288x

− 1392xm− 2480xm2 − 2080xm3 − 832xm4 − 128xm5,

−32m4 − 80m3 + 32xDx m3 − 4xSmm2 − 72m2 + 64xDx m2

+ 16m2 nx− 28m+ 40xDx m− 4xSmm+ 24mnx− 4

+ 8xDx − xSm + 4Sm n2 x+ 8nx]
After observing the computed Gröbner basis, we can see that a derivative rule satisfied by the Whittaker
function is:

> DR1:=collect(GB1[1],[Dx,Sm],factor);

36 Chapter 3. Noncommutative Gröbner Bases

DR1 := 32 (1 + 2m) (2 +m) (1 +m) (3 + 2m)2 Sm Dx

− (1 + 2m)2 (3 + 2m+ 2n) (2m+ 3− 2n)Sm2

− 64n (3 + 2m) (2 +m) (1 +m)Sm

− 16 (1 + 2m) (2 +m) (1 +m) (3 + 2m)3

The derivative rule DR1 has an advantage that it is free of the variable x but it does not really coincide
with the one mentioned in the paper [Koe95] (Section 8, Theorem 7).
Now if we choose a term order ≺2 which eliminates in the first place the operator Dx, we get exactly the
derivative rule of [Koe95].

> T2:=MonomialOrder(A,plex(Dx,Sm,x));

T2 := monomial order

> GB2:=Basis([DE,RE],T2);

GB2 := [−4xSm2 n2 + 9xSm2 + 30xSm2m+ 28xSm2m2 − 8xSm2mn2

+ 8xSm2m3 − 192Sm nx+ 288Sm + 1392Smm+ 2480Smm2

− 416Smmnx+ 2080Smm3 − 288Smm2 nx+ 832Smm4

− 64Smm3 nx+ 128Smm5 − 288x− 1392xm− 2480xm2

− 2080xm3 − 832xm4 − 128xm5,−32m4 − 80m3 + 32xDx m3

− 4xSmm2 − 72m2 + 64xDx m2 + 16m2 nx− 28m+ 40xDx m

− 4xSmm+ 24mnx− 4 + 8xDx − xSm + 4Sm n2 x+ 8nx,

−864 + 16Sm2mn2 − 832Smmn− 576Smm2 n− 128Smm3 n

− 4752m− 10224m2 − 11200m3 − 6656m4 − 2048m5 − 9Sm2

+ 4Sm2 n2 − 48Sm2m− 88Sm2m2 − 64Sm2m3 − 384Sm n

+ 16Sm2 n2m2 + 576Dx Sm − 16Sm2m4 + 2784Dx Smm

+ 4960Dx Smm2 + 4160Dx Smm3 + 1664Dx Smm4

+ 256Dx Smm5 − 256m6]
> DR2:=collect(GB2[2],[Dx,Sm],factor);

DR2 := 8x (1 +m) (1 + 2m)2 Dx − x (2m+ 1 + 2n) (2m+ 1− 2n)Sm

− 4 (1 + 2m) (1 +m) (4m2 + 4m+ 1− 2nx)
Now we will show that Gröbner basis elimination techniques can be used to get same results as by skew
elimination (see Maple Sessions 2.3 and 2.3).
Proceeding by Gröbner elimination we deduce the differential operator DE from the operators DR2 and
RE. We choose the lexicographical term order with x ≺3 Dx ≺3 Sm which eliminates in the first place
the operator Sm.

> T3:=MonomialOrder(A,plex(Sm,Dx,x));

T3 := monomial order

We compute a Gröbner basis w. r. t. ≺3

> GB3:=Basis([DR2,RE],T3):

to get the differential operator DE as follows:
> remove(has,GB3,Sm);

3.2. Gröbner bases in Solvable Algebras 37

[4x2 Dx 2 − x2 + 4nx− 4m2 + 1]

We can similarly deduce RE from DR2 and DE.
> T4:= MonomialOrder(A,plex(Dx,Sm,x));

T4 := monomial order

> GB4:=Basis([DR2,DE],T4):

> collect(remove(has,GB4,Dx),Sm,factor);

[x (1 + 2m) (3 + 2m+ 2n) (2m+ 3− 2n)Sm2

+ 16 (3 + 2m) (2 +m) (1 +m) (4m2 + 8m+ 3− 2nx)Sm

− 16 (1 +m) (2 +m) (1 + 2m) (3 + 2m)2 x]

Remark 3.48
The derivative rule DR1 of the previous Maple session can be expressed in the following form:

DR1 : M ′
n,m+1(x) = R2(n,m)Mn,m+2(x) +R1(n,m)Mn,m+1(x) +R0(n,m)Mn,m(x), (3.5)

where the coefficients Ri are elements of Q(n,m). DR1 expresses forward shifted derivatives of
the Whittaker functions as a linear combination of it forward shifts.
If we shift back DR1 i.e. substitute m by m− 1 we get

M ′
n,m(x) = R2(n,m− 1)Mn,m+1(x) +R1(n,m− 1)Mn,m(x) +R0(n,m− 1)Mn,m−1(x) (3.6)

which is a derivative rule free of x that expresses the derivatives of the Whittaker functions as a
linear combination of its backward and forward shifts.
We note that the set {Mn,m+1(x),Mn,m(x),Mn,m−1(x)} is linearly dependent over Q(n,m, x). In
fact, if we consider the recurrence equation satisfied by Mn,m(x) which has the following form:

RE : r2(n,m, x)Mn,m+2(x) + r1(n,m, x)Mn,m+1(x) + r0(n,m, x)Mn,m(x) = 0, (3.7)

then we substitute m by m− 1 we get

r2(n,m− 1, x)Mn,m+1(x) + r1(n,m− 1, x)Mn,m(x) + r0(n,m− 1, x)Mn,m−1(x) = 0. (3.8)

Hence, we can express Mn,m−1(x) as a linear combination of Mn,m+1(x) and Mn,m(x) as follows

Mn,m−1(x) = −r2(n,m− 1, x)

r0(n,m− 1, x)
Mn,m+1(x)− r1(n,m− 1, x)

r0(n,m− 1, x)
Mn,m(x)

= A(n,m, x)Mn,m+1(x) +B(n,m, x)Mn,m(x), (3.9)

where A(n,m, x) and B(n,m, x) are elements of Q(n,m, x). Substituting (3.9) in (3.6) leads to

M ′
n,m(x) =

(
R2(n,m− 1) +R0(n,m− 1)A(n,m, x)

)
Mn,m+1(x)

+
(
R1(n,m− 1) +R0(n,m− 1)B(n,m, x)

)
Mn,m, (3.10)

which is the derivative rule DR2 that has coefficients depending on x.

38 Chapter 3. Noncommutative Gröbner Bases

Maple Session 3.2 (Gröbner elimination: Jacobi orthogonal polynomials P (a,b)
n (x))

We load the packages we need
> with(Ore_algebra):

> with(Groebner):

and define the Algebra where the Gröbner elimination will be performed.
> A:=skew_algebra(comm=[a,b],shift=[Sn,n],diff=[Dx,x],
> polynom={x,n});

A := Ore algebra

The Jacobi orthogonal polynomials are annihilated by the following operator system:
> DE:= (1-xˆ2)*Dxˆ2+(b-a-(a+b+2)*x)*Dx+n*(n+a+b+1);

DE := (1− x2)Dx 2 + (b− a− (a+ b+ 2)x)Dx + n (n+ a+ b+ 1)
> RE:=2*(n+2)*(n+a+2+b)*(a+2+b+2*n)*Snˆ2-(2*n+3+a+b)*(x*aˆ2+aˆ2+
> 4*x*a*n+2*x*a*b+6*x*a+4*x*n*b+4*x*nˆ2+6*b*x-bˆ2+8*x+bˆ2*x+12*x*n)
> *Sn+2*(2*n+a+4+b)*(n+b+1)*(n+a+1);

RE := 2 (n+ 2) (n+ a+ 2 + b) (a+ 2 + b+ 2n)Sn2 − (2n+ 3 + a+ b)(

x a2 + a2 + 4x an+ 2x a b+ 6x a+ 4xn b+ 4xn2 + 6 b x− b2

+ 8x+ b2 x+ 12xn)Sn

+ 2 (2n+ a+ 4 + b) (n+ b+ 1) (n+ a+ 1)
For the Gröbner basis computation we choose the degree lexicographical term order ≺.

> T1:= MonomialOrder(A,lexdeg([Dx,Sn],[x,n]));

T1 := monomial order

We compute a Gröbner basis w. r. t. ≺.
> GB:= Basis([DE,RE],T1):

The first generator of the Gröbner basis GB is the derivative rule we are looking for
> DR:=collect(GB[1],[Dx,Sn],factor);

DR := (x− 1) (x+ 1) (n+ b+ 1) (n+ a+ 1) (2n+ a+ 4 + b)

(a+ 2 + b+ 2n)Dx−
2 (n+ 1) (n+ b+ 1) (n+ a+ 1) (2n+ a+ 4 + b) (n+ a+ b+ 1)Sn

+ (n+ b+ 1) (n+ a+ 1) (2n+ a+ 4 + b) (n+ a+ b+ 1)

(x a+ a+ b x− b+ 2x+ 2xn)
up to a multiplicative factor

> ct:= collect(content(GB[1],[Sn,Dx]),[Sn,Dx],factor);

ct := (2n+ a+ 4 + b) (n+ b+ 1) (n+ a+ 1).

Dividing by the common factor ct we get:
> DR:=collect(DR/ct,[Dx,Sn],factor);

DR := (x− 1) (x+ 1) (a+ 2 + b+ 2n)Dx − 2 (n+ 1) (n+ a+ b+ 1)Sn

+ (n+ a+ b+ 1) (x a+ a+ b x− b+ 2x+ 2xn).

39

Chapter 4

∂-Finite and Holonomic Functions

The solutions of linear recurrence (resp. differential) equations with polynomial or rational coef-
ficients are particularly interesting since they can be uniquely determined by a finite amount of
information, namely, the coefficients of the equations and a finite number of initial conditions.
These functions were a focus subject of Doron Zeilberger in [Zei90b] , where he generalized the
notion of D-finite functions in one variable introduced by Richard P. Stanley in [Sta80] to the
case of multivariate functions and sequences as well. A function f(x1, . . . , xn) (resp. a sequence
U(k1, . . . kn)) is D-finite if the vector space generated by its derivatives (resp. its shifts) is of finite
dimension over C(x1, . . . , xn) (resp. C(k1, . . . , kn)). The notion of D-finiteness may be natu-
rally translated in terms of ideals to the more general setting of Ore algebras where it is called
∂-finiteness. In the first part of this chapter, we will first define and characterize ∂-finite functions
and then we will specially focus on their closure properties and how they can be algorithmically
computed. Unfortunately, the ∂-finite property is not sufficient to guarantee the termination of the
algorithms of summation and integration of the next chapter. For this reason, we need to introduce
another class of functions which are called holonomic functions and they will be presented in the
second part. At the end, we see that we are rather interested in functions lying in the intersection
of the two classes because we need certain nice properties of each.

4.1 ∂-Finite Functions

4.1.1 Definition and Characterization
Definition 4.1 (∂-Finiteness)
Let O = K[∂;σ, δ] := K[∂1;σ1, δ1] · · · [∂r;σr, δr] be an Ore algebra over a field K.

(i) A left ideal I ⊆ O is called ∂-finite with respect to O if dimK(O/I) < ∞, that is, the
K-vector space O/I is of finite dimension.

(ii) A function f is called ∂-finite if an annihilating left ideal Ann(f) of f is ∂-finite.

40 Chapter 4. ∂-Finite and Holonomic Functions

Remark 4.2
• The “∂” in the definition is just a symbol and does not refer to any of the ∂i’s that effectively

generate the Ore algebra O.

• We know that O/Ann(f) is isomorphic to the O-module Of (see Remark 2.15) generated by
the “derivatives” ∂αf = ∂α1

1 · · · ∂αr
r f , thus f is ∂-finite if its ”derivatives” generate a finite

dimensional K-vector space.

Example 4.3
Consider the function f(x, y) = exp(x+y

x−y) in two continuous variables and denote by Dx and Dy

the partial derivatives with respect to x and y, respectively. It is easy to show that the successive
derivatives Dα

xD
β
y are of the form

r(x, y) exp(
x+ y

x− y
),

where r(x, y) is a rational function in Q(x, y). This means that the derivatives of f generate a one-
dimensional Q(x, y)-vector space. Hence, f is a ∂-finite function with respect to the Ore algebra
O = Q(x, y)[Dx; 1, Dx][Dy; 1, Dy].

Definition 4.4 (Rectangular systems)
A finite set of polynomials {P1, . . . , Pr} in the Ore algebra O = K[∂1;σ1, δ1] · · · [∂r;σr, δr] is
called a rectangular system, if for each 1 ≤ i ≤ r the polynomial Pi is different from zero and
depends only on the operator ∂i and contains none of the others.

Proposition 4.5
A left ideal I ⊆ O = K[∂;σ, δ] is ∂-finite if and only if it contains a rectangular system.

Proof:

• (⇒): let I ⊆ O be a ∂-finite left ideal of dimension n. For each 1 ≤ i ≤ r we consider the sequence
{1, ∂i, ∂2

i , . . . } which generates a finite K-vector subspace in O/I of dimension l < n. Hence, the

set {1, ∂i, ∂2
i , . . . , ∂

l+1
i } is K-linear dependent, that is, there exists a polynomial Pi(∂i) =

l+1∑
j=1

aj∂
j
i

with coefficients in K which reduces to zero modulo I and follows Pi ∈ I .

• (⇐): let I ⊆ O be a left ideal containing a rectangular system {Pi(∂i); 1 ≤ i ≤ r}. If we denote
by di the degree of Pi in ∂i, then O/I is generated as a K-vector space by the set {∂α1

1 · · · ∂αr
r ; 0 ≤

αi ≤ di}. Hence, dimK(O/I) ≤
r∏
i=1

di <∞.

2

We note that a rectangular system is not always a Gröbner basis. We illustrate this fact by the
following counter-example from [Chy98].

Example 4.6
Consider the Ore algebra O = Q(x, y)[Dx; 1, Dx][Dy; 1, Dy] given by the commutator relations

Dxf(x, y) = f(x, y)Dx +
∂f

∂x
(x, y), Dyf(x, y) = f(x, y)Dx +

∂f

∂y
(x, y).

4.1. ∂-Finite Functions 41

and the rectangular system

P = Dx + a(x, y), Q = Dy + b(x, y),

where a and b are two rational functions in Q(x, y). We denote the left S-polynomial of the pair
(P,Q) by

R = DyP −DxQ

= DyDx +Dya(x, y)−DxDy −Dxb(x, y)

= a(x, y)Dy − b(x, y)Dx +
∂a

∂y
(x, y)− ∂b

∂x
(x, y).

Let ≺ be an admissible term order such that Dx ≺ Dy, then the left reduction of R with respect to
G = {P,Q} gives

R −→g r1 = −b(x, y)Dx +
∂a

∂y
(x, y)− ∂b

∂x
(x, y)− a(x, y)b(x, y),

r1 −→f r = LNF(R | G) =
∂a

∂y
(x, y)− ∂b

∂x
(x, y).

If ∂a
∂y

(x, y)− ∂b
∂x

(x, y) 6= 0, it follows that LNF(R | G) 6= 0 and by Theorem 3.37-4, the setG is not
a Gröbner. We note that an admissible term order such that Dy ≺ Dx yields the same left normal
form.

4.1.2 Closure Properties
Given two ∂-functions f and g, in this subsection we will show that f + g, fg and Pf (P Ore
operator) are (under some conditions for the product) also ∂-finite. Moreover, we will present al-
gorithms to compute a Gröbner basis for this annihilating ideal resulting from the above operations.
These algorithms rely on the principles of the FGLM algorithm which was initially designed for
zero dimensional ideals. The extension of this algorithm to the Ore algebra context in order to
algorithmically execute the closure properties was done by F. Chyzak (see [Chy98]).

Proposition 4.7 (Closure under Sum)
If f and g are ∂-finite functions with respect to some Ore algebra O = K[∂;σ, δ], then f + g is
∂-finite with respect to O as well.

Proof: Let P be an operator in O, then

P ·(f + g) = P ·f + P ·g

which yields
O·(f + g) ' O·f ⊕O·g

from which it follows
O/AnnO(f + g) ' O/AnnO(f)⊕O/AnnO(g).

42 Chapter 4. ∂-Finite and Holonomic Functions

Finally, from the ∂-finiteness of f and g it follows that AnnO(f + g) is a finite dimensional K-vector space,
since it is the direct sum of two finite dimensional K-vector spaces. Hence, by Definition 4.1 the sum f + g

is ∂-finite. 2

In the previous proposition, we have shown that summation preserves the property of ∂-finiteness.
Therefore, it is natural to be interested in the computation of the annihilating ideal AnnO(f + g)
of the sum of two ∂-finite functions f and g. In what follows, we present two different types of
algorithms which compute a generating set not necessarily of AnnO(f + g) but of a subideal of it.
In this context, we will consider two cases:

• case 1: The functions f and g are given by rectangular systems of AnnO(f) and AnnO(g).

• case 2: The functions f and g are given by Gröbner bases of AnnO(f) and AnnO(g).

In the first case, we will apply Gaussian elimination to get a rectangular system of AnnO(f + g).
In the second case, we will apply Gröbner bases techniques in two different ways to compute a
Gröbner basis of a subideal of AnnO(f + g).

First case
Let O = K[∂;σ, δ] be an Ore algebra and let f and g be two ∂-finite functions with respect to
O given by rectangular systems P and Q of AnnO(f) and AnnO(g). For each variable ∂ of O
let P (∂) and Q(∂) be two polynomials of degrees m and n, respectively. Since P (∂)·f ≡ 0 and
Q(∂)·g ≡ 0, the sets {f, ∂·f, . . . , ∂m·f} and {g, ∂·g, . . . , ∂ n·g} are K-linearly dependent and it
follows

∂ l·f =
m−1∑
j=0

plj (∂ j·f) (l ≥ m) and ∂ l·g =
n−1∑
j=0

qlj (∂ j·g) (l ≥ n), (4.1)

where plj and qlj are elements of K.
Let xj , yj and tj denote ∂ j·f , ∂ j·g and ∂ j·(f + g), respectively. From the linearity of ∂ the linear
system of equations

t0 = x0 + y0

t1 = x1 + y1

...

tl = xl + yl =
m−1∑
j=0

pljxj +
n−1∑
j=0

qljyj (max(m,n) ≤ l ≤ m+ n).

follows. We begin with l = max(m,n) and solve the linear system of equations with respect to the
tj’s by Gaussian elimination of the xj’s and yj’s in order to get a vanishing K-linear combination
of the form

r0t0 + r1t1 + · · ·+ rltl = 0, where rj ∈ K. (4.2)

4.1. ∂-Finite Functions 43

If this fails, we increase l by one and repeat the elimination which must terminate successfully at
most for l = m+ n. According to the previous notations, (4.2) is rewritten as follows

R(∂)·(f + g) = (r0 + r1∂ + · · ·+ rl∂
l)·(f + g) ≡ 0. (4.3)

Hence, R(∂) is an element of a rectangular system of AnnO(f + g).
We note that by this method the returned ideal does not take into consideration possible mixed re-
lations between the ”derivatives”. These mixed relations describe K-linear dependencies between
elements of a K-basis of AnnO(f + g) which allow a better estimation of its dimension as a K-
vector space. The procedures presented in the second case produce such mixed relations.

Second case

• Procedure 1: computes a Gröbner basis of a subideal of AnnO(f + g), relying on the obser-
vation that AnnO(f) ∩ AnnO(g) ⊆ AnnO(f + g) and using the method presented in Section
3.2.3 which computes a Gröbner basis of intersection of ideals.

• Procedure 2: follows a similar principle as the FGLM algorithm [FGDM93] designed for
zero-dimensional ideals in commutative polynomial rings. This procedure will be applied to
perform ∂-finite closure properties not only for summation but also for other operations like
product and action of Ore operators. In the following subsection, we will shortly present the
FGLM algorithm and the general idea behind it. Afterwards, we will show how it may be
extended and used to compute the ∂-finite annihilating ideal corresponding to each of these
algebraic operations.

FGLM Algorithm

It is known that Gröbner basis computation depends on the choice of the term order. From a
complexity point of view the degree-lexicographical ordering is the best one, whereas the pure
lexicographical ordering leads to computations which are much longer than degree orderings (see
[CGH89]). However, from a practical point of view the lexicographical ordering is better suited
for computing the solution of systems of polynomial equations (see [Laz92]). Between these two
extreme cases, there are many other orderings, for instance the elimination block-orderings. The
FGLM algorithm is designed for zero-dimensional ideals I ⊂ R = K[x1, . . . , xr], which are ideals
such that R/I is finite-dimensional as K-vector space. This algorithm transforms a Gröbner basis
G1 w. r. t. a term order ≺1 into a Gröbner basis G2 w. r. t. a term order ≺2. Before we present the
algorithm, we first characterize the elements of a K-basis of R/I in the following proposition.

Proposition 4.8
LetR be the polynomial ring K[x1, . . . , xr], T the set of terms ofR and I an ideal ofR. We denote

44 Chapter 4. ∂-Finite and Holonomic Functions

by G a reduced Gröbner basis of I w. r. t. an admissible term order ≺. A K-basis of R/I is the set

B(I) = {t ∈ T ; t is not divisible by any term of lt(I)}
= {t ∈ T ; t is not divisible by any term of lt(G)}
= {t ∈ T ; NF(t | G) 6= 0}
= B(G),

where NF(t | G) denotes the reduced normal form of t w. r. t. G.

Proof: See [BKW93, Proposition 6.52]. 2

The FGLM algorithm goes systematically through the terms of T , which are elements of B(G2)

Algorithm 4.1: FGLM
Input : G1 ⊂ K[x1, . . . , xr] a Gröbner basis w.r.t. ≺1;
Output: G2 a Gröbner basis of the ideal 〈G1〉 w.r.t. ≺2;
begin

Initialization: T := {1}; G2 := {}; j := 1;
while T 6= {} do

T ← T \ {t ∈ T ; it exists g ∈ G2 such that t divides lt(g)};
tj := min≺2T ;
T ← T \ {tj};
define NFi to be a reduced normal form of ti w.r.t. G1 ;
if {NFi; 1 ≤ i ≤ j} are linearly dependent then

G2 ← G2 ∪ {c1t1 + c2t2 + · · ·+ cjtj};
with ci ∈ K (not all zero) such that c1NF1 + c2NF2 + · · ·+ cjNFj = 0.

else
T ← T ∪ {xitj; 1 ≤ i ≤ r};
j ← j + 1;

end
end
return G2;

end

and minimal with respect to≺2 starting by the set T = {1}. In each step it checks if the considered
term t ∈ T is the leading term of an element of G2, if it is not the case it enlarges the set T by
terms which are multiples of t and repeats the loop until F becomes empty. The j’th while loop of
the algorithm is described as follows: while Tj−1 6= ∅ we define the subset Tj of B(G2) to be

Tj := Tj−1 \ {t ∈ Tj−1 ; ∃g ∈ G2 such that t | lt(g)}.

We choose tj ∈ Tj minimal w.r.t. ≺2 and we compute its normal form NFj w. r. t. G1. Then, by
Gaussian elimination we check the linear dependence between NFj and all normal forms NFi for
1 ≤ i ≤ j − 1 from the previous steps. Two cases are possible

4.1. ∂-Finite Functions 45

• The normal forms are K-linearly dependent, that is, there exist c1, . . . , cj ∈ K such that

c1NF1 + · · ·+ cjNFj = 0.

This means that the leading term of the polynomial gj = c1t1 + · · · + cjtj is not in B(I)
and hence, in lt(G2) (see Proposition 4.8). Furthermore, since the terms ti (1 ≤ i ≤ j) are
chosen such that they are not divisible by any leading term of the partially constructed G2, it
follows that gj is a new element of G2.

• The normal forms are K-linearly independent, in this case we redefine Tj as

Tj := (Tj \ {tj}) ∪ {xitj, 1 ≤ i ≤ r}

and we execute a further step. The algorithm terminates when G2 is complete and this must
happen in a finite number of steps since R/I is finite dimensional as a K-vector space.

After presenting the FGLM Algorithm, our aim now is to extend it in such a way to compute
a Gröbner basis of an annihilating ideal of a finite sum of ∂-finite functions. Let f1, . . . , fs be
functions given by annihilating ideals I1, . . . , Is ⊆ O = K[∂;σ, δ]. Let G1, . . . , Gs be Gröbner
bases of I1, . . . , Is with respect to admissible term orders ≺1, . . . ,≺s, respectively. The extended
form for ∂-finite summations of the FGLM algorithm computes in fact a Gröbner basis with respct
to an admissible term order ≺ of the ideal Ann(f1 ⊕ f2 ⊕ · · · ⊕ fs) ⊆ Ann(f1 + f2 + · · · + fs).
This extension is based on a appropriate definition of a normal form NF (t) of a term t = ∂α ∈ O
as follows:

NF (t) :=
s∑
i=1

RedLNF(t | Gi) ∈ O/I1 ⊕ · · · ⊕O/Is. (4.4)

Then, we execute the steps of the while loop as in the original FGLM algorithm. We note that,
by definition, NF (t) is still an element of a finite dimensional K-vector space which ensures the
termination of the computation of G.

Proposition 4.9 (Closure under Product)
Let O = K[∂;σ, δ] be an Ore algebra and f and g two ∂-finite functions with respect to O and
given by annihilating ideals I and J . Moreover, we suppose that for each 1 ≤ i ≤ r, there exist
two polynomials Ai(u) and Bi(u) in K[u] such that

σi = Ai(∂i) and δi = Bi(∂i), (4.5)

then the product fg is ∂-finite.

Proof: We note that a natural framework to deal with products of the form (P ·f)(Q·g), where P and Q
are two operators in O, is the tensor product over K defined by

T := O·f ⊗O·g ' O/I ⊗O/J,

where O,O·f and O·g are considered as K-vector spaces. Furthermore, it is required that T is closed under
the action of the operators ∂i, that is,

∂i·(P ·f)(Q·g) ∈ T

46 Chapter 4. ∂-Finite and Holonomic Functions

Algorithm 4.2: Extended FGLM for ∂-finiteness under sum
Input : - A Gröbner basis Gi w. r. t. ≺i for an annihilating ideal of the ∂-finite

function fi, where 1 ≤ i ≤ s ;
- An admissible term order ≺ on O;

Output: A Gröbner basis G of Ann(f1 ⊕ f2 ⊕ · · · ⊕ fs) w. r. t. ≺;
begin

1. For each term t = ∂α1
1 · · · ∂rαr ∈ O define

NF (t) :=
s∑
i=1

RedLNF(t | Gi);

2. Execute FGLM Algorithm;

return G;
end

for all 1 ≤ i ≤ r. In this way T is, besides its K-vector space structure, endowed by an O-module structure
which is ensured by the restrictions on the σi’s and δi’s given in (4.5) as follows: we first remember that for
two functions f and g we have the relation

∂·(fg) = σ(f)(∂·g) + δ(f)g.

It follows that
∂i·(P ·f)(Q·g) = σi(P ·f)[∂i·(Q·g)] + δi(P ·f)(Q·g) (4.6)

which means in terms of operators

∂i(P ⊗Q) = (Ai(∂i)P)⊗ (∂iQ) + (Bi(∂i)P)⊗Q (4.7)

∈ O·f ⊗O·g + O·f ⊗O·g (4.8)

∈ T. (4.9)

Finally, since f and g are ∂-finite, then T is a finite-dimensional K-vector space as a product of two finite
dimensional vector spaces O/I and O/J . Hence, the product fg is ∂-finite. 2

Remark 4.10
• We note that the Ore operators considered in Table 2.1 satisfy the condition (4.5) of Propo-

sition 4.9.

• The construction of a rectangular system of a ∂-finite product fg may be analogously done as
for ∂-finite sums. The only difference is to express, for each variable ∂ of O, the derivatives
∂l·(fg) by means of the Leibniz rule in a finite K-basis whose elements are of the form

(∂i·f)(∂j·g).

Then, we proceed by Gaussian elimination to get an annihilating polynomial R(∂) for each
variable ∂ of O.

4.1. ∂-Finite Functions 47

If the ideals I = Ann(f) and J = Ann(g) are given by Gröbner bases G1 and G2 with respect to
the term orders≺1 and≺2, then the FGLM algorithm may be extended to compute a Gröbner basis
G with respect to a term order ≺ of the ideal Ann(f ⊗ g) ⊆ Ann(fg). This extension is based on
an appropriate definition of the normal form as follows

NF (1) = RedLNF(1 | G1)⊗ RedLNF(1 | G2),

and

NF (∂i(P ⊗Q)) = RedLNF(Ai(∂i)P | G1)⊗ RedLNF(∂iQ | G2)

+RedLNF(Bi(∂i)P | G1)⊗ RedLNF(Q | G2).

Algorithm 4.3: Extended FGLM for ∂-finiteness under product
Input : - A Gröbner bases G1 and G2 w. r. t. ≺1 and ≺2 for annihilating ideals of

f1 and f2 ;
- An admissible term order ≺ on O;

Output: A Gröbner basis G of Ann(f1 ⊗ f2) w. r. t. ≺;
begin

1. Define NF by
NF (1) = RedLNF(1 | G1)⊗ RedLNF(1 | G2),

and

NF (∂i(P ⊗Q)) = RedLNF(Ai(∂i)P | G1)⊗ RedLNF(∂iQ | G2)

+RedLNF(Bi(∂i)P | G1)⊗ RedLNF(Q | G2).

2. Execute FGLM Algorithm;

return G;
end

Proposition 4.11 (Closure under the action of Ore operators)
Let O = K[∂;σ, δ] be an Ore algebra and f a ∂-finite function with respect to O. Then, for any
operator P ∈ O the function P ·f is also ∂-finite.

Proof: The proof is an immediate consequence of the following inclusion

O·(P ·f) ⊆ O·f,

and the ∂-finiteness of f . 2

In the case of the action of an Ore operator P ∈ O on a ∂-finite function f , we may also extend
the FGLM algorithm in order to compute a Gröbner basis of Ann(P ·f). If G is a Gröbner basis of

48 Chapter 4. ∂-Finite and Holonomic Functions

an annihilating ideal of f with respect to an admissible term order ≺, then we define the normal
form of a term t = ∂α ∈ O to be:

NF (t) := RedLNF(tP | G).

Algorithm 4.4: Extended FGLM for ∂-finiteness under the action of an Ore op-
erator

Input : An operator P ∈ O and Gröbner basis G w. r. t. ≺ for an annihilating ideal
of f ;

Output: A Gröbner basis G′ of AnnO(P ·f) w. r. t. ≺;
begin

1. For each term t = ∂α1
1 · · · ∂rαr ∈ O define

NF (t) := RedLNF(P · t | G);

2. Execute FGLM Algorithm;

return G′;
end

Remark 4.12
We note that the algorithms 4.2 and 4.3 are implemented by F.Chyzak in the Maple package
Holonomy under the commands dfinite_add and dfinite_mul.

I introduce the following explanatory example to show stepwise how the FGLM algorithm concepts
are applied to compute ∂-finite closure.

Example 4.13 (∂-finiteness under the action of an Ore operator)
We consider the Legendre polynomials Pn(x) and define the Ore algebra

O := Q(n, x)[Sn;Sn, 0][Dx; 1, Dx].

Let ≺ to be a lexicographical total term order with Dx ≺ Sn. A Gröbner basis of the annihilating
ideal of Pn(x) w.r.t. ≺ is given by

G1 = {(n+ 1)Sn − (x2 − 1)Dx − x(n+ 1), (x2 − 1)D2
x + 2xDx − n(n+ 1)}. (4.10)

We want to compute a Gröbner basis G2 of the annihilating ideal of Q · Pn(x), where

Q = Sn+ 1.

In the first iteration we have T1 = {1} and t1 = 1 and

NF1 = RedLNF((Sn + 1) · 1 | G) (4.11)

=
(x2 − 1

n+ 1

)
Dx + (x+ 1). (4.12)

4.1. ∂-Finite Functions 49

In the second iteration we have T2 = {Sn, Dx}, t2 = min≺ T2 = Dx and

NF2 = RedLNF((Sn + 1) ·Dx | G) (4.13)
= (x+ 1)Dx + (n+ 1). (4.14)

The resolution of the equation
c1NF1 + c2NF2 = 0 (4.15)

leads to {c1 = 0, c2 = 0} which means that the normal forms NF1 and NF2 are linearly indepen-
dent. We continue with the third iteration, where T3 = {Sn} ∪ {SnDx, D

2
x}, t3 = min≺ T3 = Sn

and

NF3 = RedLNF((Sn + 1) · Sn | G)

=
(−2− 3x+ 2x2 − 2xn− n+ 3x3 + x2n+ 2x3n)

(n2 + 3n+ 2)
Dx (4.16)

+
(2x2n+ xn− n− 1 + 2x+ 3x2)

(n+ 2)
.

The resolution of the equation

c1NF1 + c2NF2 + c3NF3 = 0 (4.17)

leads to the following solution

c1 = (n2 + 3n+ 2)(3x+ 2nx+ 1)

c2 = (n+ 2)(2x2 − 2n+ 3x2 − 3)

c3 = 2(n+ 2)(n2 + 3n+ 2)

and thus, G(1)
2 = c3Sn + c2Dx + c1 is an element of G2. Since SnDx is a multiple of the leading

monomial Sn of G(1)
2 then T4 = D2

x, t4 = D2
x and

NF4 = RedLNF((Sn + 1) ·D2
x | G)

=
(xn− n− 2

x− 1

)
Dx +

n2 + n

x− 1
. (4.18)

The resolution of the equation

c1NF1 + c2NF2 + c3NF3 + c4NF4 = 0 (4.19)

yields the following solution

c1 = (n+ 2)(n+ 1)(2n2 + 2x2n+ 2n+ 3x3 + 2x)

c2 = 2(n+ 2)(n+ 1)(x+ 1)

c3 = 2(n+ 2)(n+ 1)(x+ 1)

c4 = (x2 − 1)(2x2n+ 3x2 + 2n2 + 1 + 4n).

Hence, the remaining second element of G2 is

G
(2)
2 = c4D

2
x + c3Sn + c2Dx + c1. (4.20)

50 Chapter 4. ∂-Finite and Holonomic Functions

4.2 Holonomic functions
In the last section, we studied ∂-finite functions which are generally solutions of systems of linear
operators with rational function coefficients. We have also seen that these functions satisfy some
nice closure properties which may be executed algorithmically. However, to understand the oper-
ations of summation and integration in the next chapter and in particular to justify the termination
of their related algorithms, we need another class of functions called holonomic. The theory of
holonomy was introduced and studied by Joseph Bernstein [Ber72] to give an elementary proof
of a famous conjecture of Gelfand concerning the existence of a meromorphic extension of the
distribution complex valued function z 7→ P z, where P is a polynomial in several variables in Rn.
The notion of holonomy which is defined in the context ofD-modules is a rather technical notation
which is made in terms of graduations and filtrations of algebras and modules. In fact, it translates
into a notion of module dimension. We begin by giving a basic and general overview on the theory
of graded and filtered modules which forms the landscape in which holonomic functions will be
defined

Definition 4.14 (Graded algebra)
Let R be a K-algebra. We say that R is graded if there are K-vector spaces Ri, i ∈ N such that

i) R =
⊕

i≥0 Ri,

ii) RiRj ⊆ Ri+j .

TheRi are called homogeneous components ofR and the elements ofRi are called homogeneous
elements of degree i.

Example 4.15
• The property ii) of a graded algebra means that the product of two homogeneous elements

of degree i and j is still homogeneous of degree i+ j.

• The most important example of a graded algebra is the polynomial ring K[x1, . . . , xn]. The
monomials xk11 · · ·xknn with k1 + · · ·+ kn = m form a basis of the homogeneous component
of degree m.

A graded algebra admits a special kind of module.

Definition 4.16 (Graded module)
Let R =

⊕
i∈N Ri be a graded K-algebra. A left R-module M is a graded module if there exist

K-vector spaces Mi, for i ≥ 0, such that

i) M =
⊕

i≥0 Mi,

ii) RiMj ⊆Mi+j .

The Mi are the homogeneous components of degree i of M .

4.2. Holonomic functions 51

Remark 4.17
• Note that the definition of graded module depends on the graded structure chosen for the

algebra R.

If we consider the Weyl Algebra Ar(K) = 〈x1, . . . , xr, Dx1 , . . . , Dxr〉 (see Example 2.9), the
degree of an operator (see Remark 2.6) cannot be used to make Ar into a graded algebra. The
problem is that an element like Dx1x1 ought to be homogeneous of degree 2, but it is equal to
x1Dx1 + 1, which is not homogeneous. To use this degree effectively we must generalize graded
algebras to get filtered algebras.

Definition 4.18 (Filtered algebra)
Let R be a K-algebra. A family F = {Fi}i≥0 of a K-vector spaces is a filtration of R if

i) F0 ⊆ F1 · · · ⊆ R,

ii) R =
⋃
i≥0 Fi,

iii) FiFj ⊆ Fi+j .

If an algebra has a filtration it is called a filtered algebra. It is convenient to use the convention
that Fj = {0} if j < 0.

Remark 4.19
Every graded algebra is filtered. In fact, suppose that R =

⊕
i≥0 Ri is a graded algebra and

consider the vector spaces Fk =
⊕k

i=0Ri. Clearly Fk ⊆ Fk+1 and their union is the whole of R.
Moreover, since RiRj ⊆ Ri+j we have that FkFl ⊆ Fk+l. Hence, {Fk}k≥0 is a filtration of R.

There are filtered algebras which do not have natural grading. This is the case for the Weyl algebras,
which however, have many different filtrations. In the following example, we focus on the filtration
we deal with in this section, the so called Bernstein filtration.

Example 4.20 (Bernstein filtration)
The Bernstein filtration of a Weyl algebraAr is defined using the degree of operators inAr. Denote
by Bk the set of all operators of Ar of degree ≤ k. These are vector subspaces of Ar. Conditions
i) and ii) of a filtration are clearly satisfied by the Bk and condition iii) is a consequence of the
properties of the degree function defined on Ar (see Remark 2.6). The Bernstein filtration B =
{Bk}k≥0 has a very special feature that each Bk is a finite dimensional vector space. A basis of Bk

is determined by the monomials xαDβ whose total weight |α| + |β| ≤ k. In particular, B0 = K
and {1, x1, . . . , xr, Dx1 , . . . , Dxr} is a basis of B1.

We may use a filtration of an algebra to construct a graded algebra. This is very useful because
many properties of this graded algebra pass on to its parent filtered one.

Definition 4.21 (Associated graded algebra)
Let R be a K-algebra and F = {Fi}i≥0 a filtration of R. As a first step in the construction of the
graded algebra, we introduce the symbol map of order k, which is a canonical projection of vector
spaces

σi : Fi −→ Fi/Fi−1

52 Chapter 4. ∂-Finite and Holonomic Functions

Thus for an element d ∈ Fi, the symbol σi(d) is nonzero if and only if d /∈ Fi−1.
Consider now the K-vector space

grFR =
⊕
i≥0

Fi/Fi−1.

We want to make it into a graded algebra. For that it is enough to define the multiplication of two
homogeneous elements and extend it by linearity. Let σk(a) for a ∈ Fk and σl(b) for b ∈ Fl be two
homogeneous elements. We define their product by

σk(a)σl(b) = σk+l(ab).

A straightforward verification shows that grFR with this multiplication is a graded algebra with
homogeneous components Fi/Fi−1. This is called the graded algebra of R associated with the
filtration F .

Remark 4.22
We denote the graded algebra of Ar associated with the Bernstein filtration B by Sr = grBAr.

The graded Algebra Sr hides a surprise which we illustrate in the following theorem.

Theorem 4.23
The graded Algebra Sr is isomorphic to the commutative polynomial ring over K in 2r variables.

Proof: For a proof of the theorem we refer to [Cou95, Theorem 3.1] 2

One of the algebraic objects we are interested in throughout this dissertation are left modules of
the Weyl algebra Ar. In the following, we focus on the main properties that these modules may
inherit from the filtered structure of Ar with respect to the Bernstein filtration.

Definition 4.24 (Filtered Ar-module)
Let M be a left Ar-module. A family Γ = {Γi}i≥0 of finite dimensional K-vector spaces of M is
a filtration of M with respect to the Bernstein filtration B (see Example 4.20) if it satisfies

i) Γ0 ⊆ Γ1 ⊆ · · · ⊆M ,

ii)
⋃
i≥0 Γi = M ,

iii) BiΓj ⊆ Γi+j .

The convention that Γj = {0} if j < 0 remains in force.

Remark 4.25
• It is clear that B is a filtration of Ar as an Ar-module.

4.2. Holonomic functions 53

• Analogously to Definition 4.21, we may define the graded module associated with a filtered
module. Let M be a left Ar-module and Γ be a filtration of M with respect to B. Define the
symbol map of order k of the filtration Γ to be the canonical projection

µi : Γi −→ Γi/Γi−1.

Consider the K-vector space
grΓM =

⊕
i≥0

Γi/Γi−1.

We define an action of Sr = grBAr on this vector space as follows

σk(a)µl(u) = µl+k(au), with a ∈ Bk and u ∈ Γl.

The graded Sr-module grΓM is called the graded module associated to the filtration Γ.

• It is not always true that if M is finitely generated over Ar then grΓM is finitely generated
over Sr. When grΓM is finitely generated we say that Γ is a good filtration. However,
it is true that every finitely generated Ar-module admits a good filtration. Indeed, if M is
generated by u1, . . . , us then the filtration Γ defined by Γi =

∑s
k=1 Biuk is a good filtration.

The graded module grΓM is generated over Sr by the symbols of u1, . . . , us.

Definition 4.26 (Induced filtration)
Let M be a leftAr-module with a filtration Γ with respect to B. Suppose that N is a submodule of
M . We may use Γ to construct filtrations for both N and M/N as follows

i) A filtration of N is Γ′ = {Γi ∩N}i≥0.

ii) A filtration of M/N is Γ′′ = {Γi/(Γi ∩N)}.

Example 4.27
We have seen in Remark 4.25 that B is a filtration of Ar as an Ar-module. Moreover, a left ideal I
of Ar may be seen as a left submodule of Ar. Hence, a filtration Ar/I is

Γ = {Γi = Bi/(Bi ∩ I)}i≥0. (4.21)

We note that this filtration is a good filtration which will be used later to define a certain dimension
of Ar/I and will lead to the definition of holonomic functions.

Using graded and filtered modules introduced previously, we define a dimension for Ar-modules.
This dimension is independent of the chosen filtration, and in this sense it is a combinatorical
invariant that characterizes the considered Ar-module.
In the following we state a result from commutative algebra that is the key for the definition of this
dimension.

54 Chapter 4. ∂-Finite and Holonomic Functions

Theorem 4.28 (Hilbert polynomial)
Let M =

⊕
i≥0Mi be a finitely generated graded module over the polynomial ring K[x1, . . . , xn].

There exists a polynomial HPM(t) ∈ Q[t] and a positive integer N such that

s∑
i=0

dimK(Mi) = HPM(s)

for every s ≥ N .
The polynomial HPM is known as the Hilbert polynomial of the module M .

Now, we are ready to define the dimension of an Ar-module.

Definition 4.29 (Bernstein dimension)
Let M be a finitely generated left Ar-module. Suppose that Γ is a good filtration of M with
respect to the Bernstein filtration B, that is, the graded module grΓM is finitely generated over
Sr = grBAr (see Remark 4.25). Denote by HP (t,Γ,M) the Hilbert polynomial of the graded
module grΓM over the polynomial ring Sr (see Theorem 4.23). Hence, by Theorem 4.28, there
exists an integer N such that for s ≥ N

HP (s,Γ,M) =
s∑
i=0

dimK(Γi/Γi−1) = dimK(Γs). (4.22)

The last equation in (4.22) follows from the fact that dimK is additive over exact sequences of
vector spaces. The degree of HP (t,Γ,M) is called the Bernstein dimension of M and denoted
by d(M).

Remark 4.30
It is shown in [Cou95, Section 9.2] that the Bernstein dimension is independent of the chosen good
filtration, and thus one is able to talk about the dimension of an Ar-module M without reference
to any particular filtration.

Example 4.31 (Bernstein dimension of Ar)
Let M be the Ar-module Ar. The Bernstein filtration B is a good filtration of M and it is possible
to compute explicitly HP (s,B,M) in this case. By (4.22), we should determine the dimension
of Bs. But the set of monomials {xαDβ

x} with |α| + |β| ≤ s form a basis of Bs as a K-vector
space. So it is enough to compute the elements of this basis. To do this we should compute the
non-negative solutions of the inequality

α1 + · · ·+ αr + β1 + · · ·+ βr ≤ s. (4.23)

It is known from combinatorics that (4.23) admits
(
s+2r

2r

)
such solutions. Hence,

HP (s,B,M) =

(
s+ 2r

2r

)
which is a polynomial of degree 2r in s. Thus d(Ar) is 2r.

4.2. Holonomic functions 55

Example 4.32 (Computation of Bernstein dimension)
Let I = 〈xDx − 3, D4

x〉 be a left ideal of A1. We want to compute the Bernstein dimension of the
left A1-module M = A1/I . We know from Example 4.27 that

Γ = {Γi = Bi/(Bi ∩ I)}i≥0

is a good filtration of M with respect to the Bernstein filtration B. Moreover, it is not difficult to
show that

dimK(Γs) = dimK(Bs)− dimK(Bs ∩ I) for s ≥ 0.

On the other hand, we know that Bs is generated as a K-vector space by the set of monomials

{xαDβ
x ; 0 ≤ α, β ≤ s}.

A K-basis of Bs ∩ I is the set of all monomials which are contained in Bs and not in I , that is,

{xαDβ
x ; 1 ≤ α, β ≤ s und α + β ≤ s}, for 0 ≤ s ≤ 3.

and
{xαDβ

x ; 1 ≤ α, β ≤ s und α + β ≤ s} ∪ {Ds
x}, for s ≥ 4.

We summarize the computations in the following table.

s 0 1 2 3 4 5 · · ·
dimK(Γs) 1 3 5 7 8 9 · · ·

An observation of the table shows that for s ≥ 3 the K-dimension of Γs is s + 4 = HP (s,Γ,M),
the Hilbert polynomial of M which is of degree one in s. Hence, the Bernstein dimension of
M = A1/I is one.

Now, we are ready to present an important result due to Bernstein [Ber72, Theorem 1.3] , in which
he established a lower bound on the Bernstein dimension of a finitely generated Ar-module.

Theorem 4.33 (Bernstein’s inequality)
If M is a finitely generated nonzero left Ar-module, then the Bernstein dimension of M is greater
or equal to r.

Proof: For a proof of the theorem, the reader may refer to the original paper [Ber72, Theorem 1.3] or to
the book [Cou95, Theorem 9.4.2]. 2

Remark 4.34
In the previous theorem, a lower bound was given on the Bernstein dimension of a left Ar-module
because next, we will be more interested in those with minimal dimension r. However, we have to
mention that there exists also an upper bound which is 2r (see [Cou95, Corollory 9.3.4]).

56 Chapter 4. ∂-Finite and Holonomic Functions

The non-commutative structure is so strong that the ring Ar has no two-sided ideals, except the
zero-ideal and the whole ringAr. But of course there are one-sided left and right ideals. The intro-
duction on the theory of filtered modules presented previously is essentially aimed to characterize,
in a D-module context, a class of left-ideals in Ar, which we present in the following definition.

Definition 4.35 (Holonomic ideal)
A left ideal I in Ar is called holonomic if it is zero, or the Bernstein dimension of the left Ar-
module M = Ar/I is minimal, that is, by Bernstein’s inequality (Theorem 4.33), d(M) = r.

Definition 4.36 (Holonomic function)
An object f on which the Weyl algebra Ar may act by left multiplication, is called a holonomic
function, if there exists a holonomic left ideal in Ar that annihilates f .

A wonderful source of examples of holonomic ideals is given by the following result.

Corollary 4.37
Every left ideal I 6= 0 of the Weyl algebra A1 is holonomic.

Proof: By Theorem 4.33 and Remark 4.34 the Bernstein dimension of the module M = A1/I satisfies
1 ≤ d(M) ≤ 2. Since the Bernstein dimension 2 is reached only by the module A1 itself, that is, for I = 0

then d(M) must be one and therefore, the ideal I is holonomic. 2

In the following proposition, we present a nice property of holonomic ideals that is crucial for the
termination of many algorithms of the next chapter.

Proposition 4.38 (Elimination property)
Let I be a left holonomic ideal of Ar. For every r + 1 generators out of the 2r generators
{x1, . . . , xr, D1, . . . Dr} ofAr there exists a nonzero operator of I that only depends on these r+1
generators.

Proof: We follow the proof given by Zeilberger in [Zei90b] to whom it is was shown by Bernstein himself.
Without loss of generality, let us take the r + 1 generators to be the set {x1, . . . , xr, D1} and denote by S
the subalgebra of Ar generated by this set. Consider the mapping

φ : S −→ Ar/I, P 7→ P mod I.

Since I is holonomic, by Definition 4.35 the Bernstein dimension of Ar/I is r. Moreover, we have seen in
Example 4.31 that the Bernstein dimension of S is r+1. By Theorem 4.28 and with respect to the Bernstein
filtration this leads to, for s� 0

dimKBs = O(sr+1),

dimKBs/(Bs ∩ I) = O(sr).

Hence, for s � 0 the restriction of the linear map φ to the finite dimensional vector space Bs is a linear
transformation from a higher-dimensional vector space to a lower-dimensional vector space, and its kernel
must therefore be nonzero. But this kernel is precisely I ∩ S. 2

4.2. Holonomic functions 57

Remark 4.39 (Holonomic canonical representation)
• A holonomic function f may be given by any generating set of its annihilating ideal with

appropriate initial conditions. However, in general it is not clear how many initial condi-
tions are required to uniquely specify the function. The above proposition guarantees, in
particular, the existence of r operators

Pi(Dxi , x1, . . . , xr), i = 1, . . . , r. (4.24)

of order ni in Dxi that annihilate f . These operators with r initial conditions

Di1
x1
Di2
x2
· · ·Dir

xrf(x0), 0 ≤ i1 ≤ n1, . . . , 0 ≤ ir ≤ nr (4.25)

specify uniquely f and it is called a canonical holonomic representation system of f .
It is also important to note that the point x0 should not be a common zero of the leading
coefficients of the operators Pi.

• The canonical representation (4.24), with its accompanying initial conditions is not unique.
Given such a representation, we can left-multiply by any operator in (Dxi , x1, . . . , xr) to
get higher-order equations and add the appropriate number of initial conditions. Therefore,
it is desirable that a holonomic function may be given by a canonical representation with
minimal order in Dxi and coefficients in (x1, . . . , xr) without common factors.

• Proposition 4.38 is a proof of the existence of a canonical holonomic representation of f .
This representation can be computed from a generating set of the annihilating ideal of f , by
aimed elimination of the variables Dxi using Gröbner bases techniques (see Chapter 3).

In Definition 4.36 of a holonomic function, we considered all objects on which the Weyl algebra
may act. One of the objects we are concerned with in this thesis are sequences. But how the Weyl
algebra may act on them?
We first consider the case of sequences in one variable (uk)k∈N. Moreover, we denote the generat-
ing function of (uk)k∈N by

f(x) =
∞∑
k=0

ukx
k. (4.26)

Multiplying f(x) by x we get

xf(x) =
∞∑
k=0

ukx
k+1 =

∞∑
k=1

uk−1x
k (4.27)

which means that this action of x on f(x) induces a backward shift action on the sequence (uk)k∈N.
Thus,

x↔ S−1
k . (4.28)

Similarly, multiplying f(x) by Dx yields

Dxf(x) =
∞∑
k=0

kukx
k−1 =

∞∑
k=0

(k + 1)uk+1x
k. (4.29)

58 Chapter 4. ∂-Finite and Holonomic Functions

Hence, we get the relation
Dx ↔ (k + 1)Sk. (4.30)

The relations (4.28) and (4.30) leads also to

k ↔ xDx, (4.31)
Sk ↔ x−1.

Definition 4.40 (Holonomic sequence)
A multivariate sequence (Uk)k∈Nr is called holonomic if its multivariate generating function

f(x) =
∑
Uk xk, k = (k1, . . . , kr), x = (x1, . . . , xr) (4.32)

is holonomic. Moreover the action of the Weyl algebraAr on (Uk)k∈Nr is defined by the following
relations

xi ↔ S−1
ki
, Dxi ↔ (ki + 1)Ski , Ski ↔ x−1

i and ki ↔ xiDxi . (4.33)

Hence, by means of the relations (4.33) the elimination property may be directly carried into the
shift context. In fact, the holonomy of a sequence (Uk)k∈Nr guarantees by Proposition 4.38 the
existence of an operator P (x1, . . . , xr, Dr) that annihilates it, which is, using the relations (4.33),
the operator P (S−1

k1
, . . . , S−1

kr
, (kr + 1)Skr). Getting rid of the dominators in the Ski’s we get a

nontrivial shift operator Q(kr, Sk1 . . . , Skr).

Example 4.41
The sequence uk = k! satisfies the following recurrence equation

k uk−1 − uk = 0, (4.34)

which in operator notation yields
kS−1

k − 1. (4.35)

Substituting the relations (4.31) we get a differential operator

(xDx)x− 1 = x(Dxx)− 1 = x(xDx + 1)− 1 = x2Dx + x+ 1 (4.36)

annihilating the generating function f(x) of uk and generates a left ideal in A1(C). Hence f(x) is
holonomic by Corollary 4.37 and consequently uk too.

Closure properties

Similarly to ∂-finite functions, holonomic functions share some nice closure properties which may
be proved using the theory of filtered modules presented previously. For instance, if f and g
are holonomic, then the sum f + g and the product fg are also holonomic. Furthermore, if
f(x1, . . . , xr) is holonomic then f(x1, . . . , xr−1, c), c ∈ K, and

∫
f(x1, . . . , xr) dxr are holo-

nomic in (x1, . . . , xr). Holonomic sequences fulfil analogeous statements, where the integral is

4.3. Conclusion 59

replaced by the summation quantifier. For detailed proofs of these properties, the reader may refer
to [Zei90b] or [Cou95].
Unfortunately, this similarity disappears when we eventually want to execute algorithmically these
closure properties. Indeed, the computation of these closures should rely on holonomic ideal rep-
resentations of the given functions. However, computing such annihilating ideals in the corre-
sponding Weyl algebra is a hot topic of D-module theory and still a nontrivial task, both on the
theoretical or algorithmic level. Recently, algorithms for determining the complete holonomic an-
nihilating ideal of f s in the Weyl algebra Ar, where f is a polynomial in K[x1, . . . , xr], have been
designed in [Oak97, SST00] and implemented in [MML08].

4.3 Conclusion

In the last sections, we introduced two classes of functions, namely holonomic and ∂-finite func-
tions. This section gives a comparison between the two classes and arguments the need of these
two notions.
One obvious difference is that the definition of ∂-finite functions concerns all kinds of Ore oper-
ators, whereas holonomy is essentially defined for the differential setting and may be extended to
the shift setting by means of the generating function (see Equation (4.32)).
The reason of not restricting ourselves to just one class is that we need certain properties of either
classes. On one hand, the description of ∂-finite functions by rectangular systems is easier to ob-
tain and allows the algorithmic execution of their closure properties (see Subsection 4.1.2). On the
other hand, the elimination property (see Proposition 4.38), which is crucial for the termination
of the algorithms of the next chapter, requires holonomy. Thereby, we are more concerned with
the functions lying in the intersection of the two classes. The following theorem which is due to
Masaki Kashiwara, confirms that in the differential setting the two classes in fact coincide.

Theorem 4.42
Let Ar(K) be the Weyl algebra in x = x1, . . . , xr and let Orat be the rational differential Ore
algebra K(x)[Dx; 1, Dx]. A left ideal I of Orat is ∂-finite if and only if I ∩ Ar, which is also a
left ideal of Ar, is holonomic.

Proof: One direction is obvious and is in fact a consequence of the elimination property of holonomic
ideals. If I is a holonomic left ideal of Ar then by Proposition 4.38, there exists for each 1 ≤ i ≤ r a
nonzero operator that involves only Dxi and none of the remaining differential operators Dxj with j 6= i.
These operators form a rectangular system for I and thus, the left ideal I is ∂-finite.
The converse direction is less obvious and we will not give a proof here. Besides the original paper of
Kashiwara [Kas78], we may refer the reader to [Tak92], where a more elementary proof is given. 2

Whereas the notions of ∂-finiteness and holonomy coincide in the differential setting, unfortunately
this is not in general the case in the multivariate shift setting. The following example given by
Herbert S. Wilf and Doron Zeilberger in [WZ91] illustrates this fact.

60 Chapter 4. ∂-Finite and Holonomic Functions

Example 4.43 (Non-holonomic Multivariate Sequence)
The hypergeometric sequence Un,k = 1

n2+k2
is ∂-finite and it is given by the rectangular system

((n+ 1)2 + k2)Sn − (n2 + k2)

((k + 1)2 + n2)Sk − (n2 + k2),

which are the generators of the annihilating ideal of Un,k in the rational Ore algebra

O = Q(n, k)[Sn;Sn, 0][Sk;Sk, 0].

Suppose now that Un,k is holonomic, then by the elimination property (Proposition 4.38) there ex-
ists a nonzero k-free operator Q(n, Sn, Sk) annihilating Un,k. Hence, we get a recurrence equation
of the form ∑

i,j≥0

pij(n)

(n+ i)2 + (k + j)2
= 0, (4.37)

where pij are polynomials which are not all zeros. Moreover, each dominator (n + i)2 + (k + j)2

considered as a polynomial in k involves two poles which are pairwise distinct. Hence, the sum
cannot cancel unless all pij are zeros. Therefore, no such a recurrence exists and Un,k is not
holonomic.

In this thesis, we are essentially concerned with functions that are both ∂-finite and holonomic.
These functions are in general given by a ∂-finite ideal Ir in the multivariate rational Ore algebra

Or = K(x)[∂;σ, δ].

However, in the algorithms of the next chapter, we will need to eliminate one of the variables xi
using Gröbner bases techniques. To perform this elimination, we would like to determine from the
∂-finite ideal Ir the holonomic ideal in the polynomial Ore algebra

Op = K[x][∂;σ, δ]

corresponding to the given function f . This ideal is

Ip = Ir ∩Op.

In the pure differential case, the ideal Ip is named Weyl closure and has been solved by Harrison
Tsai in the univariate [Tsa00b] and multivariate case [Tsa00a]. The computation of Ip when shift
operators are involved is still an open problem. In practice, if {p1, . . . , ps} is a generating set of
Ir in Or, then after getting rid of the denominators in the pi’s by multiplying through, we get a set
{p′1, . . . , p′s} that generates an ideal I ′ ⊆ Op. The ideal I ′ is in general only a subideal of Ip and
may not give a complete holonomic description of the function f . Therefore, using this ideal to
perform the elimination of one of the xi’s to get an xi-free operator may fail, even if we know by
the elimination property that such an operator must exist. This phenomenon is called extension
/contraction problem. Let’s illustrate this fact by the following examples

4.3. Conclusion 61

Example 4.44
Consider the sequence Un,k =

(
n
k

)
which is annihilated by the ideal Ir generated by the operators

P = (n+ 1− k)Sn − (n+ 1)

Q = (k + 1)Sk − (n− k)

in the rational Ore algebra Or = K(n, k)[Sn;Sn, 0][Sk;Sk, 0]. Pascal’s Triangle rule represented
by the operator

R = SnSk − Sk − 1

is an element of Ir, since

R =
1

n− k
(SkP +Q).

However,R is not contained in the ideal Ip of the polynomial Ore algebra Op = K[n, k][Sn;Sn, 0][Sk;Sk, 0]
generated by {P,Q}.

Example 4.45
The function f(x) = x3 is ∂-finite and its annihilating ideal Ir is generated by the operator

P = xDx − 3

in the rational Ore algebra Or = K(x)[Dx; 1, Dx]. By Corollary 4.37 f(x) is also holonomic. The
operator D4

x is contained in Ir, since

D4
x = (

1

x
D3
x)P.

but it is not an element of the ideal Ip ⊆ Op = K[x][Dx; 1, Dx] generated by P .

62 Chapter 4. ∂-Finite and Holonomic Functions

63

Chapter 5

Algorithms for Summation and Integration

5.1 Creative Telescoping
In his paper A holonomic systems approach to special functions identities [Zei90b] and relying on
the works of Celine Fasenmyer, [Fas47, Fas49] Doron Zeilberger presented a method to compute
recurrence or differential equations satisfied by definite sums or integrals of holonomic functions.
This method is called creative telescoping. To describe the idea of this method we consider a
holonomic function f(t,x) in the variables t and x = x1, . . . , xs. The main ingredient of creative
telescoping is an annihilating operator of f of the form

T = P (x, ∂x) + ∂t ·Q(t,x, ∂t,∂x) (5.1)

which lies in the Ore algebra

Op = K(x)[t][∂x;σx, δx][∂t;σt, δt]

and where ∂t and ∂x = ∂x1 , . . . , ∂xs refer to Ore operators acting on the variables t and x, respec-
tively.
In the differential setting, t is a continuous variable and the operator ∂t stands for the differential
operator Dt = dt

t
. In this case, applying

T = P (x, ∂x) +Dt ·Q(t,x, Dt,∂x) (5.2)

to the definite integral

F (x) =

∫ b

a

f(t,x)dt

we get an equation of the form

0 = P (x, ∂x) · F (x) + [Q(t,x, Dt,∂x)f(t,x)]t=bt=a

= P (x, ∂x) · F (x) +R(x,∂x). (5.3)

64 Chapter 5. Algorithms for Summation and Integration

In the difference setting, t denotes a discrete variable and the operator ∂t stands for the difference
operator4t = St − 1. Hence an annihilating operator of f(t,x) is

T = P (x, ∂x) +4t ·Q(t,x,4t,∂x) (5.4)

which we apply to the definite sum

S(x) =
b∑
t=a

f(t,x)

to get an equation of the form

0 = P (x, ∂x) · S(x) + [Q(t,x,4t,∂x)f(t,x)]t=b+1
t=a

= P (x, ∂x) · S(x) +R(x,∂x). (5.5)

We note that the equations (5.3) and (5.5) are inhomogeneous because of R. An interesting case
of integrals and sums for which R vanishes is described in the following definition

Definition 5.1
We say that the integral

∫ b
a
f(t,x)dt and the sum

b∑
t=a

f(t,x) have natural boundaries, if for any

operator Q ∈ O we have [Q · f]t=bt=a = 0 and [Q · f]t=b+1
t=a = 0, respectively.

Typical examples of natural boundaries are sums with finite support, integrals over the whole real
line such that lim

t→±∞
tαxβDγ

tDx
δf(t,x) = 0, or contour integrals over closed paths.

By the method of creative telescoping, it is preferably looked for a homogeneous equation satisfied
by the expression in question (integral or sum). In the case of natural boundaries, the inhomoge-
neous part R in the equations (5.3) and (5.5) evaluates to zero and P (x, ∂x) is the searched anni-
hilating operator of the expression. Otherwise, we may get rid of the inhomogeneity by computing
a left annihilating operator C of Q ·f using Proposition 4.11. Hence, the operator C ·P annihilates
the sum or the integral in question.
The method of creative telescoping may be applied to compute annihilating operators for multiple
sums and integrals. For this purpose, we should determine, for given holonomic function f(t, x),
an annihilating operator of the form

T = P (x, ∂x) + ∂t1Q1(t, x, ∂t, ∂x) + · · ·+ ∂tlQl(t, x, ∂t, ∂x), (5.6)

where ∂t = (∂t1 , . . . , ∂tl) and ∂x = (∂xl+1
, . . . , ∂xs) are differential or difference operators acting

on the variables t = (t1, . . . , tl) and x = (xl+1, . . . , xs), respectively.
Until now, we explained the principle of creative telescoping without mentioning how to determine
the operator T in equations (5.3) and (5.5). For the determination of T we present two algorithms.
The first one is due to Zeilberger [Zei90b] and he named it “slow algorithm”, in opposite to his
algorithm which treats the special case of single sums and integrals of proper hypergeometric
terms, which he called “fast algorithm” [Zei90a]. The second algorithm is due Nobuki Takayama
[Tak90a, Tak90b] in the context of pure Weyl algebras and was optimized and extended to more
general ore algebras by Frédéric Chyzak and Bruno Salvy [CS96].

5.1. Creative Telescoping 65

5.1.1 Zeilberger’s Slow Algorithm
In this algorithm a more restrictive form of the operator T is required

T = P (x, ∂x) + ∂t ·Q(x, ∂t,∂x), (5.7)

where the coefficients of the operators P andQ are free of the variable t. To determine the operator
T in (5.7) we should have as input an annihilating ideal I for a given holonomic function f(t,x).
The main step of this algorithm is to use the generators of I to get a new operator T ∈ I not
containing the variable t. In this case, the operator ∂t will commute with all the variables of T
and we may proceed by left Skew Euclidean division (see Section 2.3) to write T in the form
(5.7), where the operator P is simply the remainder of this division. To eliminate the variable
t, Zeilberger in [Zei90b] used a noncommutative version of “Sylvester’s dialytic elimination”.
However, he also mentioned that the application of noncommutative Gröbner bases to perform this
elimination may lead to better results. The use of Gröbner bases requires first to fix an appropriate
elimination ordering for the variable t, that is, a total ordering ≺ where t is lexicographically
greater than the variables x and the acting operators ∂t and ∂x

t � x � ∂t � ∂x.

Afterwards, we compute a Gröbner basis G of the ideal I with respect to ≺ in the polynomial Ore
algebra

Op = K(x)[t][∂x;σx, δx][∂t;σt, δt] (5.8)

to get, if it exists, the operator T among the generators of G. Thus, an annihilating operator
P (x, ∂x) for

∫ b
a
f(t,x)dt and

∑b
t=a f(t,x) by simply substituting ∂t to zero (see equations (5.2)

and (5.4)).
We note that the success of this algorithm drastically depends on the existence of the operator
T ∈ I , which is guaranteed by the elimination property (Proposition 4.38) only if I is holonomic.
Unfortunately, there are no known algorithmic or even theoretic methods to compute a complete
annihilating holonomic ideal for a given function f , except (as far as I know) for the special case
where Op is the Weyl algebraAr and f = gn with g a polynomial in K[x1, . . . , xr] (see [MML08]).
In practice, the ideal I is a ∂-finite description of the function f in the rational Ore algebra

Or = K(x, t)[∂x;σx, δx][∂t;σt, δt]

and we have seen in the last chapter how we can algorithmically compute this ideal for algebraic
operations preserving ∂-finiteness. However, what we effectively need to perform Gröbner basis
computation is the ideal Ip = I ∩Op. The determination of Ip is partially solved in the context of
pure differential operators (Weyl algebra) and still an open problem when other Ore operators are
involved, in particular shift operators. What we effectively do in practice to bypass this problem is
getting rid of the denominators of the coefficients of the generators of I to generate an annihilating
ideal I ⊂ Op of the function f . The ideal I is in general only a subideal of Ip and hence we may be
confronted with the extension/extraction problem described in Section 4.3 and the Gröbner basis
computation may fail to return the operator T .

66 Chapter 5. Algorithms for Summation and Integration

Example 5.2
In this example, we want to prove the following identity

n∑
k=0

(
n

k

)3

=
n∑
k=0

(
n

k

)2(
2k

n

)
(5.9)

(see [Str93]) using Gröbner basis elimination techniques. The summand
(
n
k

)3 is annihilated by the
following operator system

REk1 = (1 + k)3Sk + (k − n)3 (5.10)
REn1 = (1− k + n)3Sn− (1 + n)3, (5.11)

and the summand
(
n
k

)2(2k
n

)
is annihilated by the following one

REk2 = (2 + 2k − n)(1 + 2k − n)(1 + k)Sk − 2(k − n)2(1 + 2k), (5.12)
REn2 = (−1 + k − n)2Sn + (1 + n)(2k − n). (5.13)

The polynomials of each system generate a left ideal in the Ore algebra

Op = Q(n)[k][Sn;Sn, 0][Sk;Sk, 0]. (5.14)

Maple Session 5.1 (Proof of the identity:
n∑
k=0

(n
k

)3
=

n∑
k=0

(n
k

)2(2k
n

)
)

We begin by loading the packages we need
> read "hsum15.mpl";

Package “Hypergeometric Summation“, Maple V − Maple 15

Copyright 1998 − 2012 , Wolfram Koepf , University of Kassel

> with(Ore_algebra):

> with(Groebner):

and define the Ore algebra where the Gröbner basis computation will be performed.
> A:=skew_algebra(shift=[Sn,n],shift=[Sk,k],polynom=k);

A := Ore algebra

Using the following procedure
> HolonomicRE:=proc(term,sk)
> local s,k,r;
> s:=op(0,sk): k:=op(1,sk):
> r:=ratio(term,k);
> denom(r)*s(k+1)-numer(r)*s(k)=0;
> end proc:

we determine annihilating operator systems of the summands
(
n
k

)3 and
(
n
k

)2(2k
n

)
, respectively.

> rek1:=HolonomicRE(binomial(n,k)ˆ3,S(k));

rek1 := (k + 1)3 S(k + 1) + (−n+ k)3 S(k) = 0

> ren1:=HolonomicRE(binomial(n,k)ˆ3,S(n));

5.1. Creative Telescoping 67

ren1 := (−n− 1 + k)3 S(n+ 1) + (n+ 1)3 S(n) = 0

> rek2:=HolonomicRE(binomial(n,k)ˆ2*binomial(2*k,n),S(k));

rek2 := (2 k + 2− n) (−n+ 2 k + 1) (k + 1) S(k + 1)

− 2 (−n+ k)2 (2 k + 1) S(k) = 0
> ren2:=HolonomicRE(binomial(n,k)ˆ2*binomial(2*k,n),S(n));

ren2 := (−n− 1 + k)2 S(n+ 1)− (n+ 1) (−n+ 2 k) S(n) = 0

Written in operator notation:
> REk1:=subs({S(k+1)=Sk,S(k)=1},op(1,rek1));

REk1 := (k + 1)3 Sk + (−n+ k)3

> REn1:=subs({S(n+1)=Sn,S(n)=1},op(1,ren1));
REn1 := (−n− 1 + k)3 Sn + (n+ 1)3

> REk2:=subs({S(k+1)=Sk,S(k)=1},op(1,rek2));
REk2 := (2 k + 2− n) (−n+ 2 k + 1) (k + 1)Sk − 2 (−n+ k)2 (2 k + 1)

> REn2:=subs({S(n+1)=Sn,S(n)=1},op(1,ren2));
REn2 := (−n− 1 + k)2 Sn − (n+ 1) (−n+ 2 k)

What we are looking for are k-free operators contained in the left ideals generated by the operator systems
{REk1, REn1} and {REk2, REn2}. For this purpose we choose a term order eliminating the variable
k, namely the lexicographical term order ≺ with Sk ≺ Sn ≺ k.

> T:=MonomialOrder(A,plex(k,Sn,Sk));

T := monomial order

We compute a Gröbner basis w.r.t. ≺ of the ideal generated by REk1 and REn1
> GB1:=Basis([REn1,REk1],T):

and we extract all k-free oprators
> L1:=remove(has,GB1,k):

For the summand
(
n
k

)3 we get a single k-free operator.
> nops(L1);

1

Substituting Sk by 1 we get a third order shift operator.
> RE1:=collect(subs(Sk=1,L1[1]),Sn,factor);

RE1 := (3n+ 4) (n+ 3)2 Sn3 + (−148− 18n3 − 232n− 114n2)Sn2

− (3n+ 5) (15n2 + 55n+ 48)Sn − 8 (7 + 3n) (n+ 1)2

We apply the same steps to the summand
(
n
k

)2(2k
n

)
.

> GB2:=Basis([REn2,REk2],T):

> L2:=remove(has,GB2,k):

> nops(L2);

2

> RE2:=collect(subs(Sk=1,L2[1]),Sn,factor);

68 Chapter 5. Algorithms for Summation and Integration

RE2 := −3 (n+ 1) (n+ 3)2 Sn3 + 3 (n+ 1) (44 + 7n2 + 35n)Sn2

+ 24 (n+ 2)2 (n+ 1)Sn
> ct2:=collect(content(RE2,Sn),Sn,factor);

ct2 := 3 + 3n

> RE2:=collect(RE2/ct2,Sn,factor);

RE2 := −(n+ 3)2 Sn3 + (44 + 7n2 + 35n)Sn2 + 8Sn (n+ 2)2

> RE3:=collect(subs(Sk=1,L2[2]),Sn,factor);

RE3 := (4n+ 9) (n+ 4)2 Sn4 + (−725n− 231n2 − 738− 24n3)Sn3

− 4 (n+ 2) (15n2 + 78n+ 103)Sn2 − 32 (n+ 2)2 (n+ 1)Sn

We shift back the two shift operators to get
> RE2:=sort(subs({n=n-1,Snˆ3=Snˆ2,Snˆ2=Sn,Sn=1},RE2));

RE2 := −(n+ 2)2 Sn2 + (35n+ 9 + 7 (n− 1)2)Sn + 8 (n+ 1)2

> RE3:=subs({n=n-1,Snˆ4=Snˆ3,Snˆ3=Snˆ2,Snˆ2=Sn,Sn=1},RE3);

RE3 := (5 + 4n) (n+ 3)2 Sn3

+ (−725n− 13− 231 (n− 1)2 − 24 (n− 1)3)Sn2

− 4 (n+ 1) (15 (n− 1)2 + 78n+ 25)Sn − 32 (n+ 1)2 n

a second order and a third order shift operators RE2 and RE3 annihilating the summand
(
n
k

)2(2k
n

)
.

The shift operator RE3 is of order three, but it is not equal to the operator RE1 annihilating
(
n
k

)3.
However,RE1 andRE3 may have a common right factor which can be determined (if it exists) by per-
forming gcd computation. In fact, this can be done by using the command skew_gcd(p,q,x,A)
which returns a list {g, a, b, u, v} such that up+ vq = 0 and ap+ bq = g, where g is a right gcd of p
and q.

> gcdL1:=collect(skew_gcdex(RE1,RE3,Sn,A),Sn,factor);

gcdL1 := [−(27n+ 35) (n+ 2)2 Sn2 + (27n+ 35) (7n2 + 21n+ 16)Sn

+ 8 (27n+ 35) (n+ 1)2, −5− 4n, 3n+ 4,

−(4n+ 9) (27n+ 35)Sn − 4n (27n+ 62),

(7 + 3n) (27n+ 35)Sn + (7 + 3n) (27n+ 62)]
The first element of the list gcdL1 is the common right factor we are looking for which leads, after
removing the content, to the following second order annihilating shift operator for both summands:

> RE:=collect(gcdL1[1]/content(gcdL1[1],Sn),Sn,factor);

RE := −(n+ 2)2 Sn2 + (7n2 + 21n+ 16)Sn + 8 (n+ 1)2

Since the operator RE is equal to RE2, then the computation of a gcd of RE1 and RE2

> gcdL2:=collect(skew_gcdex(RE1,RE2,Sn,A),Sn,factor);

gcdL2 := [−(n+ 2)2 Sn2 + (7n2 + 21n+ 16)Sn + 8 (n+ 1)2, 0, 1, 1,

(3n+ 4)Sn + 7 + 3n]

5.1. Creative Telescoping 69

leads indirectly to the following factorization of RE1:
> F:=gcdL2[5]*gcdL2[1];

F := ((3n+ 4)Sn + 7 + 3n)

(−(n+ 2)2 Sn2 + (7n2 + 21n+ 16)Sn + 8 (n+ 1)2)
> expand(skew_product(gcdL2[5],gcdL2[1],A)+RE1);

0

Hence, the sums
n∑
k=0

(
n
k

)3 and
n∑
k=0

(
n
k

)2(2k
n

)
are annihilated by a common second order shift operator RE

and satisfy the same initial values s(0) = 1 and s(1) = 2 which proves the identity.
We note that we can use the Maple package hsum15, which contains an implementation of Zeilberger’s
fast algorithm relying essentially on linear algebra techniques, to compute recurrence equations for both
sums.

> linkssummand:=binomial(n,k)ˆ3;

linkssummand := binomial(n, k)3

> sumrecursion(linkssummand,k,S(n));

−(n+ 2)2 S(n+ 2) + (7n2 + 21n+ 16) S(n+ 1) + 8 (n+ 1)2 S(n) = 0

> rechtssummand:=binomial(n,k)ˆ2*binomial(2*k,n);

rechtssummand := binomial(n, k)2 binomial(2 k, n)

> sumrecursion(rechtssummand,k,S(n));

−(n+ 2)2 S(n+ 2) + (7n2 + 21n+ 16) S(n+ 1) + 8 (n+ 1)2 S(n) = 0

Remark 5.3
• Using other term orders, such as degree lexicographical order and weighted degree order,

the Gröbner basis computations did not succeed to yield to a lower order shift operator RE1

annihilating the sum
n∑
k=0

(
n
k

)3.

• Using the command nc_factorize of the REDUCE package NCPOLY, we can factorize
(if such a factorization exists!) operators like RE1 in order to get lower order right factor.
The factorization of RE1 leads to

−
(
(3n+ 4)Sn + (7 + 3n)

)(
(n+ 2)2S2

n + (−7n2 − 21n− 16)Sn − 8(1 + n)2
)
, (5.15)

which confirms the factorization F obtained in the previous Maple session.

Example 5.4
We consider the sum

s(n, x) =
n∑
k=0

(
n

k

)
Lak(x), (5.16)

where Lak(x) are the Laguerre orthogonal polynomials. The summand
(
n
k

)
Lan(x) is annihilated by

70 Chapter 5. Algorithms for Summation and Integration

the following operator system

REk = (1 + k)(2 + k)2S2
k + (1 + k)(1 + k − n)(3 + a+ 2k − x)Sk (5.17)

+ (1 + a+ k)(k − n)(1 + k − n),

REn = (n− k + 1)Sn − (1 + n), (5.18)

which generates a left ideal in

Op = Q(a, n, x)[Sk;Sk, 0][Sn;Sn, 0]. (5.19)

In the following Maple session, we will show how to get a recurrence equation of the sum s(n, x)
of lowest order (if possible!).

Maple Session 5.2 (recurrence equation for s(n, x) =
n∑
k=0

(n
k

)
Lak(x))

We begin by loading the packages we need
> read "hsum15.mpl";

Package “Hypergeometric Summation“, Maple V − Maple 15

Copyright 1998 − 2012 , Wolfram Koepf , University of Kassel

> with(Ore_algebra):

> with(Groebner):

and define the Ore algebra where the Gröbner basis computation will be performed
> A:=skew_algebra(shift=[Sn,n],shift=[Sk,k],comm=[a,x],polynom=k);

A := Ore algebra

We determine a recurrence equation w.r.t. k of the summand
(
n
k

)
Lak(x). We note that the Laguerre poly-

nomials Lak(x) can be expressed as a sum

Lak(x) =
k∑
j=0

(
k + a

k − j

)
(−x)j

j!
. (5.20)

Hence, the summand
(
n
k

)
Lak(x) is equal to

k∑
j=0

(
n

k

)(
k + a

k − j

)
(−x)j

j!
. (5.21)

We apply to the summand of (5.21) the command sumrecursion of the package hsum15 to get a
recurrence equation rek w.r.t k satisfied by

(
n
k

)
Lak(x).

> laguerresummand:=proc(n,alpha,x,k) binomial(n+alpha,n-k)/k!*(-x)ˆk
> end proc:

> summand:=binomial(n,k)*laguerresummand(k,a,x,j);

summand :=
binomial(n, k) binomial(k + a, k − j) (−x)j

j!
> rek:=sumrecursion(summand,j,S(k));

5.1. Creative Telescoping 71

rek := (k + 1) (k + 2)2 S(k + 2)

+ (k + 1) (−n+ k + 1) (−x+ 2 k + a+ 3) S(k + 1)

+ (−n+ k + 1) (k + a+ 1) (−n+ k) S(k) = 0

To get a recurrence equation ren w.r.t. n satisfied by
(
n
k

)
Lak(x), we use the following procedure:

> HolonomicRE:=proc(term,sk)
> local s,k,r;
> s:=op(0,sk): k:=op(1,sk):
> r:=ratio(term,k);
> denom(r)*s(k+1)-numer(r)*s(k)=0;
> end proc:

> ren:=HolonomicRE(summand,S(n));

ren := (−n− 1 + k) S(n+ 1)− (−n− 1) S(n) = 0

We express rek and ren in operator notation.
> REk:=subs({S(k+2)=Skˆ2,S(k+1)=Sk,S(k)=1},op(1,rek));

REk := (k + 1) (k + 2)2 Sk2 + (k + 1) (−n+ k + 1) (−x+ 2 k + a+ 3)Sk

+ (−n+ k + 1) (k + a+ 1) (−n+ k)
> REn:=subs({S(n+1)=Sn,S(n)=1},op(1,ren));

REn := (−n− 1 + k)Sn + n+ 1

To get a k-free operator we choose the lexicographical term order ≺ with Sk ≺ Sn ≺ k.
> T:= MonomialOrder(A,plex(k,Sn,Sk));

T := monomial order

We compute a Gröbner basis w.r.t. ≺ of the ideal generated by REk and REn.
> GB:=Basis([REk,REn],T):

Extracting the k-free operator and substituting Sk by 1 we get
> RE:=collect(subs(Sk=1,op(remove(has,GB,k))),Sn,factor);

RE := (3 + n)Sn3 + (−12− 5n− a+ x)Sn2 + (2 a+ 14− x+ 8n)Sn − 4

− 4n
which is a third order recurrence equation satisfied by s(n, x).

Using the REDUCE package NCPOLY we do not get lower order right factors of RE.

Remark 5.5
The recurrence equation satisfied by

n∑
k=0

(
n
k

)
Lak(x) can be obtained in a completely different way

using the Maple package multsum11 which was implemented by my colleague Torsten Sprenger
in relation with his master thesis [Spr04]. This implementation uses a variant of Fasenmyer algo-
rithm [Fas49] which essentially relies on linear algebra techniques to compute recurrence equations
for multiple sums.

Example 5.6
In this example, we will apply Zeilberger’s slow algorithm to an integral (see [AS64], 11.4.28).

72 Chapter 5. Algorithms for Summation and Integration

We consider the integral

I(n) =

∫ ∞
0

e−a
2x2xmJn(bx)dx, (5.22)

Jn(x) denoting the Bessel function of first kind. The integrand e−a2x2xmJn(bx) is annihilated by
the following operator system

DE = x2D2
x + x(3− 2m+ 4a2x2)Dx (5.23)

+ (1− 2m+m2 − n2 + 8a2x2 + b2x2 − 4a2mx2 + 4a4x4),

RE = bxS2
n − 2(1 + n)Sn + bx, (5.24)

which generates a left ideal in

Op = Q(a, b,m, n)[x][Dx; 1, Dx][Sn;Sn, 0]. (5.25)

Maple Session 5.3 (Recurrence equation for I(n) =
∫∞
0 e−a

2x2
xmJn(bx)dx)

We load the needed packages
> with(Ore_algebra):

> with(Groebner):

and define the Ore algebra where the Gröbner basis computation will be performed
> A:=skew_algebra(shift=[Sn,n],diff=[Dx,x],comm=[m,a,b],polynom=x);

A := Ore algebra

The integrand e−a
2x2xmJn(bx)dx is annihilated by the following operators:

> DE:=xˆ2*Dxˆ2+x*(3-2*m+4*aˆ2*xˆ2)*Dx
> +(1-2*m+mˆ2-nˆ2+8*aˆ2*xˆ2+bˆ2*xˆ2-4*aˆ2*m*xˆ2+4*aˆ4*xˆ4);

DE := x2 Dx 2 + x (3− 2m+ 4 a2 x2)Dx + 1− 2m+m2 − n2 + 8 a2 x2

+ b2 x2 − 4 a2mx2 + 4 a4 x4

> RE:=b*x*Snˆ2-2*(n+1)*Sn+b*x;

RE := b xSn2 − 2 (n+ 1)Sn + b x

> T:=MonomialOrder(A,wdeg([3,1,0],[x,Sn,Dx]));

T := monomial order

To get an x-free operator we choose a weighted lexicographical term order ≺w with w = (3, 1, 0) for
(x, Sn, Dx).

> T:=MonomialOrder(A,wdeg([3,1,0],[x,Sn,Dx]));

T := monomial order

We compute a Gröbner basis of the ideal generated by DE and RE.
> GB:=Basis([DE,RE],T):

Extracting the x-free operator and substituting Dx by 0 we get
> REn:=subs(Dx=0,collect(op(remove(has,GB,x)),Sn,factor));

REn := b2 (n+ 1) (−4− n+m)Sn4

− 2 (n+ 2) (4 a2 n2 + 16 a2 n− b2m+ b2 + 12 a2)Sn2

+ b2 (3 + n) (n+m)

5.1. Creative Telescoping 73

which is a recurrence equation of order 4 satisfied by I(n).

Using NCPOLY we do not find a lower order right factor of REn.

5.1.2 Takayama’s Algorithm
Gert Almkvist and Doron Zeilberger [AZ90] were the first who observed that in the case of natural
boundaries (see Definition 5.1), where the inhomogeneous part R in equations (5.3) and (5.5) van-
ishes, the complete elimination of the variable t to perform creative telescoping is more restrictive
than necessary. In this context only the operator P must be free of t and hence commutes with
the operator ∂t. Mainly, it doesn’t matter if the operator Q contains t for the reason that only the
operator P must be computed to perform creative telescoping.
Relying on the fact that it is useless to compute the operatorQ, the strategy followed by Takayama’s
algorithm is to reduce modulo the right ideal ∂tOr before performing the elimination of the variable
t. This means that all computations will take place in

It = I/∂tOr

where I is the annihilating ideal of a given holonomic function f(t,x). In It the action of the
operator ∂t is to multiply by 0. In practice, to perform the reduction modulo ∂tOr we should
simply apply the following rewrite rules:

• In the differential setting:

tkDp
t = Dp

t t
k + (−1)p(tk)(p)

≡ (−1)p(tk)(p) modulo DtOr. (5.26)

• In the difference setting:

nkSpn = (Spn − 1)(n− p)k + (n− p)k

= (Sn − 1)

p∑
i=0

(
p

i

)
Sin (n− p)k + (n− p)k

≡ (n− p)k modulo ∆nOr. (5.27)

These rewrite rules can be recursively proved relying on the commutator rules defining the Ore
algebra Or, namely

tDt = Dtt− 1,

nSn = Snn− Sn.

Performing reduction before elimination has at least two consequences:

• Decrease the size of the data.

74 Chapter 5. Algorithms for Summation and Integration

• Get a bigger annihilating ideal, i.e. shorter operators of lower orders.

However, following this strategy may lead to a technical complication which is explained by the
following example:

Example 5.7
Consider an operator in Or which is written in the form

L+DtQ,

where Dt denotes the operator of partial derivation w.r.t. to t.
Multiplying by t we get

tL+ tDtQ.

Since tDt = Dtt− 1 this leads to

tL+ (Dtt− 1)Q

= tL+Dt(tQ)−Q
= tL−Q modulo DtOr.

Hence, we get an additional term −Q which we lose if we first reduce modulo DtOr and then
multiply by the variable t. We need thereby an algorithm which ensures that the multiplication by
t or powers of it takes place before the reduction modulo DtOr.

An algorithm to solve this problem in the context of Weyl algebras was given by Nobuki Takayama
[Tak90a, Tak90b]. This algorithm relies on a generalization to the noncommutative case of pro-
cedures for module-Gröbner basis computation over a polynomial ring. F. Chyzak and B. Salvy
[CS96] extended this algorithm to the more general case of Ore algebras. This extension is sup-
posed to treat with modules and submodules and for this reason let’s first focus on where and how
we may consider module structures in our context.
The operator (5.1) we are looking for lies in

M = I + ∂tOr ⊆ Or (5.28)

which has no ideal structure since it is the sum of a left ideal I and a right ideal ∂tOr. However,
M may be considered as an Om-module, where

Om = K(x)[∂x;σx, δx][∂t;σt, δt]. (5.29)

The module M contains all products of the form:

tiGj, i = 0, 1, . . . ,

where Gj are generators of I . Hence, it is clear that M is of infinite type since the cardinality of
the powers ti is infinite.

5.1. Creative Telescoping 75

The ideal It = I/∂tOr inherits from M , by reduction by ∂tOr, an O-module structure, where O
denotes

O = K(x)[∂x;σx, δx]. (5.30)

In It considered as O-module, every element Gj may be written as

Gi =
s∑
i=0

tiGij, Gij ∈ O, (5.31)

which we denote as an infinite vector

Gj =

G0j

G1j
...
Gsj

0
...

.

What we are looking for is a linear combination of the form

m∑
j=1

Pj(x, ∂x)Gj =

 P (x, ∂x)
0
...

 , (5.32)

where Pj(x, ∂x) are operators in O and P (x, ∂x) is the sought annihilating operator in (5.7).

Example 5.8
We reconsider the sequence Un,k =

(
n
k

)
which is annihilated by the ideal I generated by the

operators:

P = (n+ 1− k)Sn − (n+ 1)

= ((n+ 1)Sn − (n+ 1))k0 − Snk

=

(n+ 1)Sn − (n+ 1)

−Sn
0
...

 ,

76 Chapter 5. Algorithms for Summation and Integration

and

Q = (k + 1)Sk − (n− k)

= (Sk − 1)k + 2k − n
= −nk0 + 2k modulo 4k = (Sk − 1)

=

−n
2
0
...

 .

The following linear combination

2

(n+ 1)Sn − (n+ 1)

−Sn
0
...

 + Sn

−n
2
0
...

 =

 (n+ 1)Sn − 2(n+ 1)
0
...

gives the k-free annihilating operator P (n, Sn) = (n+ 1)Sn − 2(n+ 1) of the sequence Un,k.

To get the operator P (x, ∂x), we should perform elimination by computing a Gröbner basis in M
with respect to an order ≺m that gives priority to the position in the vector than the term order on
Om (POT order: ”position over term”) see Remark 5.9. The question now: how to perform this
elimination in the infinitely generated module M? To overcome this technical problem, the idea of
Takayama is to proceed by module-truncation with respect to the degree of t, that means in each
loop only operators in M up to a fixed maximal total degree d in t are considered. These operators
generate an M -submodule of finite type.
The extension of Takayama’s idea to our context consists in each loop of three steps:

• Multiply the generators of I by powers of t to create as much operators as possible with
maximal total degree d in t, which ensures that multiplication by t or powers of it takes
place before reduction (see Example (5.7)).

• Perform reduction using the rules (5.26) and (5.27).

• Perform a module Gröbner basis computation with respect to a POT term order≺m elimina-
tion t.

If no operator P is found, more multiples by powers of t should be included and the bound d must
be increased. If the ideal I is holonomic then the termination of the algorithm is ensured by the
elimination property see Proposition 4.38.

Remark 5.9 (Module term order)
Let R be a ring, e1 = (1, 0, . . . , 0), . . . , em = (0, 0, . . . , 1) a standard basis of Rm and ≺ a
monomial ordering on R. For monomials X = Xei and Y = Y ej of Rm, We say that ≺m is a
POT (position over term) term order on Rm if

X ≺m Y ⇔ i < j or i = j and X ≺ Y,

5.1. Creative Telescoping 77

and we say that ≺m is TOP (term over position) term order on Rm if

X ≺m Y ⇔ X < Y or X = Y and i < j.

Algorithm 5.1: Extended Takayama’s algorithm
Input : {G1, . . . , Gs} a set of polynomials in

Op = K(x)[t][∂x;σx, δx][∂t;σt, δt] ;
Output: A telescoping operator P (x, ∂x) satisfying (5.7);
begin

Initialization: G := {}, d := max1≤i≤s degt Gi;
while G := {} do

H := {tαGi | |α| ≤ d− degtGi};
Hred := {Hi mod ∂t | Hi ∈ H};
G := module Gröbner basis of Hred w. r. t. ≺m eliminating t;
G := {Pi | degt Pi = 0};
d = d+ 1;

end
return G;

end

Example 5.10
In this example, we consider the sum

An :=
n∑
k=0

(
n

k

)2(
n+ k

k

)2

(5.33)

describing the Apéry Numbers. Our aim is to determine a recurrence equation satisfied byAn using
the extended Takayama’s algorithm. This recurrence equation played an essential role in Apéry
proof [vdP78] of the irrationality of

ζ(3) =
∞∑
k=1

1

k3
. (5.34)

We note that the sum An is of natural boundaries since it is of finite support and thus Takayama’s
algorithm can be applied.

Maple Session 5.4 (Takayama’s algorithm: recurrence equation for An :=
n∑
k=0

(
n
k

)2(n+k
k

)2
)

We load the needed packages
> with(Ore_algebra):

> with(Groebner):

> read "hsum15.mpl";

Package “Hypergeometric Summation“, Maple V − Maple 15

Copyright 1998 − 2012 , Wolfram Koepf , University of Kassel

78 Chapter 5. Algorithms for Summation and Integration

and define the following Ore algebra
> A:=shift_algebra([Sn,n],[Sk,k]);

A := Ore algebra

Using the following procedure
> HolonomicRE:=proc(term,sk)
> local s,k,r;
> s:=op(0,sk): k:=op(1,sk):
> r:=ratio(term,k);
> denom(r)*s(k+1)-numer(r)*s(k)=0;
> end proc:

we determine an annihilating operator system of the summand
(
n
k

)2(n+k
k

)2
> p:=HolonomicRE(binomial(n,k)ˆ2*binomial(n+k,k)ˆ2,S(n));

p := (−n− 1 + k)2 S(n+ 1)− (n+ 1 + k)2 S(n) = 0

> q:=HolonomicRE(binomial(n,k)ˆ2*binomial(n+k,k)ˆ2,S(k));

q := (k + 1)4 S(k + 1)− (n+ 1 + k)2 (−n+ k)2 S(k) = 0

Written in operator notation:
> P:=subs({S(n+1)=Sn,S(n)=1},op(1,p));

P := (−n− 1 + k)2 Sn − (n+ 1 + k)2

> Q:=subs({S(k+1)=Sk,S(k)=1},op(1,q));
Q := (k + 1)4 Sk − (n+ 1 + k)2 (−n+ k)2

The operators P and Q considered as polynomials in k leads to the following data:
> degP_k:=degree(P,k);

degP k := 2

> degQ_k:=degree(Q,k);

degQ k := 4

> d:=max(degP_k,degQ_k);

d := 4

After one execution of the while-loop of Takayama’s algorithm, we do not get a module Gröbner basis
containing a k-free polynomial. Therefore, we increase d by 1.

> d:=d+N;

d := 4 +N

> N:=1:

N := 1

We left multiply the operators P and Q by powers of k to get the sets:
> H_P:=[seq(skew_product(kˆi,P,A),i=0..d-degP_k)];

5.1. Creative Telescoping 79

H P := [

−2nk − 1− n2 − 2n− 2 k − k2 + (n2 + 2n− 2nk + 1− 2 k + k2)Sn

,−2nk2 − k − k n2 − 2nk − 2 k2 − k3

+ (k n2 + 2nk − 2 k2 + k3 − 2nk2 + k)Sn,−2 k3 n− k2 − k2 n2

− 2nk2 − 2 k3 − k4 + (k2 n2 + 2nk2 − 2 k3 + k4 − 2 k3 n+ k2)Sn,

−2 k4 n− k3 − k3 n2 − 2 k3 n− 2 k4 − k5

+ (k3 n2 + 2 k3 n− 2 k4 + k5 − 2 k4 n+ k3)Sn]
> H_Q:=[seq(reverse_polynomial(skew_product(kˆi,Q,A),A,{Sk
> }),i=0..d-degQ_k)];

H Q := [−n4 − n2 − 2n3 + (2n2 + 2n) k + (−1 + 2n+ 2n2) k2 − 2 k3

+ (−1 + Sk) k4, (−n4 − n2 − 2n3) k + (2n2 + 2n) k2

+ (−1 + 2n+ 2n2) k3 + (−Sk − 2) k4 + (−1 + Sk) k5]
We note that we use the command reverse_polynomial to change the representation of the polyno-
mials kiQ by moving the shift operator Sk to the left of monomials and thus to prepare them for reduction
(see the rewriting rule (5.27)). Since the operators of H_P do not contain the shift operator Sk, we need
only to reduce the elements of H_Q by (Sk − 1) i.e. substitute Sk by 1.

> H_Qred:=subs(Sk=1,H_Q);

H Qred := [−n4 − n2 − 2n3 + (2n2 + 2n) k + (−1 + 2n+ 2n2) k2 − 2 k3,

(−n4 − n2 − 2n3) k + (2n2 + 2n) k2 + (−1 + 2n+ 2n2) k3 − 3 k4]
Finally the set Hred is

> Hred:=map(op,[H_P,H_Qred]);

Hred := [

−2nk − 1− n2 − 2n− 2 k − k2 + (n2 + 2n− 2nk + 1− 2 k + k2)Sn

,−2nk2 − k − k n2 − 2nk − 2 k2 − k3

+ (k n2 + 2nk − 2 k2 + k3 − 2nk2 + k)Sn,−2 k3 n− k2 − k2 n2

− 2nk2 − 2 k3 − k4 + (k2 n2 + 2nk2 − 2 k3 + k4 − 2 k3 n+ k2)Sn,

−2 k4 n− k3 − k3 n2 − 2 k3 n− 2 k4 − k5

+ (k3 n2 + 2 k3 n− 2 k4 + k5 − 2 k4 n+ k3)Sn,

−n4 − n2 − 2n3 + (2n2 + 2n) k + (−1 + 2n+ 2n2) k2 − 2 k3,

(−n4 − n2 − 2n3) k + (2n2 + 2n) k2 + (−1 + 2n+ 2n2) k3 − 3 k4]
The module Göbner basis computation takes place in the following Ore algebra:

> Ap:=shift_algebra([Sn,n],comm=k,polynom=k);

Ap := Ore algebra

and it is performed w.r.t. the following term order:
> T:=MonomialOrder(Ap,lexdeg([k],[Sn]),[k]);

T := monomial order

We note that the third argument in the MonomialOrder call is very important to refrain from any mul-

80 Chapter 5. Algorithms for Summation and Integration

tiplication by the variable k in the S-polynomials computations. The module Göbner basis computation
gives

> G:=Basis(Hred,T);

G := [−34Sn n3 + Sn2 n3 + n3 − 153Sn n2 + 6Sn2 n2 + 3n2 − 231Sn n

+ 12Sn2 n+ 3n− 117Sn + 1 + 8Sn2,

−2Sn n− 2n− 2− 3 k + 3Sn k − 2Sn,−17n3 − 39n2 − 27n− 5

− 24 k n2 + Sn n3 + 3Sn n+ 3Sn n2 + Sn + 12 k2 − 24nk,−100n4

− 13n2 − 91n3 − 48 k n2 + 17n− Sn + 5Sn n2 − Sn n− 96n3 k

− 48 k n4 + 8Sn n4 + 11Sn n3 + 2n5 Sn − 34n5 + 5 + 24 k3,−27n
+ Sn − 71n2 + 7Sn n2 + 3Sn n− 24 k n2 − 144n3 k + 72 k4

− 332n4 − 165n3 − 312 k n4 + 40Sn n4 + 21Sn n3 + 40n5 Sn

+ 20n6 Sn − 288n5 k + 4n7 Sn − 96n6 k − 416n5 − 268n6 − 68n7

− 5,−197− 288 k − 1286n+ 25Sn − 3692n2 − 1584nk

+ 412Sn n2 + 154Sn n− 3768 k n2 + 18 k5 Sn − 5064n3 k − 18 k5

− 6437n4 − 6116n3 − 4200 k n4 + 601Sn n4 + 628Sn n3

+ 374n5 Sn + 150n6 Sn − 2184n5 k + 36n7 Sn − 672n6 k

− 4450n5 − 1998n6 − 540n7 + 4n8 Sn − 96n7 k − 68n8]
and leads to the following second order recurrence equation:

> RE:=op(collect(remove(has,G,k),Sn,factor));

RE := (n+ 2)3 Sn2 − (2n+ 3) (17n2 + 51n+ 39)Sn + (n+ 1)3.

Example 5.11
We reconsider the sum

s(n) :=
n∑

n=k

(
n

k

)3

. (5.35)

We have seen in Example 5.2 that the application of ”brutal” Gröbner basis elimination to the
operator system annihilating the summand

(
n
k

)
leads to a third order recurrence equation satisfied

by s(n). Even if we choose different term orders, we do not succeed to get a recurrence equation
of lower order. In the following Maple session, we will show that Takayama’s algorithm applied
to3 s(n) gives rise to a second order recurrence equation due to its reduction preprocessing step
(Algorithm 5.1: lines 4 and 5).

Maple Session 5.5 (Takayama’s algorithm: recurrence equation for s(n) :=
n∑

n=k

(
n
k

)3)

> with(Ore_algebra):

> with(Groebner):

> A:=shift_algebra([Sn,n],[Sk,k]);

A := Ore algebra

5.1. Creative Telescoping 81

The summand
(
n
k

)3 is annihilated by the following operator system:
> P:= (-n-1+k)ˆ3*Sn+(n+1)ˆ3;

P := (−n− 1 + k)3 Sn + (n+ 1)3,

> Q:= (k+1)ˆ3*Sk+(-n+k)ˆ3;

Q := (k + 1)3 Sk + (−n+ k)3.

P and Q considered as polynomials in k leads to the following data:
> degP_k:=degree(P,k);

degP k := 3

> degQ_k:=degree(Q,k);

degQ k := 3

> d:=max(degP_k,degQ_k);

d := 3

> d:=d+N:

After two iterations of the while-loop of Takayama’s algorithm, we do not get a module Gröbner basis
that contains a k-free polynomial. Therefore, we increase d by 2.

> N:=2:

We multiply the operators P and Q by powers of k
> H_P:=[seq(skew_product(kˆi,P,A),i=0..d-degP_k)];

H P := [n3 + 3n2 + 3n+ 1+

(−n3 − 3n2 + 3n2 k − 3n+ 6nk − 3nk2 − 1 + 3 k − 3 k2 + k3)Sn, k

+ k n3 + 3n2 k + 3nk + (−3n2 k − 3nk3 + 3n2 k2 − 3nk + 6nk2

+ k4 − k + 3 k2 − 3 k3 − k n3)Sn, k2 + k2 n3 + 3n2 k2 + 3nk2 + (

−3n2 k2 − 3 k4 n+ 3 k3 n2 − 3nk2 + 6nk3 + k5 − k2 + 3 k3 − 3 k4

− k2 n3)Sn]
> H_Q:=[seq(reverse_polynomial(skew_product(kˆi,Q,A),A,{Sk
> }),i=0..d-degQ_k)];

H Q := [−n3 + 3n2 k − 3nk2 + (1 + Sk) k3,

−k n3 + 3n2 k2 + (−3n− Sk) k3 + (1 + Sk) k4,

−k2 n3 + (3n2 + Sk) k3 + (−3n− 2Sk) k4 + (1 + Sk) k5]
and reduce by (Sk − 1)

> H_Qred:=subs(Sk=1,H_Q);

H Qred := [−n3 + 3n2 k − 3nk2 + 2 k3,

−k n3 + 3n2 k2 + (−3n− 1) k3 + 2 k4,

−k2 n3 + (3n2 + 1) k3 + (−3n− 2) k4 + 2 k5]
to finally get

> Hred:=map(op,[H_P,H_Qred]);

82 Chapter 5. Algorithms for Summation and Integration

Hred := [n3 + 3n2 + 3n+ 1+

(−n3 − 3n2 + 3n2 k − 3n+ 6nk − 3nk2 − 1 + 3 k − 3 k2 + k3)Sn, k

+ k n3 + 3n2 k + 3nk + (−3n2 k − 3nk3 + 3n2 k2 − 3nk + 6nk2

+ k4 − k + 3 k2 − 3 k3 − k n3)Sn, k2 + k2 n3 + 3n2 k2 + 3nk2 + (

−3n2 k2 − 3 k4 n+ 3 k3 n2 − 3nk2 + 6nk3 + k5 − k2 + 3 k3 − 3 k4

− k2 n3)Sn, −n3 + 3n2 k − 3nk2 + 2 k3,

−k n3 + 3n2 k2 + (−3n− 1) k3 + 2 k4,

−k2 n3 + (3n2 + 1) k3 + (−3n− 2) k4 + 2 k5]
The module Gröbner basis computation takes place in the following Ore algebra

> Ap:=shift_algebra([Sn,n],comm=k,polynom=k);

Ap := Ore algebra

and it is performed w.r.t. the following term order
> T:=MonomialOrder(Ap,lexdeg([k],[Sn]),[k]);

T := monomial order

gives
> G:=Basis(Hred,T);

G := [−7Sn n2 − 8n2 − 16n− 21Sn n− 16Sn − 8 + Sn2 n2 + 4Sn2 n

+ 4Sn2, −Sn n− n+ 2 k − Sn + 2Sn k,

11n2 − Sn n2 − 2Sn n− 12nk + 7n+ 2− Sn + 12 k2,

7n3 − Sn n3 − 2Sn n2 + 7n2 + 2n− Sn n+ 8 k3,−n4 + 14n3

+ 16 k n3 − Sn n4 − 3Sn n3 + 9n2 − 3Sn n2 + 2n− Sn n+ 16 k4,

−91n5 + 22n4 + 95n3 + 30n2 + 5Sn n5 − 5Sn n4 − 25Sn n3

− 15Sn n2 + 96n4 k + 96 k n3 + 96 k5]
and leads to the following second order recurrence equation

> RE:=op(collect(remove(has,G,k),Sn,factor));

RE := (n+ 2)2 Sn2 + (−7n2 − 21n− 16)Sn − 8 (n+ 1)2

5.2 Chyzak’s Algorithm

F. Chyzak in his paper [Chy00] presented algorithms which extend Gosper’s algorithm and Zeil-
berger fast algorithm for indefinite and definite summations of hypergeometric terms to the more
general case of ∂-finite functions (see Definition 4.1). In this part we distinguish two cases:

5.2. Chyzak’s Algorithm 83

5.2.1 Indefinite case
For a better understanding of the idea behind Chyzak’s algorithm in the indefinite case, we first
briefly recall Gosper’s algorithm. We consider the sum

s(n) =
n−1∑
k=0

f(k), (5.36)

where f(k) is a hypergeometric term that does not depend on n, that is the consecutive term ratio

r(k) =
f(k + 1)

f(k)
(5.37)

is a rational function of k. What is looked for is a function g(k) satisfying

g(k + 1)− g(k) = f(k) (5.38)

The function g(k) is called antidifference of f(k). In this case, the sum s(n) may be expressed in
a simple form as follows

s(n) =
n−1∑
k=0

f(k) (5.39)

=
n−1∑
k=0

(
(g(k + 1)− g(k)

)
= g(n)− g(0)

= g(n) + c.

We say that a hypergeometric term f(k) is Gosper summable if it has a hypergeometric term
antidifference. Let g(k) be a hypergeometric term, then the ratio

g(k)

f(k)
=

g(k)

g(k + 1)− g(k)
=

1
g(k+1)
g(k)

− 1
(5.40)

is clearly a rational function of k. So we get

g(k) = q(k)f(k), (5.41)

where q(k) is a rational function of k. Substituting q(k)f(k) for g(k) in the equation (5.38) reveals
that q(k) satisfies the equation

r(k)q(k + 1)− q(k) = 1 (5.42)

which is an inhomogeneous first order linear recurrence equation with rational coefficients. Thus
the problem of finding a hypergeometric antidifference g(k) of f(k) is reduced to the problem of
finding rational solutions of a first order linear recurrence equation. Gosper reduced the problem

84 Chapter 5. Algorithms for Summation and Integration

further to that finding polynomial solutions of yet another recurrence. In this way, the existence
and the computability of g(k) depends on the solvability of such recurrence equations. For more
details about Gosper’s algorithm we refer to the books [PWZ96] and [Koe98, Koe06].
We will see now, how the equations (5.38) and (5.41) are the key points of Chyzak’s algorithm that
extends Gosper’s to the more general case of ∂-finite functions. In operator notation the equation
(5.38) is written as

4k · g(k) = f(k), (5.43)

where4k = (Sk − 1). Applying4k to (5.41) we get

4k · g(k) = 4k · (q(k) · f(k)) = (4k · q(k)) · f(k). (5.44)

(5.43) together with (5.44) leads to

(4k · q(k)− 1) · f(k) = 0 (5.45)

which means that the operator (4k q(k) − 1) lies in AnnO(f), where O = K(k)[4k;Sk,4k].
Hence, the problem is to find the rational function q(k) ∈ K(k). This formulation of the problem
by means of operators and ideals of operators opens the door to the use of Gröbner bases tech-
niques and allows the generalization of Gosper’s algorithm to the more general context of ∂-finite
functions.
Let f(x, t) be a ∂-finite function with respect to the Ore algebra

Or = K(x, t)[∂x;σx, δx][∂t;σt, δt],

where ∂t denotes the difference operator4t in the case of a discrete variable t and the differential
operator Dt if t is continuous. The function f is described by its annihilating ideal I = AnnOr(f)
given by a Gröbner basis G. Now we want to find an operator g = q · f which lies in the left
submodule Or · f of Or. Furthermore, we have seen in Section 2.2 that Or · f is isomorophic to
the finite dimensional vector space Or/I w. r. t. the homomorphism q 7→ reduced LNF(q | G). As
a consequence, the operator q can be written as

q = q1m1 + q2m2 + · · ·+ qsms, (5.46)

where {mi | 1 ≤ i ≤ s} is a set of terms of Or satisfying

mi /∈ L(G), (5.47)

and L(G) is the ideal generated by the leading terms of G. In this manner, the set of terms

M := {m1, . . . ,ms}

is a standard basis of the K(x, t)-vector space Or/I . Hence, the problem for ∂-finite functions is
to find

q1, q2, . . . , qs ∈ K(x, t) (5.48)

5.2. Chyzak’s Algorithm 85

such that
∂t · (q1m1 + q2m2 + · · ·+ qsms)− 1 ∈ 〈G〉Or = AnnO(f). (5.49)

In fact, the condition (5.49) means that the left normal form of the operator

Q := ∂t · (q1m1 + q2m2 + · · ·+ qsms)− 1 (5.50)

(with unknown functions qi ∈ K(x, t)) is equal to zero modulo G. Equating the coefficients of
LNF(Q | G) to zero gives rise to a coupled system of first order linear difference (resp. differential)
equations. If such a system admits rational solutions qi then an antidifference (resp. antiderivative)
is found, otherwise it does not exist.

Remark 5.12
For practical purposes and before equating the coefficients of LNF(Q | G) to zero, we should first
write LNF(Q | G) in a standard representation form, that is with all Ore operators on the right
hand side of the coefficients. This can be obtained using the following commutator rules:

4t · qi(x, t) = qi(x, t+ 1)4t + qi(x, t+ 1)− qi(x, t) (5.51)

Dt · qi(x, t) = qi(x, t)Dt +
∂

∂t
qi(x, t).

The question is now how to find, if they exist, the rational solutions qi of the obtained system of first
order linear difference (resp. differential) equations? This may be achieved using direct methods as
proposed by Abramov and Barakatou [AB98, Bar99] or indirect methods by uncoupling the system
using Gaussian elimination or special uncoupling algorithms like the algorithm of Abramov and
Zima [AZ96] and then iteratively solve the difference (resp. differential) equations with Abramov’s
algorithm [Abr89, Abr95, ABP95].

Example 5.13
In this example, we use Chyzak’s algorithm to compute an antiderivative of∫

Hn(x)dx, (5.52)

where Hn(x) denotes the Hermite orthogonal polynomials. We consider the Ore algebra

Or := Q(n, x)[Sn;Sn, 0][Dx; 1, Dx].

An annihilating ideal I for Hn(x) is generated by the following polynomials:

DE = D2
x − 2xDx + 2n,

RE = S2
n − 2xSn + 2(n+ 1). (5.53)

A Gröbner basis of I is given by

G = {Dx + Sn − 2x, S2
n − 2xSn + 2(n+ 1)}. (5.54)

86 Chapter 5. Algorithms for Summation and Integration

Algorithm 5.2: Chyzak’s algorithm
Input :

• Or = K(x, t)[∂x;σx, δx][∂t;σt, δt];

• G a Gröbner basis of I = AnnOr(f) for a ∂-finite function f ;

Output: Rational functions qi ∈ K(x, t) satisfying the condition (5.49);
begin

1. Q := ∂t(q1m1 + q2m2 + · · ·+ qsms)− 1;

2. compute LNF(Q | G);

3. Write LNF(Q | G) in a standard representation form using (5.51);

4. Equate the coefficients of LNF(Q | G) to zero. ;

5. Find rational solutions of the corresponding system E ;

if solving E is successful then
return q1, . . . , qi ;

else
return {};

end
end

From G we deduce that the set
M = {1, Sn}

is a standard basis of Or/I as Q(n, x)-vector space. We introduce the polynomial

Q = Dx(q1(n, x) + q2(n, x)Sn)− 1.

If Q ∈ 〈G〉Or , then
(Dx(q1(n, x) + q2(n, x)Sn)− 1)Hn = 0. (5.55)

Applying the integral sign we get∫
(Dx(q1(n, x) + q2(n, x)Sn)− 1)Hndx = 0. (5.56)

Finally, an antiderivative of Hn is given by∫
Hndx = (q1(n, x) + q2(n, x)Sn)Hn. (5.57)

In the following Maple Session, we show how to determine (if they exist) the rational functions
q1, q2.

5.2. Chyzak’s Algorithm 87

Maple Session 5.6 (Determination of the rational functions q1 and q2)

> with(Ore_algebra):

> with(Groebner):

We define the Ore algebra
> A:=skew_algebra(shift=[Sn,n],diff=[Dx,x],func=[q1,q2,b]);

A := Ore algebra

and compute G.
> DE:= Dxˆ2-2*x*Dx+2*n;

DE := Dx 2 − 2xDx + 2n,

> RE:=Snˆ2-2*x*Sn+2*n+2;

RE := Sn2 − 2xSn + 2n+ 2.

> T:=MonomialOrder(A,tdeg(Dx,Sn));

T := monomial order

> G:=Basis([DE,RE],T);

G := [Dx + Sn − 2x, Sn2 − 2xSn + 2n+ 2].

We introduce the polynomial Q
> Q:=sort(skew_product(Dx,q1(x)+skew_product(q2(x),Sn,A),A)-1,
{Dx,Sn});

Q := q2(x)Dx Sn + q1(x)Dx + (ddx q2(x))Sn + (ddx q1(x))− 1.

In order to compute a left normal form of Q w.r.t. G we should make the following substitutions
> Q:=subs({q1(x)=q1,q2(x)=q2,diff(q1(x),x)=q11,
> diff(q2(x),x)=q21},Q);

Q := q2 Dx Sn + q1 Dx + q21 Sn + q11 − 1

and define the corresponding Ore algebra and term order
> A_NF:=skew_algebra(shift=[Sn,n],diff=[Dx,x],
> comm=[q1,q2,q11,q21]);

A NF := Ore algebra,

> T_NF:=MonomialOrder(A_NF,tdeg(Dx,Sn));

T NF := monomial order .

A left normal form of Q w.r.t. G is
> LNF:=NormalForm(Q,G,T_NF);

LNF := q11 − 1 + 2 q2 n+ 2 q2 + 2 q1 x+ (q21 − q1)Sn

Equating the coefficients of LNF to zero
> sys_op:=[coeffs(LNF,Sn)];

sys op := [q11 − 1 + 2 q2 n+ 2 q2 + 2 q1 x, q21 − q1]

we get the following linear system of differential equations
> sys_fnc:=subs({q1=q1(x),q2=q2(x),q11=diff(q1(x),x),
> q21=diff(q2(x),x)},sys_op);

sys fnc := [(ddx q1(x))− 1 + 2 q2(x)n+ 2q2(x) + 2 q1(x)x, (ddx q2(x))− q1(x)]

in the variables

88 Chapter 5. Algorithms for Summation and Integration

> vars:=[q1(x),q2(x)];

vars := [q1(x), q2(x).]

To solve such a system we use the package
> with(LinearFunctionalSystems):

which gives the following solution
> Sol:=RationalSolution(sys_fnc,vars);

Sol := [0, c1].

It is important to note that the constant c1 is an element of Q(n). To determine c1, we should only
substitute Sol in one equation of sys fnc and solve it to get

> solve(eval(subs(q1(x)=0,sys_fnc[1]))=0,q2(x));

1

2 (n+ 1)
.

Hence, an antiderivative of the Hermite polynomials is given by∫
Hndx =

1

2(n+ 1)
Hn+1 (5.58)

5.2.2 Definite Case
Chyzak’s indefinite algorithm can be used for definite summation (resp. integration) in the same
way as Zeilberger’s famous fast algorithm makes use of Gosper’s algorithm. We first briefly recall
Zeilberger’s fast algorithm for definite summation. We consider the sum

F (n) :=
∑
k∈Z

f(n, k), (5.59)

where f(n, k) is hypergeometric in both variables. In general, we can not always expect that for
a fixed n the summand f(n, k) is Gosper summable. However, if f(n, k) is proper hypergeomet-
ric (see [Koe98]) there always exists a linear combination of f and its n-shifts which is Gosper
summable, that is

P (n, Sn) = p0 + p1(n)Sn + · · ·+ pl(n)Sln =
l∑

j=0

pjS
j
n (5.60)

satisfying
P (n, Sn)f(n, k) = g(n, k + 1)− g(n, k), (5.61)

where pi ∈ K(n) and such that
g(n, k) = q(n, k)f(n, k) (5.62)

for some rational function q. In operator notation this means that

(P (n, Sn)−4k · q) · f(n, k) = 0 (5.63)

5.2. Chyzak’s Algorithm 89

which leads to
P (n, Sn) +4k · q ∈ AnnO(f), (5.64)

where O = K(n, k)[4n;Sn,4n][4k;Sk,4k]. Summing both sides of (5.61) over all integer val-
ues of k gives ∑

k∈Z

P (n, Sn)f(n, k) =
∑
k∈Z

(g(n, k + 1)− g(n, k)). (5.65)

Moreover, if for each n the function g(n, k) has a finite support in k then we get∑
k∈Z

P (n, Sn)f(n, k) = P (n, Sn)
∑
k∈Z

f(n, k) = 0. (5.66)

Thus, P (n, Sn) is a homogeneous recurrence equation for the sum F (n). Zeilberger’s fast algo-
rithm computes this recurrence equation by executing Gosper’s algorithm to check the indefinite
summability of

P (n, Sn)f(n, k) =
l∑

j=0

pjS
j
n f(n, k), pj ∈ K(n). (5.67)

The algorithm starts with f(n, k) which corresponds to the expression (5.67) for l = 0 and p0 = 1.
In each loop, the maximal total degree l of the n-shifts is increased until a result is obtained. We
note that Zeilberger’s fast algorithm relies on a parameterized version of Gosper’s algorithm that
additionally solves for the parameters pi.
As in the indefinite case, Zeilberger’s fast algorithm may be translated to the ∂-finite setting. Simi-
larly to the previous subsection, let f(x, t) be a ∂-finite function described by its annihilating ideal
I which is given by a Gröbner basis G. The idea is to iteratively execute Algorithm 5.2 on the
telescoping operator ∑

j∈JL

pj(x)∂jx + ∂t · (q1m1 + q2m2 + · · ·+ qsms), (5.68)

where JL is a finite set of exponent vectors defined by

JL := {j := (j1, . . . , jn); | j |=
n∑
i=1

ji ≤ L ∈ N}, (5.69)

pj(x) ∈ K(x), qi and mi as in (5.46). The algorithm starts with J0 = {(0, . . . , 0)} which corre-
sponds to Chyzak’s indefinite algorithm. If the function f is indefinite summable then the algo-
rithm stops, otherwise it proceeds iteratively with expanded sets JL.

Example 5.14
In this example, we want to determine a recurrence equation for

s(n) :=
n∑

n=k

(
n

k

)3

(5.70)

90 Chapter 5. Algorithms for Summation and Integration

using Chyzak’s definite algorithm.

Maple Session 5.7 (Chyzak’s definite algorithm: recurrence equation for s(n) :=
n∑

n=k

(
n
k

)3)

> with(Ore_algebra):

> with(Groebner):

We define the Ore algebra
> A:=shift_algebra(shift=[Sn,n],shift=[Sk,k],func=[Q,a,b,c]);

A := Ore algebra

The summand
(
n
k

)3 is annihilated by the following operator system:
> G1:=(k+1)ˆ3*Sk+(-n+k)ˆ3;

G1 := (k + 1)3 Sk + (−n+ k)3,

> G2:=(-n-1+k)ˆ3*Sn+(n+1)ˆ3;

G2 := (−n− 1 + k)3 Sn + (n+ 1)3.

The Gröbner basis computation is performed w.r.t. the following term order
> T:=MonomialOrder(A,tdeg(Sk,Sn));

T := monomial order

which gives
> G:=collect(Basis([G1,G2],T),{Sk,Sn},factor);

G := [(−n− 1 + k)3 Sn + (n+ 1)3, (k + 1)3 Sk + (−n+ k)3].

The first two iterations do not deliver a rational solutionQ. Hence, forL = 2 (see (5.69)) we introduce
the polynomial:

> Ansatz:=sort(skew_product(c(n),Snˆ2,A)+
> skew_product(b(n),Sn,A)+a(n)+
> skew_product(Sk-1,Q(k),A),{Sn,Sk});

Ansatz := c(n)Sn2 +Q(k + 1)Sk + b(n)Sn + a(n)−Q(k).

In order to compute a normal form of Ansatz w.r.t. G we should make the following substitutions
> Ansatz:=subs({Q(k)=q,Q(k+1)=q1,a(n)=a,b(n)=b,c(n)=c},Ansatz);

Ansatz := cSn2 + q1 Sk + bSn + a− q
and define the corresponding Ore algebra and term order

> A_Nf:=shift_algebra(shift=[Sn,n],shift=[Sk,k],comm=[q,q1,a,b,c]);

A Nf := Ore algebra,

> T_Nf:=MonomialOrder(A_Nf,tdeg(Sk,Sn));

T Nf := monomial order .

A normal form of Ansatz w.r.t. G is:
> LNf:=collect(NormalForm(Ansatz,G,T_Nf),{q,q1,a,b,c},factor);

LNf := a− (n+ 1)3 b

(−n− 1 + k)3
+

(n+ 2)3 (n+ 1)3 c

(−n− 1 + k)3 (k − n− 2)3
− q − (−n+ k)3 q1

(k + 1)3
.

Equating LNf to zero gives
> LNf:=sort(collect(numer(normal(LNf)),{q,q1,a,b,c},factor),
> {q,q1,a,b,c});

5.2. Chyzak’s Algorithm 91

LNf := (−n− 1 + k)3 (k − n− 2)3 (k + 1)3 a− (n+ 1)3 (k − n− 2)3 (k + 1)3 b

+ (n+ 2)3 (n+ 1)3 (k + 1)3 c− (−n− 1 + k)3 (k − n− 2)3 (k + 1)3 q

− (−n+ k)3 (−n− 1 + k)3 (k − n− 2)3 q1
and substituting q and q1 byQ(k) andQ(k+1) leads to an inhomogeneous first order linear recurrence
equation in Q

> LRE:=subs({q=Q(k),q1=Q(k+1)},LNf)=0;

LRE := (−n− 1 + k)3 (k − n− 2)3 (k + 1)3 a− (n+ 1)3 (k − n− 2)3 (k + 1)3 b

+ (n+ 2)3 (n+ 1)3 (k + 1)3 c− (−n− 1 + k)3 (k − n− 2)3 (k + 1)3 Q(k)

− (−n+ k)3 (−n− 1 + k)3 (k − n− 2)3 Q(k + 1) = 0.

The main objective is to determine the unknown parameters a, b, c ∈ Q(n) appearing in

(k − n)3(k − n− 1)3(k − n− 2)3Q(n, k + 1) + (k − n− 1)3(k − n− 2)3(k + 1)3Q(n, k)

= (k − n− 1)3(k − n− 2)3(k + 1)3 a− (n+ 1)3(k − n− 2)3(k + 1)3 b

+(n+ 2)3(n+ 1)3(k + 1)3 c (5.71)

which are the coefficients of a potential recurrence equation satisfied by the sum s(n) =
n∑

n=k

(
n
k

)3.

The achievement of this task goes necessarily through the determination of rational solutions Q of
the recurrence equation (5.71). We define

Q(n, k) :=
N(n, k)

D(n, k)
=
Nk

Dk

, (5.72)

where Nk, Dk ∈ Q(n)[k]. If we substitute (5.72) in (5.71) we get:

(k − n)3(k − n− 1)3(k − n− 2)3 Nk+1

Dk+1

+ (k − n− 1)3(k − n− 2)3(k + 1)3 Nk

Dk

= (k − n− 1)3(k − n− 2)3(k + 1)3 a− (n+ 1)3(k − n− 2)3(k + 1)3 b

+(n+ 2)3(n+ 1)3(k + 1)3 c. (5.73)

Finding Q consists of two main steps:

• Determination of the denominator Dk.

• Determination of an upper bound of the degree of Nk in k.

The idea of the first step is to look for a Dk such that (5.73) is reduced to a recurrence equation in
Nk with polynomial coefficients. In this case, if we observe (5.73) we should have

Dk | (k − n− 1)3(k − n− 2)3(k + 1)3, (5.74)

and
Dk+1 | (k − n)3(k − n− 1)3(k − n− 2)3. (5.75)

92 Chapter 5. Algorithms for Summation and Integration

The last condition (5.75) means also, by executing a backward shift, that

Dk | (k − n− 1)3(k − n− 2)3(k − n− 3)3. (5.76)

As a result of (5.74) and (5.76), we may set

Dk = (k − n− 1)3(k − n− 2)3. (5.77)

Substituting (5.77) in (5.73) leads to

(k − n)3Nk+1 + (k + 1)3Nk = (k − n− 1)3(k − n− 2)3(k + 1)3 a

−(n+ 1)3(k − n− 2)3(k + 1)3 b

+(n+ 2)3(n+ 1)3(k + 1)3 c (5.78)

which is a recurrence equation in Nk with polynomial coefficients having the form

AkNk+1 +BkNk = Ck. (5.79)

In order to determine an upper bound of the degree in k of a polynomial solution Nk of (5.79) we
need the following proposition:

Proposition 5.15 (Degree upper bound)
For every polynomial solution gk of

Ak gk+1 +Bk gk = Ck, (5.80)

where Ak, Bk, Ck ∈ K[k], an upper bound of the degree gk in k is determined by the following
algorithm.

1. If deg(Ak −Bk, k) ≤ deg(Ak +Bk, k), then

deg(gk, k) = deg(Ck, k)− deg(Ak +Bk, k).

2. If m := deg(Ak − Bk, k) > deg(Ak + Bk, k), then let a denote the coefficient of kd in
Ak −Bk and b the coefficient of kd−1 in Ak +Bk.

a) If −2b
a

/∈ N, then
deg(gk, k) = deg(Ck, k)−m+ 1.

b) If −2b
a
∈ N, then

deg(gk, k) ∈ {−2b

a
, deg(Ck, k)−m+ 1}.

5.2. Chyzak’s Algorithm 93

Proof: (See [Koe06], Proposition 11.9) 2

In the following Maple Session, we show how to determine the parameters a, b, c ∈ Q(n).

Maple Session 5.8 (Chyzak’s definite algorithm: recurrence equation for s(n) :=
n∑

n=k

(
n
k

)3 continued)

> A_k:=(k-n)ˆ3;

A k := (k − n)3

> B_k:=(k+1)ˆ3;

B k := (k + 1)3

> C_k:=(-n-1+k)ˆ3*(k-n-2)ˆ3*(k+1)ˆ3*a
> -(n+1)ˆ3*(k-n-2)ˆ3*(k+1)ˆ3*b
> +(n+2)ˆ3*(n+1)ˆ3*(k+1)ˆ3*c;

C k := (−n− 1 + k)3 (k − n− 2)3 (k + 1)3 a− (n+ 1)3 (k − n− 2)3 (k + 1)3 b

+ (n+ 2)3 (n+ 1)3 (k + 1)3 c
> degree(expand(A_k-B_k),k);

2

> degree(expand(A_k+B_k),k);

3

We see that Condition a) of Proposition 5.15 is fulfilled. Hence, an upper bound of the degree of Nk

in k is
> degree(expand(C_k),k)-degree(expand(A_k+B_k),k);

6

and Nk has the following form
> N:=(k)->sum(r[i]*kˆi,i=0..6);

N := k →
6∑
i=0

ri k
i.

All we have to do now is to substitute Nk in (5.78), equate the coefficients in k and solve the resulting
linear system of equations

> Eq:=collect((k-n-2)ˆ3*N(k+1)+(k+1)ˆ3*N(k)-C_k,k):

> COEFF:={coeffs(Eq,k)}:
> vars:={a,b,c,seq(r[i],i=0..6)};

vars := {a, b, c, r0, r1, r2, r3, r4, r5, r6}
to get the following solution

> SOL:=solve(COEFF,vars);

SOL := {a = 2 r6, b =
1

4

r6 (7n
2 + 21n+ 16)

n2 + 2n+ 1
, c = −1

4

(n2 + 4n+ 4) r6

n2 + 2n+ 1
, r0 = 0, r1 = 0, r2 = 0,

r3 = −1

2
(7n3 + 37n2 + 64n+ 36) r6, r4 =

3

4
(9n2 + 31n+ 26) r6,

r5 = −3

2
(5 + 3n) r6, r6 = r6}.

94 Chapter 5. Algorithms for Summation and Integration

We recall that a potential recurrence equation satisfied by s(n) =
n∑

n=k

(
n
k

)3 has the following form

> REC:=c*Snˆ2+b*Sn+a;

REC := cSn2 + bSn + a.

Substituting the free parameter r6 by −1 in SOL we get the recurrence we look for
> REC:=collect(subs(r[6]=-1,
> numer(normal(subs(SOL,REC)))),Sn,factor);

REC := (n+ 2)2 Sn2 + (−16− 21n− 7n2)Sn − 8 (n+ 1)2.

95

Bibliography

[AB98] S. A. Abramov and M. A. Barkatou. Rational solutions of first order linear difference
systems. In Proceedings of the 1998 International Symposium on Symbolic and Alge-
braic Computation, ISSAC ’98, pages 124–131, New York, NY, USA, 1998. ACM.
85

[ABP95] S. A. Abramov, M. Bronstein, and M. Petkovsek. On polynomial solutions of linear
operator equations. In Proceedings of the 1995 International Symposium on Symbolic
and Algebraic Computation, ISSAC ’95, pages 290–296, New York, NY, USA, 1995.
ACM. 85

[Abr89] S. A. Abramov. Rational solutions of linear differential and difference equations
with polynomial coefficients. USSR Computational Mathematics and Mathematical
Physics, 29(6):7–12, 1989. 85

[Abr95] S. A. Abramov. Rational solutions of linear difference and q-difference equations
with polynomial coefficients. In Proceedings of the 1995 International Symposium
on Symbolic and Algebraic Computation, ISSAC ’95, pages 285–289, New York, NY,
USA, 1995. ACM. 85

[AS64] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover Publ,
New York, 1964. 71

[AZ90] G. Almkvist and D. Zeilberger. The method of differentiating under the integral sign.
J. Symbolic Comput., 10:571–591, 1990. 73

[AZ96] S. A. Abramov and E. V. Zima. A universal program to uncouple linear systems. In
Proceedings of the International Conference on Computational Modelling and Com-
puting, pages 16–26, Dubna, Russia, September 1996. 85

[Bar99] M. A. Barkatou. On rational solutions of systems of linear differential equations. J.
Symbolic Comput., 28(4-5):547–567, 1999. 85

[Ber72] I. N. Bernstein. The analytic continuation of generalized functions with respect to a
parameter. Functional Analysis and its Applications, 6(4):273–285, 1972. 50, 55

96 Bibliography

[BG88] A.D. Bell and K.R. Goodearl. Uniform rank over differential operator rings and
Poincaré-Birkoff-Witt extensions. Pacific J. Math., 131:13–37, 1988. 22, 23

[BKW93] T. Becker, H. Kredel, and V. Weispfenning. Gröbner Bases: A Computational Ap-
proach to Commutative Algebra. Springer-Verlag, London, UK, 1 edition, 1993. 18,
44

[BP96] M. Bronstein and M. Petkovsek. An introduction to pseudo-linear algebra. Theoretical
Computer Science, 157:3–33, 1996. 3

[Buc65] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
ringes nach einem multidimensianalen Polynomideal. PhD thesis, Insbruck, 1965.
28

[Buc85] B. Buchberger. Gröbner bases: An algorithmic method in polynomial ideal theory.
In Recent Trends in Multidimensional System Theory, pages 184–232. N. K. Bose, D.
Reidel Publishing, 1985. 28

[CGH89] L. Caniglia, A. Galligo, and J. Heintz. Some new effectivity bounds in computa-
tional geometry. In AAECC-6: Proceedings of the 6th International Conference on
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pages 131–151.
Springer-Verlag, London, UK, 1989. 43

[Chy98] F. Chyzak. Fonctions holonomes en calcul formel. Thèse universitaire, École poly-
technique, 1998. INRIA, TU 0531. 227 pages. 17, 40, 41

[Chy00] F. Chyzak. An extension of zeilberger’s fast algorithm to general holonomic functions.
Discrete Math., 217:115–134, 2000. 82

[Cou95] S.C. Coutinho. A Primer of Algebraic D-modules. Cambrige University, New York,
NY, USA, 1995. 52, 54, 55, 59

[CS96] F. Chyzak and B. Salvy. Non-commutative elimination in ore algebras proves multi-
variate identities. J. Symbolic Comput., 26:187–227, 1996. 10, 64, 74

[Fas47] M. C. Fasenmyer. Some generalized hypergeometric polynomials. Bull.Amer. Math.
Soc., 53:806–813, 1947. 63

[Fas49] M. C. Fasenmyer. A note on pure recurrence relations. Amer. Math. Monthly, 56:14–
17, 1949. 63, 71

[FGDM93] J. C. Faugère, P. Gianni, D.Lazard, and T. Mora. Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symbolic Comput., 16(4):329–
344, 1993. 30, 43

Bibliography 97

[GMN+91] A. Giovini, T. Mora, G. Niesi, L. Robbiano, and C. Traverso. ”One sugar cube,
please” or Selection strategies in the Buchberger algorithm. In Proceedings of the
1991 International Symposium on Symbolic and Algebraic Computation, ISSAC ’91,
pages 5–4, New York, NY, USA, 1991. ACM. 31

[Jac62] N. Jacobson. Lie algebras. Interscience Publishers, Toronto, Ontario, Canada, 1962.
22

[Kas78] M. Kashiwara. On the holonomic systems of linear differential equations. Inventiones
Mathematicae, 49(2):121–135, 1978. 59

[Koe95] W. Koepf. Identities for families of orthogonal polynomials and special functions.
Integral Transforms Spec. Funct, 5(1–2):69–102, 1995. 34, 36

[Koe98] W. Koepf. Hypergeometric Summation. Vieweg, Braunschweig, Wiesbaden, 1998.
84, 88

[Koe06] W. Koepf. Computeralgebra – Eine algorithmisch orientierte Einführung. Springer
Verlag, Berlin, Heidelberg, New York, 2006. 84, 93

[Kre93] H. Kredel. Solvable Polynomial Rings. Verlag Shaker, Aachen, 1993. 17, 18, 21, 22,
23, 24

[KRW90] A. Kandri-Rody and V. Weispfenning. Non-commutative Gröbner bases in algebras
of solvable type. J. Symbolic Comput., 9(1):1–26, 1990. 18, 22

[Laz92] D. Lazard. Solving zero-dimensional algebraic systems. J. Symbolic Comput.,
13(2):117–131, 1992. 30, 43

[Lev05] V. Levandovskyy. Non-commutative Computer Algebra for Polynomial Algebras:
Gröbner Bases, Applications and Implementation. PhD thesis, Fachbereich Math-
ematik, Universität Kaiserslautern, 2005. 17, 21, 24, 29

[MML08] J. Martin-Morales and V. Levandovskyy. Computational D-module theory with sin-
gular, comparison with other systems and two new algorithms. In Proceedings of the
2008 international symposium on Symbolic and algebraic computation, ISSAC ’08,
pages 173–180, New York, NY, USA, 2008. ACM. 59, 65

[MR87] J.C. McConnell and J.C. Robson. Non-commutaive Noetherian Rings. Wiley, New
York, USA, 1987. 23

[Oak97] T. Oaku. Algorithms for the b-function and D-modules associated with a polynomial.
J. Pure Appl. Algebra, 9(117-118):495–518, 1997. 59

[Ore33] O. Ore. Theory of non-commutative polynomials. Ann. of Math. (2), 34:480–508,
1933. 3, 10, 12

98 Bibliography

[PWZ96] M. Petkovsek, H. S. Wilf, and D. Zeilberger. A=B. A. K. Peters, Ltd. Wellesley MA,
1996. 84

[Spr04] T. Sprenger. Algorithmen für mehrfache Summen. Master’s thesis, Universität Kassel,
2004. 71

[SST00] M. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeomet-
ric Differential Equations, volume 6 of Algorithms Compt. Math. Springer, Berlin,
Heidelberg, New York, 2000. 59

[Sta80] R. P. Stanley. Differentiably finite power series. European J. Combin., 1:175–188,
1980. 39

[Str93] V. Strehl. Binomial sums and identities. 10:37–49, 1993. 66

[Tak90a] N. Takayama. An algorithm of constructing the integral of a module–an infinite di-
mensional analog of Gröbner basis. In Proceedings of the 1990 international sympo-
sium on Symbolic and algebraic computation, ISSAC ’90, pages 206–211, New York,
NY, USA, 1990. ACM. 64, 74

[Tak90b] N. Takayama. Gröbner basis, integration and transcendental functions. In Proceedings
of the 1990 international symposium on Symbolic and algebraic computation, ISSAC
’90, pages 152–156, New York, NY, USA, 1990. ACM. 64, 74

[Tak92] N. Takayama. An approach to zero recognition of binomial sums and its complexity.
J. Symbolic Comput., 14:265–282, 1992. 59

[Tra89] C. Traverso. Gröbner trace algorithms. In Proceedings of the 1988 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’88, pages 125–138.
Springer-Verlag, London, UK, 1989. 32

[Tsa00a] H. Tsai. Algorithms for algebraic analysis. PhD thesis, University of California,
Berkeley, 2000. 60

[Tsa00b] H. Tsai. Weyl closure of a linear differential operator. J. Symbolic Comput., 9(4-
5):747–775, 2000. 60

[vdP78] A. van der Poorten. A proof that Euler missed . . . Apéry’s proof of the irrationality of
ζ(3). Math. Intelligencer, 1:195–203, 1978. 77

[WZ91] H. S. Wilf and D. Zeilberger. An algorithmic proof theory for hypergeometric (ordi-
nary and “q”) multisum/ integral identities, 1991. 59

[Zei90a] D. Zeilberger. A fast algorithm for proving terminating hypergeometric identities.
Discrete Math., 80:207–211, 1990. 64

[Zei90b] D. Zeilberger. A holonomic systems approach to special functions identities. J. Com-
put. Appl. Math., 32(3):321–368, 1990. 39, 56, 59, 63, 64, 65

List of Algorithms 99

List of Algorithms
3.1 Left normal form: LNF . 27
3.2 Reduced left normal form: RedLNF . 28
3.3 Left Buchberger’s algorithm . 30
4.1 FGLM . 44
4.2 Extended FGLM for ∂-finiteness under sum . 46
4.3 Extended FGLM for ∂-finiteness under product 47
4.4 Extended FGLM for ∂-finiteness under the action of an Ore operator 48
5.1 Extended Takayama’s algorithm . 77
5.2 Chyzak’s algorithm . 86

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation selbständig und ohne unerlaubte Hilfe
angefertigt und andere als die in der Dissertation angegebenen Hilfsmittel nicht benutzt habe. Alle
Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder unveröffentlichten Schriften ent-
nommen sind, habe ich als solche kenntlich gemacht. Kein Teil dieser Arbeit ist in einem anderen
Promotions- oder Habilitationsverfahren verwendet worden.

	1 Introduction
	2 Ore Algebras
	2.1 Ore extensions
	2.2 Action of Ore algebras
	2.3 Skew Euclidean Division

	3 Noncommutative Gröbner Bases
	3.1 Algebras of Solvable Type
	3.1.1 Notations and Preliminaries
	3.1.2 Definition and Properties of Solvable Algebras
	3.1.3 Examples of Solvable Algebras
	3.1.4 Hilbert's Basis Theorem for Solvable Algebras

	3.2 Gröbner bases in Solvable Algebras
	3.2.1 Left Reduction
	3.2.2 Left Buchberger's Algorithm
	3.2.3 Applications

	4 -Finite and Holonomic Functions
	4.1 -Finite Functions
	4.1.1 Definition and Characterization
	4.1.2 Closure Properties

	4.2 Holonomic functions
	4.3 Conclusion

	5 Algorithms for Summation and Integration
	5.1 Creative Telescoping
	5.1.1 Zeilberger's Slow Algorithm
	5.1.2 Takayama's Algorithm

	5.2 Chyzak's Algorithm
	5.2.1 Indefinite case
	5.2.2 Definite Case

	Bibliography
	List of Algorithms

