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Chapter 1

Introduction

The g-analysis (including g-differentiation, g-integration, partial g-differentiation, g-integral
transform,...) and g-special functions (including g-hypergeometric series, g-Gamma func-
tions, g-Beta functions, g-Mittag-Leffler functions,...) essentially started in 1748 when Euler
considered the infinite product

[ele]

@ 9)eo = (1 —gT)"

k=0

as a generating function for p(n), the number of partitions of a positive integer into pos-
itive integers. But it was not until about hundred years later that the subject acquired an
independent status when Heine (see [41]) converted the simple observation that
1 )
lim g
g—1 1— q

into a systematic theory of »¢; basic hypergeometric series parallel to Gauss’ 2 F; hypergeo-
metric series. This led to an intensive investigation on g-calculus during this century. Few
of the significant results are for example the relation of Heine’s »¢; with the Ramanujan
formula, the relation between Euler’s identities and the Jacobi triple product.

The systematic development of g-calculus started with Jackson who reconsidered the Euler-
Jackson g-difference operator (see [45]) in 1908, who gave a g-form of Taylor’s theorem (see
[46]) and introduced the g-definite integral on a finite interval (see [47]). This theory has
now played a crucial role in almost every branch of mathematics. It found applications
for example in the field of Special functions, differential equations, combinatorics, number
theory.

During the same period, new mathematics objects of the theory of symmetries appeared.
They are quantum groups and quantum algebras (g-deformations of Lie groups and Lie
algebras). Investigations of representations of these groups and algebras showed that these
representations of Lie groups are related to special functions of mathematical physics.

The two-parameter quantum algebra, U, 4(g/(2)), was first introduced in [25] in order to
generalize and unify a series of g-oscillator algebra variants, known in the earlier physics
and mathematics literature on the representation theory of single parameter quantum alge-
bra. Then investigations came up in the same direction among which the work of Burban
and Klimyk [23] on representations of two-parameter quantum groups and models of two
parameter quantum algebra U, ,(su1,1) and (p, )-deformed algebra. In the same paper [23],



Burban and Klimyk introduced the (p, q)-hypergeometric functions. The (p, g)-deformation
rapidly found applications in physics and mathematical physics as described for example
in [37].

In the same vein, after recalling the connection between the Roger-Szegt polynomials and
the g-oscillator, Jagannathan and Sridhar [50] have defined (p, q)-Rogers-Szegd polynomi-
als and have shown that they are connected with the (p, q)-deformed oscillator associated
with the Jagannathan-Srinavasa (p, g)-numbers [49], and proposed a new realization of this
algebra.

This work is divided into eleven chapters.
Chapter 1 is a general introduction of the thesis.

Chapter 2 provides some definitions about the (p, q)-differential and the (p, g)-derivative.
The (p, g)-analogues of the binomial coefficients are introduced and the (p, q)-Leibniz rule
for the nth (p, q)-derivative of a product of two functions is stated and proved. Results of
this chapter are published in [69].

Chapter 3introduces a polynomial basis called (p, q)-power, that generalizes both the canon-
ical power basis and the classical g-Pochhammer. Several properties of the (p, q)-powers
are stated and proved. Those (p, q)-powers are finally used to state and prove the (p, q)-
analogues of Taylor’s formula for polynomials. These (p, q)-Taylor formulas are used to

provide a (p, g)-analogue of the Taylor expansion of f(x) = — known in the g-theory

— 1)
as Heine’s binomial formula. Results of this chapter are published in [69].

In Chapter 4, the (p, g)-binomial coefficients are studied in detail. Their recurrence relations
are given. A new and generalized orthogonality relation is obtained and the (p, g)-powers
are used to state a (p, g)-analogue of the Vandermonde formula. Some results of this are
available in [32]. The generalized orthogonality relation and the (p, g)-Vandermonde for-
mula appear here for the first time.

In Chapter 5, we introduce two (p, q)-analogues of the exponential function and provide
several of their representations based on the Taylor formulas proved in Chapter 3. Next,
the (p, g)-trigonometric functions and the hyperbolic (p, g)-trigonometric functions are in-
troduced and their main properties stated. Results of this chapter are published in [69, 68].

In Chapter 6, we derive the (p,q)-antiderivative and the (p,q)-integral. Their algebraic
properties are studied, the fundamental theorem of (p, g)-calculus is proved and the for-
mula of (p, q)-integration by parts is provided. Results of this chapter are published in [69].

In Chapter 7, two (p,q)-analogues of the Gamma function are introduced and their rele-
vant properties are proved. Next, three (p, )-analogues of the Beta function are given. It is
proved that they are related to the (p,q)-Gamma function previously introduced. Results
of this chapter are published in [67].

In Chapter 8, we discuss the (p,q)-hypergeometric series. They are generalizations of g-
hypergeometric series. Note that from Proposition it is seen that any well behaved
¢-series can be written as a ®-series. But the converse is not always true. In the general



case, when p # 1, this is possible only for an ,®,_;. To see this, it is enough to look at the
0Pp case. Indeed,

with p=q/p,

which shows that @y becomes a ¢-series if and only if p = 1. Similarly, one is easily con-
vinced that a generic ,®;-series cannot be identified within the class of ¢-series unless p = 1
ors = r — 1. It is now clear that the (p, q)-series is a larger structure in which the g-series
gets embedded. Also, whereas in the case of the ¢-series one will have to resort to the
limit process of confluence, namely, replacing z by z/a, and taking the limit a, — oo, in the
(p, q)-series, it is sometimes enough to make the choice a;, = 0 or b;, = 0 for some specific i.

In Chapter 9, we introduce a (p, q)-analogue of Sturm-Liouville problems and study their
orthogonal solutions. Next, applications are done to find a (p, g)-analogue of the Jacobi, the
Laguerre and the Hermite polynomials. Some results of this chapter were published in [84].

In Chapter 10, two (p, q)-analogues of the Laplace transform are introduced and their rel-
evant fundamental properties are stated and proved. It is shown how they can be used to
solve (p, q)-differential equations. Next, we introduce double (p, 4)-Laplace transforms for
solving partial (p, q)-differential equations and some functional equations. Some results of
this chapter were published in [68].

Finally, Chapter 11 deals with a special class of (p,q)-polynomials, that are
(p,q)-analogues of Appell polynomials. Their main characterizations and their algebraic
structure are studied. Next, some examples of such polynomials are given, namely the
(p,q)-Bernoulli, the (p,q)-Euler, the (p,q)-Genocchi, a second (p, g)-analogue of the Her-
mite polynomials and a kind of bivariate (p, g)-Bernoulli polynomials.

The thesis ends with a conclusion and further perspectives.



Chapter 2

The (p, g)-Derivative

2.1 Definition and properties

Definition 1 (Njionou [69]). Let f be an arbitrary function. Its (p, q)-differential is defined by
dpqf(x) = f(px) — f(gx). 2.1)
In particular, d, gx = (p — q)x.
Proposition 2 (Njionou [69]). The (p, q)-differential fulfils the following product rule
dpq(f(x)g(x)) = f(px)dp,q8(x) + &(qx)dp,qf (x). (22)

Proof. For f and g two arbitrary functions, we have

dpq(f(x)g(x)) = f(px)g(p ) f(gx)g(gx)
= f(px)g(px) — f(px)g(qx) + f(px)g(qx) — f(qx)g(gx)
= f(px)(g(p > g(gx)) + g(qx)(f(px) — f(qx))
(Px)dpq (x) +g(gx)d qu( X).

O
With the two parameter quantum differential, we can also define the corresponding two-
parameter quantum derivative.

Definition 3 (Chakrabarti and Jagannathan [25]). The following expression

dpof(x) _ fpx) — f(gx) X
quf( ) dp,qx - <P_q>x ’ 7'&0 (23)

is called the (p, q)-derivative of the function f(x).

Note that when p = 1, the D, ; reduces to the quantum derivative D, (see Kac and Cheung

- (x) = f(g%)
Dyf(x) = ! ](Cl :g)zx :
Note also that if f(x) is differentiable, then
d
im D, () = “L

It is clear that as with the ordinary derivative, the action of the (p, )-derivative of a function
is a linear operator. More precisely, for any constants 2 and b,

Dp,q(af(x> +bg(x)) = “Dp,qf(x) + pr,qg(x)-



2.1 Definition and properties 5

Example 4. Compute the (p, q)-derivative of f(x) = x", where n is a positive integer. By definition

(px)" = (g)" _ p"=q" na
Dy x" = = x" (2.4)
" (p—q)x p—4
Since @ appears quite frequently, let us introduce the following notation
pn _ qn
nly,="—=", (2.5)
e =

for any positive integer n. This is called the (p, g)-bracket, the (p, g)-number, the twin-basic
number or the (p, g)-analogue of n. Then, becomes

-1
Dygx" = [n]pqx" . (2.6)
The twin-basic number is a natural generalization of the g-number, that is

}}_}rr} [1]p,g = [nlg. 27)

Proposition 5 (Bukweli and Hounkonnou, [22]). If n and m are non-negative integers, then

[n+ m]p,q =q" [”]p,q +p" [m]p,q =p" [”]p,q +q" [m]p,qr (2.8)
[=m]pg=—q "p " [m]pg, (2.9)
n—mlpa=q" ([”]p,q - Pn_m[m]m) =p " ([”]p,q —q" " [m]p,q) . (2.10)

Proposition 6. Forn > m,n,m € {0,1,2,...}, the following equations apply

PN ([n)pg — q" " [mlpg) = P n —mlp, (211)
(] pgln —1pq — (pg)" " [m]pglm —1pg = [n —m]pq[n+m—1],,. (212)

Remark 7. Note that (2.11) and (2.12)) reduce to Equations (2.2.3) and (2.2.4) in [53, Page 30]

Proposition 8 (Njionou [69]). The (p, q)-derivative fulfils the following product rules
Dy (f(x)g(x)) = f(px)Dp,48(x) + §(qx) Dp,qg f(x), (2.13)
Dp,q(f(x)g(x)) = 8(Px)Dp,qf(x) + f(‘VC)Dp,qg(x) (2.14)
Proof. From the definition of the (p, 7)-derivative and (2.2), we have

Delx)) = dpq(f(x)g(x)) _ f(px)dpqag(x) + g(qx)dpqf(x)
Dyg(f()g(x)) = P18 i ,

hence
Dp,q(f(x)g(x)) = f(Px>Dp,q8(x) + g(qx)Dp,qf(x).
This proves (2.13). (2.14) is obtained by symmetry. O

Proposition 9 (Njionou [69]). The (p, q)-derivative fulfils the following quotient rules

f(x) . g(qx)Dp,qf(x) - f(qx)Dp,qg(x)

Pra (g(x)) - 3(pX)g (@) @15
f(x) B g(Px)Dp,qf(x) - f(Px)Dp,qg(x)

Pra <g(X)> B g(px)g(qx) (216)
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Proof. Inorder to get those quotient rules, we remark that f(x) = g(x) ({;Eg Thus, applying
(2.13) to this relation we get
f(x) ) f(gx)
D x)D + D x),
paf(x) =g(px) M(g( ) <(qx) pa8 (%)
and thus (2.15). In the same manner, applying (2.16) provides (2.14). O

2.2 (p,q)-Binomial coefficients

In this section we introduce the (p, g)-factorial and the (p, g)-binomials coefficients. Chapter
is devoted to these (p, q)-binomial coefficients since they are very useful in combinatorics.

Definition 10 ((p, g)-factorial (R. Jagannathan, R. Sridhar [50], Njionou [68]) ). The (p,q)-
factorial is defined by

n

Mlpg! =T [Klpg!, n>1, [0],4 =1. (2.17)
k=1

Let us introduce also the so-called (p, q)-binomial coefficients.

Definition 11 ((p, g)-Binomial (R. Jagannathan and R. Sridhar [50], Njionou [68])). The
(p, q)-binomial coefficients are defined by

7 [1],q!
= ' , 0<k<n. (2.18)
[k} g [k] p,q![” — k] g’

Note that as p — 1, the (p, q)-binomial coefficients reduce to the g-binomial coefficients (see Kac

and Cheung [52]]).
] n
I (219)
klpg —klpa

It is clear by definition that
Proposition 12 (Njionou [68]). Let n be a non-negative integer, then the following formula applies
1 (1] p,qg!
D" H = ()" —P (2.20)
M Lx (pg)"s)xn 1
Proof. The relation is obvious for n = 0. Let n > 1, assume that (2.20) holds true. Then

(_1)71 [n]fqu! ]

1
D?’l—‘rl I::| =D
P Lx] (pg) "2 )1

~ (=1)"[n]p,! 1 1
T e e <<px>n+l (qxw)
(D" ]yt = ]pg e 1!

The proof is then complete. O

The next proposition generalizes (2.20) and is proved in the same way.
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Proposition 13 (Njionou [68]). Let a be a non-zero complex number. Then the following equation
holds true:

Dn[ 1 ]: (—a)"[1]pq! (2.21)

_ (—a)"[n]p,q!
(ap"x +b)(ap"~1qx +b) - - - (apqg"~1x + b)(aq"x + b)

Note that fora = 1 and b = 0, (2.21)) reduces to (2.20).

2.3 (p,q)-Leibniz formula and power derivative

Let n be a nonnegative function. If f and g are two n times differentiable functions, the
classical Leibniz formula states that

(Fgle)™ = 3 (1)), e
m=0

where f(") (x) stands for the n-th derivative of f(x).
The g-analogue of this formula states (Kac and Cheung [53]])

D F(x)g(x)] = ¥ H (DI £) (¢¥x) (DEg) (x). 223)
1mlq

In the following theorem, we state the (p, q)-generalization of these results.

Theorem 14 ((p, 9)-Leibniz theorem, (Araci et al. [15])). Let f and g be two (p, q)-differentiable
functions. The following (p, q)-derivative rules are valid

Dyl =), [n] Ap" ) (D} *8) (4"x), (2.24)
k=0 Lk

Dyl =) m (D *F) (p*x) (D} ,8) (4" *x). (2.25)
k=0 Lkdpg
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Proof. (2.24) is true for n = 0. Let n be a nonnegative integer, we have

Dt (f(x)g(x)) = DDy, (f(x)g(x))

=3[ ua [N 0050 0]
p4q

=2 [ {@hanertm (031 00)
+Dpq |(Dhef)(p" )| (D) (6 1x) }
{a" (D) ("5 x) (D 4 9) (")
PO (") (D) (1) |

Y " 408, () (D ) (¢)
k=0 Lk r.q

w3 1 O D ) )
k=0 Lklp,q

)

n
k=0

[:jpqqkw';,qf)<p"+1-kx><D;;1-kg><qu>

n+1 n
+k21L J PR F) () (DI ) (g)
= - P4

n+tl [n +1

n+1—k k _
ZkZO(—l)k ) Lqp( gDk ) (p" R x) (DR g) (4 x).

(2.25)) follows from (2.24) and the use of (2.19). O

Next, we state the following power derivative for the operator D, ;.

Theorem 15 (Power of D, ;, (Araci et al. [15]]) ). The following derivative rule applies

Dz,qﬂx):(p—q)"x"(pw@z(—l)k[”] PO (), 1 £0. (2.26)
k=0 P
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Proof. The relation is obvious for n = 1. Let n > 1, assume (2.26)) is valid. Thus:

(Dpa' f)(x) = Dpq(Dpf) ()

— (p— )" (p0) D [(p — )] {(px)” Y (~1)f H pOgT (1K)
1221

— (p—q) "D (pg)~ 2Dy (141) { Y (-1t H g2 R F (k)
1221

2 k| M BYn+1—k (IR £ n+1—k k
+ ). (-1 Jort g" 2 I f(p gk
— 1-pq

n+ly n
= (p—q) " (pg) 2 )x

1
x ni(—l)k gt ﬁ +P”“‘kLn } plg"2 D f(pr Ry
k=0 k P4 —1 p.q

—(n iy s n+1 ky (n+l-k b l—
= (p—q)" " (pg) 2 x (“)Z(—l)k{ ) ] P2 f(p" T ).
k=0 pA
This ends the proof. O

Remark 16. Using (2.19), the relation (2.26) can be written as
—n.—-n _(n LG n n—k k n—
DR = =) " ") O L0 p . e
k=0 pAq

Forp =1, reduces to the power derivative for the operator D, (Annaby et al.[11] F. Ryde
[77]).



Chapter 3

The (p, q)-Power and the Taylor
Formulas

3.1 The (p,q)-power basis

Here, we introduce the so-called (p, q)-power and investigate some of its relevant proper-
ties. These polynomials are useful to state our Taylor formulas.

Definition 17 (Njionou [69]). The expression

(x&a)y, = (x—a)(px —aq) - (p"'x —ag"™") 3.1)

is called the (p, q)-power.

Note that for p = 1, the (p, q)-power reduces to the g-power (see Kac and Cheung [52]).
It should be noted the following important relation between the (p, 4)-power basis and the
(p, q)-factorial

(Pe ),
Mpgl = —+ (3.2)
hat = gy
Proposition 18 (Njionou [69]). The following assertion is valid.
Dpg(x©a)y, = [n]pq(pxca)y,t, n>1, (3.3)

and Dp4(x © ”)?w =0.

Proof. The assertion D 4(x © a)%rq = 0 is obvious. Let n > 1, then we have

(pxea),,=(p'x—ag" ") (pxca)y !
n—1
(gx ©a)}, = (qx —a) [ T (qxp* — ag")
k=1
n—2
= (qx —a) [ J(gxp*™* — ag"t1)
k=0

n—2
= (qx —a)g" ' [T (pxp* — aq")
k=0

n

= (xq" —aq" ") (pxoq)p .
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Therefore, it follows that

" (p"x —aq"") — (xq" —aq""") e
Dpg(x©a)y,= e ' (p—q)xq ! )(px9‘7)pq1

= [n]pq(px© ‘7);;1~

O]

We can also handle the proof by induction with respect to 1 as follows. The result is already
true forn = 1. Let n > 1, assume that

qu(x@a)n [n]p,q(px & )pq ,

therefore, by using the product rule (2.13) where we take f(x) = (x©a)}, and g(x) =
(xp™ — aq"), it follows that

D’;,,q(x o a)%1 = D’;,q [(x Sa)p (xp" — aq”)}
=(pxoa)pp" + (xqp" —aq")Dpq(x S a)y,

= (px S a)pep" +qlnlpq (xp" — ag" ") (px © a)y,"
= (pxSa)pp" +alnlpe(x S a)y,
= (p" +qlnlpqg)(pxoa)y,
=[n+1]pqe(px©a),,
Proposition 19 (Njionou [69]). Let 7y be a complex number and n > 1 be an integer, then
Dpg(yx©a)p, = Y] pq(ypx © a)’;,gl. (3.4)
Proof. The proof is done exactly as the proof of (3.3). O

We now generalize this result in the following proposition.

Proposition 20 (Njionou [69]). Let n > 1 be an integer, and 0 < k < n, we have the following

5 [1]pg! -
Dha(x S )y =P = (P x 0 ) (3.5)
In particular for a = 0 we get
T
Dy x" = = k]p’q!x . (3.6)

Proof. The proof is done by induction with respect to k. Let n > 1, for k = 1, it is the
previous proposition. Assume that for a fixed k < n, we have

b [nlp,
D];,q(XQ‘Z)Z,q = p(z)#(p xXSa),, k.
pa’

Then, we get
Dyt (x©a)p, =Dy, (D’;,,q(x - a)ﬁ/,,)

_ 5 [1p.q! n—k
p2 [”—k]m M(p xXOa)y,
Ko [1]pa! .
_p(z) ] !pk[ k]pq(pxe ) k—1

(}Hz—l) [ ]Prq! (P xOa )n k=1
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Remark 21. For the classical derivative, it is known that for any real number «, one has

o a—1
—X = &X .
dx

In what follows, we would like to state a similar result for the D, , derivative as done for the D,
derivative in [52l]. We follow the same procedure.

Proposition 22 (Njionou [69]). Let m and n be two non-negative integers. Then the following
assertion is valid.

(x@ )" = (x O )y (P"x © q"a)},. 37)
Proof. By definition,
n+m—1 ' r
(xoa)y"= T] (xp"—aq)
k=0
m—1 ‘ n+m—1 ' ‘
=[1Gp" —aq") TT (xp" —aq")
k=0 k=m
m—1 ‘ r n—1 . r
= [1(xp* —ag") [T((xp™)p" = (ag™)q")
k=0 k=0
= (xSa)y (P xS g a),,
This is the expected result. O
In Proposition 22} if we take m = —n, then we get the following extension of the (p,q)-

power basis.
Definition 23 (Njionou [69]). Let n be a non-negative integer, then we set the following definition.

1
(p"xoqma)s,

(xoa),; = (3.8)

Proposition 24 (Njionou [69]). For any two integers m and n, holds.

Proof. The case m > 0 and n > 0 has already been proved, and the case where one of m and
n is zero is easy. Let us first consider the case m = —m’ < 0and n > 0. Then,

(xOa)py(p"x o g )y, = (xCa), i (p " xOq "),

by (3.8) Ep @q*m )M

/

prx o)y,

Sq"(q )y " if > m

b
y €7 { — if n<m

(9" (@) (g~ a)) |
by- (x@a)n m x@ )n-i—m'
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Ifm>0andn = —n’ <0, then

m m mo\n __ m m m, \—n'
(xoa)p(p"xoq"a),, = (x©a),, (p"x S q"a),
_ (xSa)y,
- _n/ — 7
(pm"xoq""a)y,
(x@a)m—n’ (pm—n’x@aqm—n’)n’ )
pl?”nfn/ m—n' \n' = lf m > n/
(pr=mxoqm"a)p,
(xea)y,

: /

(pm—n’xeqm—n’a);fq—m(pn’—m(pm—n’)x@qn’—m(qm—n’a))%q if m<n
(x @a)gq*”’ if m>n'
L if m<n

! —n! \n'—m
(P xeqm " a)p,

=(xeca)," =(xoca),"

Lastly, if m = —m’ <O0and n = —n’ <0,

! !/

(xoa)p(p"xeq"a)y, = (x© a);,;”/(p_m,x oqg "
1
(pmxeq™a)y,(p-""xoq " "a)y,
1
(xS g

=(xo a);/;”,*”l = (xoa)p™

Dy

Therefore, (3.7) is true for all integers m and n. O

It is natural to ask ourselves if (3.3) is valid for any integer as well. But before trying to
answer this question, let us generalise the twin-basic number as follows.

Definition 25 (Njionou [69]). Let a be any complex number,

pzx_qzx
K]py = —. 3.9)
[@]p.q e (

Proposition 26 (Njionou [69]). For any integer n,
Dy,(x© a)’;,‘7 = [n]q(px S a)';,gl. (3.10)

Proof. Note that [0],, = 0. The result is already proved for n > 0. If n = —n' < 0, using
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and it follows that
D,,(xSa);,=D !
& P (prx e g )y,
_ Dpq(p xS g "a )nl
(g (px)©q"a )pq(qp ”x@v/ ma)n,
_ p [ )pa(p " x0q " a)y, !
(@ () ©g ")y, (qp xS g )y,
_ P (1 ]pg
(x—q7" )(qp rxoqra)g,
_ —r q "[n ]y
(P Hpx) &g ta)p !
=—p g "[n /]pq(Px © ”);7,3 !
= [n]pq(px S a)qu'
This was announced. O]
Remark 27. It should be noted that (a © x)}; , # (—1)"(x © a)}, .. Instead, forn > 1,
(@6 x)p,=(a—x)(pa—xq)-- (p"la—xq""")
= (=D"(p) P (x = a)(p~'x —ag ) - (p i —ag ™)
n n
= (=1)"(p)® (p*'x S .ag ™)
pa
Proposition 28 (Njionou [69]). The following relations are valid:
1 —q[1]pg
D = 3.11
Plxoan, (qx@a)'“rl G4
Dpg(a©x)p,=—[n ]pq(a@v/x)’;ql, (3.12)

rYq (a@x)z (a@px)n+1
Proof. For the relation (3.11), we first do the following remark
1 1

e, () e (g )y, PO

If follows that

Dyq —=Dpq(p"x©q"a),
(xoa), A

= [—nlpep" (p"(px) ©q"a) 0"
B —(n+1)
— [_n]p,qpn (anrlx o anrl (ﬂq ))p

_ [—n]pqp"
(x@aq )n—i—l

A
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Taking into account that

[—n]pq = and (axOy)yq =a"(xO azx’l)zrq,

we finally get
D 1 _ —q[n]pq '
Mo, (groa

For the relation (3.12)), we use twice the above remark as follows

n

Dpqg(a©x)y,= (—1)n(pq)(Z)DM (pfnwtlx 5 q*”“a>

p4q
n n n—1
= (=1)"(p)Dp ™" g (P (px) © 47" a)
P4
_ _ n—1 _ _ - n—1
= ~[lpa(pa)"p " (pg) 2D (x0T )

n—1

=_ [n],[,,qq”*1 (q’la o x)
=—[n]pq(a© qx)%l.

For the proof of (3.13), we use the quotient rule (2.16) as follows

pA

1 Dyy(a© x)g,q

Dpa (acx),  (acpx)s, (aoqx),
(n]pq(ae qx)ggl
(a0 px)p,(acqx)p,
[”]p,q
(a © px)j 4 (ap"~" — g"x)
[”]p,q
p'(ap~t ©x)} ((ag~1)q" — q"x)
[”]p,q
pr(ap~tex)j,
_ [”]p,q
pr(p~H) i (a © px)pi!
P[n]p,q

— P
(aspx)yy

O

Proposition 29 (Njionou [69]). Let n > 1 be an integer, and 0 < k < n, we have the following
identity

k nlyg!
D} (aox)h, = (—1)fq% "pa (aoqix)y k. (3.14)

n—klp,!
Proof. Letn > 1, for k = 1, it is the relation (3.12)). Assume that for a fixed k < n, we have
oo (1!

Dha(a© )y = (CIE e ae g gt
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Then, we have
Dyt (aex)y =Dy, <D§,q(” o x)z,q)

|
— (_1)kq(12() [”]Pz’i' DP,q(a o qu)nfk

[n — k]p/q! P
k [1’1] q! e
= (—1)kq® m —Ili]qpq! (_qk) 1 —K]py(a qk+1>glqk 1
k1 [n] g o
— (_1)k+1q( 2 )[n_k—iql]pql(a o) qurlx)Z,qk 1
Hence, (3.14) is valid for all non-negative integers . O

3.2 (p,q)-Taylor formulas

In this section, two Taylor formulas for polynomials are given and some of their conse-
quences are investigated.

Theorem 30 (Njionou [69]). For any polynomial f(x) of degree N, and any number a, we have
the following (p, q)-Taylor expansion:

fo) = 3 - (Dbl (@)

k=0 [k] pA !

k
(x©a)y, (3.15)
Proof. Let f be a polynomial of degree N, then we have the expansion
N .
fx) = Z cj(x S a)y,. (3.16)

Let k be an integer such that 0 < k < N, then, applying D’;Iq on both sides of lb and
using (3.5), we get

N Ulpat ik
(D];,qf) (x) = chﬁp(z)(pkx Oq)hq -

Substituting x = ap~¥, it follows that

_ k
(D];:,qf> (ap™) = Ck[k]p,qlp(z)/

thus we get

This proves the desired result. O

Corollary 31 (Njionou [69]). The following connection formula holds

n X n
=Y p G [ ] (ap_k)”_k(x@a)';,q. (3.17)
k=0 k r.q
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Proof. Consider f(x) = x", where n is a positive integer. For k < n, we have

(Dhaf) () = 20

n—kjp,!

Thus we have

which proves the result. O

Theorem 32 (Njionou [69]]). For any polynomial f(x) of degree N, and any number a, we have
the following (p, q)-Taylor expansion:

:ﬁ ( baf ) (097) K (3.18)

Kot (ao X)M.

Proof. Let f be a polynomial of degree N, then we have the expansion

(2 X)) (3.19)

u Mz

Let k be an integer such that 0 < k < N, then, applying D’;Iq to both sides of 1) and using
(3.14), we get

A ~[i] -
(1) 1 B g gt

Substituting x = ag ¥, it follows that

(Dhaf ) (ag7™) = ex(=1) K]t~

thus we get

Df,f ) (ag ™)
Cr = —1 k _(12{) ( PA .
k ( ) q [k] iy 1
This proves the desired result. ]

Corollary 33 (Njionou [69]). The following connection formula holds

= Y (-1fg 0 H (aqg )" aox)},. (3.20)
k=0 klpg

Proof. Consider again f(x) = x", where n is a positive integer. For k < n, we have

(Dlrg/qf> (x) = [[n]f"'”/!xn_k.

n—klp,!
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Thus we have

_y [1]pa! K
- ;0 [Tl _k]pq [k]pq (’1‘7 ) (a@x)P,q

=f<—1>’<q<§>[”] (a7 (@ x)f,.
122

=

k=0 kp,
O
Corollary 34 (Njionou [69]). The following connection formulas hold:
ol k k
(xob)y, =Y, [ ] (acb)yf(xSa),,, (3.21)
k=0 Lk r.q
ol k k
box), =), [ ] (boa), (a0 x),, (3.22)
k=0 Lk r.q
Remark 35. If one substitutes b by ab in , then one gets
ol k k k
(xeab)y, = kz(:) [k} a"t(1eb),(xoa),,
= pA4
Now, take x = 1 and p = 1, the following well known g-binomial theorem follows
n 1 k
(ia)s = Y- || )it 623)
k=0 Lk q
Therefore, is an obvious generalization of .
Corollary 36 (Njionou [69]). The following expansion holds
1 i = []pqln +1pq '[”+j_1]p,qxn
(193‘)297 =0 [j]p,q'
® m+47j—1 T
_14) [ j ] -G, (3.24)
j=0 ] pA
Proof. Consider the function f(x) = (1@1) . From (3.13)), we have
1 plnlpyg
D x)=D = ,
P/qf( ) 12 (1 o) x)lrgz (1 o x)n-i—l
and by induction, ‘
: plnlpgln +1]pq---[n+j—1pg
D;Wf(x) - = - n+j
(1S x)pq
Hence (D;,qu)(O) = pj_(é) n]pgln+1]pq---[n+j—1],, for any j > 1 and hence the for-
mula follows. O
Note that (8.25) is the (p, g)-analogue of Taylor’s expansion of f(x) = (1—1x)” in ordi-

nary calculus. Note also that when p — 1, (8.25) becomes the well known Heine binomial
formula.



Chapter 4

(p, q)-Binomial Coefficients and their
Properties

The classical binomial coefficients, usually denoted by (Z) , play a very important role in

enumerative combinatorics. These numbers appear as the coefficients in the expansion of
the binomial expression (x + y)". More precisely,

(x+y)' =Y, <Z> xyE,

k=0

This identity is known as the Binomial Theorem (see [26, 31} 76, [85]), which for y = 1

becomes .
(x+1)"=) (Z) xk

k=0
the horizontal generating function for the binomial coefficients. These coefficients can be
interpreted as the number of possible k-subsets out of a set of n distinct elements or the
number of ways to choose k elements from the set of n distinct elements. The binomial co-
efficients are also known as combinatorics or combinatorial numbers.

g-Analogues of binomial coefficients are introduced in [24], extensively studied in [31] and
[52]. They are defined by

m&/ B 1:1 Z:jll - [k]q![[z]q—! klg"’ [ZL “hoart

In this chapter we introduce the (p, g)-binomial coefficients and establish some properties
and identities similar to the ones known in the g-case and the classical case.
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4.1 Recurrence relations for the (p,q)-binomial coefficients

Theorem 37 (Corcino [32]). The (p, q)-binomial coefficients satisfy the following triangular re-

currence relations
n+1 K | n—k+1| M
p +q , 4.1)
k dpaq klpgq —Upg

n—+1 n n
el e
k dpg klpaq —pg

Proof. First remark that for any integer k such that 0 <k < n 4+ 1, we have

n+1 n+1
n+1],,= ’”p_;’
B pn+1 _ qkpn+1fk + qkanrlfk o qn+1
p—q
_ anrlfk(pk o qk) + qk(pn+1fk _ qn+1fk)
pP—q

= qk[” +1-— k]p,q + Pnﬂik[k]p,q-

Hence, it follows that

[n + 1] _ [n+1],,! I L e PP L P

(qk[n +1-— k]p,q + pnﬂfk[k] p,q) [n]p,q!
[kl pgtn +1 = k]p,q!

_ qk[” +1-— k]p,q [”]p,q! PnH_k[k]pm] [”]p,q!
[k]p,q![n—l—l—k]p,q! [k]p,q![n—kl—k]p,q!

_ qk [1]p,q! [1]p,q!
k] pq! [ — K] pq k—1]pq!n+1—k|p,!

n n
:pkH +qn—k+1L ] '
klpaq —1pg

This proves (@.1), follows from the fact that the (p,q)-binomial coefficients are sym-
metric in p and q. O

n+1—k
(TP

Remark 38. Note that taking p = 1in yields

AT ]

which is the so-called triangular recurrence relation for the q-binomial coefficients (Comtet [31]]).
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n+1
Note that if we apply (4.1)) three times, to [
k+1

n+1 n n

4 g ] ] ]

k+1pg klp.q +Upg

_ gk ] 4 pht [ gk [” - 1] 4 [” - 1]
Lkl p,g k g k+1lpq

[71] n—1 n—2 n—2
— qnfk + karlqnfkfl |: :| + p2(k+1) qnfku |: :| + karl |: :|
Lkl p.g k dpaq k dpg k+1dpgq

[71] n—1 n—2 n—2
— qnfk + karlqnfkfl |: :| + p2(k+1)qnfk72 |: :| + p3(k+1) |: :|
Lkl p.g k dpaq k dpaq k+1lpq

} , we get
P4

Continuing this process until the (n — k)th application of (4.T), we get

n+1 i arm—1 uko |2
[ ] g kH + g kl[ ] 1 Rl g kZ[ ]
k+1lpg klpq k dpg k Jpq

n—2 k
_|_p3(k+l)qn—k—3 |: :| 4t p(n—k)(k-i-l) L<:|
P4

k+1 M'

This is known as the vertical recurrence relation for the (p, g)-binomial coefficients. Next,
rewriting (4.2) in the form

n n—+1 n
[] =[] g 7
klp.q k+1pgq + Upq

and iterating this recurrence relation, it follows the horizontal recurrence relation. These
results are contained in the following theorem.

Theorem 39 (Corcino [32])). The (p,q) binomial coefficients satisfy the following vertical recur-

rence relation
n+1 L . [j
[ } _ Y plriie ) ku
k+1Upqg j=k P4

and the horizontal recurrence relation
—k ‘ '
m - nz(_1)fp—<j+1>(n—k)+(f§1)qjk+(f;1) [k’“rl } '
klpg  j=0 +i+ g

The horizontal and the vertical recurrence relations may be regarded as the (p,q)-
analogues of the Hockey Stick identities (Hilton [42]). They are also known as Chu Shi-
Chieh’s identities (Chuan-Chong and Khee-Meng [26])). Indeed, if p = 1 we get

n i —k )
[TH_W =Yy a" m and H = ii(—l)jqjk”]ﬁl) Ln+1 ]
k+1q =k q klg  j=0 +j+ g
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which are the vertical and the horizontal recurrence relations for the g-binomial coefficients,
respectively. Moreover, as g tends to 1, the former relations reduce to

() -5) = ()-Reviih)

which are the classical Chu Shi-Chieh’s identities (Chuan-Chong and Khee-Meng [26]]).

Proposition 40 (Generating function, Corcino [32] or Njionou [69]). The (p, q)-binomial co-
efficients are generated by the (p, q)-power

non
(x©b)y,= Z [ } p(g)q( 2 ) (—b)" kK, 4.3)
k=0 Lklpg

Proof. Taking b = 0 in (3.21), and using the fact that

n

(xS0)p,= p2)x"
(00 x)),=(=1)"gx"

we get the result. O

Corollary 41 (Corcino [32]]). For n > 1, we have

k even k kodd

Y plglsh H Y pgsh H , (4.4)
pa pA

Proof. For x = b = 1 in (4.3) it follows that

therefore the result follows. O

4.2 Orthogonality relations

Here, using twice the connection formula (3.21), we prove a general orthogonality relation
for (p, g)-binomial coefficients.

Theorem 42. The following orthogonality relation hold true for all complex numbers a and b
"o [k ok k—j
Z | (e b)p,q (boa)p, = onj, (4.5)
k=j Udp.q Ljlpag

1 n=j
0 n#0

is the Kronecker delta.

where &, = {
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Proof. Using (3.21) we get

n

n
xebh, =1 '] @onpen,
k=0 Lk r4q

In this relation, commute the position of a and b in the (p, g)-power in x appearing on the
right hand side, apply again (3.21) combined with the summation formula

n k n o n
Y Y Atk j) =Y Y Alkj),
k=0;=0 j=0k=j
it follows that

k » ,
u (a@b)glqk(b@a)’;/qj) (x O DY
P4

-£(£0],

The proof follows by equating the coefficients of (x & a)]r‘], g on both sides. O
The special cases of wherea = 0and b = 1 or b = 0 and a = 1 appeared in [32,
Theorem 4]. The proof of this result is done there by a very long induction process.

Corollary 43 (Corcino [32]). The following orthogonality relations for the (p, q)-binomial coeffi-
cients holds

nom k o _

2 [ ] H (—)Tp20g) =5,
k=i Ucdp,q Ljlpag

i |:1’l:| |:k:| (_1)n,kq(ngk)p(k£]) _ 5;,[,]‘.
k=j Ucdp.q Lidpg

4.3 (p,q)-Vandermonde’s identity

Vandermonde’s identity states the following

(-5 “9

The corresponding g-analogue of Vandermonde’s identity is given by [38]

[”””] _ iq]’(m—kﬂ') H Lm } . 4.7)
k dg  j=0 JAa bk — g

In this section, we derive a (p, 7)-analogue of Vandermonde’s identity.
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Theorem 44. The following identity for the (p, q)-binomial coefficients holds
k
[” + ’”] _ Y plli Rk gitni) [’"] L" } . 4.8)
k dpa j=0 jApatk— fpa

Proof. First let us introduce the following notation

n—1

(a@b)y, = (ao (b)), = [ (ap" +bg").

From (3.7) we can write

(xob)p " = (xS b)p, (p"x S q"b)y ..

Using (4.3), respectively, with (x ©b)}, and (p"x © g"b)}, , combined with the Cauchy

product, it follows that

(x ® b)’;{;” =(x& b)’;,fq(pmx & q’”b)';,/q

~ (v m pbg("s"
k=0 Lk v.q

) kK mm
-y (X
k=0 \j=0 L7
(o] _m_
-y (=
k=0 \j=0 L7
(o] _m_
-y (=
k=0 \j=0 L7
(o] _m-
=2 X,
k=0 \j=0 L7

i dpaq

1 dpaq

pA

Also, by (4.3), we can write

Hp.g

Hp.g

i | (3 ﬁ P g2 ()" K ()
k=0 Lk r.q

p(z)q(mzj)bm_jxj[k } P(kzj)q("@k)(q’”b)””k(me)kj)
J-pra

p B+ Fmlk=)) g (" )+ (T ) Fmln-tj—k) jijn—i-]'kxkj)
p(é) + (k;j)-*-m(k—j) q(m;j) + ("q*k)—&—m(n—&-j—k) ) bm+n—kxk
pj(jmk)+mkqj(nk+j)) p(g) q('ﬁ'f*k) pmtn—k k.

k=0 k

(x@b)im = i [” + m] P2 ek ik
P4

Identifying the coefficients of x* on both sides, the result follows. O

Remark 45. For p = 1in and using the symmetric role of m and n, we recover {@.7).



Chapter 5

(v, 9)-Exponential and
(p, q)-Trigonometric Functions

In this chapter we introduce three (p, q)-analogues of the exponential function and their
associated (p, q)-trigonometric functions.

5.1 The usual (p,g)-exponential functions

Definition 46 (Jagannathan et al. [49], Njionou [68) [84] [70]). The small (p,q)-exponential
function ey, 4(z) and the big (p, q)-exponential function E, 4(z) are defined, respectively, by

© ()
P
epq(z) = z", (5.1)
pal2) n;)[”]rw!
o (3
Ep(z)=Y [1;7] 2", (5.2)
n=0 pAa-

Remark 47. It is worth noting that e, 5(x) = Eg p(x).

Proposition 48 (Jagannathan et al. [49]). The following equation applies:

epq(X)Epq(—x) = 1. (5.3)

Proof. The result is proved in [49] using (p, g)-hypergeometric series. We provide here a
direct proof. From and (5.2), and the general identity (which is a direct consequence of
the Cauchy product)

(o) tn (o] tn [o0] n n t]’l
R by | = bk | —— 5.4

it follows that

ep,q(X)Epq(—x) = <
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It remains to prove that

i |:n:| (—1)kq(§)p(”;k) — (sn,O-
k=0 Lk r.q

Taking a = 0 in (3.15) it follows that

= 3 D5aDO),

= [kpg!

for any polynomial f,(x) of degree n. Applying this formula to f,(x) = (¢ ©x)j ,, it follows
that

L n k n—k _
(a @x)glq = Z |: :| q(z)p( 2 )(_x)ka” k‘
k=0 Lkdp,g
Taking finally x = a = 1, the result follows. O

Proposition 49 (Njionou [69]). Let A be a complex number, then the following relations hold

Dy gEpq(Ax) = AE, 5(Agx).

Proof. From the definitions of the (p, )-derivative and the (p, 7)-exponential function e, 4(x),
it follows that

A" o (2)
P2 n—1 p n—1
Dy qepq(Ax) = nlpgz" = A (Az)
P n;() [”]M![ Ioa n;[”_l]wi'
00 (VH—]) ) (n)+n
p-2 n p> n
=) AzZ)P= A Az
ngb [”]IM!( ) ngﬁ [”]M!( )
© 5
=AY P (Apz)" = epq(Apz).
1=0 [p.a!
The proof of the second equation follows in the same way. O

Proposition 50 (Njionou [69]). Let n be a nonnegative integer, then the following equations hold
D} epa(Ax) = M'pPey (Ap"x), (5.5)
D Epq(Ax) = A"qBAE,  (Ag"x). (5.6)

Proof. The proof follows by induction from the definitions of the (p, g)-exponentials and
the (p, q)-derivative. O

Theorem 51 (Njionou [69]). Let a be a complex number. The following expansions hold:

ey (Ax) = epy(Aa) T U= @A) o gyn

= g\ @ A"Epy(Aa(q/p)")
q , q/p
= 5 (1) T ok
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Proof. Note that in (3.15), N can be taken to be co with the condition that the infinite series
obtained is convergent. The formula becomes

o o (Dpaf) (ap™)
:n;()p ? [”]Pq!

For f(x) = ep4(x), using the relations (3.2) and (5.5), it follows that
S Apa )epq()xa)

epq(Ax) = Z

n
(xSa)y,

n
(xo© a)p,q

R O A
- qu(/\ ),E)(P@W'ﬁ,q«p q)A) .

For f(x) = Ej4(x), using the relations and (5.6), it follows that

© L AgQRE, (A n
Ep,q()\x): Zp—(z) 5] 2 P/fi( ”(‘7/17) )(x@a)n

=0 [1]p,4! P
0 @ A"E, (A n

— <q> ’ pa(Aa(q/p) )(x@a)';q.
n=0 p [n]Pf‘i! ’

Theorem 52 (Njionou [69]). Let a be a complex number. The following expansions hold:

o ( p><3> Meyq(Aa(p/q)")

_5 [”]p,q!

n=0
E,,(x) = Ey (Aa) ;) W(a ox),.

Proof. Note that in (3.18), N can be taken to be co with the condition that the infinite series
obtained is convergent. The formula becomes

flx) = i(_l)an(;) (D;rqf> (ag™")

n=0 [”]W!
For f(x) = ep4(x), using the relations and (5.9), it follows that

- ))\ P( )epq(Aa(P/Q) )

(a©x)},

1) = (1) a2 0 0y,
o) ('21) An ) )Ul / n .
:r;)<_5> epq[(n]p(:!? r )(a@x)m

For f(x) = E,4(x), using the relations (3.2) and (5.6), it follows that

ad w Mg E, (Aa
Epq(Ax) =} (_1)nq_(2)W(ﬂ S X)pq
n=0 p4q-
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O
5.2 (p,q)-trigonometric functions
From we can derive
00 n o0 2n) 0 1)n (2n2+1)
— 2n P 2n+1
epq(iz) = L ; anq ; TES =z (5.7)
By (5.7), we define the (p, q)-cosine and the (p, q)-sine functions as follows:
epq(ix) +epo(—ix) & ) (2”)
cosyq(z) = = pal=h) ZO an : (5.8)
n=
( ) ep q(1x> epq _lx i )Tl (2’1;1) 21’l+1 (5 9)
sin = . .
PA 2i = 2n+1]p,!
Analogously, from (5.2)) we can derive
SR o (D" oy (DD
(iz) ———z i — 7z . (5.10)
Epa = = [2n],,! ZO 21 + 1] q!
And by (5.7), we define the big (p, q)-cosine and the big (p, q)-sine functions as follows:
E,,(ix) + E, (—ix) & (—1)"g(3)
Cosy(z) = _y Ut [271)] e (5.11)
n=0 pA
Sin ( ) qu(lX) Erhq(_ix) — i (_1)}10](2";1)2271—&-1 (5 12)

It is easy to see that
cosp,q(z) = Cosyp(z) and siny,(z) = Singp(z).

Proposition 53 (Njionou [69]). The following equations hold true:

p 4C0Sp4(2z) = —siny 4(pz),

Dy 4siny,q(z) = cosp,q(pz),
Dy,;Cospq4(z) = —Siny 4(qz),
Dy,;Siny 4(z) = Cosp4(9z).

Proof. From the definition of cosy,(z) and the derivative property (Proposition @]) of the
(p, q)-exponential function e, 4(z), it follows that

—_

Dy,qcosp,q(x) = 5 (Dyp,qcosp,4(iz) + Dy,gc0sp,q4(—iz))
1 .. . .
=3 (isiny,q(ipz) — ising q(—ipz)) = —sinq(pz).

The three other equations are established in the same way. O
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Remark 54. Note that, using the fact relation

Dpq [f(v2)] = 7(Dpqf)(rz)

we can see that both the (p, q)-cosine and the (p, q)-sine functions are solutions of the second-order
(p, q)-difference equation

D} y(2) + pPy(p’z) = 0.

Proposition 55 (Njionou [69]). The following equations hold

cosp,q(x)Cosp,q(x) + siny 4(x)Sing 5 (x) =1,

Proof. Using (5.3), it follows that
(epq ix) + epq —1x)) (Ep,q(ix) + Ep,q(—ix))
1

cosp,5(x)Cosp,q(x 5

(€p,q(ix)Epq(ix) + €pq(—ix)Epq(ix) 4 2)
(ix) — ey (—ix)\ [ Epq(ix) — Ep;(—ix)
pa €4 > < pa . pa >

i

~
sinp q Slnp q(x (
~1 (ep q(ix)Ep g (ix) + ep,q(—ix) Ep 4 (ix) — 2)

Hence
cosp,q(x)Cosp,q(x) + siny 4(x)Sing 4 (x) = 1.

The second equation follows in the same way. O
5.3 Hyperbolic (p,q)-trigonometric functions

Let us now define the hyperbolic (p, g)-cosine and the hyperbolic (p, g)-sine functions as
follows

epa(z) tepa(—2) & p3
cosh P P = z2", (5.13)
pa(2) = 2 n;) 2n],,4!
epa() —epa(—=2) _ & p)
sinh,, ;(z) = 24 P =y £t (5.14)
P 2 n; 211+ 1] 4!
E Epo(— © (%)
Coshy(z) = 224 Hz D L [ziqulzz”' (5-15)
E ( ) E (—Z) 00 q(2;12+1)
Sinh PA A = 72+ (5.16)
pal?) = 2 L vl

Proposition 56 (Njionou [69]). The following equations hold

coshy, ;(z)Coshy,4(z) + sinhy, 4(z)Sinh, 4(z) = 1,

Proof. The proof is similar to the proof of Proposition (55). O



Chapter 6

(p,g)-Antiderivative and
(p, g)-Integral

6.1 The (p,q)-antiderivative

The function F(x) is a (p, q)-antiderivative of f(x) if D, ,F(x) = f(x). It is denoted by

/f(x)dp,qx- (6.1)

Note that we say "a" (p, q)-antiderivative instead of "the" (p, q)-antiderivative, because, as
in ordinary calculus, an antiderivative is not unique. In ordinary calculus, the uniqueness
is up to a constant since the derivative of a function vanishes if and only if it is a constant.
The situation in the twin basic quantum calculus is more subtle. D, ;¢ (x) = 0 if and only
if (px) = ¢(gx), which does not necessarily imply ¢ a constant. If we require ¢ to be a
formal power series, the condition ¢(px) = ¢(qx) implies p"c, = g"c, for each n, where c,
is the coefficient of x”. It is possible only when c,, = 0 for any n > 1, that is, ¢ is constant.

Therefore, if
o
Y
n=0

is a formal power series, then among formal power series, f(x) has a unique
(p,q)-antiderivative up to a constant term, which is

|| "

n+1

/f ) O[n’:rl]pq el 6.2)

6.2 The (p,q)-integral

We define the inverse of the (p, g)-differentiation called the (p, q)-integration. Let f(x) be
an arbitrary function and F(x) be a function such that D, ;F(x) = f(x), then

F(px) —F(qx) _ /.
(p—q)x fx).
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Therefore, F(px) — F(gx) = exf(x) where e = (p — ¢q). This relation leads to the formula
r (plq*1x> _Fr (poq’ox) = epqxf (poq’1x>
F(p%072%x) — F (p'q7'x) =ep'q 2xf (p'q72x)
F(p’a7°x) — F (p*q2x) =ep’q°xf (p*47°x)

F <pn+1qf(n+1)x) _F (pannx) _ Epan(nJrl)xf (r)an(nJrl)x)
By adding these formulas term by term, we obtain

F(p"1q~x) = F(x) = (v—q)xkéf(;ﬂ 7).

p

Assuming ‘ < 1 and letting n — oo, we have

0 k
F(x)—F(0) = (- p)x ). kﬂf( - )

k=01

Similarly, for

=

‘ > 1, we have

[e9) k k
F(x) — F(0) = (p— q)x kZOpka( 7 )

Therefore, we give the following definition.

Definition 57 (Njionou [69])). Let f be an arbitrary function. We define the (p, q)-integral of f as
follows:

/f paX = (p—q)x }of k+1f< :H > (6.3)

Remark 58. Note that this is a formal definition since we do not care about the convergence of the
right-hand side of (6.3).
From this definition, one easily derives a more general formula

/f(@Dp,qg(x)de:(p_q) i k+1f( kt1 > P48 (q

k=0 P

k k+1
g ka g q+1x

. qxz kﬂf(m) () - g )
(p— qrx

-5 () (s () = ()
or otherwise stated
Jremr= £ () (5 (55)) o

We have derived (6.3) merely formally and have yet to examine under what conditions it
really converges to a (p, q)-antiderivative. The theorem below gives a sufficient condition
for this.
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Theorem 59 (Njionou [69]). Suppose 0 < — < 1. If |f(x)x*| is bounded on the interval (0, A]

for some 0 < a < 1, then the (p, q)—zntegml converges to a function F(x) on (0, A], which is
a (p, q)-antiderivative of f(x). Moreover, F(x) is continuous at x = 0 with F(0) = 0.

Proof. Let us assume that |f(x)x*| < M on (0, A]. Forany 0 < x < A, >0,

()| m( )

Thus, for 0 < x < A, we have

H H —K —aj
g (¢ et | (4)
st ()| <ol (GFr) = oo [(p> ] )

9

Since, 1 —a > 0and 0 < — < 1, we see that our series is bounded above by a convergent

geometric series. Hence, the right-hand size of (6.3) converges point-wise to some function
F(x). It follows directly from (6.3) that F(0) = 0. The fact that F(x) is continuous at x = 0,
that is F(x) tends to zero as x — 0, is clear if we consider, using (6.5)

- M(p —q)x'®
(p=a)x ) k+1f<k+l)<§prx_q)1a’ 0<x=< A
k=0 P P q

In order to check that F(x) is a (p, g)-antiderivative we (p, q)-differentiate it:

00 k k
DpqF(x) = ! (P q)px Z ka( kHPx) —(P—q)qXZPZHf (l;,zﬂqx»

(p—q)x k=o P k=0
0 q k+1
()R (5
k=0 P k=0 P
o _k
q q
-E i (3)-E 3 ()
k20 Pt k; AN
= f(x).
Note that if x € (0, A] and 0 < Z < 1, then Zx € (0, A], and the (p, q)-differentiation is
valid. O

Remark 60. Note that if the assumption of Theorem |59|is satisfied, the (p, q)-integral gives the
unique (p, q)-antiderivative that is continuous at x = 0, up to a constant. On the other hand, if we
know that F(x) is a (p, q)-antiderivative of f(x) and F(x) is continuous at x = 0, F(x) must be
given, up to a constant, by (6.3), since a partial sum of the (p, q)-integral is

N N i
(p— ) Zp]+1f<p]+1 ¥) == a)r L D POy

j=0 Pt
) i] . q]+1
:(p_Q)xi 5]] F(ij> P(PJHX)
i+1
=l (p— )3k
j j+1
B 6()(2)
j=

qN—H
=F(x)—F <pN+1x>
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which tends to F(x) — F(0) as N tends to co, by the continuity of F(0) at x = 0.

Let us emphasize on an example where the (p, g)-derivative fails. Consider
flx) = % Since
Inpx —Ingx Inp—Ingl

Dy, lnx = - 2, (6.6)
r (p—g)x p—q x
we have
_prP—q
/ X = g I 6.7)
However, the formula (6.3) gives
1 (o]
/;dp,qx: (P_q)zl = oo
j=0

The formula fails because f(x)x* is not bounded for any 0 < a < 1. Note that In x is not
continuous at x = 0.
We now apply formula to define the definite (p, q)-integral.

Definition 61 (Njionou [69]). Let f be an arbitrary function and a be a real number, we set

| F@dpx=(a = p)a iq"’ (kfl) 7 |b<1 (©8)
[ ror=tp=ma & Ly (Faa) i |2 >0 69)

Example 62. Let us compute the (p, q)-integral of the function f(x) = x™. We take the case where
‘P
q

< 1, the other case being similar:

a (o) k k n
n p P
Jy o= = o & (o)
— 1

:ZQqnp lean+1
1 - W

_ gy—vr n+1

_'qn+l _,pn+la

an+1

e

Example 63. For g(x) = ep4(x) = §

a
e X = X
UA Pq pAq 2:‘/‘ n Pq
an+1

n=0
:; [n ]M[n+1] :n;)[n+1]p,q!
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Remark 64. Note that for p = 1, the definition reduces to the well known Jackson integral
(see [52, P. 67])

| Feodyx = 0 —ayx L fla')
=0

Forp = rl/2, q= s71/2,

’Z' <1l < |rs| <1,
the formula reads
“ 12 /2 N k2 (k1)/2 ¢ (k2 (k1) /2
/0 f(x)dpgx = (s —r)ay s f(r s a),
k=0
which is the formula (11) given in [23]. Once more, for p = r'/?, g = s71/2,
’Z‘ >1 < |rs| > 1,
the formula reads
a e
/ F(x)dppx = (P72 — 7112y Z sk/2p=(et1)/2 ¢ (S—k/zr—(k+1)/2a> ,
0

k=0
which is the formula (10) given in [23].

Definition 65 (Njionou [69]). Let f be an arbitrary function, a and b be two non-negative numbers
such that a < b, then we set

/ﬂ )y x = /0 )y — /0 " (). (6.10)

We cannot obtain a good definition of the improper integral by simply letting 2 — oo in
(6.9). Instead, since

q]+1

q/v i; T
/q;+1/pf+1f(x)d”'qx:/p fdpgx = |7 f(3)dpgx
i +j qk+] _i qk+]’+1f qk+j+1
P +1+] P ) T e prea) | e

=(p-1) ]Hf( )

it is natural to define the improper (p, q)-integral as follows.

Definition 66 (Njionou [69]). The improper (p,q)-integral of f(x) on [0; ) is defined to be

q/p
/ f(x)dpqx= Z/q )dp,qx

j+1 /p]+1

=(p-q) 1 p,ﬂf(pm) (6.11)

]——OO
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. q
fo< =<1lor
f p

) q]+1/p]+1
/O F(2)dyox = ]_ZOO / [ )y (6.12)
if Z > 1 where the formula is used.
q

Proposition 67 (Njionou [69]). Suppose that 0 < p < 1. The improper (p, q)-integral defined

above converges if x* f (x) is bounded in a neighbourhood of x = 0 with « < 1 and for sufficiently
large x with some o > 1.

Proof. By (6.11) we have

/ f(x)dpqax=(p—q) i p]Hf(p]H)

]_700

:<p—q>{§p?11 () + Ly (; ])}

The convergence of the first sum is proved by Theorem For the second sum, suppose
for x large we have |x*f(x)| < M where a« > 1 and M > 0. Then, we have for sufficiently

large j,
g7 g\ e (e g N g
‘P‘”lf(p‘f“)‘_p <P> (p‘f“> f<P‘f“>

q jla—1)
<t (1)

Therefore, the second sum is also bounded above by a convergent geometric series, and
thus converges. O

q

Note that a similar proposition can be stated when — > 1.

Definition 68 (Njionou [69]). Let f be an arbitrary function and a be a nonnegative real number,
then we put

© = P p* . |p

/a f(x)dpgx=(q—p)a Z <q <k+1)“) if 'q‘ <1 (6.13)
°° q gk . |p

/H f(x)dpgx=(p— q)ak;o p*(kJrl)f <p(k+1)”> if ’q' > 1. (6.14)

Remark 69. Combining with and with we get fora =1

/ F(x)dpgx=(q— P)kiquﬂf( k:) if m <1 (6.15)
/Ooof(x)dpqu:(P_q) ioo pkﬂf( kil) if m > 1. (6.16)
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6.3 The fundamental theorem of (p,g)-calculus

In ordinary calculus, a derivative is defined as the limit of a ratio, and a definite integral is
defined as the limit of an infinite sum. Their subtle and surprising relation is given by the
Newton-Leibniz formula, also called the fundamental theorem of calculus. Following the
work done in g-calculus, where the introduction of the definite integral (see [52]]) has been
motivated by an antiderivative, the relation between the (p,q)-derivative and the (p, q)-
integral is more obvious. Similarly to the ordinary and the g cases, we have the following
fundamental theorem, or (p, )-Newton-Leibniz formula.

Theorem 70 (Fundamental theorem of (p, g)-calculus (Njionou [69])). If F(x) is a (p,q)-
antiderivative of f(x) and F(x) is continuous at x = 0, we have

[ F()ya = F(®) - Fl@), (617)
where 0 < a < b < o0,

Proof. Since F(x) is continuous at x = 0, F(x) is given by the formula

F(x) = (p—q)x fiwﬂf(wﬁ)+Fm»

Since by definition,

a <)
/0 f(x)dpqx = (p—q)a Z p]+lf <P]+l >
we have
| f)dpgx = F@) - F(0).
Similarly, we have, for finite b,
[} £y = F6) ~ FO0),
and thus

/a ' Fx)dpgx = /O )y — /0 " F(x)dygx = F(b) — F(a).

j+ j
Putting a = % and b = q—] and considering the definition of the improper (p, q)-integral

p
(6.11), we see that (6.17) is true for b = co. n

Corollary 71. If f'(x) exists in a neighbourhood of x = 0 and is continuous at x = 0, where f'(x)
denotes the ordinary derivative of f(x), we have

[ Dpaf ey = £(8) ~ f(a). (6.18)
Proof. Using L'Hospital’s rule, we get

lim Dy, f (x )—limM

x50 =0 (p—q)x
o Pf(px) —af'(qx) _
~ x—0 p—q £(0).

Hence D, ,f(x) can be made continuous at x = 0 if we define (D,,,f)(0) = f'(0), and (6.18)
follows from the theorem. O
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Similarly as the g-integral, an important difference between the (p, q)-integral and the
its ordinary counterpart is that even if we are integrating a function on an interval like
[1;2], we have to care about the behaviour at x = 0. This has to do with the definition of the
definite (p, g)-integral and the condition for the convergence of the (p, q)-integral.

Now suppose that f(x) and g(x) are two functions whose ordinary derivatives exist in
a neighbourhood of x = 0. Using the product rule (2.13), we have

Dy,q(f(x)g(x)) = f(px)Dp,q8(x) + g(qx) Dp,ef (x).

Since the product of differentiable functions is also differentiable in ordinary calculus, we
can apply Corollary [71|to obtain

b b
F0)8(6) = Fl@)g(a) = [ F(px) (Dpag(x)) dpgx+ [ 8(a) (Dpaf () dpg.

or

[ F) (Dpag()) iy = F0)36) ~ f(a)ga) ~ [ 8(0) (Dpaf () v, 619)

which is the formula of (p, q)-integration by part. Note that b = oo is allowed.



Chapter 7

(p,q9)-Gamma and (p, q)-Beta
functions

Being related to solutions of special types of differential equations, many important func-
tions in analysis are defined in terms of definite integrals. The following two functions,
introduced by Euler,

I'(t) :/ xle ¥dx, t>0, (7.1)
0
1

B(t,s) :/ xt’l(l — x)s’ldx, ,s,t >0, (7.2)
0

and called the gamma and the beta functions respectively, are the most important examples.
The Euler Gamma function I'(¢) first happens in 1729 in a correspondance between Euler
and Goldbach. Euler gave an equivalent representation of the Gamma function (see [12} 14,

86])

n'nt

r) L NI S 73)
Some of their most important properties are
[(t+1)=1tT(t), (7.4)
I['(n+1)=n! ifnisanon-negative integer, (7.5)
_T()r(s)
B(t,s) = T(t+s) (7.6)

Note that equation tells us that the gamma function may be regarded as a generaliza-
tion of the classical factorial. Also, from (7.6), we see that the beta function is symmetric in
t and s.

The g-gamma function I';(t), a g-analogue of Euler’s gamma function, was introduced by
Thomae [87] and later by Jackson [44] as the infinite product

_ (1egqy!
- (=g
where g is a fixed real number 0 < g < 1. Notice that, under this assumption on g, the

infinite product (7.7) is convergent. Its g-integral representation was given in [52}183]. Note
that for when t is a non-negative integer, (7.7) becomes

T, () t>0, (7.7)

Ty(n+1) = Efgg = (gq;_q;')“n — [n],!.




7.1 Some properties of the (p, q)-power 39

Hence, the g-gamma function is regarded as a generalization of the g-factorial. In this chap-
ter we study the (p,q)-analogues of these two functions and their various properties, in-
cluding the (p, q)-analogues of (7.4)-(7.6). Unless otherwise stated, we shall always assume
that0 <g<p <1

Before we give our definitions of (p, q)-gamma and (p, q)-beta functions, we first give fur-
ther useful properties for the (p, g)-power.

7.1 Some properties of the (p,q)-power
We prove here some important formulas for the (p, q)-power.

Let us recall the so-called (p, q)-powers

(x©a)y,=(x—a)(px—aq) - (xp""' —ag"™),
(x@a)y, = (x+a)(px+aq) - (xp" "' +ag""").

These definitions are extended to

(acb)y H ap* — q*b (7.8)
(a@b)y, = [T(ap* +4"v) (7.9)
k=0

with the assumption that the infinite products are convergent.

Proposition 72 (Njionou [67]). The following identities are easily verified

; (acb)y,
([@Sb)p,= T DRX (7.10)
(aeb)yt*=(acb); (ap" ©bg")s,, (7.11)
(@S b)yq(ap ©bg")p,
(ap" ©bq")y, = ’ (7.12)
P (@b,
k bk (@965,
(a© D)} ,(ap” © bg")y
(ap™ © b )5 = ’ 4, (7.14)
(ao b)%,’fq
(@S 2= (a0D), (a D)}, (7.15)
(ae b)2" (a©Db)p (ap S bq)p2 20 (7.16)
(ao b)), = (a O b (ap ©bg))s o (ap* © b )7s s, (7.17)
g .
(asb)y), = | (ap & b)) e (7.18)

j=0
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Proof. From (7.8), we can write

[ee]

(aob)y, =T T(ap* —4'D)
k=0
n—1 o0
=[T(ap" = 4*b) [T (ap* — 4*D)
k=0 k=n
n—1 oo
=] T1(ap* — 4"b) [ T(ap"p* — 4"4"D)
k=0 k=0
=(aob),,(aq" ©bq")5,.

This proves (7.10). Next,

n+k
(aob)y =TT (ap" — )

n:l . ‘ n-+k . .
=TI (ap* —4"b) [ J(ap" — 4*D)
k=0

k=n

n—1 n
=TI T(ap* = "6) [ T(ap"p" — 4"4"D)
k=0 k=0
=(aob)p (ap" © bq”);q.
Hence is proved. Commuting the role of n and k in (7.11)), we can write

(ao b);};k =@ob),,(ap"© bq”)’;,q
- (a S b)];,q (apk © bqk);,q/

so we obtain (7.12). (7.13) is obtained from (7.11)) by substituting n by n — k. O

From equation (7.10) we can define the (p, q)-power for any complex number « as follows

(aeb)y,

(aeb),, = m'

(7.19)

7.2 The (p,q)-Gamma functions

Definition 73 (Njionou [67, 68]]). Let x be a complex number. We define the (p, q)-Gamma func-
tion as ( )
PSa)y,
rprq(x) = x xpo‘i
(P* S 4%)5
Remark 74. Note that in ,if we set p =1, then 'y ; reduces to T';.

(p—q) ", 0<g<p<l. (7.20)

Proposition 75 (Njionou [67, 168]). The (p, q)-Gamma function fulfils the following fundamental
relation

er](x +1) = [x]p,qrp,q(x)- (7.21)
Proof. From definition (7.20), we can write

(reday,
(px+1 fa qurl)z?q

[pg(x+1) = (p—a)".
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Since .
(P eg )y, = ———(p o)y,
pr—9q
it follows that
(rea)p,
I,,(x+1)=(p*—g* ’ —qg) *
pa(x+1)=(p" —¢q >(px@qx);°q( q)
(=) weay
= e (P —4)
r—q (pP*oq9)y,
= [x]p,ql"(x).
This is the desired result. O

Remark 76. If n is a nonnegative integer, it follows from that

Tpo(n+1) = [n],,.

It can be also easily seen from the definition that

(Pea)y,

[pg(n+1) = ITENIE

Proposition 77 ((p, q)-Legendre’s multiplication formula, Njionou [67]). The following mul-
tiplication formula applies

1 . 1
Tpg(2%)T 2 2 <2> = (p+9)* Tprp()lee <x + 2) : (7.22)

Proof. From the definition, we have

(P*©9°)5
. z(x) — ( P4 2 qZ)l—x

P2q P2 O qu);%,qz p

2 2\ 00
1 (p @q )p2lq2 2 2 lfx
rp2,q2 <X + 2> (p2x+1 O q2x+1);<;,q2 (P —q )2

1 (rPed)s,
szlqz <> S (p2 — 6]2) .

M=

2 (PO,

Hence,

T2 () p2 g2 (x + 2) _ (p*s qz);%,qz(p © q);%,qz (P — g?)1%
Ty B (P> o qzx);;,qz(pzwl S qZXH);%,qZ
(PSq)py
= e (P T (p )
(p2x o qu)p/q

=(p+ Q)l_zxrp,q(zx)-

This proves the proposition. ]

The (p, q)-Legendre’s multiplication formula is generalized as follows.
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Proposition 78 ((p, q)-Gauss’ multiplication formula, Njionou [67]). The following multipli-
cation formula applies

n—1 k . n—1 k
rp,q(TlX) H FP”,q” (n) = ([TZ] p’q)nx H Fpn,qu (X + 1’1) . (723)
k=1 k=0
Proof. As for the previous proposition, we start by using the definition as follows

k) (P S q")on gn Lk
Ty [ = ) = ——— A (p" — g")1=a,
P (n (pk@qk);‘;,qn (p" =4

k (P" ©q9") g g 1k
T ngn | X + ) = ’ pos gt n Y
P < n (pk S vk (" —4")

=1

Hence, we have

n—1
n—1 k pr o q”)‘;ﬁﬂlqn . . "il(l_g)
i (£) = 120l
k=1 H (pk o qk);ﬁqun
k=1

_ [(P" S q”)%‘?w"r (7 — g

n—1
I1 (p-p* ©9.95)5 4
k=0
. n
[(pn S qn)p”,q"} (
(Pea)yy

and

n-1 k {(P" S qn);ﬁl,q”} : Y-k oy
H rpn,qn <x + n> 1
k=0 H (pnx+k O qnerk)t;;,,qn

k=0

[(pn S/ qn);%,q”]

~ ey T

It follows that

n—1 k
IT Ty g (x + ﬁ)
k=0

(P o q);’?‘i n n\1l—nx
n—1 ‘ = (pnx @qnx)oo ( -9 )
[T Lprgr (ﬁ) P
k=1
= _ (p QEI);C:L] (P _ q)l—nx <pn — qn>1—nx
(P e qm)s, P—q
= ([”]p,q)linxrp,q(nx»

The proposition is therefore proved. O

Proposition 79 (Njionou [68]). The (p,q)-Gamma function (7.20) has the (p, q)-integral repre-
sentation

z(z

—1) o .
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Proof. It is enough to prove that both I';, ;(z) defined by (7.20) and
2 [ z—1
G(z)=p > /0 B Epq(—qt)dp,t
satisfy the same recurrence relation with the same initial condition. Obviously,
G(1) = [ Epa(=at)dnat = [~Epg(—0)]5 = ~Epg(00) + Epg0) = 1.

Moreover, using equation (7.24) and the (p, q)-integration by part (6.19), we have:
2(z4))
Lpg(z+1)=p"2 /O FEpq(—qt)dyt
(z-1)

— /0 (pt)ZDp,qu,q(—t)th

G, i _
=—p 7 [FEp(-t)]g+p = > Pq/t "Epq(—qt)dpqt

= [z]pqTpq(2)-
Hence, G(z) = T'p4(2). O

7.3 The (p,q)-Beta functions

7.3.1 (p,q)-Beta function of the first kind
We introduce the following (p, q)-Beta function of the first kind.

Definition 80. Let m and n be to non-negative integers. We define the (p, q)-integral of the first
kind by

mw [P N
By q(m,n) = p(z)/o X" (p @qx)’;lqldp,qx. (7.25)
Note that for p = 1, (7.25) reduces to the g-Beta function of the first kind [83, 52].
Theorem 81. The following equation is valid:

mn+() Lpa (1) Tpq (1)

FM R (7.26)

Byg(m,n) =p

Proof. Using the definition of the (p, g)-function (7.25) and the formula of integration by
parts (6.19) with f(x) = x™ and g(x) = (p S x)}; ", 1t follows that

mil b m n—
Byg(m+1,m) =p"3) ["x(p & gyl 0
m p
=pl )/O (px)™(p © qx)}p . dp g

p(?)
/ f(px qug( )dpqx
”]M
(”

1

2)
B Lzl - [ gDy ()}

w [P .
=T p(z)/o X" (p ©qx)) oy gx
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Also, we have
Byy(m,n+1)= p@) /0
=p2) /Op X" (p e qx)y (" — 4" x)dpgx
=p"pl2) /O " (p & gy g — g /O "(p & gx)iatd g

m+1

n p _
=p"Bpq(m,n) — Z’”p( ? )/0 X" (P © ) dpgx

p — n
x™ l(p © qx)p,qdp'qx

Hence,

n
Byg(m,n+1)=p"B(m,n) — ZmB(m +1,n)

" [m]
= nB m,n —L p’qB m,n+1
PB( ) p" [nlpg ( )
This gives the following relation
_ rm__ Mg
Bys(m,n+1)=p [n+m]pqu(m,n).

Iterating this relation gives

_ n+m—1m3 -1
Byy(m,n)=p rm—1],, (m,n—1)
n+m71m n+mf2m3(m n—2)

=P [n—i—m—l]w [n—i—m—Z]p,q

(ntm—1)+(n+m—2) 4.+ (m+1) = Upalt =2pg - [Upa B(m,1).

-F ntm—1]ntm—2,,. . [m+1,,

Further, by definition of (p, q)-integration, it follows that

p m
By (m,1) = / "1, x = .

0 [m]p,q
Hence,
B (m 1’1) _ p(n+m—1)+(n+m—2)+...+(m+1)+m [7’1 — 1]Pr‘7 [Tl — Z]Pfq s [1]Pf‘1
_ pmn+(g) Lpq(m)Tp,e(n)

Lpg(m+n)

Another (p, q)-Beta function of the first kind was introduced in [62] as follows.

Definition 82 (Milovanovi¢, Gupta and Malik [62]). Let m and n be two non-negative integers,
the (p, q)-Beta function is defined as

1
By, (m,n) = /0 X1 ga) . (7.27)
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This (p, q)-Beta of the first kind fulfil the following property.
Proposition 83 (Milovanovi¢, Gupta and Malik [62]). The (p, q)-Gamma and the (p, q)-Beta

functions fulfil the following fundamental relation:

3 _ 2)/2Lpa(m)Tp (1)
— ,(n=1)@2m4n-2)/2"PA pa
Bp/q(m/ 7’1) p rp,q(m I Tl) : (7.28)
7.3.2 (p,q)-Beta function of the second kind
The (p, q)-Beta of the second kind was defined in [17] as follows.

Definition 84 (Aral and Gupta [17]). Let m, n be to non-negative integer, the (p, q)-Beta function
of the second kind is defined by

) XM= 1
Byq(m,n) = /O Mo @px)"””d’“’ (7.29)

The following theorem provides the link between the (p, g)-Beta function of the second kind
and the (p, 9)-Gamma function of the first kind.

Theorem 85 (Compare to [17]). Let m,n be two non-negative integers, the following equation

holds Ey ()T (1)
B, (m,n) = pmg— (5 22a\") palt) (7.30)
pv]( ) p q rp,q(m+n)

Proof. From (3.13), we can write
1 _ P [n]p,q

D - -
P (a@x)pg (a @PX)HH

1
By choosing f(x) = W and g(x) = x™ and using the formula of (p, g)-integration
by parts (6.19), we get

xml

By,q(m,n) :/0 de

! / f(px)Dpqg(x)dpqx

m]p

[m?pq{ / Dypaf(x)8(qx) Mx}

1 © 1
~ Tl {0‘/0 S mewd}

pq™m+nlp, /°° x™ P
paX
0 (1 D px)ernJrl

[
[m]pq
pq"[m + ”]p,q
= "B, .(m+1,n).
[m]p,q p'q( )
Hence
Byg(m+1,n) = MBp,q(m,n).

pq™m + ”]p,q
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Iterating this relation leads to

[m—1],,
Bp,q(m,n) = - By.(m—1,n
pa(m,m) P 1m0 — 1],y pal )
_ [m 1)y, [ — 2], B, (- 2.1
pa" L m 4 n =1y pg2m+n— 2], "
[m_l]pq [m—Z]pq 1
- ’ ’ B, (1,n).
pg"Um+n—1)p, pg"2m+n—2,, " " pgln+1],, pq(1,1)
Using the fact that
o [ e [ g 1
qu( ) 0 (1@1”)%1 P4 p[n]p,q 0 pq(l@x)z,q p4q P[”]p,q

it follows that

B, (m,n) 1 l"p,q(m)l“p,q(n).
PA ! pmq(rg) l“p,q(m+n)



Chapter 8

(p,q)-Hypergeometric Series

8.1 (p,q)-Hypergeometric series

We first recall that the g-hypergeometric or basic hypergeometric series [53] is defined by

ai, ..., 0 2 (a1, 00 Q)0 2" =1 \ 1457
. z= —1)"g 2 , (8.1)
o PR Ll G M o ey P
where
(a1,...,0r9)n = (a1;q)1- - (ar;9)n
and

(a:0) :{1 n=0
A (1—a)(1—aq)---(1—ag" ') n>0

is the so-called g-Pochhammer.

It is clear from the definition that

S L a,...,a
liir}ffps 7 7 q/<q_1)l+57rz =F ' zZ1, (8.2)
qn,...,q% by,...,bs
where
ai,...,a ® (ai,...,a o]
bl/ /bs j=0 ( Lreees S)] ]

denotes the usual hypergeometric series in which

(al,...,ar)j = (al)j ce (ar>j/

1 n=20
(@) = a(a+1)---(a+n—-1) n>0

where

is the Pochhammer symbol.

The g-hypergeometric series is extended to the (p, q)-hypergeometric series in the following
way [23] 148]149] 168, 78].
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Definition 86 (Compare [49]). The (p, q)-hypergeometric series is defined by

(a1p,a14), - - (arp, ary)
rq)s p q rpr¥rq (P/ Q)}Z
(blp/ blq)/ ey (bsp/ bsq)

_ i <ﬂ1p S alq)z,q te (arp S ﬂrq)z,q [(_1)n (q) () } 1+s—rzn. (8.3)
o (hp ©b1g)y .- (bsp O bsg)j (P S Q)54 p

Note that for s = r — 1, (8.3) reads

(alp/ alq)z cen (al’p/ arq)

rPr1 (p.q);z
(blp/ blq)/ sy (bsp/ bsq)
o (a1p© alq)z,q - (arp © ”W)Z,q ;
=Y o obi - (b Sy nZ 84
n—0 ( lp@ 1q)p,q"'( sp@ sq)p,q(p@q)p,q
Also, whenayy = ayy = -+~ =ayy = by =bypy =+ =bsy =1,a15 = ay,...,a,5; = a4y and

by =by,...,bs; = bs we get

. (1,a1),...,(1,a) aiy,...,a
hn’} +Ds ’ (P, Q)}Z = s ' q,z
P (1,b1),...,(1,bs) by,...,bs

As we will see later, note that any well behaved ¢-series can be written as a ®-series but the
converse of this proposition is not true in general (see [48,49]).

8.2 From the ,¢.-series to the ,d;-series

In this section we show how to embed the usual ,¢;-series (8.1) from new defined ,P; series

(8.3).

Let us start with some links between the (p, g)-power and the g-Pochhammer symbol.
Proposition 87. Let a and b be two non-zero complex numbers. The following property is valid.
n n.,( b .4
(aob),,=a pd) <a,p)n. (8.5)
Proof. From the definition of the (p, q)-power basis (3.1), it follows that
(a©b)p,=(a—b)(ap—bq)---(ap" ™" —bg""")

_ (b CbaN ey b ()"
s oo e (1220

e (ZZ) .

Corollary 88. Let a, b, c and d be four non-zero complex numbers. The following property is valid.

b'q oo C oo
(5’?>oo _ (@Sb)p, (co Do (8.6)

d.q\ 4\ cod)®
(5. (ecw),, (oD

~—
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Proof. 1t follows from that

b LI) ()
- =) =a 2(aob)l
(a P/ P H
hence,
b.q b.q
(58). .  (81),
= lim
(4 a) n—>e0 (4 ﬂ)
’P) e c’v),
a " -(3) asb)?
= lim P ( )( )p’q
oo cmnp=l(cod)l
n
i (%) (acb)p,
o (c@d)g/q
. (@aeb)y,
li = :
n—soo (% (C@d)g,q
b b\ oo
lim (cePpg _ (€O Ty
_ e (cod)y,  (cod)y,
B acob)" asb)y
lim ad> & ( ud) 7;’;7
n—o0 (C © ?)Z,q (11 S, ?)p,q
This proves the corollary. O

Remark 89. Note that for every complex number A, the following equation applies
(Aa©Ab), = A" (a0 b), . (8.7)

Proposition 90 (Jagannathan and Srinisvasa [49]). The following relation between the ,¢s-series
and the ,®g-series is valid:

Mg f2q g
(P alp, ”Zp""’urp i-z
rYyYs b b b Vi
9 Yy I | P

blp’pr’.”,bsp

D <(a1p' A1q)r - (Brps ) (p,q);yz), s=r—1
(b1p,big), - .., (bsp, bsq)
_ . e, ((alp,alq), oo (arp,arg),(0,1),...,(0,1)
(bip, bry), - -, (bp, bsy)
rqu_l( (a1p,a1q), oy (Arp, rg)
(b1p,b1g), ..., (bsp, bsg, (0,1),...,(0,1))

(P/Q);VZ>, s>r—1 (8.8)

(p,q);yz), s<r—1.

with
_ Pblprp . bsp

8.9
[llpllzp Ce arp ( )

Proof. We write the proof for s = r — 1. The casess > r —1and s < r — 1 are done in a
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similar way. For s = r — 1, using and (8.4), it follows that

(alp/ alq)/ ceey (arp/ arq) (alp/ alq)/ ceey (arp/ arq)
r®s (p.g9);z | = rPs (p.q);z
(blp/ blq)/ crcy (bsp/ bsq) (blp/ blq)/ ctcy (bspl bsq)
_ (alp © alq);l,q te (arp © arq)zlq
a0 (b1 ©b1g)y g+ (bsp S bsg)j 4 (P S 9)}
Lo () (9. q
1131 ai”p(Z) (ﬁ’ﬁ>n
a0 TTpn p® (b, 4 pup® (4.4
0 H bipp(Z) (biZ' p)np p(z) (P’ P)

(m.ﬂ "
2 \ap’r /), ([llpuzp...ﬂrp Z>

0o 1

=Y i

N big ‘1) (bsq ‘1) b] b2 b
— 1. 1 .. 21 e pcac rpp
n=0 < 1p’p n bsp’p ; p

n

fq g
0, " | @1p2p .- Arp .
7
blq bsq blprp o .. brpp

m,@

where it is assumed that the ,¢s-series is convergent or terminating. This proves the propo-
sition for s = r — 1. O

Remark 91. From the Proposition [90) it is seen that any well behaved ¢-series can be written as a
D-series. But the converse is not true, in general; in the general case, when p # 1, this is possible
only for an ,®,_1. To see this, it is enough to look at the ¢y case. Indeed,

- = (-1)"(q/p)? ,
) q)z| =Y 8.10
o (p,q) (p.9);z nzz%) (P@‘Dp,q - .

= (=1)"(p/p)? :
= Z/ 71’ wzth - / ’ (8'11)
which shows that ¢®q becomes a ¢p-series if and only if p = 1. Similarly, one is easily convinced that

a generic ,Ps-series cannot be identified within the class of ¢p-series unlessp = 1ors =r —1. It is
now clear that the (p, q)-series is larger than structure in which the g-series gets embedded.

Remark 92. Note that in the usual ¢-series theory, there is no direct analogue for the choice a;, = 0
or by, = 0, for any i, permissible, in general (of course, subject to conditions of convergence and so
on), in the (p, q)-series; to obtain a corresponding result in the case of the ¢-series one will have to
resort to the limit process of confluence, namely, replacing z by z/a, and taking the limit a, — oo.
For example

. ai,...a z ai, ..., 4y
A s r 4o | =1 Tlaz|. (8.12)
’ by, ...bs ’ by, ... bs

For the (p, q)-hypergeometric series, using the fact that

aob)! n
hmﬂz lim (1@Z> =(160)]

a—00 a a—00 pa’
12
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or
(acb)!

lim o

b—ro0

it follows that
A1p,a1g), - - (arp, a
lign rst(( 1 g (rp ) (p.q
yp—>00
! (blpr blq)r LR (bsp/ bsq)

((alp/ alq)/ ‘.- (arp/ ﬂrq)
(blp/ blq)/ ey (bspr bsq)

lim ,d,
Arg—00

Also, we can obtain the following formulas

im ,P;
bsp—roo

((alp,alq), o (arp, arg)
(blp/ blq)/ ceey (bsp/ bsq)

A1y, 1), - .- (Arp, a
. @S(( 1 @1g)s - (arp, arg)

z (a1p,a19), - (@(r—1)p, A(r—1)q), (0,1)
(p’q);w):’ S( pr%1g (r=1)pr*(r-1)q

(Pz Q)}stp) =,Ds (
(b1p,b1g), -+, (b(s—1)p, b(s—1)4), (1,0)

(P/q)?Zbrq) =, Ds (
(blp/ blq)/ sy (b(sfl)pr b(sfl)q)/ (0/ 1)

o ((alp/ alq)r s (a(rfl)pr a(rfl)q)/ (11 O)
(blp/ blq)/ SRR (bsp/ bsq)

(P/Q);Z>
(PIQ);Z> :

(M),’Z>
(P/Q)?Z> :

(blp/ blq)/ SRR (bsp; bsq)

(alpr ﬂlq)/ cee (arpr ﬂrq)

(alp/ alq)/ ce (arp/ lqu)

b’q_>°° (b1p, blq)r ooy (bsp/ bsq)
and

] (a1p,814), - - (Arp, arg) (a1p,814), - (A _1)p A(r—1)g)
] lblmﬁoor@s( e S (pM])}stp =,1Ps1 - i (p/q);z
K (b1p,b1g), -+, (bsp, bsq) (b1p, b1g), -+ (O(s—1)p, b(s—1)q)

' (a1p,814), - - - (Arp, arg) (a15,814), - (A(_1)pr A(r—1)g)
. lblnlworq)s< P R (PIQ);Zbrq =, 1Ps1 e =g (P,Q))Z .
ikl (blpl blq)/ ey (bspr bSq) (blpl blq)/ ey (b(sfl)p/ b(sfl)q)

Now we write in detail some relevant cases of Proposition [90| that we will use to obtain
some (p, q)-transformations and (p, g4)-summation formulas.

b (a,b),(0,1) 0
191 ) Z;G =P (p,q);% ; (8.13)
° (c,d)
b d
-, = (a,b), (c,d) 6
21 | @€ E,Q =P (P,b]);K ; (8.14)
folp (e, f) ac
e v
b d
-, = (a,b),(c,d),(0,1) 0
22 % f Z,Q =3, P, q ;% ; (8.15)
e'g (e.f), (/M)
bd f
PN (a/b)/ (C,d), (e,f) 0
n | e Z/g — .0, q);% , (8.16)
i
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8.2.1 The (p,q)-binomial theorem

The g-binomial theorem (Kac and Cheung [52] or Koekoek, Lesky and Swarttouw [53])
states that

e @), (3Z9)w
160 q;z _,;)(ﬂl;q)nz = G (8.17)

The following theorem is a (p, g)-analogue of (8.17).

Theorem 93 (Jagannathan [48]). Let a, b be two non-zero complex numbers, then we have the
following

(a,D) ©b)yy . (pObz)p,

D ,0);z| = z" = - (8.18)
®of Pz = L e 2 ),

agk
=

" (é-ﬂ) n
. (a@b)p,q a’p), (4 . .
Proof. We first note that = — | . It follows from the g-binomial theo-
©q)h, (ﬂ-ﬂ) p
P'P)n
rem that
00 00 b.4q
2 ( @b)g,qznzz (ﬂ,p)n <az>n
n=0 p@q)g,q n=0 (%, %) p
n
bz. g o0
_ (P’ P>oo _ (poba)y,
az. g ©az)y,
(p ; P>oo (p&az)3,

O]

The usual g-binomial theorem (8.17) is obtained when @ = 1 and p = 1. An interesting
feature of the (p, q)-binomial theorem (8.18) may be noted here. The product

n (ak Ak )
[T 7 | (pq)z
k=1

is seen to be an invariant under the group of independent permutations of parameters of
the p-components (a1, a2y, . ..,a,p) and the g-components (a14, a2y, ..., anq). This product
has value 1 if the n-tuple of p-components (a1, a2, . .., ayp) is related to the n-tuple of com-
ponents (alq, A2g, -+, am]) by a mere permutation.

For the case n = 2 this result implies that

(a,b) (b,a)
190 (r,9);z 190 (p,9);z| =1 (8.19)

A special case of this equation is

(1,0) (0,1)
190 (p,9);z]1%Po (p.q);z| =1 (8.20)
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Recognizing that
ool "V az| = 3 Y Py — (- a)2) B21)
q)21 = %2 = —q)z)" = ey, —4q)z .
190 - P4 n:o(P@LI)?,q 2], ! P—q pa\\P — 4
and
(0,1) o0 q(Z) - q(S) ;
190 (pa);—z| =) 2" =) ((p—q)2)" = Epq((p—9)z) (822)

_ n=0 (p o q)p,q n=0 [n]p,q!

we recover the relation (5.3). For p = 1, e,,4(z) and E, 4(z) reduces to e,(z) and E,(z), re-
spectively.

For n = 3, the above general result and the relation (8.18) imply

(u,90) (v, w) (u,w)
1Po (p,9);z [19o (p,9);z| =1%o (p,9);z]. (8.23)

Choose u =1,v =a,w = aband p = 1 in (8.23), to obtain

(1,a) (a,ab) (1,ab)
1Po (1,9);z|1Po (Lg);z| =190 (Lg);z|,

which is nothing but the well known product formula for the 1¢o function, namely

a b ab
1$0 7;z |1¢o g;az | = 1¢0 gz . (8.24)

8.2.2 (p,q)-Heine transformation for ,®;
The Heine transformation of the »¢; series states that [38] (II.1) P. 359]
a,b (b,gz;q)oo C/b,Z

21 q:z :mzq?l q;b . (8.25)
c az

Proposition 94 (Jagannathan and Srinisvasa [49]). The following (p, q)-Heine transformation
formula holds for the ;4

(a,b),(c,d) (ce© de)y, (pe © bez)$y (dc,cf), (pe,acz)
> )z = (ce@cf)z"q( e@acz)z"qzq)1 ,q);£ '
(e, f) pa\P P4 (pe, bez)

(8.26)
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Proof. From the Heine transformation formula (8.25), we can write
bd (59) (1) (L

a’ ¢ _ NP/ \b P/w de’ d

c

9
i.g 0.ﬂ 2¢1 b£ p/
e’ P)w\ P/ a

Using the first case of (8.8), we can write

0 (a,b), (c.d)
7 a, G 69
201 afc Z,Q =P (p.q); % ,
. (e, f)
cf
—=—,0 d (de,cf),(1,6) a
Z(Pl dge i/ E - Zq)l (p/ 5]); % .

— P (a,b0)

Next the use of produces

day (b4
c’p) \Na'p),, _ (ced),, (acbd),, _ (ce ©de), (pe © bez),
(f.”i> (9;”/) (c@%>pq(a@a9);q (ce © cf)y(pe © acz)sy,

e'p p
Hence,
" (de,cf),(1,6) b ) (ceode)y, (pe© bcz)‘;‘,’qzq)1 (de,cf),(1,6) o Nl
(a, b) ce (ce © cf )y (pe ©acz)s, (a, b0) ce
Finally, taking 0 = tzpcez we obtain the announced result. O

Settinga = 0,b = c = e = 1 and p = 1, it follows that

(0,1),(1,d) L - (Ted)f,1e2)f, (d,f),(1,0) .
2Py ) (Lg);z| = ERRAIE O)fqz(pl s (Lg)i1
Using the facts that

(103, = @ flpy=d (164)
P4

we get the following transformation formula for the ¢-series

L d;)c0(2; )0 04
191 g;z" | = szpl q;d
f /l] o0 >
By relabelling d as a and f as b, this read
g CINET I T
191 7z | = Wzdh g;a |. (8.27)
b /11 00 z
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8.2.3 (p,q)-Gauss sum
The g-Gauss sum is (Gasper and Rahman [38) (IL.8) P. 354])

(o] )@ G,
c | ab (c;q)oo(;fb;q)w

Proposition 95 (Jagannathan and Srinisvasa [49]). The following (p, q)-Gauss sum holds:

‘ﬁ‘ <1. (8.28)

(a,b),(c,d) pf| (be © af),, (deScf),,

b P, q acf
21 Y)s - ) < 7/
(e, f) bd (e f),, (bde S acf),,

| <L (8.29)

Proof. Using the g-Gauss sum (8.28), it follows that

b d (“f.q> <Cf.‘7)
ac|q.acf | _\be'p)\de'p)y
21 f |y bde
e

(&), ().

Next, from the first case of (8.8)), the left-hand side of the previous equation reads

ac a,b),(c,d
;bf =P (@0). )(p’q);% .

e
(e, f)
The use of gives

af q cf.q
<be/p>oo<de’p>oo_ (be@af);fq(de@cf);fq B (be@af);‘,’q(de@cf);‘fq

(63) (). o ctl) o

This proves the desired result. O

Ifweseta=c=0,b=d=e=1, f =gzand p = 1in (8.29), it follows that

(0,1),(0,1) (1607 (10)7
2®1 (Laiaz) =55 z)l‘;z (1@0)152‘
(1,4z) (LW Lq
which reads
o0 2 1

"
z" = . (8.30)
,;0 (0,92:9) " (92:9)e
Note that this result is usually obtained from the g-Gauss sum (8.28) by setting ¢ = gz and

letting a — coand b — co.

Note also if we take c = 0 and d = 1, and relabelling e by c and f by d we get

o900, ) _ e,
2Py Py | = (bcobd).
(c,d) g



8.2 From the ,¢-series to the ,®;-series 56

The last equation is nothing but the well known summation formula (Gasper and Rahman
[38] (II-5), P. 354])
C .
ol o) Gl

191 q;, -

= . 8.31
i = (G (8.31)

Finally remark that (8.31) is usually obtained from the g-Gauss summation formula (8.28)
by letting b — co.

8.2.4 The (p,q)-Kummer sum

The g-Kummer sum is (Gasper and Rahman [38, (IL.9), P. 354])

a 2
ab| g) T (%ZZ;%)
21 %= | = < (8.32)

o (=5 577).

Proposition 96. The following (p, q)-Kummer summation formula is valid:

" (a,b),(c,d) o0 —pa| = (dp @ dq),, (ap ©bq),2 2 (ad?p* © bCZQZ):;,qZ'

= % = (8.33)
(adp, qu) (dp D qc)p,q (Eldp S/ bCQ)p,q

Proof. From (8.14) and (8.32), it follows that

,b), (¢, d
2P (@), (¢ )(P/CI)}—W =2

1.4
(adp,beq) adp P P

ccq. q\ (beqg g*\ (beg?
") \adq’ p? ), \adg? p? ),
0)pq (ap ©b9) 50 o (ad®p® © b>)
e\ beg\™ 5 x
(pEB d )M <ap@ d >p2,qz (adp? © bedi?) 2

o (AP ©19) 35 o (ad?p? © b4
(adp © beq) 2 2 (adp? © beq?) 2 o
", (ap©ba)y o (ad?p? © bczqz);'q2
dp @ qe)sy, (adp © beq)sy, '

This proves (8.33). O

_ (dp@dq)
~ (dp @ qe)
:( )

P4
dp @©dq

=
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8.2.5 A (p,q)-analogue of Bailey’s F;(—1) sum
The g-analogue of the Bailey’s , F; (—1) sum is (Gasper and Rahman [38) (I1.10), P. 354])
21 (ab, bq;q2>
e | b | =~ L (8.34)
16 (Big)
Proposition 97. The followin , q)-analogue of the Bailey’s oF1(—1) is valid:
P 8 \P.q 8 Y
. (a,b),(pb,qa),(0,1) (5,0); pd) _ (ac ©bd)yn 2 (bep © adq):;/qz‘ (3.35)
(9, —q), (¢, d) ab (ac ©ad) o (bep ©bdq) 2 2
Proof. From (8.15) and (8.34) we get
(a,b), ) X
a,b),(pb,qa), (0,1 d 7 d
3% PrQ)i—p* =2 | ° b% 1,12
(p,—4), (c,d) & ~1Er e
7 7 7 p/ c
bd g\ (adq. g4
_\ac"p? ) \bep'p?) o
(4 (da g
¢'p?)eo \cP P/ o
 (ac©bd) » (bep © adq) s oo
"~ (acoad)S; 2 (bep ©bdq) . o
Equation (8.35) is therefore proved. O
8.2.6 A (p,q)-analogue of Gauss's yF;(—1) sum
A g-analogue of Gauss’s o F; (—1) sum is (Gasper and Rahman [38, (I1.11), P. 355])
az,b2 2 b2 .2 o
o0 g | = (DD DT e (836)
abql/2, —abg!/? (4;0%0%4;9% ) oo

Proposition 98. The following (p, q)-analogue of the Gauss »F; (—1) summation formula holds:

o @w.@@,0n | N oty ol
32 q); — = %) %) .
(acp'2, bdg/2), (acp'?, —bdg!/?) (PO ),y (a2c2p © b2d2q)p2,qz

(8.37)
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Proof. From (8.15) and (8.36) we get

b? d?

(a2, 12), (2, d2), (0,1) LS
3P2 (p,9);—pq| =202 bdql/% cbdql/Z i._1
(acp'/?,bdg'/?), (acp'/?, —bdq'/?) pp

acpl/z'_acpl/z
Ba 2 (i
_\@p )\ PP
q 7 vd*q g
) \ea'yi).,

( p@bz ) > (C2P6d2q)oo
@9q»q(ﬂ@P9Wﬂw

8.2.7 The (p,q)-Saalschiitz sum
The g-Saalschiitz sum (Gasper and Rahman [38) (I1.12), P. 355]) is

- cc,
32 ! anb, "0 79| = W. (8.38)
(287,

Proposition 99. The following (p, q)-Saalschiitz sum holds
(07", (a,b), () (beeaf), (deccf),

@ (p.a)paf| = . 7
3P (acfp'", bdeq'™), (¢, f) (e© f),, (bdeSacf), .

(8.39)

Proof. From the relations (8.16) and (8.38), it follows that

(p™".q7"),(a,b),(c,d) —n
3D, (p.9); paef | =32 br;eql n
(acfp' =", bdeq' "), (e, f) —

_ (beoaf),, (deccf),,
(e& f)’;,q (bde & acf)zlq

This proves (8.39). O

8.2.8 (p,q)-Jackson’s transformations of @,

Jackson’s transformation formula for 2¢1, 2¢ is (Gasper and Rahman [38) (II1.4) P. 359])
a,b (az;q)oo

C
a, —

21 gz | = | b gz (8.40)
c (2 ) c,az
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Proposition 100. The following (p, q)-Jackson’s transformation is valid:

(a,b), (c,d) (pe © bez)sy (a,b), (de,cf),(0,1) az
o (pq)iz| = ——— K0 (pq); =|. (841)
o (e, f) P T esaey, (e, f), (a,bz) i

Proof. From (8.14) and (8.40) it follows that

(a,0), (c,) o
aov),(c, P
2P (p,q);%f) =21 afc 2;9
(e, f) .
(be;q> b cf
Ny |9,
;D f O p e
p e a
_ (a@b@);fqﬂ)z (a,b), (de,cf),(0,1) (v q)ﬁ
(acab); N
pA (e, f),(a,bb)
Taking 6 = :)Zz, follows. O

8.2.9 Transformations of ;®, series

The following transformations of 3¢, series are valid (Gasper and Rahman [38, (II1.9) and
(II1.10), P 359])

, , (‘f de.q> dd
a,9,c e a’ be’ N e
s 00 b’ c c
3¢2 J T abe de 3¢2 de T4 (8.42)
7 e,ﬁ,q N /bc
(b,de,ze> d e de
ab’ be ), T T
= o e | babigbe lgin |, (8.43)
de, — —,
< abc)c>o a c

Proposition 101. The following transformation formula for the 3®,-series are valid:

(a,b),(c,d), (e, f) Pl

3D, P, q);
(3,1, (i,j) baf

(bi© aj)y, (@fgi S ceh)y, - [(a,b), (dg,ch), (fg,eh)| q_aj (8.44)

q

D\ X .\ 00 32 ) ) 7/b7

(bi@ bz.) (dfgi@ ”CZ’” ) (g h), (dfgi,cenj) | P 7
]/ pa pa
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,b),(c,d), (e, ‘
@b (e, f) i

3P q);
.. bd
(1), (i) /
(cod)y (bdgi©achj)s (dfgi© cehj)s (dg,ch), (di,cj), (bdfgi,acehj)
_ pA pA PA P, (p q)'E '
(cgSch)y, (diSd)),, (bdfgi S acehj), (bdgi,achj), (df gi, cehj) ¢
(8.45)
Proof. From (8.42) and it follows that
bd f
(a,b),(c,d), (e f) phj 2 e la acehj
302 | P Diggr | =2 | Th | b
(1), (1) %
<aj_q> (cehj,q b ch e
_\bi"p) \dfgi"p) a'dg’ fg | 4.4
N j.q acehj q 392 h Ce{]' p’ bi
i'p) o \bfgi’p) g dfgi
vy fsiccn)y, () (g, o) g o)
p’ bi

B bi2\ % acehj\ ™ 2 . .
(bi@ > (dfgi@ A ) (g, 1), (dfgi,cehj)
1/ pa pa

This proves (8.44)). (8.45) is obtained in the same way. Indeed,

bdf
(a,b),(c,d), (e, f) hj 2 e acehj
3D N (p'q)"l;:d]]‘ = 32 ahcje Z'bdfg]z
(8 h), (i,]) ¢
(d.Q) (MPM) (cehf.q ch cj acehj
_ NP o\ P) o \AfRI D), | dg’di"bdfgi | 9.4
(h.ﬂl> (J'.ﬂl) (ﬂcehj.q> 2| achj cely | e
g ) \i'p) \bifgi'p)., bdgi” dfgi
(ced),, (bdgi© achj),, (dfgi © cehj), . (dg,ch), (di,cj), (bdfgi,acehj) (r,0) p
= 3 . -\ 00 . ~Noo 32 p.q9);—1-
(cg S ch)y, (diSd)),, (bdfgi S acehj),, (bdgi, achj), (dfgi, cehi) ¢

8.3 Power representation of terminating (p,q)-series

The following power representations of some terminating g-series are valid:

n (Sfr)

(_1)nq(2) (a2/---/ar+l)5])n n n k qik,ﬂz,...,ﬂ,q,l

( € >b b) = Z(—l)k{ ] 9%, 195 g g
1,02,-+-,0s;q)n k=0 kq bl/b2/~--/bs

(8.46)
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and

n (Sfr)
((=1"q®)" " (a5, p41)n
(bll b21 ey bS/ Q)n

—k ok
n (_1)kq(§) q ~,a247,a3,...,0r41
1¢s q;qx |(8.47)
ZH (2%, (@297 )i by, by, ..., bs

They can be obtained [66] from Verma’s g-extension [88] of Fields and Wimp [36] expansion
of

r+t¢s+u (ﬂr)/ (Ct> q; yw i q)] y]‘ [<_1)jq(£)]u+3—t—k
(bs), (du) j=0 ) WI] q)j
j j
kb (ciq’), (exq) 0,y
'Yq2j+1, (duq])
g7, vq, (ar)
r2fs ik qwg| (848
(bs), (ex)

in powers of yw as given in Gasper and Rahman [38) (3.7.9)].

In this section we give (p, )-analogues of (8.46) and (8.47).

Proposition 102. The following power representation is valid:

X" = Ay Z H (D-kg Oy (x), (8.49)
=0 k M

((~17g®)"", 50

A — <a2p...a(r+1)p)” (blp@blq)zlq“'(bSP@bsq)Z,q

n n
(a2p © ”2q)p,q o (a(r+1)p © ”(f+1)q>pq

(r+1q)s <(p_k'q_k)’(a2p’a2‘7)" sty ) (p q)'yx> s=r
(blp,bl,’), (pr/ qu)/ (bsp/ bsq)
K q78), (azp, a2g), - (A1) A(11)), (0,1, (0,1
Ou() — 110 ((P 97) (a2p,029), ., (041, 842)0), (0,1), -, (0,1)
(blp,blq)/ (b2p/ qu)/ ce (bspr bsq)

(p,q);yx) s >7r.

qu)r( (P75, q75), (azp,a2q), ..., (A1) B(r41)g) " q)‘yx> sy
(blp,blq)/ (pr, qu)/ e (bsp/ bsq)/ (O/ 1)/ cecy (0/ 1)
(8.51)
with .
biyboy ... b
— w (8.52)

azp N a(r+1)p
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Proof. We give the proof for (8.49), that is for the case s = r. The other formulas are obtained
in the same way.
From (8.46)), we can write

(leq"”“(r+1)q;Q> \ g ay A(r+1)g
e Sy Pl yo o[ (0 Yo | P ey, | 0,0
fe\p) " by ey by | pp

<b“7 b54‘7> k=0
blp bsp p n

Next, using the relation

blp,ﬂzp ...,bsp

IR
Ky ki1

together with the first case of and proceeding with some simplifications (8.49) follows.

O
Proposition 103. The following power representation holds:
n n n(k+1) = (31 7 3) _
X" =B Z(_l)k[ ] k kpk 2k+q1 2%k+1 ik Pr(x), (8:53)
k=0 klp.q (a2pp* © azgq )W (azpp © axq )M
where
n n
B, = (“2p“3p - --ﬂ(m)p)" (b1p S b1q) g+ (bop S Bua) g (1)~ p
n — n - ’
bip...bsp (agp © agq)zrq ces <a(7+1)p S a(,_,_l)q) v
(8.54)
and
—k —k k k
o S(@ 7 e e e (P,q);ﬂX> -
(blp,blq)/ (pr/ qu)/ e (bsp/ bsq)
_ K,q78), (azpp¥, a2gq"), ... (A1) pr A(rs1)), (0,1),..., (0,1
SR I ((p 175, @b ) @) (01), - (0,1) @,@;yx) .
(D1p,y,)s (b2p, b2g), - - (bsp, bsg)
—k ,—k k k
r+1<1>7<<P i (azpp o . "(a(r+1)pr“(r+1)q) (PIQ)?W‘> s<r
(D1p,y,)s (b2p, b2g), - - - (bsp, bsq), (0,1),....,(0,1)
(8.55)
with . b
§= M, (8.56)
azp e a(r+l)p
Proof. The proof is achieved in the same way as for Proposition[102} O
We write (8.49) and (8.53) forr = s = 1.
Cn ﬂ@bn n n k/ 7k/a/b k
n( d)ﬁ’q ¥ = Z(‘l)k[ ] p kg, [P0 ) b art ) s s)
a(cod),, k=0 klp,q (c,d) !
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and

Cnp(g) o i [n] (—l)kp(k;1)+4k2_nkq(}2()52k (P k,q k), (gpk, bqk) ( )
CE A P

k=0 Lk

k n—k 2
g <apk o bqk>p,q (ap2k+l o bq2k+1)P,L]



Chapter 9

(p, g9)-Sturm-Liouville Problems and
Their Orthogonal Solutions

In mathematics and its applications, a classical Sturm-Liouville theory, named after Jacques
Charles Frangois Sturm (1803-1855) and Joseph Liouville (1809-1882), is the theory of a real
second-order linear differential equation of the form

d

- [u(x)dy] +o(x)y(x) = —Aw(x)y, 9.1)

dx

where y is a function of the free variable x. Here the functions u(x), v(x), and w(x) > 0 are
specified at the outset. In the simplest of cases all coefficients are continuous on the finite
closed interval [a,b], and u has continuous derivative. In this case, this function vy is called
a solution if it is two times continuously differentiable on (a,b) and satisfies the equation
(9.1) at every point in (a,b). In addition, the unknown function y is typically required to
satisfy some boundary conditions at a and b. The function w(x), which is sometimes also
denoted p(x), is called the weight or density function.

The value of A is not specified in the equation; finding the values of A for which there
exists a non-trivial solution of satisfying the boundary conditions is part of the Sturm-
Liouville (S-L) problem. Such values of A, when they exist, are called the eigenvalues of the
boundary value problem defined by and the prescribed set of boundary conditions.
The corresponding solutions (for each such A) are the eigenfunctions of this problem.

The resulting theory of the existence and asymptotic behaviour of the eigenvalues, the cor-
responding qualitative theory of the eigenfunctions and their completeness in a suitable
function space became known as Sturm-Liouville theory. This theory is important in ap-
plied mathematics, where (S-L) problems occur very commonly, particularly when dealing
with linear partial differential equations that are separable.

A regular Sturm-Liouville problem of continuous type is a boundary value problem in the
form

i r(x)dy”(x) + Aw(x)y.(x) =0 (r(x) >0, w(x) >0), (9.2)
dx dx
which is defined on an open interval, say (a,b), with the boundary conditions
ary(a) +Biy'(a) =0,  aay(b) + Bay'(b) =0, (9.3)

where a1, &y and B4, B2 are constant numbers and r(x), ¥'(x) and w(x) in (9.2) are to be
assumed continuous for x € [a,b]. In this sense, if y, and y,, are two eigenfunctions of
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equation (9.2), then according to Sturm-Liouville theory [65]], they are orthogonal with re-
spect to the weight function w(x) under the given condition (9.3), i.e. we have

[ 0y = o,

where d? = fab w(x)y?(x)dx denotes the norm square of the functions y, and 6, , stands

for the Kronecker delta [58],59].

It is well known that g-orthogonal functions may be solutions of a g-Sturm-Liouville prob-
lem [18]. One of the important cases of these functions are the g-classical orthogonal polyno-
mials which are of special interest inside the class of special functions and play an important
role in several problems such as Eulerian series and continued fractions [53], g-algebras and
quantum groups [56, 57] or g-oscillators [10} (19} 39].

g-Orthogonal functions can also be similarly solutions of a g-Sturm-Liouville problem in
the form [51]

(Dq(r Dgyn)) (x;q) + Angw(x;9)yn(x;9) =0 (r(x;9) >0, w(x;q) >0),  (94)

with (D;f)(0) = f'(0) (provided f’(0) exists), and satisfies a set of boundary con-
ditions like (9.3). This means that if y,(x;q) and y,(x; q) are two eigenfunctions of the g-
difference equation (9.4), then they are orthogonal with respect to a weight function w(x; q)
on a discrete set [64].

In this chapter, we study the extension of g-Sturm-Liouville problems to (p, q)-Sturm-Liouville
problems and seek for finding some (p, g)-orthogonal functions that are solutions of them.

9.1 Eigenvalue problems
We consider the eigenvalue problem (see [60] or [84])
¢(x)(D} gyn) (%) + P(x) (Dpgyn) (px) = Anyu(pgi) (9.5)

for polynomials y, of degree n, where D3 .y, = Dy 4(Dpqyn) with A, € Cand n € {0,1,2,...},
@ is a polynomial of degree at most 2 and ¢ is a polynomial of exact degree 1, say

p(x) = ax* + bx + ¢, P(x) =dx+e, ab,cdecC, d#0. (9.6)
Since an omem
n XT - X n—
Dypg(x") = p(p—qq)x = [n]pqgx" ",
comparing the coefficients of x" in (9.5), we get
n
b= 20 a1 ). 02

Consequently, the corresponding (p, q)-difference equation takes the form

(ax? + bx +¢) (D} gyn) (x) + (dx + €) (Dp,gyn) (px)

= ([1;];)1 (a[n —1]pq+ dp"fl) yn(pgx), n=20,1,2,.... (9.8)
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Note that ( ) )¢ w ) (2 )
D2 nx:qynpx_P+qanx+Pynqx. 99
(D2,) () PR 99
Therefore the equation can be written in the form

ax?+bx+c  dx+e )
<(P—q)2r)x2 (P—q)Px> (p)

_<(ax2+bx+c)(p+c])+ dx+e

(p—q)*px? (p—a)p

T ?\n) Yn(pqx)

240
Wy(q2x>. (9.10)

If now we replace x by x/(pq) we obtain the so-called symmetric form

C(x)yn(p~'qx) = {C(x) + D(x)} yu(x) + D(x)yn(pq~"x)
_ (p"—q") (aq"p — p"aq —dp"pq +gdp") o4
prtigntl (p—q)z Yulx), O11)

forn =0,1,2,...with

2 2,2
C(x) = ax +bpqx%2—cp q 9.12)
q(p—q)°x*
and 2 2.2
D(x) = T (P=a)d)x +(b+(§—2q)6) pax +cpq 9.13)
plp—q)x
Note that D(x) is related to C(x) by
q dx +epq
D(x)=-C —_— 9.14
(x) p() o(p =) (9.14)

9.2 The regularity condition

In this section we will point out in which cases the eigenvalue problem has essentially
unique polynomial solutions v, (x) of degreesn = 0,1,2,..., N for some positive integer N
with possibly N = co. Solutions are called essentially unique if they are determined up to a
factor independent of x. We have

Theorem 104. Let N denote a positive integer (possibly N — o). Then the following statements
are equivalent:

1. For each n = 0,1,2,..., N there exists a solution of the eigenvalue problem (9.5) and all
eigenspaces are one-dimensional.

2. Form,n € {0,1,2,..., N} with m # n we have A, # Ay,.

Proof. Assume that A,, = A, for m # n. Then there is either no polynomial solution for
one of the degrees m and n or the solutions y,, and y, belong to the same eigenspace. This
shows that the first statement implies the second.

Now we use induction to show that the second statement implies the first. For n = 0,
we have Ay = 0 and the one-dimensional eigenspace generated by yo(x) = 1. Now we
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assume that n € {1,2,3,...}. Suppose that the polynomials y,(x) are solutions of degree k
fork =0,1,2,...n — 1. Then the (monic) polynomial y,(x) of degree n given by

n—1
Yn(x) = x" 4+ Z apyr(x) with ap € C (9.15)
k=0

is clearly a solution of if
() Dy (x") + () (DpgLy) (")

( pa Z "‘kyk) x) + P (x)(DpqLp) (Z D‘k]/k)
= An ((PX>” + fakyk@v/x)

k=0

with £,(f)(x) = f(px), holds. Clearly, the polynomial q)(x)Df,,q(x”) +1(x)(DpqgLlp)(x™)
has degree at most 7. Hence we may write

n—1
P(x)D} o (x") + 9 (x) (Dpg Lp) (x") = Bu(px)" + kZ Bryi(pax)
=0

with ; € Cfor j=0,1,...,n. Combining the last two equations, we get

n-1 n—1
Bu(px)" + Y (Br + Aoy (pgx) = An ((PX)” +) :Bk]/k(qu)>

k=0 k=0
and therefore .
ne
(Bn = An) (px)" + ) (ax(Ak — An) + Br)yi(pgx) = 0.
k=0
Since Ay # Ay, this implies that the numbers «j are uniquely determined by this equation.

Hence the (monic) polynomial solution y,, given by (9.15) is uniquely determined and this
implies that the corresponding eigenspace is one-dimensional. O

Now, since A, = [y (a[n —1],4 +dp"~1), using the relations 2.1T) and (2.12) we get

(pa)"
(P2)" (An = Am) = [nlpg (“[” —1pqg+ dpnil) = (p)" " [m]pg (a[m —1pg+ dpmil)
= a([n]pgln —1pqg — (pg)" " [m]pqlm —1pg) + dpnil([”]p,q —q" " [m]p,q)
=aln—myn+m—1,,+dp"" n—m],,

=[n—mj,, (a[n +m—1]p, +dp"+”’_1> , n>m, n,me{0,1,2,...}.
Hence we have

Ap— Ay = w (a[n+m —1]p4 —|—dp”+m_1) , n>m, n,me{0,1,2,...}. (9.16)

(pg)"
For n # m, it follows that [n # 0and so Ay # A, is equivalent to a[n +m — 1], , +
dp"t™m=1 £ 0. Therefore, Theoremleads to:

Corollary 105. Let N denote a positive integer (possibly N — o). Then the eigenvalue prob-
lem has polynomial solutions y, of degree n for alln = 0,1,2,..., N with one-dimensional
eigenspaces if and only if the reqularity condition

a[”]l’/q—l_dpn #OI n :0/1/21--'/2N_2 (917)
holds.
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9.3 Orthogonality of the polynomial solutions

In this section, we prove that the polynomial solutions of (9.5) are orthogonal with respect
to some measure p.

Theorem 106. If A, = —(pq) " [n]pq(aln —1]pq +dp™ ), n € N, then the (p,q)-differential
equation has a polynomial solution of degree n, P, (x). Moreover, if p is a nonnegative solution
of the Pearson type equation on an interval (a; b) (the latter interval may be finite or infinite)

Dpale(q~ x)p(q )] = p(x)p(x), (9.18)
and if the limiting conditions
}Clir; x"¢p(x)p(x) = lig}) X"p(x)p(x) =0, VYnelN (9.19)

hold. Then the polynomial system (P,(x)), satisfies the orthogonality relation

b
/ (%) P (pgx) Pu(pqx)dpgx = kndym. (9.20)
a

Proof. When ¢ = 0, it is clear that for A, = —(pq) "[n]pq(aln — 1,4 +dp" 1), fix = 0 for
m > n and f, # 0. Next, multipliying by p(x), we get

¢(x)p(x) Dy 4y(x) + (x)p(x) (Dpqy) (px) + Ap(x)y(pgx) = 0.

Using the (p, g)-Pearson equation (9.18), and the product rule (2.13), we get the following
self-adjoint form of

Dypql¢(q7 ' x)p(q7 %) Dy gy (x)] = —Ap(x)y(pgx).

We write this self-adjoint form for P, and P, m # n

Dyg[9(q~ ' %)p(q7 %) Dp,g P (x)] = = Ao (%) P (pgc)
Dp,q[‘P(qilx)()(qilx)Dp,qpn(x>] = —Anp(x) Py (pgx).

Multiplying the first equation by P, (pgx) and the second one by P, (pgx) and subtract the
second equation from the first one, it follows that

(An = Am)p(x) P (pqx) Pu(pqx) = P (pqx) Dy q [4’(‘771x)P(‘771x)Dp,an(x)]
—Pu(pqx)Dp,g[¢(q " x)p(q ™ %) Dp g Pr ()]
= Dy [¢(97"x)p(g7"x) (Bu(9) DpgPa(x) = Pa(gx) Dy Pur(x)) |

Therefore
b
(A= An) [ 90)Pu(p) Pa (P

b
= |94 2)p(q %) (Pu(9) Dy Pa(x) = Pu(q) Dy Pn(x) |
=0 (limit conditions (9.19))

The orthogonality then follows from the regularity condition (9.17). O
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Now, note that from the (p, q)-Pearson equation (9.18) we get

¢(pg~'x)p(pq'x) — p(x)p(x)

Dpaglp(a~'x)p(q7 )] = p(x)p(x) = p(x)o(x)

(p—q)x
) ew e p-gmw
p(x) ¢(pg—'x)

We state the following theorem.

Theorem 107. Let 6(x) be a given function and consider the (p, q)-difference equation

= 0(x). (9.21)

Then,
1. If0<g<p,
0 qk+1
p(x)=T]¢ <k+1x> (9.22)
k=0 \P
is a possible solution of (9.21) provided that the infinite series converges.
2. If0<p<y,
S k -1
p(x)=|]Te <pkx> (9.23)
k=0 \1
is a possible solution of (9.21) provided that the infinite series converges.
Proof. 1. If 0 < g < p, then (9.21) reads

or otherwise stated

=)

Making the substitution of x by Zx on both sides n times yields

2 n+1 n+1
—ol(1 q q q
o () (f) (55)o (50
Letting n tend to infinity and assuming that the obtained infinite product is conver-
gent gives (9.22).
2. Inthe case 0 < p < q, we write (9.21) as

and proceed as previously.
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9.4 Structure relations for (p,q)-orthogonal polynomials

9.4.1 The three-term recurrence relation

Now since we have the orthogonality relation, it is clear that the polynomial solutions of
(9.5) satisfy a three-term recurrence relation of the form

xPy(x) = ayPyi1(x) + by Py(x) + cyPy_1(x), n>1 (9.24)

In order to obtain the expression of the coefficients a,, b, and c,, following the method used
by Koepf and Schmersau in [55] and [54], we first write

Py(x) = kpx" + K x4 KX 4 (n € Nso:={0,1,2...}, k, #0).  (9.25)

Since one demands that P,(x) has exactly degree n, we substitute P, (x) in the g-differential
equation and by equating the coefficients of x", one gets (9.7).

Equating the coefficients of x"~! and x"" 2 gives k), and k!, respectively, as rational multi-
pleswrt. M = p™, and N = g" of k;:

p _ (M= N) (Mepq — Meq” + Mbg — Nbp) 4°p*
" (p—q) (M*dg?p — M2dg® + M?aq? — N?ap?)™"

(9.26)

and

ki =k, (M — N) (Mg — Np) <M262p2q3 -2 Mzezpq4 + M262q5 + 2M2bepq3 — 2M2beq4
+M?2cdp*q* — 2 M*cdpq® + M?*cdq* — MNbep®q + MNbepq® + M?acpq® — M?acq® + M?b*g°
~MNB*p?q — MNBpg? — Nacp® + Nacp®q + N*62p°) g*p*) /| (p +9) (p —9)”
(Mzdpzf’ — M?dg* + M?aq® — Nzap3) (M?dpg* — M?dq® + M*ag* — N*ap?) } . (9.27)

An important point is that the coefficients a,, b, and ¢, appearing in this formula (9.24) can
be computed directly in terms of the coefficients of the polynomials ¢(x) and ¢(x), which
completely characterize the second order (p, q)-differential equation (9.5).

Next, we substitute P,(x) in the proposed equation (9.24) and equate the three highest co-
efficients. This yields a,, b, and ¢, in terms of a, b, ¢, d, e, q, 4", p", kn—1, kn, kns1, k,_4,
ks k10 k1, Kk, Kk, 1 by linear algebra.

Finally, substituting the values of kj,_, kj,, k. 1,k _, ky;, and k;,_ ; given by (9.26) and (9.27)
yields the following formulas.

kn
kn+1 .

a, = (9.28)

b, = — (Mzdep2q2 — 2 M?depq® + M?deg* + M?aepq* — M?aeq® + M?bdp*q — M?bdq®
—MNaep® + MNaepq* — MNbdp*q + MNbdq® + Naep*q — N?aepg® + M2abpq + M*abg?
—MNabp® — 2 MNabpg — MNabg® + Nabp® + N*abpq) NMpq/ (M*dpq* — M*dq® + M*aq*

—N?ap?) (M?dp — M?dq + M*a — N*a) (9.29)
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and

Cn = —nk"NMp3q3 (M —N) (pg*Md — ¢°Md + g*Ma — p*Na) (M4cd2p2q4 — 2 M*cd®pg®
n—1

+M*cd®q® — MPNbdep®q® + 2 M®Nbdep®q* — MPNbdepq® + M*N?ae?p*q* — 2 M>N?ae*p3q°
+M>Nae*p*q* + 2 M*acdpq* — 2 M*acdq® — M>Nabep®q® + M>Nabepq* — MPNb*dp*q®
Pq pq q Pq pq Pq
+M3Nb?dpg* 4+ 2 M*N%abep®q? — 2 M2 N?abep*q® — 2 M®N?acdpq® + 2 M*N?acdp*q®
+M2N2p?*dp3q* — M*N?*b*dp*q® — MN®abep*q + MN>abep®q* + M*a*cq* — MPNab?pg®
—2 M?*N%a*cp*q* + 2 M?N?ab*p*q* — MN°ab?*p’q + N4a2cp4> / (Mzdpq3 — M?dq* + M?ag®
—N?ap®) (M?dpg* — M?dq® + M?aq* — Nzapz)2 (M*dpq — M*dq* + M?aq — N?ap)
(9.30)

9.4.2 Further structure relations

In this section we give several other structure relations for the (p, q)-orthogonal polynomi-
als.

Proposition 108 (Compare with [60]). If y(x) is a solution of equation (9.5), then y1 = D, 4y is
a solution of

¢1(x) D} 1 (%) + 1 (x) (Dpay1) (px) + pay1 (pgx) =0 (9.31)
where
¢1(x) = ¢(qx), (9.32)
P1(x) = Dp,q‘f’(x) + p(px), (9.33)
u1 = Dypqip(x) + pgA. (9.34)
Proof.

Dyg [#()D2,y(x)| + Dy [9(x)(Dpqy) (px)] + ADpy [y(pax)] =0 (9.35)

Applying the product rule (2.13) it follows that:
¢(qx) D5, [Dpay(x)] + Dy g (x) (D5 0y) (px) + $(px) Dy g [(Dypgy) (px)]
+ Dyp.g¥(x)(Dp,gy) (pqx) + ADypq [y(pgx)] = 0.

Next, using the product rule (2.13) and using the relation

Dpqlf(ax)] = a(Dpqf)(ax),
we get
¢(ax) D} [Dpgy(x)] + [Dpad(x) + p(px)] (D 9) (px)
+ [Dpg(x) + aA] Dpgy)(pgx) = 0.
This proves the result. O

By induction, it can be seen that if y(x) is solution of (9.5), then D} y(x) (for n > 1) is
solution of the equation (see [60])

¢u(x) D3 y(x) + ¥ (x) (Dp,gy) (px) + Hay(pqx) = 0, (9.36)
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where

Pu(x) = ¢(q"x) 9.37)
Y (x) = pn1(px) + Dpgdn-1(x). (9.38)

Setting ¢(x) = ax? + bx + c and ¢(x) = dx + e, we see that
¢n(x) = ag®"x* + bg"x + c.

Also, setting ¢(x) = dx + e and ¢, (x) = dnx + ey, it follows that ¢, +1(x) = dy1x + €41.
Using (9.38), it follows that

¢n+1(x) = Dp,q‘l’n(x) + PlP(Px)
=a(p+q)q”"x + bg" + p(pdux + ey)
= (pPdu +a(p + q)q*")x + bq" + pex

Hence, by identification we obtain the following recurrences for (d,) and (e,)
du1 = pidn+a(p+q)g™, do=d (9:39)
ent1 = pen +bq", e =e. (9.40)
If we write e, = p"S;, then from (9.40) we get

b n
Sn—H = Sn‘i‘g <Z> .

b[n],q

n

Solving this recurrence gives S,, = e + and hence

en = p"Sy = p"e+ b[n]y.
By a similar approach we obtain
dy = p*'d +a[2n],,. (9.41)

Now since we have the expressions for ¢, and ¢, it is interesting to get a closed formula
for uy,. As for the previous cases, by induction it is easy to see that

Hn+1 = Dp,qlpn(x) + Pqpn-

Using the expression for i, we obtain the following recurrence for the p,s

Hur1 = (pq)n + a[Zn]m + dpzn/ po = A.

This time putting p, = (pq) Ty, it follows that

1
Tpp1 = Ty + — (a[2n],, +dp™) .
+1 (pq)n( [21]p,4 p )
Hence
o= O nly ol — 1], + &+ A
n (pq)n A4 4 pqn :

The representation of y, follows and we then have the following proposition.
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Proposition 109 (Compare with [60]). If y(x) is a solution of equation (9.5), then Dy 4y is a
solution of

¢1(x) D} 1y(x) + ¥1(x) (Dpgy) (px) + pay(x) = 0 (9.42)
where
¢u(x) = P(g"x) = ag™x* + bg"x + ¢,
n(x) = (a[2n]p,q + dpzn)x + (b[”]p,q +ep"),
pn = afnlpgln —1pq +dp" " nlpg + (pg)"A.

Theorem 110 (Compare with [60]). Let { P} be a polynomial set, solutions of the (p, q)-differential
equation (9.5), then the following structure relation holds:

Py(px) = an(DpgPuia)(x) + Bn(Dp,an) (x) + én(Dp,gPu-1) (x). (9.43)

Moreover, if we write
Py(x) = kpx" + ...,

then, the coefficients ,, b, and ¢, can be computed using the formulas:

fy= P
" kn+1 [TZ + 1];7,11/
ho_ (M2bdpg — M?bdgq* — MNaep? + MNaeq* + M?abq — MNabp — MNabg + N?abp)
" (M2dpq® — M2dg® + M2ag? — N2ap?) (M2dp — M2dq + M2a — N2a)
x MpqN (p —q)
¢, — Kn Fp*M(M—N)N?a(p—q)

kn—1 8 (M2dpg?® — M?dq* + M?aq® — N?ap3)
o MAcd?p?q* — 2 M*cd?pq® + M*cd?q® — MPNbdep®q® + 2 M®Nbdep?q* — M3 Nbdepq®
(M2dq2p — M2dg3 + M2ag? — N2ap?)* (M2dpg — M2dg? + M2aq — N2ap)
M2N%ae?p*q? — 2 M2N?ae’pq® + M2N2ae?p?q* + 2 M*acdpg* — 2 M*acdq®
(M2dq2p — M2dg3 + M2ag? — N2ap?)* (M2dpg — M2dq? + M2aq — N2ap)
—M3Nabep?q® + M3*Nabepq* — M3Nb?*dp?q® + MPNb2dpg* + 2 M?N?abep®q*—
(M2dg2p — M2dg3 + M2ag? — N2ap?)* (M2dpg — M2dg? + M2aq — N2ap)
n 2 M2N2abep?q® — 2 M?N%acdp®q* + 2 M?N?acdp®q® + M2N?*b*dp3q* — M2N2b*dp2q3
(M2dq2p — M2dg3 + M2ag? — N2ap?)* (M2dpg — M2dq? + M2aq — N2ap)
—MN3abep*q + MN3abep®q* + M*a?cq* — M3 Nab?pg® — 2 M2N2acp?g®
(M2dg2p — M2dg3 + M2ag? — N2ap?)* (M2dpq — M2dq? + M2aq — N2ap)
n 2 M2N2ab?p?g> — MN3ab?p3q + Na?cp*
(M2dg2p — M2dg3 + M2ag? — N2ap?)* (M2dpq — M2dg? + M2aq — N2ap)

Proof. From Proposition it follows that if { P, } is a family of solutions of the family
{Dy,4Py} forms solutions of (9.42). Hence, they are orthogonal and therefore satisfy a three-
term recurrence relation of the form

XDp,an(X) — anlle,an+1(X) +bn,1Dp,an(.x) +Cn/]Dp,an71(x), n Z 2. (9.44)
Now, applying the D, ; operator on both sides of equation (9.24), it follows that

Dp,q[xPn(x)] = an(DpgPus1)(x) + bu(Dp,gPu) (x) 4 cu(DpgPa—1)(x), (9.45)
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Using the product rule (2.13), the left-hand side of the above equation reads
Dyp,q[xPu(x)] = gx(Dp,gPn)(x) + Pu(px).
Using (9.44), it follows that

Dyp,q[xPu(x)] = Pu(px) +q [an1(DpgPas1)(x) + by1(DpgPu) (x) + €11 (DpgPu—1) (x)(]9‘46)

Now combining (9.45) and (9.46) it follows that
Py (px) = (an —qan1)(Dp,gPni1)(x) + (bn — qbu,1) (Dp,gPu) (x) + (cn — gcn,1 ) (Dp,gPu—1) (x).

Therefore, the structure relation is obtained. In order to get the explicit relation for the
coefficients, we proceed exactly as in Proposition[9.24] O

9.5 Some special cases of (p,q)-orthogonal polynomials

In this section we discuss two special cases of (p, g)-orthogonal polynomials.

9.5.1 General solutions of the (p, q)-differential equations and (9.18)

First, we obtain the recurrence equation for the coefficients of the power series solution of
(9.5).
Theorem 111. Let

y(x) =Y fux" (9.47)
m=0
be a solution of (9.5), then the coefficients f,, satisfy the second-order recurrence equation
clm +2]pq[m + 1 pqfimsz + (b[m + 1 pg[m]pqg + ep™[m + 1] pq) frns1
+(alm]pqlm —1pq +dp" " m]pg +A(pa)"™) fu, m > 0. (9.48)
In particular, if ¢ = 0, the recurrence equation
(blm +1]pqlmlp,g +ep™ [m+1]pq) fur1 + (a[m]pqlm —1pq +dp™ " [m]pg +A(pg)") f = 0, (949)

is valid and
(—=1)" fo " alk]pqlk — 1] pq +dp* 1 [K]pq + Alpg)*

- 9.50
f [m]pq! 1 (blk]p,q + eq*) 020
Proof. We have
Dyqy(x) = Zl[m]p,quxm_l, Df,,qy(x) = Zz[m]m[m — 1 pgfux" 2.
Thus
a(x)D}%/qy(x) = Zza[m]p,q [m — 1]p,v/fmxm + Z b[m + 1];7,0/ [m]p,quﬂxm
m= m=1
+ ) clm+2]p40m 4 1]p g fny2x™
m=0
T(x)(Dp,qy)(Px) = 21 dpmil[m]p,quxm + 2 ep™[m + 1]p,qu+lxm
m= m=0
Ay(pgx) =) A(pg)" fux™

3
é
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Hence we get
0 (x) D} gy (x) + T(x) (Dpay) (3x) + Ay(x)

[c[m + 2]y gl 4 g fursa + (B[ +1]p00m) 50 + ep™ m 4+ 1]p4) fria

e

m=2

+(alm]pglm —1pq +dp™ " m]p, + /\(W)m)fm} x"

agk

[C[m + 2] pglm +1pqfmez + (b[m +1]pg[m]pq + ep™ [m +1]p4) fruin

m=0

+ a[m]p,q [m — 1]p,q + dpmil[m]p,q + /\(PQ)me} x™,

The recurrence equation for f,, is then obtained. When ¢ = 0, the recurrence reads

(b[m +1]pq[mlpq + ep" m+1]pg) frir + (almlpglm — 1 p g +dp™  m]p +Apg)") fu = 0,

SO

fur __almlpglm —1]p + dp" 1 [m]pe + A(Pﬂ)k‘

fm [m +1]p,q(b[m]p,q + ep™)
Hence
fn = (=1)" fo " alklpglk — g+ dp* ' [k]pg + /\(PQ)k‘
[m]p,q! k=0 (b[k]p,q +ep*)
U
Corollary 112. Let Py(x) = Y _ fu(n)x™ be a polynomial solution of the equation
m=0

(p(x)Df,,an(x) + 9(x)(Dp,gPn) (px) + AnPa(pgx) =0 (9.51)

where
p(x) =ax*+bx+c, Wx)=dx+e and A, = —<p[11)n[n]p,q (a[n —1]pq+ dpnﬂ) '

Then, the coefficients f,,(n), m =0,1,...,n, are solutions of the recurrence equation

clm+2]pqlm + 1pg finra(n) + (b[m + 1 pg[mpq + ep™[m + 1] pq) fruia (1)
+(a[m]yqm — 1], +dp™ mlpg + A (pg)™) fu(n), m >0. (9.52)

In particular if c = 0, the recurrence equation
(b[m + 14 [m] g+ ep™ [m + 1] p0) fnsa (1) + [m — 1] (a[n Fm—1]+ dp’"*"’l) fu(n) =0, (9.53)

is valid and the solutions take the form

(p~ "), ((a+d(p—q)p" " ag"")
Py(x) = Kyn®, (p,q),—x]. (9.54)
(b+e(p—q),b)
Proof. Equation (9.52)) follows directly from (9.48). When ¢ = 0, then (9.52) becomes

(bl + 1 pqlm]pq + ep™ [m +1pg) frrsr (n) + (almlpg[m — 1 g +dp™ " [mlp,g + Au(pg)™) fin(n) = 0
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and hence

fu(n) [m]p,q (b[m + 1]pq + ep™)
But, it is not difficult to see that

fmsa(n) . “[m]p,q [m — 1]p,v/ + dpmfl[m]p,q + An(f"i)m.

alm]pqlm =1y +dp™ " m]pq + Aa(pg)™
= alm]pg[m —Vpq +dp™ " [m]yy — [n]pq(aln =1y +dp"") (pg)" "
= [m—nl,, (a[m +n—1],,+ dp”””’l) )

Hence,
(20" fo(n) B k= nlpg(alk +n 1], +dp )
fu(n) = ! blk k—1 :
[mlpg! s [Klpq +ep
Next, we remark that
m=1 (r"eq™m),
H [k —n]pq = BT o (9.55)
k=0
also ( ) 1)m
m-1 (a+(p—q)p" ©aq"”
alk+n—1],, +dpF 1) = A (9.56)
]!;](:) ( [ ]Pfq p ) (P — q)m
e (b+(p—g)e )
md +(p—qecb),
blk],, +ept) = P4 (9.57)
g( HW p) (p_q)m
From (9.55), and (9.57), we get
(" oq ™, (a+@—q)p o))
fn(n) = (=1)"fo(n) o . e s
(roa)p, (b+(p—qlecb),,
The representation (9.54) is therefore proved. O

9.5.2 The (p,q)-Jacobi polynomials
(p,q)-Hypergeometric representation
Let us consider now the second order (p, q)-difference equation (9.5) with

2 2 p “+p 2 2 (P :
a=q, b=-pq, c=0, (p—qd=p 7 —q° |, (p—qe=pq—rp 7)

In this case we get:

Corollary 113 (Compare with [60]). The polynomial solutions of equation can be explicitly
given by

( —n’q—n), (pa+ﬁ+n+1, qoc+,8+n+l) X —-B
PP (x;p,q) = 2@ (pq); 1 (9.59)
(P, g™+ ) P

up to a normalizing constant.
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Proof. For these special values, we have

((a+(p—aq)peagt)” = <p (’;’)ﬁ o q)

m

pA
pA

(q—a—ﬁ) <pﬂé+ﬁ+1’l+1 o qa+ﬁ+n+1>

m

P4
and

(b+(p—qecb),, = (—p2 (p)a O —Pq)m

Z pa
_ (_q}i) <pac+1 eanrl)zq'

Putting together these two relations combining with (9.58) provides the (p, q)-hypergeometric
representation (9.59). O

Orthogonality relation

Corollary 114 (Compare with [60]). Let {P,(l“’ﬁ ) (x;p,q) }n be the sequence of polynomials given
by (9.59). Then, according to Theorem we have

p/q a &
| 0 s p, ) S (pax; p, ) P (s pr )

r/q N 2
= </0 p(“rﬁ)(x; p,q) (PTE /ﬁ)(qu" p,q)) dp,qx> Snmy

where a, B > —1 and p"“P) (x; p, q) is a solution of the (p, q)-Pearson equation
p(zx,ﬁ)(pq—lx; P, q) B (qa+ﬁ+2 4 pac+ﬁ+2 _ qﬂc+/5+2p2) X — qﬁpa+2‘

PP (x; p,q) (x —1) p2q*+P

This can be written in the form

PP (pg 'xip,q) _ Bx—1 <P>“_
g

PP (xpq)  x-1
with )
o puc+,5+2 + (1 _ pZ)qa+ﬂ+2 _ <p>ﬂ N (1 B pz) <q>a+ |
qgPpt2 q p

We can therefore write p(x) = p1(x)p x) with

q

o () (1) " (1) _ox-1 ().

o  \g p(x)  x-1

4
1|5 a
The relation p ((qx)> = <Z> has a solution p1(x) = x* and applying Theorem|9.21|to the second
1
o . P2 <§x> Ox —1 .
equation it follows that a solution of = may be written as
p2(x) x—1

k=0 pk+1 — qk+1x (p @ qx)p’q
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Therefore, the we get
L(pe0gx),,

S 9.60
(reqx),, 0

p"P(x;pq) = x
Three-term recurrence relation
From the (p, q)-hypergeometric representation (9.59), we see that the leading coefficient of
pY (x; p,q) is given by
. <p—n fa q—n)Z,q (pn+uc+/3+l o qn-l-uc-&-ﬁ—&-l)zlq <Pq/3)n
n — .
(poq),, (Ptegth),,

Then, the (p, q)-Jacobi polynomials satisfy the three-term recurrence relation (9.24) with

o — k, _ _pn+2qn+ﬁ+l(pn+a+l _ qn+uc+1)(pn+a+ﬁ+1 . qn+,x+'5+1)
kn+1

(p2n+a+,8+2 _ q2n+tx+ﬁ+2)(P2n+zx+,B+l _ q2n+:x+/3+1)

b, = —q'g“pzMN <M2q2a+5+2p3 + Man+ﬁ+2pa+3 _ MquaJrﬁJrzpa _ Mqua+ﬁ+3pz
_MRRABR2 R pactl 2B 220 B3 | N pg2att2
+MNg?HPH3  MNg*Hp*3 4 MNg¥HFH1p* 2 1 MNg*p A3 4 MNg»H path+2
_N2p2q2a+ﬁ+1 _ Nan+ﬁ+1pzx+2> / [(quaJrﬁJrzpz _ quoc+ﬁ+2 _ sza+ﬁ+2 + quoc+ﬁ+2)

% (Man+ﬁ+2p2 — MPgrHBR2 _ \RprtBe2 szzqaﬂz)}

cn = P*HPHIPSNM (N — M) <Mquc+/5+2p2 — MgtHAt2 — Mprhe2 Nqﬁpvc+2) (Mqoc+ﬁ+2p2
~ Mgt pph2 thx-i-ﬁpZ) (szoc+ﬁ _ qulx-‘rﬁ) (sza+ﬁq _ pqa-i-ﬁNZ) /
(qua+ﬁ+2p2 — M2gPH2 Ry 4 szqa+ﬁ+l) <M2qa+ﬁ+2p2 — M2gBE2 g2 prtBe2
+N2p2qa+ﬁ>2 (qua+ﬂ+3p2 _ MG M2yt N2p3q“+ﬁ) (Mpﬂé+ﬁ _ Nq‘”ﬁ)

with N = g" and M = p".

9.5.3 (p,q)-Laguerre polynomials
(p,q)-Hypergeometric representation

In this section we discuss the case where
o o
a=0, b=—pg c=0, (p—q)d=p’ <Z> , (p—qe=—p <Z> + pa.
In this case we have the following corollary.

Corollary 115. With the special coefficients above, the polynomials solutions of (9.5)) have the rep-
resentation

" (p~".q7"),(p",0)
L (x; p.q) = 2P (p,q); —v*x|, (9.61)

(pszrl’ qzx+1)

up to a normalization constant.
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Proof. For these special values, we have

((u +(p—gqd)p"to gqnfl)m _ <pn+l <p>’x o an)m

pA

and

(b+(p—qecb),, = <—P2 <p>“ o —rw)m

q P4
m
— | _ ﬁ a+1 a+1 "
- ( q ) <p o > pa
Putting together these two relations combining with (9.58) provides the (p, q)-hypergeometric
representation (9.61). O

Orthogonality relation

From the (p, g9)-Pearson equation (9.18) we see that the weight function of the (p, 9)-Laguerre
polynomials satisfies the relation

p
plg* “
<" ) = - (p> (x —1). (9.62)
p(x) q
We can therefore write p(x) = p1(x)p(x) with
P P
P1{ 5% « P2 | X
(q):<}9> and <q):l—x.
p1(x) q p2(x)
e(51)  rpy
The relation 1 (%) = (q) has a solution p; (x) = x* and applying Theorem 9.21|to the
1
- e () |
second equation it follows that a solution of 02 (%) = 1 — x may be written as
2

pp (re0),,
Next using the (p, q)-Binomial theorem (8.18) with its special case (8.22) it follows that

= pp*— (xq)g° (PO xq),,
o2(x) =TT 7 (k 9)q pa
k=0

p2(x) = Epq((q — p)gx).

Finally we get
p(x) = p1(x)p2(x) = x*Epq((q — p)gx)-

Corollary 116. Let {LS{X) (x; p, q) }n be the sequence of polynomials given by (9.61). Then, according
to Theorem the following orthogonality relation holds true

/0 ¥*Epq((q — p)ax) LS (pax; p, )L (pgx; p, q)dpqx

= ([ < Bpalta— pa) (L i p,)) ) b0 969)
0 pa\\qd —P)q n \X%p,q pgX | Onm (9.
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Three-term recurrence relation

From the (p, q)-hypergeometric representation (9.61), we see that the leading coefficient of

L (x;p,q) is given by

(p"eq "), (preo),

n n (_ a)n'
(PS4)y, (P*©9%),, §

n =

Then, the (p, q)-Laguerre polynomials satisfy the three-term recurrence relation (9.24) with

_ ke an n+a+1 atn+1
qn+1 1 1
bn — p2n+a <pn+a+ _ qn+a+ + p<pn+a _ qn+a))
qn+uc+1

Cn = W(Pn —q").

9.5.4 (p,q)-Hermite polynomials

In this section we discuss thecasea =b=¢=0andc = 1.

(p,q)-Hypergeometric representation
The (p, q)-difference equation becomes
11+ 2]pg[m + 1 p g fns2 () + dp™ " [m — ] fiu () = 0.
We discuss two cases, m = 2¢ and m = 2/ + 1.
o Ifm=20, becomes

B [26 _ n]p,qdp%Jrnfl

Solving this recurrence yields

_ N
(P "0 ")pg (180),,
(POD) e (PPOF)

for = (dlq - pp)' foln)

or otherwise stated
_ _m\l _ l
(p " S) q n)pz,qz (dpn ! © 0) P22
/ /
(p © q)pz,qz (pZ © qz)pz,qz

fo=a-p)) fo(n)

o Ifm=20+1,(9.64) becomes

B 20+1— n]p,qdpz””
f2£+3(n) - [2£ _|_ 3]p,q [Zg + z]p,q f2£+1 (n)‘

(9.64)

(9.65)
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Solving this recurrence yields

_ —m\? 1
(pl n@ql n)zz(l@o)zrz
faenr = (g = p)p") ———— I fi(n).
(P ©q )pz,qz (p ©q )pz,qz

or otherwise stated
_ AN
(Pl " S ql n)pz,q2 (dpn © O)f;z,qz
4 4
(p2 © qz)pz,qz (p?) © q3)p2,q2

for1 = ((g—p))* fi(n). (9.66)

From (9.65) and (9.66), we get the following (p, q)-hypergeometric representation for the
(p, q)-Hermite polynomials (compare with [60])

(pa,,—n’ qan—n)’ (dPZ[(n—l)/Z}—llo)
Hy(x;p,q) = x72®@y (P, 4); (g — p)** (9.67)
(pza,,Jrl’ q20n+1)

up to a normalization constant where

Orthogonality relation

From the (p, g9)-Pearson equation (9.18) we see that the weight function of the (p, 9)-Laguerre
polynomials satisfies the relation

e (1)

p(x)

=1+d(p—q)x* (9.68)

whose solution is
p(x;p,9) = Epge (—((p = 9)3%)%) .
Hence the (p, q)-Hermite polynomials fulfil the orthogonality relation

/_ _ Hu(pax; p,9) Hu(pax; p,q)Epp 2 (—d((p — 0)9x)?) dpqx

= (/_w Hy (pgx; p,q)Epe 2 (—d((p — 4)gx)?) dmx> Sm-

Three-term recurrence relation

From the (p, q)-hypergeometric representation (9.67), we see that the leading coefficient of
H,(x;p,q) is given by

n

n (P g e (P
(PO D e (P05,

kaw = (@(q = p)p" ™)

and n n
(P eq ") e ()P
(PS4 g (PP S P)p

n)n

koni1 = (d(g—p)p
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Therefore, the (p, q)-Hermite polynomials satisfy the three-term recurrence relation (9.24)
with

a K
g kn+1
n+1
= — [1lp.aq ky



Chapter 10

(p, q)-Laplace Transform and
Applications

The classical Laplace transform of a function f is given by

LLF))(s) = /0 Testf(dt,  s—a+ibeC, (10.1)

and plays a fundamental role in pure and applied analysis, specially in solving differential
equations. If a function of a discrete variable f(f), t € Z is considered, then the integral

transform (10.1) reads
F(z)=Y f(j)z/, z=e". (10.2)

Equation (10.2) is referred to as Z-transform and plays a similar role in difference analysis
as Laplace transform in continuous analysis, specially in solving difference equations.

In order to deal with g-difference equations, g-versions of the classical Laplace trans-
form have been consecutively introduced in the literature. Studies of g-versions of Laplace
transform go back to Hahn [40]. Abdi [1} 2, 3] published also many results in this domain.

The g-deformed algebras [73| [74] and their generalizations ((p, q)-deformed algebras)
[23, 137, 48| 5] 16 43, 7] attracted much attention these last years. The main reason is that
these topics stand for a meeting point of today’s fast developing areas in mathematics and
physics like the theory of quantum orthogonal polynomials and special functions, quantum
groups, conformal field theories and statistics. From these works, many generalizations of
special functions arise. There is a considerable list of references.

In this chapter, we introduce two (p, g)-versions of the Laplace transform and provide
some of their main properties. Next, some applications are done to solve some (p,q)-
difference equations, for example the (p, q)-oscillator is introduced and solved using the
(p, q)-Laplace transform of first kind.

10.1 (p,q)-Laplace transform of the first kind

Definition 117 (Njionou [68]]). For a given function f(t), we define its (p, q)-Laplace transform
of the first kind as the function

F(s) = Ly, [f()}(s) = /0 " F()Epy(—qts)dyyt, s > 0. (10.3)

Of course, by definition the (p, g)-Laplace transform of the first kind is linear.
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Proposition 118. For any two complex numbers « and B, we have

Lpqlaf(t) +Bg(t)y = alpqif(£)} + BLpqig(t)}-

In what follows, we give some examples. From (10.3), we note that:

o0 1 o0
Lpa{1}(s) :/0 Epq(—qst)dpqt = —g/o DyqEpq(—st)dpqt

1 00 1

=—2 [Epq(=st)], = 5 5>0
o0 1 [ee]

Ly {t}(s) = /0 EEp g (—qst)dy gt = e /0 (PH)DypgEpq(—st)dygt

1 00 ©

— ps {[tqu( st)]0 —/0 Ep,q(—qst)dp,qt}
1

= ﬁ’ s > 0.

1 5
Ly {14 5tH(s) = Lpg {11(5) + 5Lpq{t}(s) = < + 50

Proposition 119 (Njionou [68]). Let a be a non-zero complex number, then

o0 1 o0
/0 Flat)dygt = /O F(£)dpqt (10.4)

Theorem 120 (Scaling, (Njionou [68])). Let a be a non-zero complex number, then the following
formula applies

1 s
Lpg{fan}(s) = ~Lpg{F (O} (). (105)
Proof. Using the definition and Proposition it follows that
Lyq{f(at)}( / f(at)E, (—gst)dp,qt
Z/ f(at)Epq( _aqzt)dpqt
s 1 S
= [T OB (g0t = Lol F 0} (5)

a
O
Theorem 121 (Njionou [68]). For a > —1, the following equation is valid:
Tpq(e+ 1)
pA
Lpq(t") =~y o (10.6)
pzst

Proof. Of course, it follows from the definition that

1 [
La{t} o) = [ P Epy(=gstlpat = oy [ Epgl(-an)tid gt

1 o D((IX+1) 1)-1
:p<+1>s+1/0 p 7 tCTUTIE, (—qt)dyqt

_ [pg(a+1)

pLazH) ga+1
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The following theorem is a particular case of Theorem (121) when & = 7 is a nonnegative
integer.

Theorem 122 (Njionou [68]]). Let n € IN, then for s > 0 the following equation holds:

ey — Mpat
Lyqa{t"}(s) = SCT)gri (10.7)

Proof. We provide a proof by induction for this result. The result is obvious for n = 0.
Assume that it holds true for some nonnegative integer 7, then using the (p, q)-integration

by parts (6.19) , we have
Ly {t"}(s) / t"E, o (—qst)dy gt

n-l-ls / (Pt)" " DygEpg(—ts)dp,qt

T 0
1 n+1 oo ® d
=~ [ Epg(=st)] = It Uy | Epg(—ats)dpgt
_ It 1lpg PN L B L L L R VY
o WLP q{t }(S) - pn+1s p(n+1) n+1 - p(n;2)5n+2 .
This proves the assertion. O

Next, we give formulas for the transform for the (p, g)-exponential and the (p, q)-trigonometric
functions.

Theorem 123 (Njionou [68]). Let a be a real number, then

a
Lpq{epq(at)}(s) = sp—a’ 5 > .

o0 ) n

Z (‘7) ’ (“) . (10.9)
n=0 p ps

Proof. Using (5.1), and (10.7), we can write:

, (10.8)

‘D\'—‘ =

o ng(a) oo
I O Y e
B [t
a g2 P n(4
= 1 - —r (4 £
7;)( [lpq! p'gnt1 s 7;)( ) p ps
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Theorem 124 (Njionou [68]). The following relations apply:
p’s

Lpq{cosp,(at)}(s) = (ps)2 + a2’
. . pa

Lyq{sing4(at)}(s) = O

Proof. Using equations (5.8), and (10.3), it follows that:
Lyg{cospq(at)}(s) = / Epq(—qst) cospq(at)dpqt
(_1)na2n GO

_ i (=1)"a D [2n],!
a0 [2nlpgt pCaDgant

1 & L[ a 2”_ p?s
=5 () e

Ly {sin,  (at)}(s) = /0 Epy(—qst) sin, (at)d, gt
(—1)ng2n+1p(2”2+1) P,

E, (—gst)t¥1d, .t
TR

n=0
B i (=1)na2+1p2) 20 4+1],,!
a2 2n+1],,! p("3?) g2n+2
IS (2T o e
s = ps o (ps)? + a%

Remark 125. Note that one could also use (10.8)), (5.8) and (5.9) to obtain the results.

Theorem 126 (Njionou [68]). The following equations apply

ps a
Lp,q{coshyq(at)}(s) = (}75)27_112; s> E

) a a
LPrq{Smhp,q(at)}(S) = (ps)z—az’ s > ’p‘ .

Proof. Using (10.3), (5.13) and (5.14) we have

Ly,q{coshy4(at)}(s) = % {Lpq{epq(at)}(s) + Lpg{epq(—at)}(s)}

_l/_p P
_2<ps—u+ps+a>

p*s
(ps)? —a?’
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Lp,q{sinh,4(at)}(s) = % {Lpe{epq(at)}(s) — Lpg{epq(—at)}(s)}

1/ p p

2\ps—a ps+a
pa

(ps)? —a*

O

Next, f being a function, we provide some properties related to the (p, g)-derivative of the
(p,q)-Laplace transform of f and the (p, q)-Laplace transform of the (p, q)-derivative of f.
Let us introduce the following notation which makes clear the relative variable to which the
(p, q)-derivative is applied:

Oa o o fCupS) = fxq9)
arwsf( /%) (p—q)s '

and "
n n
aPr‘i _ apfq

o Ipg n>1, and a(,);,q f=f
+1 ’ - 4 =1.
Ip,gs" Ipas"  OpgS

0
dp,qS

Theorem 127 (Njionou [68]). For n € IN, the following equation holds:

w0
Lpaft"f(£)}(s) = (—1)"q" ﬁ [F(q7"s)]. (10.10)
P4

Proof. The result is obvious for n = 0. Let n > 1, then

an 00 n
PA [F(g"s)] :/0 # {Ep,q(_q_nﬂsﬂ} f(t)dp,qt

n
a,,,,,s

Using equation (5.6), it follows that

[ay

pA g T 1
/ —n 1’1 -] _
2 oo F ) i
= (=1)"q~@D"E, o (—qgst).
The proof is therefore completed. O

Note that (10.7) can be obtained using Theorem Of course, taking f(t) = 1 in (10.10)
1
and using (2.20), we have F(s) = S and

n ai’l n n+1 (_1)1’1[ ] ! [ ]
Logp :_1n(>w[‘7]:_1n(+> pa' _ [
prq{ }(S) ( ) q 2 ap,qsn S ( ) q 2 (pq)(n+1)sn+l p()1+1)sn+l

Corollary 128 (Njionou [68]). The following equation applies:
n+1
priga)[n Mpg!

(p"s —ag™)(p"qs —aqg") - - - (p*q"~1s —aq")(pq"s — aq")
p (") [n]

Lyg{t"epq(at)}(s) =

|
pq:

T (p+1-¥gks — agn)
k=0
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Proof. The proof follows from (2.21) and (10.10). O

Theorem 129 (Transform of the (p, q)-derivative, (Njionou [68])). The following transform
rule applies.

S n—1 Snflfk
Lo {Dfaf (0} ) = i LualF0) (2)- Lo, aom

Proof. Let f be a function for which the (p, q)-Laplace transform exists. Then, for n =1,

Ly {Dpaf (O} ()= [ Epa(~ast)Dpaf (1)t
— [f()Bpy(—st)] / F(PE)DyyEpg(—st)dp gt
£(0) +s/ F (P B (—gst)dpqt
0 FOE (0 Dt

= —£(0) + Lyl F(0)) (p> .

Let n > 1, assume (10.11) holds true. Then, applying the result for n = 1 with D . f(t), we
get

La {DEES} ) = ~(D3af)(0) + 5 Lua{DRef 0} (5)

= —(D},P0)+5 {p(,i Lol (5 )

nlk

- Z (" k+n 1—k p,qf)(o)}

i—o pl2
s

" n+1 S
=—(Dp,f)(0) + {WLp,q{f(t)} <p+1>
§h— —k

_Z (" k+n X p,qf)(o)}

—o pl2
n+1
~(D1)(0) + {p LyaLF(D)} ( )

n—1 §h— —k
_Z (" k+1 qf)( )}

Sn+1 no gn—k
= WLp,q{f( ( n+1) Y. T .f)(0)
P2 o p 2
This completes the proof. ]
As a direct application, observe that taking f(f) = " in (10.11)), we obtain

n n Sn n 5
Loa{Dat"}5) = Lot} (5 ).
phe P
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Taking care that D} .#" = [n]p4!, and Lp4{1}(s) = —, it follows that

n i _ (n+1)[]pq
gt} (57 ) = "0

Replacing s by sp”, it follows that

n+1

Lya{1}(1) = p'"2 )[n]p,q!.

n _ (n+1) [Tl]plq' _ [ ]pq
LPr‘i{t } (S) P 2 sn+1pn(7’l+l) p(n+l)sn+1

10.2 (p,q)-Laplace transform of the second kind

Whereas in the previous section we introduced the (p, g)-Laplace transform of the first kind
and proved some of its important properties, in this section, we introduce the (p, 4)-Laplace
transform of the second kind. The main difference is at the level of the (p, g)-exponential
function used in the definition. The motivation of the next definition comes from the fact
that when we transform the big (p, q)-exponential function, the result remains in terms of a
series which we cannot simplify.

Definition 130 (Njionou [68]]). For a given function f(t), we define its (p,q)-Laplace transform
of the second kind as the function

E(s) = Lpg{f(t) / f(t)epq(—pts)dyqt, s> 0. (10.12)
Proposition 131 ((Linearity)). By (10.12), the following equation applies:

Lpglaf(t) +Bg(t)} = alpg{f(t)} + BLpq{g()}.
Proposition 132 (Njionou [68]). For any real number & > —1, we have

N Yl +1)
Lp,q{t }(s) = %

ng-H

(10.13)

Proof. By definition, one has

Lpqa{t"}(s /tepq —pts)dp gt

_ Ypq(a+1)

q“<“{1> gi+1 '

Proposition 133 (Njionou [68]). For n € IN, it is valid that

n _ [ ]P’i
Ly {t"}(s) = FM) " (10.14)



10.2 (p, q)-Laplace transform of the second kind 90
Proof. Clearly, the results holds for n = 0. Indeed
o 1 o 1
L0q{136) = [ epa(=pt)dpat = = [eng(t)]5 = <.
Next, forn > 0,
Lp{t"}(s) = /0 tepq(—pts)dp gt
1 (o9}
= ~ s o (qt)"Dypgep,q(—ts)dpqt
1 0 © e
s { [tepq(=ts)]g — [n]pg /o " 1€p,q(—Pt5)dprqt}
[1pg -
= pE Lpa{t" 1} (s).
The proof then follows by induction. O
Proposition 134 (Njionou [68]). The following equation holds
q a
Lpg{Epq(at)}(s) = g5 —a’ 5 (10.15)
Proof. From the definition of £, ; and E, 4(x), it follows that
= q@at e,
Lya{Epqat)}(s) =) ' / tepq(—pts)dpqt
a=0 [1]pat Jo
_ i q(g)g” y [n]p’q!
=0 [n]p,q! q("§1)5n+1
LS S A
S s&=\gs)  gqs—a
O
Corollary 135 (Njionou [68]). The following equations hold
2
I a
ﬁpfﬂl{coslﬂ,v/(ut)}(s) - (q5)2+ﬂ2’ a ’
, _ qa a
Ep,q{SIHPIq(at)}(S) = W, > g .
Proof. The proof follows from the definitions (5.11), (5.12) and equation (10.15). O
Corollary 136 (Njionou [68]). The following equations hold
2
___ 95 a
Lp4{Coshy 4 (at)}(s) = G —a s > ‘q ,
, _qa a
Ep/q{SIth,q(aS)}(S) = W, s > ‘q' .
Proof. The proof is similar to the proof of Corollary [I35] O

Next, f being a function, we provide some properties related to the (p, g)-derivative of the
(p,q)-Laplace transform of f and the (p, q)-Laplace transform of the (p, q)-derivative of f.
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Theorem 137 (Njionou [68]). For n € IN, we have

Lpg{t"f(D}(s) = (=1)"p& P [F (p77s)] (10.16)

paS"
where F(s) = Lp{f(t)}(s).
Proof. The result is obvious for n = 0. Let n > 1, we have

o o AN
PR )] = [ 5 [epa(—p " 1sh)] Fl0)dgt
p4q

n
BMS

Using equation (5.5), it follows that

a) n—1 ,
pA —n+lg n—1—j _
Opys" [epal=p~"1st)]| = ]H (=p" 198 epa(=pst
=(=1)"p" G t"epq(—pst).
The proof is therefore completed. O

Note that (10.7) can be obtained using Theorem Of course, taking f(t) = 1 in (10.16)
1
and using (2.20), we have F(s) = S and

5 e [P sty ()t [
M (g) = (—1)1p® PA | PO — (qyn, (3 pa pa!
Lprq{t }(S) ( 1) PZ ap,qsn |:S:| ( 1) p 2 (pq)(”+l)sn+1 q(n+l)sn+1

Corollary 138 (Njionou [68]). The following equation applies:

n+1
anP( )[ ]p,q!

Ly, At"Epq(at)}(s) =
" B W) = bt = o) (gps — ap) -+ (=5 — ap™) (pqs — ap")
qn+1p(”“)[ 1!
rn[ (gn+1-kpks — apn)
Proof. The proof follows from (2.21) and (10.16). O

Theorem 139 (Transform of the (p, q)-derivative, (Njionou [68])). For any nonnegative inte-
ger n, we have

Log {Dhof(0) = q(w Loalr ) () - i L (D)0 a0
Proof. For n =1, we have
Lo FO}6) = [ Dpf (Bepa(—pst)dy,t
= [F(epa(=st)] +5 [ Fatiepa(—pst)pgt

/f epq< S>dwt

~£(0) + gﬁm{f(f)} (q) |
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Hence the relation is true for n = 1. Let n > 1, assume that (10.17) holds true, then using
the case n = 1, we can write

L’p,q{Dz,}'l (t)}:_(Dz,qf)( )+ ;ﬁpq{D Af (1)} <q>

——(D}PI0)+ {q(,,ﬂ £alf0) ()

B Z‘ ("5 ::n k1 k <DI’("’7f) (0)}
g+l

(D qf)() T £alf 0 ()

— gh— —k ‘
B kZ(:) q +n —k (Dp’qf> (0>
Sn+1 n n—
= n+2 Pq{f( < I’l+l> Z (n k+l (Dltgrqf) (O)
‘1 k=04
The relation holds therefore true for each integer n > 1. O

We now have another possibility to compute £, ,{t"}(s) using (10.17). Of course, ap-
plying (10.17) to f(t) = t", we have

Lol DRt} s) = Ll (5.
‘1
Taking care that D} ,#" = [n]p4!, it follows that

Lpa{t"} <;n> = (") [ ]M

Replacing s by sg", it follows that

11+l)

12("2
L)) = Mt

Sn+1

Lpatrrys) = Lot

= Sn+1qn(n+1) l](nﬂ)s’”‘l

10.3 Application to the resolution of some (p, q)-difference equa-
tions

As Laplace transform and Z-transform are largely applied in solving differential and differ-
ence equations, respectively, and the g-Laplace transforms are applied to solve g-difference
equations, the (p,q)-Laplace transforms are expected to play a similar role but now for
(p, q)-difference equations. The idea lying behind is always the same. In this section, we
show on few examples how the Laplace transforms introduced before can be used to solve
some (p, q)-differential equations.

10.3.1 Application 1
Consider the problem of finding f(t), where f(t) satifies (p, 4)-Cauchy problem

Dpqf(t) +cf(pt) =0, f(0)=1, (10.18)
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where ¢ stands for a complex constant.
Applying the Laplace transform of the first kind to (10.18), we obtain

£ + 5Lyl F0) (p) T eLy {F(p1)}(s) = 0.

Next, using equation (10.5), and the initial condition f(0) = 0, we get
s s

1421000 () + SLaalr0) () =o.

Hence,

Lalfo} (3) =

Lyalf(t)} (s) = —F

and so

It follows that f(t) = e, 4(—ct).
10.3.2 Application 2
Now, consider the (p, q)-differential equation
D, 4h(t) — Ah(pt) = epq(Aqt), h(0) = 0. (10.19)
Applying the (p, q)-Laplace transform of first kind to (10.19), it follows that

010001 ) 0 ) -2

Simplification gives

S o pZ
Loath0} (3) = 5ty

and finally, replacing s by ps, we have

2

bralhOF) = (s A)?st —Aq)’

So, clearly h(t) = tep (At).

10.3.3 Application 3
For the last example, we consider the classical (p, g)-oscillator
D5 f(t) + W f(p°t) =0, D,,f(0) = A, f(0)=B. (10.20)
Applying the (p, q)-Laplace transform of the first kind to (I0.20), it follows that
Bs s? s w? s
—A- " + ELM{J(U)} <]92> + ?Lm{f(t)} <p2> =0.

By an easy simplification, we get

):Bs—kAp>< p?

Ll (57) = 25w s

p
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It happens that
2 pi
LglfB} () = —22° 1 a¥P P
(psP+ (%) (v + (%)

Hence, the solutions of the (p, g)-oscillators are

f(t) = Bcosy, (\;}t) +A\£? sing 4 <\c/dﬁt> .
10.4 Double (p,q)-Laplace transform

The double Laplace transform of a function f(x,y) of two variables was first introduced in
1939 by Berstein in his dissertation [20] (later pubished as an article [21]) as

Lo(f(x,y))(r,s) = /0 OO/OOO F(x,y)e” W dxdy. (10.21)

where x and y are two positive numbers, r and s are complex numbers. Very recently, sev-
eral interesting properties and applications of the double Laplace transform to functional,
integral and partial differential equations have been studied in [34].

In this section, we introduce three kinds of double (p, g)-Laplace transforms and prove
their main properties. Next, applications are done to solve some partial (p, q)-differential
equations. The double (p, g)-Laplace transform introduced here are clearly generalizations
of the double Laplace transform given in [20] and the double g-Laplace transform studied
in [72].

10.4.1 (p,q)-addition, (p, q)-subtraction, (p,q)-coaddition, (p,q)-cosubtraction

In the following definition, we generalize the notion of g-addition introduced by Jackson
and studied later by Ward and Al-Salam (see [8, 28] for more details). When p = 1, our
(p,q)-addition reduces to the g-addition defined by Euler and recalled in [80].

Definition 140 (Njionou and Duran [71]). Let x and y be two complex numbers.

1. The (p, q)-addition of x and y which we denote by x ®p,4 y is defined by
(x@pqy)" =) H prl=m yn =k, (10.22)
Iz

2. The (p,q)-subtraction of x and y which we denote by x ©y,; y is defined by

" n
(x @p,q y)” — Z |: :| (_1)nfkpk(kfn)xkyn7k. (10.23)
k=0 Lkdp,q

Proposition 141 (Njionou and Duran [71]). The following relations hold true for any x,y € R:

epq(X)epq(y) = epq(x Dpqy), (10.24)
epq(X)epq(—y) = epq(x Spay). (10.25)
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Proof. By the definition of the (p, g9)-addition and the Cauchy product we can readily see
that

L
=0 Klpat (6 [Ep.a!

_ i (Zn: p(g)Jr(n;k)xkynk)

n=0
= [ v ”] k(k—n) .k, n—k pl
= p Xy = ep,q(x Dpg y).
n;() (kZO |:k P4 [n]P/’i!
The second assertion is proved in the same way. O

Definition 142 (Njionou and Duran [71]]). Let x and y be two complex numbers.

1. The (p, q)-coaddition of x and y which we denote by x B, 5 y is defined by

n = [ —n n—
(xB,4Y) :ZH k=) ik, (10.26)
Iz

(x Elp,q y)n _ i |:n:| qk(k—n)xk(_y)n—k. (10.27)
P4

Proposition 143 (Njionou and Duran [71]). The following relations hold true for any x,y € R:

Epq(x)Epq(y) = Epq(xBpqy), (10.28)
Epg(x)Epq(—y) = Epq(xByqy). (10.29)
Proof. The proof is similar to the proof of Proposition 141} O

10.4.2 The double (p,q)-Laplace transform of the first kind
We define the double (p, g)-Laplace transform of the first kind of a function f as

£ 7 ))9) = [ £ ) Epa(—ar)Epa(~asn)dpaxdpgy, (1,5 >0). (10:30)
Note that if f(x,y) = g(x)h(y), then
‘ngg,q [f(x, )] (r,8) = Lypg{g(x) }(r)Lpg{h(y)}(s). (10.31)

in particular, if h(y) = 1, or ¢(x) = 1, then (10.31) reads

£5) FW1(r,5) = Lyg{1} (1) Lpg{f () }(5) = %Lp,q{f(y)}(s)- (10.32)

and

0, F105) = Ly {8 (@I (Lpa{1}(6) = Lygfs @}, (10.33)
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Proposition 144. For any two complex numbers « and B, we have

Loy o laf(xy) +Bg(xy)} = L) AF(x,9)} +BLy) A2(x,Y)}-

We recall the following important relation [68]],

(o) 1 oo
/0 Flax)dpgx = /O F(x)dpqx, (10.34)
where « is a non-zero complex number and f is a one variable function.

(1)

Now we state the scaling theorem for £; , ..

Theorem 145. Let a and b two non-zero complex numbers, f a two variable function, then the
following formula applies

Lo Lf(ax,by)}(r,5) = ;*bﬁgg,q{f =} (57)- (10.35)

Proof. Using relation (10.34), we have
£3) U ax, b }r,9) = [ Fax, by) By (~r) Epg(—g59)d gy

— /000 </Ooof(ax, b}/)Ep,q(—qrx)dp,qx> Epq(—qsy)dy, gy
= 611/0‘” (/Ooof(x/ by)Ep, (—qx£> dp,qx> Epq(—qsy)dp,qy
- olz/ooo (/Ooof(x' by)EM(_qSy)dwy> Epq (“P‘%) dp,gx
- a]b/g“’ (/Ooof(x'y)ErJ,q (‘W%) dwﬂ) Epq <—Elx£) dpqx
N alb/o7ooof () Epa (=07, ) Ena (v, ) dpavdpay.

and the proof of the theorem is completed. =

Theorem 146. For « > —1, B > —1, we have the following

Tpgla+1)T,,(8+1)

£ (Y (r,s) = . 10.36
Z,p,q{ yr}(r,s) pu(tx;rl) a1 pﬁ(ﬁzﬂ) i1 ( )
In particular, fora« =n € N and p = m € IN, we get
E(l) { n, m _ [Tl] p,q! [m]prq! 10 37
2,p,9 x y }(T’,S) - ( . )

p(n;—l)+(m;—1)rn+lsm+l .
Proof. The proof follows from (10.6) and the obvious equation

L) {xyPY(r,s) = Ly {x*}(r) x Lya{yP}(s).
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1 1
Let us take for example & = —5 and B = 5 Then we see that

,cg};,q (ﬂ) (r,5) = Lpo{x 2 }(r) X Lpo{y?}(s)

1 3 p%
=Thyg <2> Lpa <2) s\/rs’

1 1
and for a = ) and B = —5 we have

[’S;,q (\/%) (r,s) = Lw{xi%}(r) X Lm{y%}(s)

Theorem 147. Let a and b be two complex numbers, then
2
(1) _ p
L, {epq(ax ®pqby)}(r,s) = (or—a)(ps — 1)’ r > Re(a/p), s> Re(b/p).

Proof. Combining (10.8), (10.24) and (10.31)) gives the result.

Proposition 148. The following formulas apply
2( 2
(1) _ p*(p?rs — ab)
£2,p,q{C05Pfq(”x Dp.g by) }H(r,s) = (pr)2 + a2) ((ps)2 + 12)

3
Lél;,q{sinp,q(ax Dpqby)}(r,s) = ()2 ;-71— E;;Sj &;:))2 )

Proof. We remark first that for any complex number A, we have

ep,q()t(x @p,q y)) - EPIq(Ax @p,q )\y),

to write
oSy, (ax ®p,q by) = % (epq(i(ax ®pqby)) + epq(—i(ax @y by)))
= (epa((aix @pq biy)) + epg((~aix ©pq —biy)))
siny 4 (ax @4 by) = % (ep,q(i(ax ®pqby)) —epq(—i(ax ©pqby)))

| —

(ep,q((aix @p,q biy)) — epq((—aix &y, —biy))) .

N

i

Hence, using the linearity of ES}L p and equation (10.38), it follows that

( ) _ 1 pZ pZ
L2,p4{C08p (03 ©pq by) }(r5) = 5 { (pr —ai)(ps — b)) T (pr + ai)(ps 1+ ib)
_ p3(rs — ab)
((pr)> +a?)((ps)* +b2)’

This proves (10.39). (10.40) follows in the same way.

|

(10.38)

O

(10.39)

(10.40)
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Proposition 149. The following formulas apply

p*(p*rs + ab)
((pr)? —a*)((ps)* — b)

3 as r
L) {sinhyq(ax By by)}(r,s) = : (Pr)zf’_ El : (+( ;S))z_zﬂ)'

ﬁgrgfq{COShm (ax @pq by) }(r,s) =

Proof. The proof is similar to the proof of Proposition [148| ]

Theorem 150. Let f be a one variable function that has a g-Laplace transform. Assume that f has
the g-Taylor expansion
o (2) x1
p2x
()= Y at
! ;1;) " [1lpa!

then the following relation holds:

£5) [flax @pg By)] (1,5)

= ocsiﬁr (LW [f(x)] (%) — Ly [f(x)] (;)) : (10.41)
Proof. We have the following

00 (;) n
flax @pqBy) =) ﬂnp (DCF;]@}?',CI Py)
n=0 pq-
-y (% H K )y | 222
n=0 \ k=0 Lk p,qp Y [n]p,q'

‘ Pk tignT1—k

n Dckﬁn_klln
rkt1lgn+l—k

k=0

=Y
N
=
-
Ly
=
)
-
=
<
=
I
e
~/
M:

ank[k]q!ﬁ”—k[n - k]q!) ay

o

This ends the proof of the theorem. O

10.4.3 The double (p,g)-Laplace transform of the second kind

We define the double (p, q)-Laplace transform of the second kind of a function f as follows

££,231q{f(x,y)}(r,s) = /Ooof(t)ep,q(—prx)ep,q(—psy)dp,qxdp,qy, (r,s > 0). (10.42)
Note that if f(x,y) = g(x)h(y), then

£ @ y)(r5) = Lpg{8() 1) Lpa{h ()} (). (10.43)
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in particular, if h(y) = 1, or g(x) = 1, then (10.3T) reads

£, F)09) = Log T} (N Lpalf}E) = L LpgFW}s). (1040
and
£ [F()5) = Lpglg(0HLpa{1)(5) = “Lpglg(@}0). (10.49)

(2)

Of course, by definition, £2,p

g is linear.

Proposition 151. For any two complex numbers « and B, we have

£8) Aaf(xy) +Bg(x )} = aLl) {Fxy)}+BLY) {s(xy)}.

(2)

Now we state the scaling theorem for £, , .

Theorem 152. Let a and b two non zero-complex numbers, f a two variable function, then the
following formula applies

£0, (Flax by} rs) = 28 (Fxw) (5 5) (10.46
Proof. Using relation (10.34), we get
Eﬁi,q{f(ax, by)}(r,s) = /07000f(ax, by)epq(—pra)ey,q(—psy)d, axd, gy
— /Ooo (/Ooof(ﬂx, by)ep,q(—prx)dp,qx> epq(—psy)dp,qy
= i/ooo (/Ooof(xr by)ep,q (‘Px£> dp,qx> ep,a(—psy)dy gy
- zt/oOo </ooof(x’ by)epf’i(_psy)dp,qy> €pa (—ng) dpqx

1 [ % s ,
- %/O </0 fxy)ep,q <_pyg) dwﬂ) €pyq (—Px;> dpqx
1 0000 r s
- %/0/0 f(x,y)ep, (_an> €pgq (-Pyg) dpgxdp,qy.
and the proof of the theorem is completed. =

Theorem 153. For « > —1, B > —1, we have the following

Tpa(e+1) vpqe(B+1)
L5 AxyP Y (rs) = 25 P (10.47)

In particular, fora = n € INand p = m € IN, we get

2) g, m _ [1]p.q![m] !

Proof. The proof follows from (10.13) and the obvious equation

L) {xyPY(r,s) = Lpg{x"}(1) X Lpg{yP}(s).
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Theorem 154. Let a and b two complex numbers, then

qZ

ar—a)(gs — b)’
Proof. This result is obtained using equations (10.28), (10.45) and the fact that:

r > Re(a/p), s> Re(b/p).

'Cg;)a,q{EP/q(”x Bpq by) }(r,5) = (

Lpa(Epaax))(s) = .

Proposition 155. The following formulas apply

5= q*(q*rs — ab)
((qr)? +a?)((gs)? + b?)

B q°(as + br)
ZM{SmM ax By, by)}(r,s) = (@2 + ) (352 + 1)

ZM{Coqu(ax B, by) }(r,

Proof. We remark first that for any complex number A, we have

Epg(AMxBpqy)) = Epg(Ax B, 4 Ay),

to write
Cosp,q(ax By, by) = % (Epq(i(axByqby)) + Epq(—i(ax B, 4 by)))
% (Epq((aix 8,4 biy)) + Epq((—aix 8,5 —biy))),
Siny 5 (ax @y, by) = 211 (Epq(i(axByqby)) — Epq(—i(ax B4 by)))
21 (Epq((aix B4 biy)) — Epq((—aix B, —biy))) .

Hence, using the linearity of L’g r)’ o it follows that

7 7

1
2pq{coqu(ax Dpqg by)}(r,5) =3 { (qr — ai)(qs — bi) + (qr + ai)(gs + ib)
B q°(rs — ab)
~ ((qr)* +a2)((gs)> +0%)

This proves (10.51)). (10.52) follows in the same way.

Proposition 156. The following formulas apply

2(p*rs +ab
£ Costyqox g ) Y0) = i T

3(as + br
L) {Sinhy(ax B, by)}H(r,s) = ((qr)zq_(;zs)((qs)>2 —b2)’

Proof. The proof is similar to the proof of Proposition 155

(10.49)

(10.50)

O]

(10.51)

(10.52)
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10.4.4 The double (p,q)-Laplace transform of the third kind

We define the double (p, g)-Laplace transform of the first kind of a function f as follows

Eg,q{f(x,y)}(r,s) = /0 f(t)Epq(—qrx)epq(—psy)dpgxdyqy, (r,s > 0). (10.53)
Proposition 157. For any two complex numbers « and B, we have

L5 Aaf(ey) + Bg(x,y)} = aLy) {f(x,y)} + BLY) {8(xy)}-

Theorem 158. Let a and b two non zero complex numbers, f a two variable function, then the
following formula applies

1 r s
Lot f @ b)) (r,5) = L3 {Fon)} (5) (1054)
Proof. The proof is similar to the proof of (10.46). O

Theorem 159. For a« > —1, B > —1, we have the following

Tpa(@+1) 7pq(B+1)
L5 {xyPY(r,s) = 2 i . 10.55
2pg XY 1) T (10.55)
In particular, for« =n € N and p = m € IN, we get
| |
ﬁf;,q{xnym}(m) = nﬂ[n]pylfi}[m]p’q' (10.56)

p( 2 )q( 2 )rn+1sm+1‘

10.4.5 Some applications

We consider the following g-Cauchy’s functional equation

fx®pqy) = f(x) + f(y), (10.57)

where f is an unknown function.

We apply the double (p, q)-Laplace transform ﬁgﬁ,q to (10.57) combined with (10.41)), (10.32)
and (10.33), to get

b
sS—r

[LplfON) ~ Lgl F0)IE)] = L LpglFCN0) + - LpglF)](5)

that is
1 _1]:uﬂﬂwKﬂ[l *1}

sS—7r S S—7r r

Loalf ()|
Simplifying this equation, we obtain
rLpg[f (0)](r) = s*Lpg[f (1)](s),

where the left-hand side is a function of r alone and the right hand side is a function of s
alone. This equation is true provided each side is equal to an arbitrary constant k so that

”ZLM [f))(r) =k,
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Lpglf(x)](r) = rkz

This is the transform of f(x) = kx, hence the solution of the (p, g)-Cauchy functional equa-

tion (10.57) as
f(x) =kx, (10.58)

where k is an arbritrary constant.

We now consider the following (p, 4)-Cauchy-Abel’s functional equation

fx®pqy) = f(x)f(y), (10.59)

where f is an unknown function.
We apply the double (p,q)-Laplace transform ﬁg;lq to (10.59) combined with (10.41) and
(10.31) to get

L [LpalFGI0) — LyglFDI(5)] = LyglF () LpalF1))(5)

hat is
o 1= L)) 1 sLya )]s
LalfI0) L))

where the left hand side is a function of r alone and the right hand side is a function of s
alone. This equation is true provided each side is equal to an arbitrary constant k so that

1—rLpg[f ()] (r)
Lpqlf (2)](r)

=k,

or
1

Lp,q[f(x)](r) = Kk

Identifying with the previous computed transforms, it follows that the solution of the g-
Cauchy-Abel’s functional equation (10.59) as

f(x) =epq(—Ax), A= ; (10.60)

where k is an arbritrary constant.



Chapter 11

(v, q)-Appell Polynomials

Let P,(x),n =0,1,2, ... be a polynomial set, i.e. a sequence of polynomials with P,(x) of
exact degre n. Assume further that

dP,(x)

T =P/(x) =nP,_1(x) for n=0,1,2,....

Such polynomial sets are called Appell sets and received considerable attention since P. Ap-
pell [13] introduced them in 1880.

A basic (g-)analogue of Appell sequences was first introduced by Sharma and Chak [81]
and they called them g-harmonic. Later, Al-Salam [9] studied these families and referred to
them it as g-Appell sets in analogy with ordinary Appell sets. Note that both Sharma and
Al-Salam defined the so-called g-Appell sets as those sets { P, (x) }_, which satisfy

DyPy(x) = [n]4Py,—1(x), n=0,1,23, ... (11.1)
where [n]; = (1 —4¢")/(1 — g). Note that when g — 1, (I1.1) reduces to

dP,(x)
dx

= Tlpn_l (X),

so that we may think of g-Appell sets as a generalization of Appell sets. We call these poly-
nomial sets g-Appell sets of type I. Al-Salam also introduced another g-analogue of Appell
sets satisfying

DyP,(x) = [n]4Py,—1(9x), n=0,1,2,3, ... (11.2)

d
Again (11.2) reduces to aPn(x) = nP,_1(x) as ¢ — 1 so that we may also think of these

sets as another g-generalization of Appell sets. We call these polynomial sets g-Appell sets of
type I1.

The purpose of this chapter is to study the class of polynomial sequences {P,(x)} which
satisfy
Dp’qpyl(x) - [n]p,qpnfl(px), n = 0, ]., 2, 3, e (11.3)

with the assumption that P_;(px) = 0. We note that when p = 1, (I1.3) reduces to (11.1)
and for g = 1, (11.3) reduces to (11.2) so that we may think of (p,q)-Appell sets as a gener-
alization of both types of g-Appell sets.
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11.1 Characterization of (p,q)-Appell polynomials

Definition 160 (Njionou [70]). A polynomial sequence { f,(x)}ox_ is called a (p, q)-Appell poly-
nomial sequence if and only if

Dygfns1(x) = [n+1],4fu(px), n>0. (11.4)

It is not difficult to see that the polynomial sequence {f,(x)};_o with fu(x) = (x ©a)}, is
a (p, q)-Appell polynomial sequence since (see [69])

Dp'q(x@a)z [ ]PQ(Px@ )pq ’ 21
Next, we give several characterizations of (p, q)-Appell polynomial sequences.

Theorem 161 (Njionou [70]). Let {f.(x)}, be a sequence of polynomials. Then the following
are all equivalent:

1. {fu(x)}5 o is a (p,q)-Appell polynomial sequence.

2. There exists a sequence (ay)>o, independent of n, with ag # 0 and such that

Zn: [ Lq Jagx" k.

3. {fu(x)}s, is generated by

with the determining function

(11.5)

4. There exists a sequence (ay)y>o, independent of n with ag # 0 and such that

00 (”,k)
_ kP 2k
i) = (£ 40, )

Proof. First, we prove that (1) = (2) = (3) = (1).

(1) = (2). Since {fu(x)}5, is a polynomial set, it is possible to write

Zank[ ] 9k n=1,2,..., (11.6)
kM

where the coefficients a, x depend on n and k and a,,9 # 0. We need to prove that these
coefficients are independent of n. By applying the operator D, , to each member of
(11.6) and taking into account that {f,(x)}, is a (p,q)-Appell polynomial set, we
obtain

1 L
fu1(px) Z Ay k [n } p' 2 k)(px)”_l_k, n=1,2..., (11.7)
pAa
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since D, ,x% = 0. Shifting the index n — n + 1 in (T1.7) and making the substitution
x — xpfl, we get

n n n—
x) =Y. an+1,k[ ] p(2xnk n=0,1,..., (11.8)
k=0 k r.q

Comparing (11.6) and (11.8), we obtain 4,1 = a,; for all k and n, and therefore
a, x = ai is independent of n.

(2) = (3). From (2), and the identity (5.4), it follows that

[e9) tn

(3) = (1). Assume that {f,(x)}:", is generated by

A(t)epq(xt) an

]Pr”/

Then, applying the operator D, ,; (with respect to the variable x) to each side of this
equation, we get

n

tA(t)epq(pxt) = E Dyqfu(x [ [l

Moreover,

00 n

tA(t)epq(pxt) = an px) [ =Y [nlpgfu-1(px) r

n=0

]Prq!

By comparing the coefficients of t", we obtain (1).

Next, (2) <= (4) is obvious since D’;,qt” = 0 for k > n. This ends the proof of the
theorem. u

11.2 Algebraic structure

We denote a given polynomial set {f,(x)};, by a single symbol f and refer to f,(x) as
the n-th component of f. We define (as done in [13} 182]) on the set P of all polynomials
sequences the following three operations +, - and *. The first one is given by the rule that
f + g is the polynomial sequence whose nth component is f,,(x) + gn(x) provided that the
degree of f,(x) + gu(x) is exactly n. On the other hand, if f and g are two sets whose nth
components are, respectively,
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then f * g is the polynomial set whose nth component is given by

(f * §nlx) = kzo< By D).

If A is a real or complex number, then A - f is defined as the polynomial sequence whose nth
component is A - f,(x). We obviously have
f+g=g+f forall f,geP,
Afxg=(fxAg) =A(f*g).
Clearly, the operation * is not commutative (see [82]). One commutative subclass is the set

2( of all Appell polynomials (see [13]).
In what follows, A(p, q) denotes the class of all (p, q)-Appell sets.

In A(p, q) the identity element (with respect to %) is the (p, q)-Appell set [ = { p(;)x”}.

Note that I has the determining function A(t) = 1. This is due to identity (5.3). The follow-
ing theorem is easy to prove.

Theorem 162 (Njionou [70]). Let f, g, h € 2A(p,q) with the determining functions A(t), B(t)
and C(t), respectively. Then

1. f+g€Ap,q)if A(0) + B(0) #0,
2. f + g belongs to the determining function A(t) + B(t),
3. f+(g+h)=(f+g) +h

The next theorem is less obvious.

Theorem 163 (Njionou [70]). If f, g, h € A(p, q) with the determining functions A(t), B(t) and
C(t), respectively, then

1. fxgeApq)

2. fxg=8*f,

3. f x g belongs to the determining function A(t)B(t),
4. fx(g*xh)=(fxg)*h.

Proof. It is enough to prove the first part of the theorem. The rest follows directly.
According to Theorem (161} we may put

fa(x) =) H p("gan =
pAa

n

n k
y H pa, ok
0 Lkdp.g

k=0 Lk k
so that
P,
At)=) a
=0 n[”]w'
Hence

This ends the proof of the theorem. O



11.3 Some (p, q)-Appell polynomial sequences 107

Corollary 164 (Njionou [70]). Let f € 2A(p,q), then f has an inverse with respect to *, i.e. there
isaset g € A(p,q) such that
frg=gxf=1

Indeed g belongs to the determining function (A(t))~! where A(t) is the determining
function for f.

In view of Corollarywe shall denote this element ¢ by f~!. We are further motivated
by Theorernand its corollary to define f0 = I, f* = f x (f"~!) where  is a non-negative
integer, and f " = f~! % (f~"*1). We note that we have proved that the system (2(p, q), *)
is a commutative group. In particular this leads to the fact that if

fxg=nh
and if any two of the elements f, g, h are (p,q)-Appell then the third one is also (p,q)-
Appell.

Proposition 165 (Njionou [70]). If f is a (p,q)-Appell sequence with the determining function
A(t), and if we set

then

k=0 Lk

oy leqbk Fux(2).

Proof. Since f is a (p, q)-Appell sequence, we have

%) " m B
Z P(Z)x 1= (A(t)) 1A(t)ep,q(xt)
n=0 [1]p,q!
Y bt ) (X fulw)
= —_— X
n=0 ! [1]p,q! n=0 ! [1]p,q!
o0 n n tn
= Z Z |: :| bkfn—k(x) [1’[] N
n=0 \ k=0 Lklp,q p4q:
The result follows by comparing the coefficients of t". O

11.3 Some (p,q)-Appell polynomial sequences

In this section, we give four examples of (p,q)-Appell polynomial sequences and prove
some of their main structure relations. The bivariate (p,q)-Bernoulli, the bivariate (p, q)-
Euler and the bivariate (p, )-Genocchi polynomials are introduced in [35, Duran et al.] and
some of their relevant properties are given. Without any loss of generality, we will restrict
ourselves to the case y = 0. Also, we introduce a new generalization of the (p, g)-Hermite
polynomials.

11.3.1 The (p,q)-Bernoulli polynomials

The (p, q)-Bernoulli polynomials are (p,q)-Appell polynomials for the determining func-

tion A(t) = e =1 Thus, the (p, g)-Bernoulli polynomials are defined by the generat-
pA o
ing function
t [ee]
7_1917,:1(3“) = Z Bu(x;p,q)
( ) n=0

€p,q t

t?’l
[1] g’ '
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Let us define the (p, g)-Bernoulli numbers B, ,; by the generating function

—EBnpq 1

epq(t np,q!

so that
Bn(O; p, q) - Bn,p,q, (71 2 0)

Proposition 166. The (p, q)-Bernoulli polynomials B, (x; p, q) have the representation

n n n—k
Bn(x/' p, Q) = Z |: ] p( 2 )Bk,p,qxn_k- (11.9)
n=0 P4
Proof. The proof follows from Theorem 161 ]

11.3.2 The (p,q)-Euler polynomials

The (p, q)-Euler polynomials are (p,q)-Appell polynomials for the determining function

A(t) = PN Thus, the (p, g)-Euler polynomials are defined by the generating func-
P4

tion

2
Let us define the (p, q)-Euler numbers Sn,p,q by the generating function

Zgnpq "

epq np,q!

so that
gn(o} p, ‘1) = gn,p,qr (l’l > 0)

Proposition 167 (Duran et al. [35]). The (p, q)-Euler polynomials £,(x; p,q) have the represen-

tation
il L I n—k
En(xpg) =), { ] pl2 )&, 0"k (11.10)
n=0 Lk P4
Proof. The proof follows from Theorem 161 O

11.3.3 The (p,q)-Genocchi polynomials

The (p, q)-Genocchi polynomials are (p,q)-Appell polynomials for the determining func-

tion A(t) = POESE Thus, the (p, )-Genocchi polynomials are defined by the generat-
|
ing function
2t t"

1) ZQ" A Umm

Let us define the (p, 9)-Genocchi numbers G,  ; by the generating function

+1 Zgnpq ]p |

epq( q:

so that
gn<0; p, q) = gn,p,C// (Tl > O)
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Proposition 168 (Duran et al. [35], Njionou [70]). The (p, q)-Genocchi polynomials G, (x; p,q)
have the representation

n 7 e
Gn(xp,0) =), { ] PGy, "k, (11.11)
n=0 Lk g
Proof. The proof follows from Theorem [161 O

11.3.4 A second kind of (p,q)-Hermite polynomials

In this section we construct (p,q)-Hermite polynomials and give some of their proper-
ties. Also, we derive the three-term recurrence relation as well as the second-order (p,q)-
differential equation satisfied by these polynomials.

We define (p, q)-Hermite polynomials by means of the generating function

Fpqo(x,t) i= Fpq(t)epq(xt) ZHn Xp,q) I ] ot (11.12)
where
00 (n—1) th n
_ n_nn— : — —
Fyq(t) _n;)(—l) p 2,1 with [2n],,!! _g[zk]q, [0]pqt=1.  (11.13)
It is clear that
lim F (x t) xt lim i(_l)npn(nfl)tzin — ext i(_l)n t2”
pa—1 P pa—1 = [211] 0! ford (2n)(2n —2)---2
xt tZVl t2
2 Z”n' = exp <tx - 2) .
Moreover,
o 2n—1 [eS) 2n+1
{f}l: n nn 1) t _ (_1)n+1 n(n—1)+2n t — _{F ( t)
n; [2n — 2], 4! n;() P 2] 0! pa\Pt),
Hence “
Dpabpat) _
Fp,q(Pt)

Theorem 169 (Njionou [70]). The (p, q)-Hermite polynomials H, (x; p,q) have the following rep-
resentation

[%] (_1)kp(”’2")+k(k—1) [n]p,q! o

Hn(x,P,‘J):k;) 2K g = 2Kyt

Proof. Indeed, expanding the generating function H 4(x, t), we have

0o - 12k o0 n o, "
}hﬂno=<2@4ﬁﬂkﬂ%hﬂ><;P@xMh¢>

k=0 =0
_ VY par P (qykph y 2
=0 k=0 [1]pq! [2K]pq!!

The result follows by using the series manipulation formula (7) of Lemma 11 in [75]. O
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Theorem 170 (Njionou [70]). The following linear homogeneous recurrence relation for the (p, q)-
Hermite polynomials holds true

n

Husa(px, p.q) = p" ' xHu(qx, p,q) — p" ' [nlpgHa-1(9x,p,q), (n > 1).

Proof. Note that Dg; E,,(t) = —tF,4(pt). Hence

0]

t

= Fpﬁ(qt)Déftq}enfi("” + ep,q(th)Défr;FM(t)
= xPM(qt)epq(pxt) — tqu(pt)epq(pxt)

p
= ) xH,(px/q;p, xp,
nZ%) (px/q:p.q Hae (5P, 0) T

n—ltn

The result follows by equating the coefficients of " on both sides and replacing x by gx. [

Theorem 171 (Njionou [70]). The (p, q)-Hermite polynomials H,(x; p, q) satisfy the (p, q)-difference
equation

LDy Hu(%;p,q) = p*q %Ly, DpgH(x;p,q) + p* " nlpgHa(px/q) = 0. (11.14)
Proof. The proof follows from Theorem [170 O
Note that as p and g tend to 1, Equation (11.14) reduces to the second order differential
equation satisfied by the Hermite polynomials.

11.3.5 Two bivariate kinds of (p,q)-Bernoulli polynomials

Let x,y € R. It is well-known that the Taylor expansion of the two functions e¢*' cos yt and
e*! sin yt are as follows [61]

xt - t"
== n 7 Y4 111
e cosyt ,;)C (x y)n! (11.15)
and
xt 2 _ - tn
e smyt—rgsn(x,y)a, (11.16)
where
[7] [ ‘o
Ca(x,y) =) (=1) (2k>x”‘2 >, (11.17)
k=0
and
T1
x y Z <2k+ 1) xn—Zk—lka-l-l' (1118)

Here we introduce a (p, q)-extension of the two above polynomials C,(x,y) and S, (x,y) by
the following generating functions:
tk
ep,q(xt) cosyq(yt) = Z Chpg(X,Y) 57— 7 (11.19)
qu'
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and
tk

ep,q(xt) sing 4(yt) = Z Skpg(X,Y) 7 A (11.20)
Pﬂ‘
Some particular cases are

n 2n
Conpg(0,y) = (=1)"p 2y, Copsrpq(0,y) =0

and 2n+1
SZn,p,q(Ofy) =0, S2n+1,p,q(01y) = (_1)np( )y2n+1

The following lemma will be useful in the derivation of several results.

Lemma 172 ( Rainville [75]). The following series manipulations hold

YN A(kn)=Y_ Y A(kn—2k), (11.21)
n=0k=0 n=0 k=
00 0 oo [(n=1)/2]
Y. Y Blkn)=Y Y.  B(kn—1-2k). (11.22)
n=0k=0 n=0 k=0
Theorem 173 (Njionou and Duran [71]). The following representations hold
L%J
Cupq(x,y) = p@ [ ] p k=) yn=2k, 2k (11.23)
k:O 2k r.q
and
T1
Snpq(x,y) = p Z [2 } p4k2—2knxn—2k—1y2k+l (11.24)
k=0 k + 1 .4

Proof. By series manipulation procedure (11.21), we have

= p n > (_1)np(22”) 2n
L, i ) (2 2nlyyt Y )

ep,q(xt) cosy,(yt) = (

0 n—2k 2k
— Z L%J ( ) (xt)n Zk( ) p(z) (yt)2k
i iy 2K [2K]p,q!
s n L%J n tn
= Z p(z) (_1)k[ ] PZk(k—n)xn—Zkka :
n=0 k=0 2klpq [”]p,q

which proves (11.19). The proof of (11.20) is similar by means of the series manipulation

method (11.22).

O
Theorem 174 (Njionou and Duran [71]). The following derivative rules are valid
quckpq(x/y) k] p,aCi— 1pq(Px Y), (11.25)
DyayCipa(x,y) = = [kl pgSk—1,p,4(x, py), (11.26)
quskpq(xr]/) (k] p,qSk— 1pq(l9x ), (11.27)
Dy,aySkpq(x,y) = [kl p,aCh1,p,q(x, pYy). (11.28)
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Proof. Relation (11.19) yields

ol h tn+l
Z pa,xCn,pqg (X, y)m tep,q(pxt) cosyq(yt) = Z(,)Cnpq px, y)[ e
[ee] t?’l
= ch—lfpfq(l’x/y)m
t?’l
—Z p.q n Lpg px ]/>[ ]pq!’

proving (I1.25). The other equations (11.26), (I1.27) and (11.28) can be similarly proved. O

Theorem 175 (Njionou and Duran [71]). The following relations are valid

1 n n—k

Cupq(,y) =} { ] p("2)Cy 0 (0,y)x" K, (11.29)
k=0 LKp,q
i n n—k

Sn,p,q(x, y) = 2 |: :| p( 2 )Sk,P,q(O/y)xn_k- (1130)
k=0 LKp,q

Theorem 176 (Njionou and Duran [71]). The following power representations hold

" 2n ‘ n
(—1)np(22)y2n = 2(—1)kq(2) [2 } CZn—k,p,q(x/y)xk, (11.31)
k=0 k P4
and
211+1 2ntl k n+1
(—1)"}7( )y2n+l Z (_1)kq(2) [2 ) } SZn+1—k,p,q(x;]/)xk- (11.32)
k=0 P

Proof. Multiplying both sides of (I1.19) by E, ,(—xt) and using (5.3), it follows that

" th 00 w (—x )1 00 i
(_1)np(22)y2n . = Z q(z) ( ) : Z Cn,p,q(x/]/)i'
A n=0 (]!

0 [”]p,q-

e

n

v [y ek ® [ AN
L (Z( Va [k]p,qcnk'p'q(x’y)x) [n]p,e!

which proves (11.31). The proof of (11.32) is similar. O
Theorem 177 (Njionou and Duran [71]). The following connection formulas hold

2n K1y [2n + 1
C2n+1,p,q(x,y) = Z(—l)kq( er ) r :| CZn,k,p,q(x,y)xk“, (1133)
k=0 k+11pq

and

2! k (k51 2n k+1
Sonpq(x,y) = Y (1)1 : Son—k—1,p, (%, y)x . (11.34)
12
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Proof. From the relation

i( 1)np(22n)y2n t21’l i i( 1)kq(§) |:7’l:| C (x y)xk tn
- = - —k,p, ’ ’
n=0 P L ) o klp,q e [1]pq!
it follows that
2n+1 P n+1
k=0 k r.q
Hence (11.33) is proved. We prove (11.34) in the same way:.
O
We can now introduce two kinds of bivariate g-Bernoulli polynomials as
tey o (xt) i t"
P _ ()
— = C0Spq(Yt) = By palx, , (11.35)
Ep,q(t)—l pq(y) n;o npq( y) [n]]ﬂ,&]!
and te, - (xt)
Cpa\Xt) . (o)
———=sin, . (yt) = )  Bup,.(x, . (11.36)
b’p,q(t)—l pq(y ) ng;) npq( y) [n]p,q!

Upon setting x = y = 0 for both polynomials in (11.35) and (11.36), we have B,(f},,q(o, 0) =

B,(i;)?,q(O, 0) := By,p,g which are called (p, g)-Bernoulli polynomials defined in [35].
When y = 0 in (11.35) and (11.36), we get the usual (p, q)-Bernoulli polynomials, denoted
by By, p,4(x), see [35,70].

Next, we give some basic properties of these polynomials.

Theorem 178 (Njionou and Duran [71]). B,(f%,q (x,y) and B,(f;,q (x,y) can be represented in terms
of (p, q)-Bernoulli numbers as follows

c " [n
Bipq(x,y) =Y [ ] BipqCutpq (%, ), (11.37)
k=0 Lklpgq
and
(s) = [
B”/Pﬂ(x/y) - Z [ :| Bk,p,qsn—k,p,q(x/y); (11.38)
k=0 r.4

Proof. Using the Cauchy product rule, we have

2 t" t
y ,S,Qw(x,y)[ = oy o) cospay)

n=0 Mpq!
= t" > t"
= By —— Cupa(x,
n;(] n[”]rbq!> (n—O i y>[”]rbq!>

which proves (11.37). The proof of (11.38) is similar. O
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We now state the following theorem.

Theorem 179 (Njionou and Duran [71]). The following connection formulas are valid

n 2%
Bipq(x,y) = Y (~1)F [ } Byo p,q(X) P2y, (11.39)
k=0 2klpg
and
(s) ] k| T (B 2k+1
Bipq(x,y) = ) (=1) Bu1 ok pg(x)p2 Dy (11.40)
k=0 2k + 1p,q

Proof. The formula (11.39) follows from (11.21) since

= (o) o tepg(xt)
B X, = —-—"¢Cos t
n;O ”P‘i y [ ]q ep,q(t) 1 l’rﬂ(y)
- N (S (D)
= Bn X t
<nX—:0 p q( ) [7’1] p,q' ) (rlX_:O [27’1] p,q! ( )
o [%] n ok n
t
= Z (_1)k[ ] ankaq(x)P ka
n=0 \ k=0 2k .4 [ ]P/’?
The proof of (11.40) is similar via (11.22). O

Theorem 180 (Njionou and Duran [71]). The following connection formulas are valid

n (k+1) 7
_ p'2 H ()
Copg(X,y) =) 77— Binq(x,y), (11.41)
pq( y) kg(:) [k+1]p,q k b ]M]( y)
n k+1
Supa(X,y) =), L H BY) . (x,y). (11.42)
= k+1pg Lk .

Proof. From (11.35), we have

5 B (o y) b = La e ) 5 Cupaly)
=P gt epg(t) =1 epq(t) — 1,2 P ]!
Hence
P e () -1 p
C x pA Bl X,
nZO o y)[”]rw' t ZO ol y)[”]m'

I
=
C\IDI' 3
?_3
+| =
R
S| = 1
-
=
R~ d = ~
==
\_/
=
il ngk:
=S
:ﬁ
= —
-
—
R
<
N—
=L
e Y
&—
N———

Thus (11.41) follows. (11.42) is proved in a similar way. O
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Proposition 181 (Njionou and Duran [71]]). For every n € IN, the following identities hold

BY) (1@ %),y) = BS)a(x,y) = [1]p4Co1pq(x,¥), (11.43)

B (10 %),y) = BE)a(%,y) = [1]pgSu—1,p9(%,¥)- (11.44)
Proof. We have

& t" te, o[(1D,q x)t]
Y B, ((1 X))y = PAL P82 08,4 (yt)

=0 Mp,q! epq(t) —1
= CcoSs t
ep,q( ) -1 p,q(y )
tey, o (xt)
= teyq(xt) cosyq(yt) + p(q) cosp4(yt)
o0 [ee] tn
Z npa (%, y Z [ 1!’
which proves (11.43). The identity (11.44) is proved smularly. O

Corollary 182 (Njionou and Duran [71]]). The following relations hold
Binl1pa(19) = By g (0y) = (204 1] (<1) "y,
B (1Y) = Binlyg(0,y) = [20]pg (=1 p"= Dy,
Proof. If we replace n by 2n + 1 in (I1.43), and x by 0, we obtain
Bt (1Y) = B pg(0,) = (204 1] Canpg (0.).
e

The first relation is proved since from (I1.23) we have C,0(0,y) = (—1)"p(2)y?". The
second relation is proved similarly. O

Proposition 183 (Njionou and Duran [71]]). For every n € IN, the following identities hold

Bipq((x ©pq2),y) = k;) [Z]quk,p,q(x)an,p,q (y,2), (11.45)
and
Bv(f,;,q«x Dpq z),y) = ki(:) Ejp qu,P,q(x)Snfk,p,q (y,2), (11.46)
Proof. We have
= n te X z)t
nZ%)Bg;w((x ©pg2),Y) [nfp,q! = p'Zi/(q(tG;iql) ) cosp 4 (yt)
= m X ep,q(zt) cospq(yt)

00 tn o0 tl’l
<n§) Byi,pq(x) [”]pq') <n§) Cupa(v,2) 1], )

- Z (Z [:L,qu,p,q(x)an(yrz)> [ i X

k=0

which proves (11.45). The proof of (11.46) is similar. O
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Proposition 184 (Njionou and Duran [71]). For every n € IN, the following identities hold

n n n—k
BY) (x®pg2),y) = Y [ } pUBE) (x, )2, (11.47)
k=0 Lk r.q
and
s 1o n—ky (s n—
BY) ((x@pez)y) = Y [ } pUBE) (x,y)2" . (11.48)
k=0 Lk v.q
Proof. We have
= (o) " tepqa((x Dpyg2)t)
By po((x ®pq2), = cosy,o (yt)
ngo npq(( p.q ) Y) [n]p,q! ep,q(t) _1 pa\y
tep,q(xt)
= ——~——Cos t) X e,q(zt
epa(t) — 1 pa(yt) X epq(zt)
(o] t‘}’l (o] n tn
= Bnc) x, (Z)Zn
(7!220 pal:) WM’) (;;:;)p [1]p.q!
R n n n—k tn
— ("3 )B(C) X, ank —
n;) (kz(:) [kL,qp k,m( y) [1]4!
which proves (I1.47). The proof of (11.48) is similar. O

Proposition 185 (Njionou and Duran [71]]). The following equations can be concluded

L n + ]- n+l1—k

3 [ ] p )B,Ef;,q(x,y) = [n+1]p4Cupq(x,y), (11.49)
k=0 k lpg

L n + ]- n+l1—k

3 [ ] p )Blifz,q(x'y) = [+ 1pgSnpq(x,y)- (11.50)
k=0 k lpg

Proof. From (11.47), we have

c c 1 n + 1
B (0 1,90 = B (50 = 1 | k

n+l—k c
} p"2 B (xy).
k=0 P

Hence, by using (11.43), relation (11.49) is derived. The proof of (11.50) is concluded in a
similar way. O

Corollary 186 (Njionou and Duran [71]). Relations (11.49) and (11.50) imply that

n [n+1
0

n+1-k c
] p"2 B (0,y)
k lpq

k=

) =DM 2m+ 1]p,qp(2§")y2m if n=2m isodd,
0 if n=2m+1 iseven,
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and

2m+1

0 if n=2m isodd,
(=1)"2m +2]pqp 2 JyP" i n=2m+1 is even.

Corollary 187 (Njionou and Duran [71]]). For every n € IN, the following partial (p, q)-differential
equations hold

Dy xBihg (%) = [n]pqB, (px,1),
Dpfq,anf;,ﬂx'y) == [n]PrqBStC—)l,p,q(x' Py),
D %,q(x/ y) = [n]P/"]BnS—)l,p,q(px’ y)/

and
Dp,q,yBr(lf;(xry) = [”]p,qu(ls_)Lp,q(x/ py)- (11.51)
Corollary 188 (Njionou and Duran [71]). The following equations are valid

2n

1
/o Béil),p,q(px'y)dpqu = (=1)"py™,
1 s 2n+1
/0 B£H)+l,p,q(px’y)dpqu = (_1)n+1p( z )yan/

which are proved by combining Proposition[187jand Corollary[182|using the definition of the (p,q)-
integral.



Conclusion and Further Perspectives

In this work we have provided several tools for the two parameter quantum calculus. Going
from the (p, q)-derivative in Chapter 2, we have introduced the so-called (p, q)-power basis
and the related (p, g)-Taylor expansions in Chapter 3. These Taylor expansions have en-
abled us to prove connections between several (p, )-power bases and also used in Chapter
4 to prove the (p, g9)-Vandermonde identity. Chapters 5 and 6 introduce (p, q)-Exponential,
(p, q)-Trigonometric functions and the (p, q)-integral with the associated fundamental the-
orem of (p,q)-calculus. These tools are used in Chapter 7 to define (p, q)-analogues of the
Gamma and the Beta functions with the proof of their main properties. (p,q)-analogues
of hypergeometric series are introduced in Chapter 8. In this chapter we provided sev-
eral (p,q)-analogues of the very known identities and transformations, namely the (p, )-
Kummer sum, a (p, g)-analogue of Bailey’s ,F>(—1), a (p, q)-analogue of Gauss’s 2F;(—1)
sum, the (p, q)-Saalschiitz sum, the (p, g)-Jackson’s transformation of the ,®;,... Chapter 9
deals with (p, 9)-analogues of Sturm-Liouville problems. We provide the regularity condi-
tions to obtain orthogonal polynomial solutions. Some structure relations for these poly-
nomials are proved and some special examples are explained. In Chapter 10 we introduce
(p,q)-analogues of the Laplace transform and provide several properties of these trans-
forms with several applications in solving some functional equations, (p, q)-differential
equations and (p, q)-partial differential equations. In the last chapter, (p, g)-analogues are
introduced for a wide class of polynomials known as Appell polynomials. Of course, we
provide important relations these polynomial fulfil and give some connections with some
previous known special polynomials.

There are still many things to do. Since Appell polynomials are special cases of Sheffer
polynomials, one may think of defining (p, g)-Sheffer polynomials and start studying their
fundamental properties. We think of defining the (p, q)-Sheffer polynomials s, (x) by the
generating functions

A(t)epq(xB(t)) = io S,Z](pxq); t

—

where A and B are (formal) power series in t.

Also, several summation and transformation formulas are still to be stated. Concerning
the (p, q)-Sturm Liouville problems, there are still many unsolved problems and we think
that due to the very important applications of their solutions for the classical case, it should
be a good idea to look forward into this direction. Our future work will then consist in
completing missing informations and then provide new tools for application in numerical
analysis, partial differential equations, quantum mechanics,. ..



Bibliography

[1] W. H. Abdi, On g-Laplace transform, Proc. Acad. Sci. India 29A (1960), 389-408.

[2] W. H. Abdi, On certain g-difference equations and g-Laplace transform, Proc. Nat. Inst. Sci.
India Acad. 28A (1962), 1-15.

[3] W. H. Abdi, Certain inversion and representation formulae for q-Laplace transforms, Math. Z.
83 (1964), 238-249.

[4] T. Acar, (p,q)-generalization of Szasz-Mirakyan operators, Math. Methods Appl. Sci. 39
(2016), 2685-2695.

[5] T. Acar, A. Aral, S. A. Mohiuddine, On Kantorovich modification of (p, q)-Baskakov opera-
tors, J. Inequal. Appl. 98 (2016). https://doi.org/10.1186/513660-016-1045-9

[6] T. Acar, A. Aral, S. A. Mohiuddine, Approximation by Bivariate (p,q)-Bernstein-
Kantorovich Operators, Iran. ]. Sci. Technol. Trans. A Sci. 42 (2018), 655-662.

[7] T. Acar, S. A. Mohiuddine, M. Mursaleen, Approximation by (p, q)-Baskakov-Durrmeyer-
Stancu Operators, Complex Anal. Oper. Theory 12 (2018), 1453-1468.

[8] W. A. Al-Salam, g-Bernoulli numbers and polynomials, Math. Nachr. 17 (1958), 239-260.
[9] W. A. Al-Salam, g-Appell polynomials, Ann. Mat. Pura Appl. 4 (1967), 31-45.

[10] R. Alvarez-Nodarse, N. M. Atakishiyev, R. S. Costas-Santos, Factorization of the
hypergeometric-type difference equation on non-uniform lattices: dynamical algebra, ]J. Phys.
A 38 (2005), 153-174.

[11] M. H. Annaby, Z. S. Mansour , g-Taylor and interpolation series for Jackson g-difference
operators, ]. Math. Anal. Appl. 344 (2008), 472-483.

[12] G.E. Andrews, R. Askey, R. Roy: Special Functions, Encyclopedia Math. Appl. 71, Cam-
bridge University Press, Cambridge, 2000.

[13] P. Appell, Sur une classe de polynomes, Ann. Sci. Ec. Norm. Supér. 9 (1880), 119-144
[14] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.

[15] S. Araci, U. Duran, M. Acikgoz, H. M. Srivastava, A certain (p, q)-derivative operator and
associated divided differences, J. Inequal. Appl. 301 (2016), 1-8.

[16] A. Aral, V. Gupta, (p,q)-Type beta functions of second kind, Adv. Oper. Theory 1 (2016),
134-146.

[17] A. Aral, V. Gupta, Applications of (p,q)-Gamma Function to Szdsz Durrmeyer operators,
Publications de I'Institut Mathematique 102 (2017), 211-220.


https://doi.org/10.1186/s13660-016-1045-9

Bibliography 120

[18] L. Area, M. Masjed-Jamei, A symmetric generalization of Sturm-Liouville problems in q-
difference spaces, Bull. Sci. Math. 138 (2014), 693-704.

[19] N. M. Atakishiyev, A. U. Klimyk, K. B. Wolf, A discrete quantum model of the harmonic
oscillator, ]. Phys. A 41 (2008), 1-14.

[20] D. L. Bernstein, The double Laplace integral, Dissertation, Brown University, (1939).
[21] D. L. Bernstein, The double Laplace integral, Duke Math. J. 8 (1941), 460-496.

[22] J. D. Bukweli Kyemba, M. N. Hounkonnou, Characterization of (R, p,q)-deformed
Rogers-Szego polynomials: associated quantum algebras, deformed Hermite polynomials and
relevant properties J. Phys. A: Math. Theor. 45 (2012), 1-18.

[23] 1. M. Burban, A. U. Klimyk: P, Q-differentiation, P, Q-integration, and P, Q-hypergeometric
functions related to quantum groups, Integral Transforms Spec. Funct. 2 (1994), 15-36.

[24] L. Carlitz, g-Bernoulli Numbers and Polynomials, Duke Math. J. 15 (1948), 987-1000.

[25] R. Chakrabarti, R. Jagannathan. A (p, q)-oscillator realization of two-parameter quantum
algebras, J. Phys. A 24 (1991), L711-L718.

[26] C.C. Chen, K.M. Kho, Principles and Techniques in Combinatorics, Word Scientific Pub-
lishing Co. Pte. Ltd. 1992.

[27] T. S. Chihara. An Introduction to Orthogonal Polynomials, Gordon and Breach Science
Publishers, New York, 1978.

[28] K. S. Chung, W.-S. Chung, S.-T. Nam, H. J. Kang, New g-derivative and q-logarithm, In-
ternat. J. Theoret. Phys. 33 (1993), 2019-2029.

[29] R. Churchill, Operational Mathematics, 3rd edn. Mc Graw Hill, New York, 1972.

[30] J. L. Ciedliriski, Improved g-exponential and q-trigonometric functions, Appl. Math. Lett. 24
(2011), 2110-2114.

[31] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, The Netherlands, 1974.
[32] R.B. Corcino, On (p, q)-binomial coefficients, Integers 8 (2008),1-16.

[33] L. Debnath, D. Bhatta, Integral Transforms and Their Applications, 3rd edn. CRC Press,
Chapman & Hall, Boca Raton, 2015.

[34] L. Debnath, The double Laplace transforms and their troperties with applications to functional,
integral and partial differential equations, Int. J. Appl. Comput. Math. 2 (2016), 223-241.

[35] U. Duran, M. Acikgoz, S. Araci, On (p,q)-Bernoulli, (p,q)-Euler and (p,q)-Genocchi polyno-
mials, J. Comput. Theor. Nanosci. 13 (2016), 7833-7846.

[36] J. L. Fields, ]J. Wimp: Expansions of the hypergeometric functions in hypergeometric func-
tions, Math. Comp. 15 (1961), 390-395.

[37] R. Floreanini, L. Lapointe, L. Vinet: A note on (p, q)-oscillators and bibasic hypergeometric
functions, ]. Phys. A: Math. Gen. 26 (1993), L611-L614.

[38] G. Gasper, M. Rahman: Basic Hypergeometric Series, Encyclopedia Math. Appl. 35, Cam-
bridge Univ. Press, Cambridge, 1990.



Bibliography 121

[39] E. A. Griinbaum, Discrete models of the harmonic oscillator and a discrete analogue of Gauss’
hypergeometric equation, Ramanujan J. 5 (2001), 263-270.

[40] W. Hahn, Beitrige zur Theorie der Heineschen Reihen, die 24 Integrale der hyperge-
ometrischen g-Differenzengleichung, das q-Analogon der Laplace Transformation, Math.
Nachr. 2 (1949), 340-379.

[41] E. Heine, Uber die Reihe

@ -D@E -1 @ -DE"-DE -D)E" -1 , .

1+ x x“+.... (Aus einem
(g-D(g"=1) " (q-1)(g>=1(q"-1) (g 1)

Schreiben an Lejeune Dirichlet) , ]. Reine Angew. Math. 32 (1846), 210-212.

[42] P. Hilton, J. Pedersen, Looking into Pascal Triangle, Combinatorics, Arithmetic and Geome-
try, Mathematics Magazine, 60 (1987), 305-316.

[43] H. G. L llarslan, T. Acar, Approximation by bivariate (p,q)-Baskakov-Kantorovich operators,
Georgian Math. J. 25 (2018), 397-407.

[44] E. H. Jackson, A generalization of the functions T'(n) and x", Proc. Roy. Soc. London, 74
(1904), 64-72.

[45] E. H. Jackson, On q-functions and a certain difference operator, Transaction of the Royal
Society of Edinburgh Earth Sciences, 46 (1908), 253-281.

[46] F. H. Jackson, g-Form of Taylor’s theorem, Messenger Math. 39 (1909), 62-64.
[47] F. H. Jackson, On g-definite integrals, Pure Appl. Math. Q. 41 (1910), 193-203.
[48] R.Jagannathan, (P, Q)-Special Functions, arXiv:math/9803142v1, 1998.

[49] R. Jagannathan, K. Srinivasa Rao, Two-parameter quantum algebras, twin-basic numbers,
and associated generalized hypergeometric series, in: Proceedings of the International Con-
ference on Number Theory and Mathematical Physics, Srinivasa Ramanujan Centre,
Kumbakonam, India, 20-21 December 2005.

[50] R. Jagannathan, R. Sridhar, (p, q)-Rogers-Szego Polynomials and the (p, q)-Oscillator, K.
Alladi et al. (eds.), The Legacy of Alladi Ramakrishnan in the Mathematical Sciences,
2010.

[51] A. Jirari, Second-order Sturm-Liouville difference equations and orthogonal polynomials,
Mem. Am. Math. Soc., 542 (1995).

[52] V. Kac, P. Cheung: Quantum Calculus, Springer, 2001.

[63] R.Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric orthogonal polynomials and their
g-analogues, Springer, Berlin, 2010.

[54] W. Koepf, D. Schmersau: Representations of orthogonal polynomials, J. Comput. Appl.
Math. 90, (1998) 57-94.

[55] W. Koepf, D. Schmersau: On a structure formula for classical g-orthogonal polynomials, J.
Comput. Appl. Math. 136 (2001), 99-107.

[56] T. H. Koornwinder, Orthogonal polynomials in connection with quantum groups, In: Or-
thogonal polynomials (Columbus, OH, 1989), 294 of NATO Adv. Sci. Inst. Ser. C Math.
Phys. Sci., pages 257-292. Kluwer Acad. Publ., Dordrecht, 1990.



Bibliography 122

[57] T. H. Koornwinder, Compact quantum groups and g-special functions, In: Representations
of Lie groups and quantum groups (Trento, 1993), 311 of Pitman Res. Notes Math. Ser.,
pages 46-128. Longman Sci. Tech., Harlow, 1994.

[58] M. Masjed-Jamei, A basic class of symmetric orthogonal polynomials using the extended
Sturm-Liouville theorem for symmetric functions, ]. Math. Anal. Appl. 325 (2007), 753-775.

[59] M. Masjed-Jamei, I. Area, A symmetric generalization of Sturm-Liouville problems in dis-
crete spaces, J. Difference Equ. Appl. 19 (2013), 1544-1562.

[60] M. Masjed-Jamei, F. Soleyman, I. Area, J.J. Nieto, On (p, q)-classical orthogonal polyno-
mials and their characterization theorems, Adv. Difference Equ. 186 (2017).

[61] M. Masjed-Jamei, M. R. Beyki, W. Koepf, An extension of the Euler-Maclaurin quadrature
formula using a parametric type of Bernoulli polynomials, Bull. Sci. Math. 156 (2019), Article
102798, 1-26.

[62] G. V. Milovanovi¢, V. Gupta, N. Malik, (p, q)-Beta functions and applications in approxi-
mation, Bol. Soc. Mat. Mex. 24 (2018), 219-237

[63] M. Mursaleen, K. J. Ansari, and A. Khan. On (p, q)-analogue of Bernstein operators. Appl.
Math. Comput. 266 (2015), 874-882.

[64] A.EFE. Nikiforov, S. K. Suslov, V. B. Uvarov. Classical Orthogonal Polynomials of a Discrete
Variable, Springer Series in Computational Physics. Springer-Verlag, Berlin, 1991.

[65] A.FE Nikiforov, V. B. Uvarov, Polynomial solutions of hypergeometric type difference equa-
tions and their classification, Integral Transforms Spec. Funct. 3 (1993), 223-249.

[66] P. Njionou Sadjang, Moments of Classical Orthogonal Polynomials, PhD thesis, Uni-
versitdt Kassel, (2013). Available at: http://nbn-resolving.de/urn:nbn:de:hebis:
34-2013102244291.

[67] P. Njionou Sadjang, On the (p,q)-Gamma and the (p,q)-Beta functions,
http://arxiv.org/abs/1506.07394.

[68] P. Njionou Sadjang, On two (p, q)-analogues of the Laplace transform, ]. Difference Equ.
Appl. 23 (2017), 1562-1583.

[69] P. Njionou Sadjang, On the fundamental theorem of (p,q)-calculus and some (p, q)-Taylor
theorems, Results Math. 73, (2018). https://doi.org/10.1007/s00025-018-0783-z

[70] P. Njionou Sadjang, On (p,q)-Appell polynomials, Anal. Math. 45 (2019), 583-598.

[71] P. Njionou Sadjang, U. Duran, On two bivariate kinds of (p,q)-Bernoulli polynomials,
Miskolc Mathematical Note 20 (2019), 1185-1199.

[72] P. Njionou Sadjang, On double g-Laplace transforms and applications, submitted.

[73] O. Ogievetsky, W.B. Schmidke, ]. Wess, B. Zumino, gq-Deformed Poincaré Algebra, Com-
mun. Math. Phys. 150 (1992), 495-518.

[74] C. Quesne, New q-deformed coherent states with an explicitly known resolution of unity, J.
Phys. A: Math. Gen 35 43 (2002), 9213-9226.

[75] E. D. Rainville: Special Functions, The Macmillan Company, New York, 1960.


http://nbn-resolving.de/urn:nbn:de:hebis:34-2013102244291
http://nbn-resolving.de/urn:nbn:de:hebis:34-2013102244291
https://doi.org/10.1007/s00025-018-0783-z

Bibliography 123

[76] ]J. Riordan, An Introduction to Combinatorial Analysis, John Wiley and Son, Inc., 1958.

[77] E. Ryde, A contribution to the theory of linear homogeneous geometric difference equations
(g-difference equations), Dissertation, Lund, 1921.

[78] V. Sahai, S. Yadav, Representations of two parameter quantum algebras and (p, q)-special
functions, ]. Math. Anal. Appl. 335 (2007), 268-279.

[79] ]J.L. Schiff, The Laplace Transforms, Springer, New York, 1999.

[80] M. Schork, Ward’s “"Calculus of Sequences”, g-calculus and the limit ¢ — —1, Adv. Stud.
Contemp. Math. 13 (2006), 131-141.

[81] A. Sharma, A. Chak, The basic analogue of a class of polynomials, Revisita di Matematica
della Universita di Parma 5 (1954), 15-38.

[82] L. M. Sheffer, On sets of polynomials and associated linear functional operator and equations,
Amer. J. Math. 53 (1931), 15-38.

[83] A.Sole, V. G. Kac, On integral representations of q-gamma and q-beta functions, Rend. Mat.
Appl. 16 (2005), 11-29.

[84] F. Soleyman, P. Njionou Sadjang, M. Masjed-Jamei, 1. Area, (p, q)-Sturm-Liouville prob-
lems and their orthogonal solutions, Math. Methods Appl. Sci. 41 (2018), 8997-9009.

[85] R. P. Stanley, Enumerative Combinatorics, Wadsworth and Brooks/Cole, Montery, 1986.

[86] N. M. Temme, Special Functions, an Introduction to Classical Functions of Mathematical
Physics, John Wiley & Sons, New York, 1996.

[87] J. Thomae, Beitrige zur Theorie der durch die Heinesche Reihe: darstellbaren Functionen, J.
Reine Angew. Math. 70 (1869), 258-281.

[88] A.Verma, Certain expansions of the basic hypergeometric functions. Math. Comp. 20 (1966),
151-157.



	Acknowledgments
	Introduction
	The (p,q)-Derivative
	Definition and properties
	(p,q)-Binomial coefficients
	(p,q)-Leibniz formula and power derivative

	The (p,q)-Power and the Taylor Formulas
	The (p,q)-power basis
	(p,q)-Taylor formulas

	(p,q)-Binomial Coefficients and their Properties
	Recurrence relations for the (p,q)-binomial coefficients
	Orthogonality relations
	(p,q)-Vandermonde's identity

	(p,q)-Exponential and (p,q)-Trigonometric Functions
	The usual (p,q)-exponential functions
	(p,q)-trigonometric functions
	Hyperbolic (p,q)-trigonometric functions

	(p,q)-Antiderivative and (p,q)-Integral
	The (p,q)-antiderivative
	The (p,q)-integral
	The fundamental theorem of (p,q)-calculus

	(p,q)-Gamma and (p,q)-Beta functions
	Some properties of the (p,q)-power
	The (p,q)-Gamma functions
	The (p,q)-Beta functions
	(p,q)-Beta function of the first kind
	(p,q)-Beta function of the second kind


	(p,q)-Hypergeometric Series
	(p,q)-Hypergeometric series
	From the rs-series to the rs-series
	The (p,q)-binomial theorem
	(p,q)-Heine transformation for 21
	(p,q)-Gauss sum
	The (p,q)-Kummer sum
	A (p,q)-analogue of Bailey's 2F1(-1) sum
	A (p,q)-analogue of Gauss's 2F1(-1) sum
	The (p,q)-Saalschütz sum
	(p,q)-Jackson's transformations of 21
	Transformations of 32 series

	Power representation of terminating (p,q)-series

	(p,q)-Sturm-Liouville Problems and Their Orthogonal Solutions
	Eigenvalue problems
	The regularity condition
	Orthogonality of the polynomial solutions
	Structure relations for (p,q)-orthogonal polynomials
	The three-term recurrence relation
	Further structure relations

	Some special cases of (p,q)-orthogonal polynomials
	General solutions of the (p,q)-differential equations (9.5) and (9.18)
	The (p,q)-Jacobi polynomials
	(p,q)-Laguerre polynomials
	(p,q)-Hermite polynomials


	(p,q)-Laplace Transform and Applications
	(p,q)-Laplace transform of the first kind
	(p,q)-Laplace transform of the second kind
	Application to the resolution of some (p,q)-difference equations
	Application 1
	Application 2
	Application 3

	Double (p,q)-Laplace transform
	(p,q)-addition, (p,q)-subtraction, (p,q)-coaddition, (p,q)-cosubtraction
	The double (p,q)-Laplace transform of the first kind
	The double (p,q)-Laplace transform of the second kind
	The double (p,q)-Laplace transform of the third kind
	Some applications


	(p,q)-Appell Polynomials
	Characterization of (p,q)-Appell polynomials
	Algebraic structure
	Some (p,q)-Appell polynomial sequences
	The (p,q)-Bernoulli polynomials
	The (p,q)-Euler polynomials
	The (p,q)-Genocchi polynomials
	A second kind of (p,q)-Hermite polynomials
	Two bivariate kinds of (p,q)-Bernoulli polynomials


	Conclusion and Further Perspectives
	Bibliography

