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Chapter 1

Introduction

The q-analysis (including q-differentiation, q-integration, partial q-differentiation, q-integral
transform,. . . ) and q-special functions (including q-hypergeometric series, q-Gamma func-
tions, q-Beta functions, q-Mittag-Leffler functions,. . . ) essentially started in 1748 when Euler
considered the infinite product

(q; q)∞ =
∞

∏
k=0

(1− qk+1)−1

as a generating function for p(n), the number of partitions of a positive integer into pos-
itive integers. But it was not until about hundred years later that the subject acquired an
independent status when Heine (see [41]) converted the simple observation that

lim
q→1

1− qa

1− q
= a

into a systematic theory of 2φ1 basic hypergeometric series parallel to Gauss’ 2F1 hypergeo-
metric series. This led to an intensive investigation on q-calculus during this century. Few
of the significant results are for example the relation of Heine’s 2φ1 with the Ramanujan
formula, the relation between Euler’s identities and the Jacobi triple product.

The systematic development of q-calculus started with Jackson who reconsidered the Euler-
Jackson q-difference operator (see [45]) in 1908, who gave a q-form of Taylor’s theorem (see
[46]) and introduced the q-definite integral on a finite interval (see [47]). This theory has
now played a crucial role in almost every branch of mathematics. It found applications
for example in the field of Special functions, differential equations, combinatorics, number
theory.

During the same period, new mathematics objects of the theory of symmetries appeared.
They are quantum groups and quantum algebras (q-deformations of Lie groups and Lie
algebras). Investigations of representations of these groups and algebras showed that these
representations of Lie groups are related to special functions of mathematical physics.

The two-parameter quantum algebra, Up,q(gl(2)), was first introduced in [25] in order to
generalize and unify a series of q-oscillator algebra variants, known in the earlier physics
and mathematics literature on the representation theory of single parameter quantum alge-
bra. Then investigations came up in the same direction among which the work of Burban
and Klimyk [23] on representations of two-parameter quantum groups and models of two
parameter quantum algebra Up,q(su1,1) and (p, q)-deformed algebra. In the same paper [23],



2

Burban and Klimyk introduced the (p, q)-hypergeometric functions. The (p, q)-deformation
rapidly found applications in physics and mathematical physics as described for example
in [37].

In the same vein, after recalling the connection between the Roger-Szegö polynomials and
the q-oscillator, Jagannathan and Sridhar [50] have defined (p, q)-Rogers-Szegö polynomi-
als and have shown that they are connected with the (p, q)-deformed oscillator associated
with the Jagannathan-Srinavasa (p, q)-numbers [49], and proposed a new realization of this
algebra.

This work is divided into eleven chapters.

Chapter 1 is a general introduction of the thesis.

Chapter 2 provides some definitions about the (p, q)-differential and the (p, q)-derivative.
The (p, q)-analogues of the binomial coefficients are introduced and the (p, q)-Leibniz rule
for the nth (p, q)-derivative of a product of two functions is stated and proved. Results of
this chapter are published in [69].

Chapter 3 introduces a polynomial basis called (p, q)-power, that generalizes both the canon-
ical power basis and the classical q-Pochhammer. Several properties of the (p, q)-powers
are stated and proved. Those (p, q)-powers are finally used to state and prove the (p, q)-
analogues of Taylor’s formula for polynomials. These (p, q)-Taylor formulas are used to

provide a (p, q)-analogue of the Taylor expansion of f (x) =
1

(x− 1)n known in the q-theory

as Heine’s binomial formula. Results of this chapter are published in [69].

In Chapter 4, the (p, q)-binomial coefficients are studied in detail. Their recurrence relations
are given. A new and generalized orthogonality relation is obtained and the (p, q)-powers
are used to state a (p, q)-analogue of the Vandermonde formula. Some results of this are
available in [32]. The generalized orthogonality relation and the (p, q)-Vandermonde for-
mula appear here for the first time.

In Chapter 5, we introduce two (p, q)-analogues of the exponential function and provide
several of their representations based on the Taylor formulas proved in Chapter 3. Next,
the (p, q)-trigonometric functions and the hyperbolic (p, q)-trigonometric functions are in-
troduced and their main properties stated. Results of this chapter are published in [69, 68].

In Chapter 6, we derive the (p, q)-antiderivative and the (p, q)-integral. Their algebraic
properties are studied, the fundamental theorem of (p, q)-calculus is proved and the for-
mula of (p, q)-integration by parts is provided. Results of this chapter are published in [69].

In Chapter 7, two (p, q)-analogues of the Gamma function are introduced and their rele-
vant properties are proved. Next, three (p, q)-analogues of the Beta function are given. It is
proved that they are related to the (p, q)-Gamma function previously introduced. Results
of this chapter are published in [67].

In Chapter 8, we discuss the (p, q)-hypergeometric series. They are generalizations of q-
hypergeometric series. Note that from Proposition 90, it is seen that any well behaved
φ-series can be written as a Φ-series. But the converse is not always true. In the general
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case, when p 6= 1, this is possible only for an rΦr−1. To see this, it is enough to look at the
0Φ0 case. Indeed,

0Φ0

 −

(p, q)

∣∣∣∣∣∣∣ (p, q); z

 =
∞

∑
n=0

(−1)n(q/p)(
n
2)

(p	 q)n
p,q

zn

=
∞

∑
n=0

(−1)n(ρ/p)(
n
2)

(ρ; ρ)n
(z/ρ)n, with ρ = q/p,

which shows that 0Φ0 becomes a φ-series if and only if p = 1. Similarly, one is easily con-
vinced that a generic rΦs-series cannot be identified within the class of φ-series unless p = 1
or s = r − 1. It is now clear that the (p, q)-series is a larger structure in which the q-series
gets embedded. Also, whereas in the case of the φ-series one will have to resort to the
limit process of confluence, namely, replacing z by z/ar and taking the limit ar → ∞, in the
(p, q)-series, it is sometimes enough to make the choice aip = 0 or bip = 0 for some specific i.

In Chapter 9, we introduce a (p, q)-analogue of Sturm-Liouville problems and study their
orthogonal solutions. Next, applications are done to find a (p, q)-analogue of the Jacobi, the
Laguerre and the Hermite polynomials. Some results of this chapter were published in [84].

In Chapter 10, two (p, q)-analogues of the Laplace transform are introduced and their rel-
evant fundamental properties are stated and proved. It is shown how they can be used to
solve (p, q)-differential equations. Next, we introduce double (p, q)-Laplace transforms for
solving partial (p, q)-differential equations and some functional equations. Some results of
this chapter were published in [68].

Finally, Chapter 11 deals with a special class of (p, q)-polynomials, that are
(p, q)-analogues of Appell polynomials. Their main characterizations and their algebraic
structure are studied. Next, some examples of such polynomials are given, namely the
(p, q)-Bernoulli, the (p, q)-Euler, the (p, q)-Genocchi, a second (p, q)-analogue of the Her-
mite polynomials and a kind of bivariate (p, q)-Bernoulli polynomials.

The thesis ends with a conclusion and further perspectives.



Chapter 2

The (p, q)-Derivative

2.1 Definition and properties

Definition 1 (Njionou [69]). Let f be an arbitrary function. Its (p, q)-differential is defined by

dp,q f (x) = f (px)− f (qx). (2.1)

In particular, dp,qx = (p− q)x.

Proposition 2 (Njionou [69]). The (p, q)-differential fulfils the following product rule

dp,q( f (x)g(x)) = f (px)dp,qg(x) + g(qx)dp,q f (x). (2.2)

Proof. For f and g two arbitrary functions, we have

dp,q( f (x)g(x)) = f (px)g(px)− f (qx)g(qx)
= f (px)g(px)− f (px)g(qx) + f (px)g(qx)− f (qx)g(qx)
= f (px)(g(px)− g(qx)) + g(qx)( f (px)− f (qx))
= f (px)dp,qg(x) + g(qx)dp,q f (x).

With the two parameter quantum differential, we can also define the corresponding two-
parameter quantum derivative.

Definition 3 (Chakrabarti and Jagannathan [25]). The following expression

Dp,q f (x) =
dp,q f (x)

dp,qx
=

f (px)− f (qx)
(p− q)x

, x 6= 0 (2.3)

is called the (p, q)-derivative of the function f (x).

Note that when p = 1, the Dp,q reduces to the quantum derivative Dq (see Kac and Cheung
[52])

Dq f (x) =
f (x)− f (qx)
(1− q)x

.

Note also that if f (x) is differentiable, then

lim
q→1

Dq f (x) =
d f (x)

dx
.

It is clear that as with the ordinary derivative, the action of the (p, q)-derivative of a function
is a linear operator. More precisely, for any constants a and b,

Dp,q(a f (x) + bg(x)) = aDp,q f (x) + bDp,qg(x).
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Example 4. Compute the (p, q)-derivative of f (x) = xn, where n is a positive integer. By definition

Dp,qxn =
(px)n − (qx)n

(p− q)x
=

pn − qn

p− q
xn−1. (2.4)

Since
pn − qn

p− q
appears quite frequently, let us introduce the following notation

[n]p,q =
pn − qn

p− q
, (2.5)

for any positive integer n. This is called the (p, q)-bracket, the (p, q)-number, the twin-basic
number or the (p, q)-analogue of n. Then, (2.5) becomes

Dp,qxn = [n]p,qxn−1. (2.6)

The twin-basic number is a natural generalization of the q-number, that is

lim
p→1

[n]p,q = [n]q. (2.7)

Proposition 5 (Bukweli and Hounkonnou, [22]). If n and m are non-negative integers, then

[n + m]p,q = qm[n]p,q + pn[m]p,q = pm[n]p,q + qn[m]p,q, (2.8)
[−m]p,q =−q−m p−m[m]p,q, (2.9)

[n−m]p,q = q−m ([n]p,q − pn−m[m]p,q
)
= p−m ([n]p,q − qn−m[m]p,q

)
. (2.10)

Proposition 6. For n ≥ m, n, m ∈ {0, 1, 2, . . .}, the following equations apply

pn−1([n]p,q − qn−m[m]p,q) = pn+m−1[n−m]p,q (2.11)
[n]p,q[n− 1]p,q − (pq)n−m[m]p,q[m− 1]p,q = [n−m]p,q[n + m− 1]p,q. (2.12)

Remark 7. Note that (2.11) and (2.12) reduce to Equations (2.2.3) and (2.2.4) in [53, Page 30]

Proposition 8 (Njionou [69]). The (p, q)-derivative fulfils the following product rules

Dp,q( f (x)g(x)) = f (px)Dp,qg(x) + g(qx)Dp,q f (x), (2.13)
Dp,q( f (x)g(x)) = g(px)Dp,q f (x) + f (qx)Dp,qg(x) (2.14)

Proof. From the definition of the (p, q)-derivative and (2.2), we have

Dp,q( f (x)g(x)) =
dp,q( f (x)g(x))

(p− q)x
=

f (px)dp,qg(x) + g(qx)dp,q f (x)
(p− q)x

,

hence
Dp,q( f (x)g(x)) = f (px)Dp,qg(x) + g(qx)Dp,q f (x).

This proves (2.13). (2.14) is obtained by symmetry.

Proposition 9 (Njionou [69]). The (p, q)-derivative fulfils the following quotient rules

Dp,q

(
f (x)
g(x)

)
=

g(qx)Dp,q f (x)− f (qx)Dp,qg(x)
g(px)g(qx)

(2.15)

Dp,q

(
f (x)
g(x)

)
=

g(px)Dp,q f (x)− f (px)Dp,qg(x)
g(px)g(qx)

(2.16)
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Proof. In order to get those quotient rules, we remark that f (x) = g(x)
f (x)
g(x)

. Thus, applying

(2.13) to this relation we get

Dp,q f (x) = g(px)Dp,q

(
f (x)
g(x)

)
+

f (qx)
g(qx)

Dp,qg(x),

and thus (2.15). In the same manner, applying (2.16) provides (2.14).

2.2 (p, q)-Binomial coefficients

In this section we introduce the (p, q)-factorial and the (p, q)-binomials coefficients. Chapter
4 is devoted to these (p, q)-binomial coefficients since they are very useful in combinatorics.

Definition 10 ((p, q)-factorial (R. Jagannathan, R. Sridhar [50], Njionou [68]) ). The (p, q)-
factorial is defined by

[n]p,q! =
n

∏
k=1

[k]p,q!, n ≥ 1, [0]p,q! = 1. (2.17)

Let us introduce also the so-called (p, q)-binomial coefficients.

Definition 11 ((p, q)-Binomial (R. Jagannathan and R. Sridhar [50], Njionou [68])). The
(p, q)-binomial coefficients are defined by

[n
k

]
p,q

=
[n]p,q!

[k]p,q![n− k]p,q!
, 0 ≤ k ≤ n. (2.18)

Note that as p → 1, the (p, q)-binomial coefficients reduce to the q-binomial coefficients (see Kac
and Cheung [52]).
It is clear by definition that [n

k

]
p,q

=

[ n

n− k

]
p,q

. (2.19)

Proposition 12 (Njionou [68]). Let n be a non-negative integer, then the following formula applies

Dn
p,q

[
1
x

]
= (−1)n [n]p,q!

(pq)(
n+1

2 )xn+1
. (2.20)

Proof. The relation is obvious for n = 0. Let n ≥ 1, assume that (2.20) holds true. Then

Dn+1
p,q

[
1
x

]
= Dp,q

[
(−1)n [n]p,q!

(pq)(
n+1

2 )xn+1

]

=
(−1)n[n]p,q!

(pq)(
n+1

2 )
× 1

(p− q)x

(
1

(px)n+1 −
1

(qx)n+1

)
=

(−1)n[n]p,q!

(pq)(
n+1

2 )
×
−[n + 1]p,q

(pq)n+1xn+2 = [(−1)n+1 [n + 1]p,q!

(pq)(
n+2

2 )xn+2
.

The proof is then complete.

The next proposition generalizes (2.20) and is proved in the same way.
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Proposition 13 (Njionou [68]). Let a be a non-zero complex number. Then the following equation
holds true:

Dn
p,q

[
1

ax + b

]
=

(−a)n[n]p,q!
n
∏

k=0
(apn−kqkx + b)

(2.21)

=
(−a)n[n]p,q!

(apnx + b)(apn−1qx + b) · · · (apqn−1x + b)(aqnx + b)
.

Note that for a = 1 and b = 0, (2.21) reduces to (2.20).

2.3 (p, q)-Leibniz formula and power derivative

Let n be a nonnegative function. If f and g are two n times differentiable functions, the
classical Leibniz formula states that

( f (x)g(x))(n) =
n

∑
m=0

(
n
m

)
f (m)(x)g(n−m)(x), (2.22)

where f (n)(x) stands for the n-th derivative of f (x).
The q-analogue of this formula states (Kac and Cheung [53])

Dq[ f (x)g(x)] =
n

∑
m=0

[n

m

]
q
(Dn−k

q f )(qkx)(Dk
qg)(x). (2.23)

In the following theorem, we state the (p, q)-generalization of these results.

Theorem 14 ((p, q)-Leibniz theorem, (Araci et al. [15])). Let f and g be two (p, q)-differentiable
functions. The following (p, q)-derivative rules are valid

Dn
p,q[ f (x)g(x)] =

n

∑
k=0

[n
k

]
p,q
(Dk

p,q f )(pn−kx)(Dn−k
p,q g)(qkx), (2.24)

Dn
p,q[ f (x)g(x)] =

n

∑
k=0

[n
k

]
p,q
(Dn−k

p,q f )(pkx)(Dk
p,qg)(qn−kx). (2.25)
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Proof. (2.24) is true for n = 0. Let n be a nonnegative integer, we have

Dn+1
p,q ( f (x)g(x)) = Dp,qDn

p,q( f (x)g(x))

=
n

∑
k=0

[n
k

]
p,q

Dp,q

[
(Dk

p,q f )(pn−kx)(Dn−k
p,q g)(qkx)

]

=
n

∑
k=0

[n
k

]
p,q

{
(Dk

p,q f )(pn+1−kx)Dp,q

[
(Dn−k

p,q g)(qkx)
]

+Dp,q

[
(Dk

p,q f )(pn−kx)
]
(Dn−k

p,q g)(qk+1x)
}

=
n

∑
k=0

[n
k

]
p,q

{
qk(Dk

p,q f )(pn+1−kx)(Dn+1−k
p,q g)(qkx)

+pn−k(Dk+1
p,q f )(pn−kx)(Dn−k

p,q g)(qk+1x)
}

=
n

∑
k=0

[n
k

]
p,q

qk(Dk
p,q f )(pn+1−kx)(Dn+1−k

p,q g)(qkx)

+
n

∑
k=0

[n
k

]
p,q

pn−k(Dk+1
p,q f )(pn−kx)(Dn−k

p,q g)(qk+1x)

=
n

∑
k=0

[n
k

]
p,q

qk(Dk
p,q f )(pn+1−kx)(Dn+1−k

p,q g)(qkx)

+
n+1

∑
k=1

[ n

k− 1

]
p,q

pn+1−k(Dk
p,q f )(pn+1−kx)(Dn+1−k

p,q g)(qkx)

=
n+1

∑
k=0

(−1)k
[n + 1

k

]
p,q

p(
n+1−k

2 )q(
k
2)(Dk

p,q f )(pn+1−kx)(Dn+1−k
p,q g)(qkx).

(2.25) follows from (2.24) and the use of (2.19).

Next, we state the following power derivative for the operator Dp,q.

Theorem 15 (Power of Dp,q, (Araci et al. [15]) ). The following derivative rule applies

Dn
p,q f (x) = (p− q)−nx−n(pq)−(

n
2)

n

∑
k=0

(−1)k
[n

k

]
p,q

p(
k
2)q(

n−k
2 ) f (pn−kqkx), x 6= 0. (2.26)
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Proof. The relation is obvious for n = 1. Let n ≥ 1, assume (2.26) is valid. Thus:

(Dn+1
p,q f )(x) = Dp,q(Dn

p,q f )(x)

= (p− q)−n(pq)−(
n
2)[(p− q)x]−1

(px)−n
n

∑
k=0

(−1)k
[n

k

]
p,q

p(
k
2)q(

n−k
2 ) f (pn+1−kqkx)

− (qx)−n
n

∑
k=0

(−1)k
[n

k

]
p,q

p(
k
2)q(

n−k
2 ) f (pn−kqk+1x)


= (p− q)−(n+1)(pq)−(

n
2)x−(n+1)(pq)−n

 n

∑
k=0

(−1)k
[n

k

]
p,q

p(
k
2)q(

n−k
2 )+n f (pn+1−kqkx)

−
n

∑
k=0

(−1)k
[n

k

]
p,q

p(
k
2)+nq(

n−k
2 ) f (pn−kqk+1x)


= (p− q)−(n+1)(pq)−(

n+1
2 )x−(n+1)

 n

∑
k=0

(−1)k
[n

k

]
p,q

p(
k
2)q(

n+1−k
2 )+k f (pn+1−kqkx)

+
n+1

∑
k=1

(−1)k
[ n

k− 1

]
p,q

p(
k
2)+n+1−kq(

n+1−k
2 ) f (pn+1−kqkx)


= (p− q)−(n+1)(pq)−(

n+1
2 )x−(n+1)

×
n+1

∑
k=0

(−1)k

qk
[n

k

]
p,q

+ pn+1−k
[ n

k− 1

]
p,q

 p(
k
2)q(

n+1−k
2 ) f (pn+1−kqkx)

= (p− q)−(n+1)(pq)−(
n+1

2 )x−(n+1)
n+1

∑
k=0

(−1)k
[n + 1

k

]
p,q

p(
k
2)q(

n+1−k
2 ) f (pn+1−kqkx).

This ends the proof.

Remark 16. Using (2.19), the relation (2.26) can be written as

Dn
p,q f (x) = (q− p)−nx−n(pq)−(

n
2)

n

∑
k=0

(−1)k
[n

k

]
p,q

p(
n−k

2 )q(
k
2) f (pkqn−kx). (2.27)

For p = 1, (2.27) reduces to the power derivative for the operator Dq (Annaby et al.[11] F. Ryde
[77]).



Chapter 3

The (p, q)-Power and the Taylor
Formulas

3.1 The (p, q)-power basis

Here, we introduce the so-called (p, q)-power and investigate some of its relevant proper-
ties. These polynomials are useful to state our Taylor formulas.

Definition 17 (Njionou [69]). The expression

(x	 a)n
p,q = (x− a)(px− aq) · · · (pn−1x− aqn−1) (3.1)

is called the (p, q)-power.

Note that for p = 1, the (p, q)-power reduces to the q-power (see Kac and Cheung [52]).
It should be noted the following important relation between the (p, q)-power basis and the
(p, q)-factorial

[n]p,q! =
(p	 q)n

p,q

(p− q)n . (3.2)

Proposition 18 (Njionou [69]). The following assertion is valid.

Dp,q(x	 a)n
p,q = [n]p,q(px	 a)n−1

p,q , n ≥ 1, (3.3)

and Dp,q(x	 a)0
p,q = 0.

Proof. The assertion Dp,q(x	 a)0
p,q = 0 is obvious. Let n ≥ 1, then we have

(px	 a)n
p,q = (pnx− aqn−1)(px	 a)n−1

p,q

(qx	 a)n
p,q = (qx− a)

n−1

∏
k=1

(qxpk − aqk)

= (qx− a)
n−2

∏
k=0

(qxpk+1 − aqk+1)

= (qx− a)qn−1
n−2

∏
k=0

(pxpk − aqk)

= (xqn − aqn−1)(px	 q)n−1
pq .



3.1 The (p, q)-power basis 11

Therefore, it follows that

Dp,q(x	 a)n
p,q =

(
(pnx− aqn−1)− (xqn − aqn−1)

)
(p− q)x

(px	 q)n−1
pq

= [n]p,q(px	 q)n−1
pq .

We can also handle the proof by induction with respect to n as follows. The result is already
true for n = 1. Let n ≥ 1, assume that

Dp,q(x	 a)n
p,q = [n]p,q(px	 a)n−1

p,q ,

therefore, by using the product rule (2.13) where we take f (x) = (x 	 a)n
p,q and g(x) =

(xpn − aqn), it follows that

Dk
p,q(x	 a)n+1

p,q = Dk
p,q

[
(x	 a)n

p,q(xpn − aqn)
]

= (px	 a)n
p,q pn + (xqpn − aqn)Dp,q(x	 a)n

p,q

= (px	 a)n
p,q pn + q[n]p,q(xpn − aqn−1)(px	 a)n−1

p,q

= (px	 a)n
p,q pn + q[n]p,q(x	 a)n

p,q

= (pn + q[n]p,q)(px	 a)n
p,q

= [n + 1]p,q(px	 a)n
p,q.

Proposition 19 (Njionou [69]). Let γ be a complex number and n ≥ 1 be an integer, then

Dp,q(γx	 a)n
p,q = γ[n]p,q(γpx	 a)n−1

p,q . (3.4)

Proof. The proof is done exactly as the proof of (3.3).

We now generalize this result in the following proposition.

Proposition 20 (Njionou [69]). Let n ≥ 1 be an integer, and 0 ≤ k ≤ n, we have the following

Dk
p,q(x	 a)n

p,q = p(
k
2)

[n]p,q!
[n− k]p,q!

(pkx	 a)n−k
p,q . (3.5)

In particular for a = 0 we get

Dk
p,qxn =

[n]p,q!
[n− k]p,q!

xn−k. (3.6)

Proof. The proof is done by induction with respect to k. Let n ≥ 1, for k = 1, it is the
previous proposition. Assume that for a fixed k < n, we have

Dk
p,q(x	 a)n

p,q = p(
k
2)

[n]p,q!
[n− k]p,q!

(pkx	 a)n−k
p,q .

Then, we get

Dk+1
p,q (x	 a)n

p,q = Dp,q

(
Dk

p,q(x	 a)n
p,q

)
= p(

k
2)

[n]p,q!
[n− k]p,q!

Dp,q(pkx	 a)n−k
p,q

= p(
k
2)

[n]p,q!
[n− k]p,q!

pk[n− k]p,q(pkx	 a)n−k−1
p,q

= p(
k+1

2 ) [n]p,q!
[n− k− 1]p,q!

(pkx	 a)n−k−1
p,q .
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Remark 21. For the classical derivative, it is known that for any real number α, one has

d
dx

xα = αxα−1.

In what follows, we would like to state a similar result for the Dp,q derivative as done for the Dq
derivative in [52]. We follow the same procedure.

Proposition 22 (Njionou [69]). Let m and n be two non-negative integers. Then the following
assertion is valid.

(x	 a)m+n
p,q = (x	 a)m

p,q(pmx	 qma)n
p,q. (3.7)

Proof. By definition,

(x	 a)m+n
p,q =

n+m−1

∏
k=0

(xpk − aqk)

=
m−1

∏
k=0

(xpk − aqk)
n+m−1

∏
k=m

(xpk − aqk)

=
m−1

∏
k=0

(xpk − aqk)
n−1

∏
k=0

((xpm)pk − (aqm)qk)

= (x	 a)m
p,q(pmx	 qma)n

p,q.

This is the expected result.

In Proposition 22, if we take m = −n, then we get the following extension of the (p, q)-
power basis.

Definition 23 (Njionou [69]). Let n be a non-negative integer, then we set the following definition.

(x	 a)−n
p,q =

1
(p−nx	 q−na)n

p,q
. (3.8)

Proposition 24 (Njionou [69]). For any two integers m and n, (3.7) holds.

Proof. The case m > 0 and n > 0 has already been proved, and the case where one of m and
n is zero is easy. Let us first consider the case m = −m′ < 0 and n > 0. Then,

(x	 a)m
p,q(pmx	 qma)n

p,q = (x	 a)−m′
p,q (p−m′x	 q−m′a)n

p,q

by (3.8) =
(p−m′x	 q−m′a)n

p,q

(p−m′x	 q−m′a)m′
p,q

by (3.7) =


(pm(p−mx)	 qm(q−ma))n−m′

p,q if n ≥ m′

1

(qn(q−m′ x)	qn(q−m′ a))
m′−n

p,q

if n < m′

by (3.8) = (x	 a)n−m′
p,q = (x	 a)n+m

p,q .
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If m ≥ 0 and n = −n′ < 0, then

(x	 a)m
p,q(pmx	 qma)n

p,q = (x	 a)m
p,q(pmx	 qma)−n′

p,q

=
(x	 a)m

p,q

(pm−n′x	 qm−n′a)n′
p,q

=


(x	a)m−n′

p,q (pm−n′ x	aqm−n′ )n′
p,q

(pm−n′ x	qm−n′ a)n′
p,q

if m > n′

(x	a)m
p,q

(pm−n′ x	qm−n′ a)n′−m
p,q (pn′−m(pm−n′ )x	qn′−m(qm−n′ a))m

p,q
if m < n′

=


(x	 a)m−n′

p,q if m > n′

1
(pm−n′ x	qm−n′ a)n′−m

p,q
if m < n′

= (x	 a)m−n′
p,q = (x	 a)m+n

p,q .

Lastly, if m = −m′ < 0 and n = −n′ < 0,

(x	 a)m
p,q(pmx	 qma)n

p,q = (x	 a)−m′
p,q (p−m′x	 q−m′a)−n′

p,q

=
1

(p−m′x	 q−m′a)m′
p,q(p−n′−m′x	 q−n′−m′a)n′

p,q

=
1

(p−n′−m′x	 q−n′−m′a)n′+m′
p,q

= (x	 a)−m′−n′
p,q = (x	 a)m+n

p,q .

Therefore, (3.7) is true for all integers m and n.

It is natural to ask ourselves if (3.3) is valid for any integer as well. But before trying to
answer this question, let us generalise the twin-basic number as follows.

Definition 25 (Njionou [69]). Let α be any complex number,

[α]p,q =
pα − qα

p− q
. (3.9)

Proposition 26 (Njionou [69]). For any integer n,

Dp,q(x	 a)n
p,q = [n]p,q(px	 a)n−1

p,q . (3.10)

Proof. Note that [0]p,q = 0. The result is already proved for n ≥ 0. If n = −n′ < 0, using
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(2.15) and (3.8) it follows that

Dp,q(x	 a)n
p,q = Dp,q

(
1

(p−n′x	 q−n′a)n′
p,q

)

=−
Dp,q(p−n′x	 q−n′a)n′

p,q

(q−n′(px)	 q−n′a)n′
p,q(qp−n′x	 q−n′a)n′

p,q

=−
p−n′ [n′]p,q(p−n′x	 q−n′a)n′−1

p,q

(q−n′(px)	 q−n′a)n′
p,q(qp−n′x	 q−n′a)n′

p,q

=−
p−n′ [n′]p,q

(x− q−1a)(qp−n′x	 q−n′a)n′
p,q

=
−p−n′q−n′ [n′]p,q

(p−n′−1(px)	 q−n′−1a)n′+1
p,q

=−p−n′q−n′ [n′]p,q(px	 a)−n′−1
p,q

= [n]p,q(px	 a)n−1
p,q .

This was announced.

Remark 27. It should be noted that (a	 x)n
p,q 6= (−1)n(x	 a)n

p,q. Instead, for n ≥ 1,

(a	 x)n
p,q = (a− x)(pa− xq) · · · (pn−1a− xqn−1)

= (−1)n(pq)(
n
2)(x− a)(p−1x− aq−1) · · · (p−n+1x− aq−n+1)

= (−1)n(pq)(
n
2)
(

p−n+1x	 aq−n+1
)n

p,q

Proposition 28 (Njionou [69]). The following relations are valid:

Dp,q
1

(x	 a)n
p,q

=
−q[n]p,q

(qx	 a)n+1
p,q

, (3.11)

Dp,q(a	 x)n
p,q =−[n]p,q(a	 qx)n−1

p,q , (3.12)

Dp,q
1

(a	 x)n
p,q

=
p[n]p,q

(a	 px)n+1
p,q

. (3.13)

Proof. For the relation (3.11), we first do the following remark

1
(x	 a)n

p,q
=

1
(p−n(pnx)	 (q−n(qna)))n

p,q
= (pnx	 qna)−n

p,q .

If follows that

Dp,q
1

(x	 a)n
p,q

= Dp,q(pnx	 qna)−n
p,q

= [−n]p,q pn (pn(px)	 qna)−n−1
p,q

= [−n]p,q pn
(

pn+1x	 qn+1(aq−1)
)−(n+1)

p,q

=
[−n]p,q pn

(x	 aq−1)n+1
p,q

,
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Taking into account that

[−n]p,q = −
[n]p,q

(pq)n and (αx	 y)p,q = αn(x	 aα−1)n
p,q,

we finally get

Dp,q
1

(x	 a)n
p,q

=
−q[n]p,q

(qx	 a)n+1
p,q

.

For the relation (3.12), we use twice the above remark as follows

Dp,q(a	 x)n
p,q = (−1)n(pq)(

n
2)Dp,q

(
p−n+1x	 q−n+1a

)n

p,q

= (−1)n(pq)(
n
2)p−n+1[n]p,q

(
p−n+1(px)	 q−n+1a

)n−1

p,q

=−[n]p,q(pq)n−1 p−n+1(pq)(
n−1

2 )
(

p−n+2x	 q−n+2(q−1a)
)n−1

p,q

=−[n]p,qqn−1
(

q−1a	 x
)n−1

p,q

=−[n]p,q(a	 qx)n−1
p,q .

For the proof of (3.13), we use the quotient rule (2.16) as follows

Dp,q
1

(a	 x)n
p,q

=−
Dp,q(a	 x)n

p,q

(a	 px)n
p,q(a	 qx)n

p,q

=
[n]p,q(a	 qx)n−1

p,q

(a	 px)n
p,q(a	 qx)n

p,q

=
[n]p,q

(a	 px)n
p,q(apn−1 − qnx)

=
[n]p,q

pn(ap−1 	 x)n
p,q((aq−1)qn − qnx)

=
[n]p,q

pn(ap−1 	 x)n
p,q

=
[n]p,q

pn(p−1)n+1(a	 px)n+1
p,q

=
p[n]p,q

(a	 px)n+1
p,q

.

Proposition 29 (Njionou [69]). Let n ≥ 1 be an integer, and 0 ≤ k ≤ n, we have the following
identity

Dk
p,q(a	 x)n

p,q = (−1)kq(
k
2)

[n]p,q!
[n− k]p,q!

(a	 qkx)n−k
p,q . (3.14)

Proof. Let n ≥ 1, for k = 1, it is the relation (3.12). Assume that for a fixed k < n, we have

Dk
p,q(a	 x)n

p,q = (−1)kq(
k
2)

[n]p,q!
[n− k]p,q!

(a	 qkx)n−k
p,q .
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Then, we have

Dk+1
p,q (a	 x)n

p,q = Dp,q

(
Dk

p,q(a	 x)n
p,q

)
= (−1)kq(

k
2)

[n]p,q!
[n− k]p,q!

Dp,q(a	 qkx)n−k
p,q

= (−1)kq(
k
2)

[n]p,q!
[n− k]p,q!

(
−qk

)
[n− k]p,q(a	 qk+1)n−k−1

p,q

= (−1)k+1q(
k+1

2 ) [n]p,q!
[n− k− 1]p,q!

(a	 qk+1x)n−k−1
p,q .

Hence, (3.14) is valid for all non-negative integers n.

3.2 (p, q)-Taylor formulas

In this section, two Taylor formulas for polynomials are given and some of their conse-
quences are investigated.

Theorem 30 (Njionou [69]). For any polynomial f (x) of degree N, and any number a, we have
the following (p, q)-Taylor expansion:

f (x) =
N

∑
k=0

p−(
k
2)

(
Dk

p,q f
)
(ap−k)

[k]p,q!
(x	 a)k

p,q. (3.15)

Proof. Let f be a polynomial of degree N, then we have the expansion

f (x) =
N

∑
j=0

cj(x	 a)j
p,q. (3.16)

Let k be an integer such that 0 ≤ k ≤ N, then, applying Dk
p,q on both sides of (3.16) and

using (3.5), we get

(
Dk

p,q f
)
(x) =

N

∑
j=k

cj
[j]p,q!

[j− k]p,q!
p(

k
2)(pkx	 q)j−k

p,q .

Substituting x = ap−k, it follows that(
Dk

p,q f
)
(ap−k) = ck[k]p,q!p(

k
2),

thus we get

ck = p−(
k
2)

(
Dk

p,q f
)
(ap−k)

[k]p,q!
.

This proves the desired result.

Corollary 31 (Njionou [69]). The following connection formula holds

xn =
n

∑
k=0

p−(
k
2)

[n
k

]
p,q
(ap−k)n−k(x	 a)k

p,q. (3.17)
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Proof. Consider f (x) = xn, where n is a positive integer. For k ≤ n, we have(
Dk

p,q f
)
(x) =

[n]p,q!
[n− k]p,q!

xn−k.

Thus we have

xn =
n

∑
k=0

p−(
k
2)

[n]p,q!
[n− k]p,q![k]p,q!

(ap−k)n−k(x	 a)j
p,q

=
n

∑
k=0

p−(
k
2)

[n
k

]
p,q
(ap−k)n−k(x	 a)k

p,q,

which proves the result.

Theorem 32 (Njionou [69]). For any polynomial f (x) of degree N, and any number a, we have
the following (p, q)-Taylor expansion:

f (x) =
N

∑
k=0

(−1)kq−(
k
2)

(
Dk

p,q f
)
(aq−k)

[k]p,q!
(a	 x)k

p,q. (3.18)

Proof. Let f be a polynomial of degree N, then we have the expansion

f (x) =
N

∑
j=0

cj(a	 x)j
p,q. (3.19)

Let k be an integer such that 0 ≤ k ≤ N, then, applying Dk
p,q to both sides of (3.19) and using

(3.14), we get (
Dk

p,q f
)
(x) =

N

∑
j=k

cj(−1)j [j]p,q!
[j− k]p,q!

q−(
k
2)(a	 qkx)j−k

p,q .

Substituting x = aq−k, it follows that(
Dk

p,q f
)
(aq−k) = ck(−1)k[k]p,q!q−(

k
2),

thus we get

ck = (−1)kq−(
k
2)

(
Dk

p,q f
)
(aq−k)

[k]p,q!
.

This proves the desired result.

Corollary 33 (Njionou [69]). The following connection formula holds

xn =
n

∑
k=0

(−1)kq−(
k
2)

[n
k

]
p,q
(aq−k)n−k(a	 x)k

p,q. (3.20)

Proof. Consider again f (x) = xn, where n is a positive integer. For k ≤ n, we have(
Dk

p,q f
)
(x) =

[n]p,q!
[n− k]p,q!

xn−k.
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Thus we have

xn =
n

∑
k=0

(−1)kq−(
k
2)

[n]p,q!
[n− k]p,q![k]p,q!

(aq−k)n−k(a	 x)k
p,q

=
n

∑
k=0

(−1)kq−(
k
2)

[n
k

]
p,q
(aq−k)n−k(a	 x)k

p,q.

Corollary 34 (Njionou [69]). The following connection formulas hold:

(x	 b)n
p,q =

n

∑
k=0

[n
k

]
p,q
(a	 b)n−k

p,q (x	 a)k
p,q, (3.21)

(b	 x)n
p,q =

n

∑
k=0

[n
k

]
p,q
(b	 a)n−k

p,q (a	 x)k
p,q. (3.22)

Remark 35. If one substitutes b by ab in (3.21), then one gets

(x	 ab)n
p,q =

n

∑
k=0

[n
k

]
p,q

an−k(1	 b)n−k
p,q (x	 a)k

p,q.

Now, take x = 1 and p = 1, the following well known q-binomial theorem follows

(ab; q)n =
n

∑
k=0

[n
k

]
q
an−k(b; q)n−k(a; q)k. (3.23)

Therefore, (3.21) is an obvious generalization of (3.23).

Corollary 36 (Njionou [69]). The following expansion holds

1
(1	 x)n

p,q
= 1 +

∞

∑
j=0

pj−( j
2)[n]p,q[n + 1]p,q · · · [n + j− 1]p,q

[j]p,q!
xn

= 1 +
∞

∑
j=0

[n + j− 1

j

]
p,q

pj−( j
2)xj, (3.24)

Proof. Consider the function f (x) =
1

(1	 x)n
p,q

. From (3.13), we have

Dp,q f (x) = Dp,q
1

(1	 x)n
p,q

=
p[n]p,q

(1	 x)n+1
p,q

,

and by induction,

Dj
p,q f (x) =

pj[n]p,q[n + 1]p,q · · · [n + j− 1]p,q

(1	 x)n+j
p,q

.

Hence (Dj
p,q f )(0) = pj−( j

2)[n]p,q[n + 1]p,q · · · [n + j− 1]p,q for any j ≥ 1 and hence the for-
mula follows.

Note that (8.25) is the (p, q)-analogue of Taylor’s expansion of f (x) =
1

(1− x)n in ordi-

nary calculus. Note also that when p → 1, (8.25) becomes the well known Heine binomial
formula.



Chapter 4

(p, q)-Binomial Coefficients and their
Properties

The classical binomial coefficients, usually denoted by
(

n
k

)
, play a very important role in

enumerative combinatorics. These numbers appear as the coefficients in the expansion of
the binomial expression (x + y)n. More precisely,

(x + y)n =
n

∑
k=0

(
n
k

)
xkyn−k.

This identity is known as the Binomial Theorem (see [26, 31, 76, 85]), which for y = 1
becomes

(x + 1)n =
n

∑
k=0

(
n
k

)
xk

the horizontal generating function for the binomial coefficients. These coefficients can be
interpreted as the number of possible k-subsets out of a set of n distinct elements or the
number of ways to choose k elements from the set of n distinct elements. The binomial co-
efficients are also known as combinatorics or combinatorial numbers.

q-Analogues of binomial coefficients are introduced in [24], extensively studied in [31] and
[52]. They are defined by

[n
k

]
q
=

k

∏
i=1

qn−i+1

qi − 1
=

[n]q!
[k]q![n− k]q!

,
[n

0

]
q
= 1, q 6= 1.

In this chapter we introduce the (p, q)-binomial coefficients and establish some properties
and identities similar to the ones known in the q-case and the classical case.
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4.1 Recurrence relations for the (p, q)-binomial coefficients

Theorem 37 (Corcino [32]). The (p, q)-binomial coefficients satisfy the following triangular re-
currence relations [n + 1

k

]
p,q

= pk
[n

k

]
p,q

+ qn−k+1
[ n

k− 1

]
p,q

, (4.1)

[n + 1

k

]
p,q

= qk
[n

k

]
p,q

+ pn−k+1
[ n

k− 1

]
p,q

. (4.2)

Proof. First remark that for any integer k such that 0 ≤ k ≤ n + 1, we have

[n + 1]p,q =
pn+1 − qn+1

p− q

=
pn+1 − qk pn+1−k + qk pn+1−k − qn+1

p− q

=
pn+1−k(pk − qk) + qk(pn+1−k − qn+1−k)

p− q

= qk[n + 1− k]p,q + pn+1−k[k]p,q.

Hence, it follows that

[n + 1

k

]
p,q

=
[n + 1]p,q!

[k]p,q![n + 1− k]p,q!
=

[n + 1]p,q[n]p,q!
[k]p,q![n + 1− k]p,q!

=
(qk[n + 1− k]p,q + pn+1−k[k]p,q)[n]p,q!

[k]p,q![n + 1− k]p,q!

=
qk[n + 1− k]p,q[n]p,q!
[k]p,q![n + 1− k]p,q!

+
pn+1−k[k]p,q[n]p,q!
[k]p,q![n + 1− k]p,q!

= qk [n]p,q!
[k]p,q![n− k]p,q!

+ pn+1−k [n]p,q!
[k− 1]p,q![n + 1− k]p,q!

= pk
[n

k

]
p,q

+ qn−k+1
[ n

k− 1

]
p,q

.

This proves (4.1), (4.2) follows from the fact that the (p, q)-binomial coefficients are sym-
metric in p and q.

Remark 38. Note that taking p = 1 in (4.1) yields

[n + 1

k

]
q
=

[n
k

]
q
+ qn−k+1

[ n

k− 1

]
q

which is the so-called triangular recurrence relation for the q-binomial coefficients (Comtet [31]).
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Note that if we apply (4.1) three times, to
[n + 1

k + 1

]
p,q

, we get

[n + 1

k + 1

]
p,q

= qn−(k+1)−1
[n

k

]
p,q

+ pk+1
[ n

k + 1

]
p,q

= qn−k
[n

k

]
p,q

+ pk+1

qn−k−1
[n− 1

k

]
p,q

+ pk+1
[n− 1

k + 1

]
p,q


= qn−k

[n
k

]
p,q

+ pk+1qn−k−1
[n− 1

k

]
p,q

+ p2(k+1)

qn−k−2
[n− 2

k

]
p,q

+ pk+1
[n− 2

k + 1

]
p,q


= qn−k

[n
k

]
p,q

+ pk+1qn−k−1
[n− 1

k

]
p,q

+ p2(k+1)qn−k−2
[n− 2

k

]
p,q

+ p3(k+1)
[n− 2

k + 1

]
p,q

Continuing this process until the (n− k)th application of (4.1), we get[n + 1

k + 1

]
p,q

= qn−k
[n

k

]
p,q

+ pk+1qn−k−1
[n− 1

k

]
p,q

+ p2(k+1)qn−k−2
[n− 2

k

]
p,q

+p3(k+1)qn−k−3
[n− 2

k + 1

]
p,q

+ · · ·+ p(n−k)(k+1)
[k
k

]
p,q

.

This is known as the vertical recurrence relation for the (p, q)-binomial coefficients. Next,
rewriting (4.2) in the form[n

k

]
p,q

= p−(n−k)
[n + 1

k + 1

]
p,q
− p−(n−k)qk+1

[ n

k + 1

]
p,q

,

and iterating this recurrence relation, it follows the horizontal recurrence relation. These
results are contained in the following theorem.

Theorem 39 (Corcino [32]). The (p, q) binomial coefficients satisfy the following vertical recur-
rence relation [n + 1

k + 1

]
p,q

=
n

∑
j=k

p(n−j)(k+1)qj−k
[j

k

]
p,q

and the horizontal recurrence relation[n
k

]
p,q

=
n−k

∑
j=0

(−1)j p−(j+1)(n−k)+(j+1
2 )qjk+(j+1

2 )

[ n + 1

k + j + 1

]
p,q

.

The horizontal and the vertical recurrence relations (39) may be regarded as the (p, q)-
analogues of the Hockey Stick identities (Hilton [42]). They are also known as Chu Shi-
Chieh’s identities (Chuan-Chong and Khee-Meng [26]). Indeed, if p = 1 we get[n + 1

k + 1

]
q
=

n

∑
j=k

qj−k
[j

k

]
q

and
[n

k

]
q
=

n−k

∑
j=0

(−1)jqjk+(j+1
2 )

[ n + 1

k + j + 1

]
q
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which are the vertical and the horizontal recurrence relations for the q-binomial coefficients,
respectively. Moreover, as q tends to 1, the former relations reduce to(

n + 1
k + 1

)
=

n

∑
j=k

(
j
k

)
and

(
n
k

)
=

n−k

∑
j=0

(−1)j
(

n + 1
k + j + 1

)
,

which are the classical Chu Shi-Chieh’s identities (Chuan-Chong and Khee-Meng [26]).

Proposition 40 (Generating function, Corcino [32] or Njionou [69]). The (p, q)-binomial co-
efficients are generated by the (p, q)-power

(x	 b)n
p,q =

n

∑
k=0

[n
k

]
p,q

p(
k
2)q(

n−k
2 )(−b)n−kxk. (4.3)

Proof. Taking b = 0 in (3.21), and using the fact that

(x	 0)n
p,q = p(

n
2)xn

(0	 x)n
p,q = (−1)nq(

n
2)xn

we get the result.

Corollary 41 (Corcino [32]). For n ≥ 1, we have

∑
k even

p(
k
2)q(

n−k
2 )

[n
k

]
p,q

= ∑
k odd

p(
k
2)q(

n−k
2 )

[n
k

]
p,q

. (4.4)

Proof. For x = b = 1 in (4.3) it follows that

(1	 1)n
p,q =

n

∑
k=0

[n
k

]
p,q
(−1)n−k = 0,

therefore the result follows.

4.2 Orthogonality relations

Here, using twice the connection formula (3.21), we prove a general orthogonality relation
for (p, q)-binomial coefficients.

Theorem 42. The following orthogonality relation hold true for all complex numbers a and b

n

∑
k=j

[n
k

]
p,q

[k
j

]
p,q
(a	 b)n−k

p,q (b	 a)k−j
p,q = δn,j, (4.5)

where δn,j =

{
1 n = j
0 n 6= 0

is the Kronecker delta.
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Proof. Using (3.21) we get

(x	 b)n
p,q =

n

∑
k=0

[n
k

]
p,q
(a	 b)n−k

p,q (x	 a)k
p,q.

In this relation, commute the position of a and b in the (p, q)-power in x appearing on the
right hand side, apply again (3.21) combined with the summation formula

n

∑
k=0

k

∑
j=0

A(k, j) =
n

∑
j=0

n

∑
k=j

A(k, j),

it follows that

(x	 b)n
p,q =

n

∑
k=0

[n
k

]
p,q
(a	 b)n−k

p,q (x	 a)k
p,q

=
n

∑
k=0

[n
k

]
p,q
(a	 b)n−k

p,q

 k

∑
j=0

[k
j

]
p,q
(b	 a)k−j

p,q (x	 b)j
p,q


=

n

∑
k=0

k

∑
j=0

[n
k

]
p,q

[k
j

]
p,q
(a	 b)n−k

p,q (b	 a)k−j
p,q (x	 b)j

p,q

=
n

∑
j=0

 n

∑
k=j

[n
k

]
p,q

[k
j

]
p,q
(a	 b)n−k

p,q (b	 a)k−j
p,q

 (x	 b)j
p,q.

The proof follows by equating the coefficients of (x	 a)j
p,q on both sides.

The special cases of (4.5) where a = 0 and b = 1 or b = 0 and a = 1 appeared in [32,
Theorem 4]. The proof of this result is done there by a very long induction process.

Corollary 43 (Corcino [32]). The following orthogonality relations for the (p, q)-binomial coeffi-
cients holds

n

∑
k=j

[n
k

]
p,q

[k
j

]
p,q
(−1)k−j p(

n−k
2 )q(

k−j
2 ) = δn,j,

n

∑
k=j

[n
k

]
p,q

[k
j

]
p,q
(−1)n−kq(

n−k
2 )p(

k−j
2 ) = δn,j.

4.3 (p, q)-Vandermonde’s identity

Vandermonde’s identity states the following(
n + m

k

)
=

k

∑
j=0

(
m
j

)(
n

k− j

)
. (4.6)

The corresponding q-analogue of Vandermonde’s identity is given by [38][m + n

k

]
q
=

k

∑
j=0

qj(m−k+j)
[n

j

]
q

[ m

k− j

]
q
. (4.7)

In this section, we derive a (p, q)-analogue of Vandermonde’s identity.
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Theorem 44. The following identity for the (p, q)-binomial coefficients holds

[n + m

k

]
p,q

=
k

∑
j=0

pj(j−m−k)+mkqj(n−k+j)
[m

j

]
p,q

[ n

k− j

]
p,q

. (4.8)

Proof. First let us introduce the following notation

(a⊕ b)n
p,q = (a	 (−b))n

p,q =
n−1

∏
k=0

(apk + bqk).

From (3.7) we can write

(x	 b)m+n
p,q = (x	 b)m

p,q(pmx	 qmb)n
p,q.

Using (4.3), respectively, with (x	 b)m
p,q and (pmx	 qmb)n

p,q combined with the Cauchy
product, it follows that

(x⊕ b)m+n
p,q = (x⊕ b)m

p,q(pmx⊕ qmb)n
p,q

=

 ∞

∑
k=0

[m
k

]
p,q

p(
k
2)q(

m−k
2 )bm−kxk

 ∞

∑
k=0

[n
k

]
p,q

p(
k
2)q(

n−k
2 )(qmb)n−k(pmx)k


=

∞

∑
k=0

 k

∑
j=0

[m
j

]
p,q

p(
j
2)q(

m−j
2 )bm−jxj

[ n

k− j

]
p,q

p(
k−j

2 )q(
n+j−k

2 )(qmb)n+j−k(pmx)k−j


=

∞

∑
k=0

 k

∑
j=0

[m
j

]
p,q

[ n

k− j

]
p,q

p(
j
2)+(k−j

2 )+m(k−j)q(
m−j

2 )+(n+j−k
2 )+m(n+j−k)bm−jxjbn+j−kxk−j


=

∞

∑
k=0

 k

∑
j=0

[m
j

]
p,q

[ n

k− j

]
p,q

p(
j
2)+(k−j

2 )+m(k−j)q(
m−j

2 )+(n+j−k
2 )+m(n+j−k)

 bm+n−kxk

=
∞

∑
k=0

 k

∑
j=0

[m
j

]
p,q

[ n

k− j

]
p,q

pj(j−m−k)+mkqj(n−k+j)

 p(
k
2)q(

n+m−k
2 )bm+n−kxk.

Also, by (4.3), we can write

(x⊕ b)n+m
p,q =

∞

∑
k=0

[n + m

k

]
p,q

p(
k
2)q(

n−k
2 )bn+m−kxk.

Identifying the coefficients of xk on both sides, the result follows.

Remark 45. For p = 1 in (4.8) and using the symmetric role of m and n, we recover (4.7).



Chapter 5

(p, q)-Exponential and
(p, q)-Trigonometric Functions

In this chapter we introduce three (p, q)-analogues of the exponential function and their
associated (p, q)-trigonometric functions.

5.1 The usual (p, q)-exponential functions

Definition 46 (Jagannathan et al. [49], Njionou [68, 84, 70]). The small (p, q)-exponential
function ep,q(z) and the big (p, q)-exponential function Ep,q(z) are defined, respectively, by

ep,q(z) =
∞

∑
n=0

p(
n
2)

[n]p,q!
zn, (5.1)

Ep,q(z) =
∞

∑
n=0

q(
n
2)

[n]p,q!
zn. (5.2)

Remark 47. It is worth noting that ep,q(x) = Eq,p(x).

Proposition 48 (Jagannathan et al. [49]). The following equation applies:

ep,q(x)Ep,q(−x) = 1. (5.3)

Proof. The result is proved in [49] using (p, q)-hypergeometric series. We provide here a
direct proof. From (5.1) and (5.2), and the general identity (which is a direct consequence of
the Cauchy product)(

∞

∑
n=0

an
tn

[n]p,q!

)(
∞

∑
n=0

bn
tn

[n]p,q!

)
=

∞

∑
n=0

 n

∑
k=0

[n
k

]
p,q

akbn−k

 tn

[n]p,q!
, (5.4)

it follows that

ep,q(x)Ep,q(−x) =

(
∞

∑
n=0

p(
n
2)

[n]p,q!
xn

)(
∞

∑
n=0

q(
n
2)

[n]p,q!
(−x)n

)

=
∞

∑
n=0

 n

∑
k=0

[n
k

]
p,q
(−1)kq(

k
2)p(

n−k
2 )

 xn

[n]p,q!
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It remains to prove that
n

∑
k=0

[n
k

]
p,q
(−1)kq(

k
2)p(

n−k
2 ) = δn,0.

Taking a = 0 in (3.15) it follows that

fn(x) =
n

∑
k=0

(Dk
p,q f )(0)
[k]p,q!

xn

for any polynomial fn(x) of degree n. Applying this formula to fn(x) = (a	 x)n
p,q, it follows

that

(a	 x)n
p,q =

n

∑
k=0

[n
k

]
p,q

q(
k
2)p(

n−k
2 )(−x)kan−k.

Taking finally x = a = 1, the result follows.

Proposition 49 (Njionou [69]). Let λ be a complex number, then the following relations hold

Dp,qep,q(λx) = λep,q(λpx),
Dp,qEp,q(λx) = λEp,q(λqx).

Proof. From the definitions of the (p, q)-derivative and the (p, q)-exponential function ep,q(x),
it follows that

Dp,qep,q(λx) =
∞

∑
n=0

p(
n
2)λn

[n]p,q!
[n]p,qzn−1 = λ

∞

∑
n=1

p(
n
2)

[n− 1]p,q!
(λz)n−1

= λ
∞

∑
n=0

p(
n+1

2 )

[n]p,q!
(λz)n = λ

∞

∑
n=0

p(
n
2)+n

[n]p,q!
(λz)n

= λ
∞

∑
n=0

p(
n
2)

[n]p,q!
(λpz)n = ep,q(λpz).

The proof of the second equation follows in the same way.

Proposition 50 (Njionou [69]). Let n be a nonnegative integer, then the following equations hold

Dn
p,qep,q(λx) = λn p(

n
2)ep,q(λpnx), (5.5)

Dn
p,qEp,q(λx) = λnq(

n
2)λEp,q(λqnx). (5.6)

Proof. The proof follows by induction from the definitions of the (p, q)-exponentials and
the (p, q)-derivative.

Theorem 51 (Njionou [69]). Let a be a complex number. The following expansions hold:

ep,q(λx) = ep,q(λa)
∞

∑
n=0

((p− q)λ)n

(p	 q)n
p,q

(x	 a)n
p,q,

Ep,q(λx) =
∞

∑
n=0

(
q
p

)(n
2) λnEp,q(λa(q/p)n)

[n]p,q!
(x	 a)n

p,q.
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Proof. Note that in (3.15), N can be taken to be ∞ with the condition that the infinite series
obtained is convergent. The formula becomes

f (x) =
∞

∑
n=0

p−(
n
2)

(
Dn

p,q f
)
(ap−n)

[n]p,q!
(x	 a)n

p,q.

For f (x) = ep,q(x), using the relations (3.2) and (5.5), it follows that

ep,q(λx) =
∞

∑
n=0

p−(
n
2)

λn p(
n
2)ep,q(λa)
[n]p,q!

(x	 a)n
p,q

= ep,q(λa)
∞

∑
n=0

λn

[n]p,q!
(x	 a)n

p,q

= ep,q(λa)
∞

∑
n=0

(x	 a)n
p,q

(p	 q)n
p,q

((p− q)λ)n.

For f (x) = Ep,q(x), using the relations (3.2) and (5.6), it follows that

Ep,q(λx) =
∞

∑
n=0

p−(
n
2)

λnq(
n
2)Ep,q(λa(q/p)n)

[n]p,q!
(x	 a)n

p,q

=
∞

∑
n=0

(
q
p

)(n
2) λnEp,q(λa(q/p)n)

[n]p,q!
(x	 a)n

p,q.

Theorem 52 (Njionou [69]). Let a be a complex number. The following expansions hold:

ep,q(x) =
∞

∑
n=0

(
− p

q

)(n
2) λnep,q(λa(p/q)n)

[n]p,q!
(a	 x)n

p,q,

Ep,q(x) = Ep,q(λa)
∞

∑
n=0

((q− p)λ)n

(p	 q)n
p,q

(a	 x)n
p,q.

Proof. Note that in (3.18), N can be taken to be ∞ with the condition that the infinite series
obtained is convergent. The formula becomes

f (x) =
∞

∑
n=0

(−1)nq−(
n
2)

(
Dn

p,q f
)
(aq−n)

[n]p,q!
(a	 x)n

p,q.

For f (x) = ep,q(x), using the relations (3.2) and (5.5), it follows that

ep,q(λx) =
∞

∑
n=0

(−1)nq−(
n
2)

λn p(
n
2)ep,q(λa(p/q)n)

[n]p,q!
(a	 x)n

p,q

=
∞

∑
n=0

(
− p

q

)(n
2) λnep,q(λa(p/q)n)

[n]p,q!
(a	 x)n

p,q.

For f (x) = Ep,q(x), using the relations (3.2) and (5.6), it follows that

Ep,q(λx) =
∞

∑
n=0

(−1)nq−(
n
2)

λnq(
n
2)Ep,q(λa)
[n]p,q!

(a	 x)n
p,q

= Ep,q(λa)
∞

∑
n=0

(−1)n λn

[n]p,q!
(a	 x)n

p,q

= Ep,q(λa)
∞

∑
n=0

(a	 x)n
p,q

(p	 q)n
p,q

((q− p)λ)n.
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5.2 (p, q)-trigonometric functions

From (5.1) we can derive

ep,q(iz) =
∞

∑
n=0

p(
n
2)

[n]p,q!
(iz)n =

∞

∑
n=0

(−1)n p(
2n
2 )

[2n]p,q!
z2n + i

∞

∑
n=0

(−1)n p(
2n+1

2 )

[2n + 1]p,q!
z2n+1. (5.7)

By (5.7), we define the (p, q)-cosine and the (p, q)-sine functions as follows:

cosp,q(z) =
ep,q(ix) + ep,q(−ix)

2
=

∞

∑
n=0

(−1)n p(
2n
2 )

[2n]p,q!
z2n, (5.8)

sinp,q(z) =
ep,q(ix)− ep,q(−ix)

2i
=

∞

∑
n=0

(−1)n p(
2n+1

2 )

[2n + 1]p,q!
z2n+1. (5.9)

Analogously, from (5.2) we can derive

Ep,q(iz) =
∞

∑
n=0

q(
n
2)

[n]p,q!
(iz)n =

∞

∑
n=0

(−1)nq(
2n
2 )

[2n]p,q!
z2n + i

∞

∑
n=0

(−1)nq(
2n+1

2 )

[2n + 1]p,q!
z2n+1. (5.10)

And by (5.7), we define the big (p, q)-cosine and the big (p, q)-sine functions as follows:

Cosp,q(z) =
Ep,q(ix) + Ep,q(−ix)

2
=

∞

∑
n=0

(−1)nq(
2n
2 )

[2n]p,q!
z2n, (5.11)

Sinp,q(z) =
Ep,q(ix)− Ep,q(−ix)

2i
=

∞

∑
n=0

(−1)nq(
2n+1

2 )

[2n + 1]p,q!
z2n+1. (5.12)

It is easy to see that

cosp,q(z) = Cosq,p(z) and sinp,q(z) = Sinq,p(z).

Proposition 53 (Njionou [69]). The following equations hold true:

Dp,qcosp,q(z) =−sinp,q(pz),
Dp,qsinp,q(z) = cosp,q(pz),

Dp,qCosp,q(z) =−Sinp,q(qz),
Dp,qSinp,q(z) = Cosp,q(qz).

Proof. From the definition of cosp,q(z) and the derivative property (Proposition 49) of the
(p, q)-exponential function ep,q(z), it follows that

Dp,qcosp,q(x) =
1
2
(

Dp,qcosp,q(iz) + Dp,qcosp,q(−iz)
)

=
1
2
(
isinp,q(ipz)− isinp,q(−ipz)

)
= −sinp,q(pz).

The three other equations are established in the same way.
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Remark 54. Note that, using the fact relation

Dp,q [ f (γz)] = γ(Dp,q f )(γz)

we can see that both the (p, q)-cosine and the (p, q)-sine functions are solutions of the second-order
(p, q)-difference equation

D2
p,qy(z) + p2y(p2z) = 0.

Proposition 55 (Njionou [69]). The following equations hold

cosp,q(x)Cosp,q(x) + sinp,q(x)Sinp,q(x) = 1,
sinp,q(x)Cosp,q(x)− cosp,q(x)Sinp,q(x) = 0.

Proof. Using (5.3), it follows that

cosp,q(x)Cosp,q(x) =
(

ep,q(ix) + ep,q(−ix)
2

)(
Ep,q(ix) + Ep,q(−ix)

2

)
=

1
4
(
ep,q(ix)Ep,q(ix) + ep,q(−ix)Ep,q(ix) + 2

)
sinp,q(x)Sinp,q(x) =

(
ep,q(ix)− ep,q(−ix)

2i

)(
Ep,q(ix)− Ep,q(−ix)

2i

)
=−1

4
(
ep,q(ix)Ep,q(ix) + ep,q(−ix)Ep,q(ix)− 2

)
Hence

cosp,q(x)Cosp,q(x) + sinp,q(x)Sinp,q(x) = 1.

The second equation follows in the same way.

5.3 Hyperbolic (p, q)-trigonometric functions

Let us now define the hyperbolic (p, q)-cosine and the hyperbolic (p, q)-sine functions as
follows

coshp,q(z) =
ep,q(z) + ep,q(−z)

2
=

∞

∑
n=0

p(
2n
2 )

[2n]p,q!
z2n, (5.13)

sinhp,q(z) =
ep,q(z)− ep,q(−z)

2
=

∞

∑
n=0

p(
2n+1

2 )

[2n + 1]p,q!
z2n+1, (5.14)

Coshp,q(z) =
Ep,q(z) + Ep,q(−z)

2
=

∞

∑
n=0

q(
2n
2 )

[2n]p,q!
z2n, (5.15)

Sinhp,q(z) =
Ep,q(z)− Ep,q(−z)

2
=

∞

∑
n=0

q(
2n+1

2 )

[2n + 1]p,q!
z2n+1. (5.16)

Proposition 56 (Njionou [69]). The following equations hold

coshp,q(z)Coshp,q(z) + sinhp,q(z)Sinhp,q(z) = 1,
coshp,q(z)Sinhp,q(z)− sinhp,q(z)Coshp,q(z) = 0.

Proof. The proof is similar to the proof of Proposition (55).



Chapter 6

(p, q)-Antiderivative and
(p, q)-Integral

6.1 The (p, q)-antiderivative

The function F(x) is a (p, q)-antiderivative of f (x) if Dp,qF(x) = f (x). It is denoted by∫
f (x)dp,qx. (6.1)

Note that we say "a" (p, q)-antiderivative instead of "the" (p, q)-antiderivative, because, as
in ordinary calculus, an antiderivative is not unique. In ordinary calculus, the uniqueness
is up to a constant since the derivative of a function vanishes if and only if it is a constant.
The situation in the twin basic quantum calculus is more subtle. Dp,q ϕ(x) = 0 if and only
if ϕ(px) = ϕ(qx), which does not necessarily imply ϕ a constant. If we require ϕ to be a
formal power series, the condition ϕ(px) = ϕ(qx) implies pncn = qncn for each n, where cn
is the coefficient of xn. It is possible only when cn = 0 for any n ≥ 1, that is, ϕ is constant.
Therefore, if

f (x) =
∞

∑
n=0

anxn

is a formal power series, then among formal power series, f (x) has a unique
(p, q)-antiderivative up to a constant term, which is∫

f (x)dp,qx =
∞

∑
n=0

anxn+1

[n + 1]p,q
+ C. (6.2)

6.2 The (p, q)-integral

We define the inverse of the (p, q)-differentiation called the (p, q)-integration. Let f (x) be
an arbitrary function and F(x) be a function such that Dp,qF(x) = f (x), then

F(px)− F(qx)
(p− q)x

= f (x).
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Therefore, F(px)− F(qx) = εx f (x) where ε = (p− q). This relation leads to the formula

F
(

p1q−1x
)
− F

(
p0q−0x

)
= εp0q−1x f

(
p0q−1x

)
F
(

p2q−2x
)
− F

(
p1q−1x

)
= εp1q−2x f

(
p1q−2x

)
F
(

p3q−3x
)
− F

(
p2q−2x

)
= εp2q−3x f

(
p2q−3x

)
...

F
(

pn+1q−(n+1)x
)
− F

(
pnq−nx

)
= εpnq−(n+1)x f

(
pnq−(n+1)x

)
By adding these formulas term by term, we obtain

F
(

pn+1q−(n+1)x
)
− F(x) = (p− q)x

n

∑
k=0

f
(

pkq−(k+1)x
)

.

Assuming
∣∣∣∣ p

q

∣∣∣∣ < 1 and letting n→ ∞, we have

F(x)− F(0) = (q− p)x
∞

∑
k=0

pk

qk+1 f
(

pk

qk+1 x
)

.

Similarly, for
∣∣∣∣ p

q

∣∣∣∣ > 1, we have

F(x)− F(0) = (p− q)x
∞

∑
k=0

qk

pk+1 f
(

qk

pk+1 x
)

.

Therefore, we give the following definition.

Definition 57 (Njionou [69]). Let f be an arbitrary function. We define the (p, q)-integral of f as
follows: ∫

f (x)dp,qx = (p− q)x
∞

∑
k=0

qk

pk+1 f
(

qk

pk+1 x
)

. (6.3)

Remark 58. Note that this is a formal definition since we do not care about the convergence of the
right-hand side of (6.3).

From this definition, one easily derives a more general formula∫
f (x)Dp,qg(x)dp,qx = (p− q)x

∞

∑
k=0

qk

pk+1 f
(

qk

pk+1 x
)

Dp,qg
(

qk

pk+1 x
)

= (p− q)x
∞

∑
k=0

qk

pk+1 f
(

qk

pk+1 x
) g

(
qk

pk x
)
− g

(
qk+1

pk+1 x
)

(p− q) qk

pk+1 x

=
∞

∑
k=0

f
(

qk

pk+1 x
)(

g
(

qk

pk x
)
− g

(
qk+1

pk+1 x
))

,

or otherwise stated∫
f (x)dp,qg(x) =

∞

∑
k=0

f
(

qk

pk+1 x
)(

g
(

qk

pk x
)
− g

(
qk+1

pk+1 x
))

. (6.4)

We have derived (6.3) merely formally and have yet to examine under what conditions it
really converges to a (p, q)-antiderivative. The theorem below gives a sufficient condition
for this.
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Theorem 59 (Njionou [69]). Suppose 0 <
q
p
< 1. If | f (x)xα| is bounded on the interval (0, A]

for some 0 ≤ α < 1, then the (p, q)-integral (6.3) converges to a function F(x) on (0, A], which is
a (p, q)-antiderivative of f (x). Moreover, F(x) is continuous at x = 0 with F(0) = 0.

Proof. Let us assume that | f (x)xα| < M on (0, A]. For any 0 < x < A, j ≥ 0,∣∣∣∣ f ( qj

pj+1 x
)∣∣∣∣ < M

(
qj

pj+1 x
)−α

.

Thus, for 0 < x ≤ A, we have∣∣∣∣ qj

pj+1 f
(

qj

pj+1 x
)∣∣∣∣ < M

qj

pj+1

(
qj

pj+1 x
)−α

= Mpα−1x−α

[(
q
p

)1−α
]j

. (6.5)

Since, 1− α > 0 and 0 <
q
p
< 1, we see that our series is bounded above by a convergent

geometric series. Hence, the right-hand size of (6.3) converges point-wise to some function
F(x). It follows directly from (6.3) that F(0) = 0. The fact that F(x) is continuous at x = 0,
that is F(x) tends to zero as x → 0, is clear if we consider, using (6.5)∣∣∣∣∣(p− q)x

∞

∑
k=0

qk

pk+1 f
(

qk

pk+1 x
)∣∣∣∣∣ < M(p− q)x1−α

p1−α − q1−α
, 0 < x ≤ A.

In order to check that F(x) is a (p, q)-antiderivative we (p, q)-differentiate it:

Dp,qF(x) =
1

(p− q)x

(
(p− q)px

∞

∑
k=0

qk

pk+1 f
(

qk

pk+1 px
)
− (p− q)qx

∞

∑
k=0

qk

pk+1 f
(

qk

pk+1 qx
))

=
∞

∑
k=0

qk

pk f
(

qk

pk x
)
−

∞

∑
k=0

qk+1

pk+1 f
(

qk+1

pk+1 x
)

=
∞

∑
k=0

qk

pk f
(

qk

pk x
)
−

∞

∑
k=1

qk

pk f
(

qk

pk x
)

= f (x).

Note that if x ∈ (0, A] and 0 <
q
p
< 1, then

q
p

x ∈ (0, A], and the (p, q)-differentiation is

valid.

Remark 60. Note that if the assumption of Theorem 59 is satisfied, the (p, q)-integral gives the
unique (p, q)-antiderivative that is continuous at x = 0, up to a constant. On the other hand, if we
know that F(x) is a (p, q)-antiderivative of f (x) and F(x) is continuous at x = 0, F(x) must be
given, up to a constant, by (6.3), since a partial sum of the (p, q)-integral is

(p− q)x
N

∑
j=0

qj

pj+1 f
(

qj

pj+1 x
)
= (p− q)x

N

∑
j=0

qj

pj+1 Dp,q F(t)|
t= qj

pj+1 x

= (p− q)x
N

∑
j=0

qj

pj+1

F
(

qj

pj x
)
− F

(
qj+1

pj+1 x
)

(p− q) qj

pj+1 x


=

N

∑
j=0

(
F
(

qj

pj x
)
− F

(
qj+1

pj+1 x
))

= F(x)− F
(

qN+1

pN+1 x
)
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which tends to F(x)− F(0) as N tends to ∞, by the continuity of F(0) at x = 0.

Let us emphasize on an example where the (p, q)-derivative fails. Consider

f (x) =
1
x

. Since

Dp,q ln x =
ln px− ln qx
(p− q)x

=
ln p− ln q

p− q
1
x

, (6.6)

we have ∫ 1
x

dp,qx =
p− q

ln p− ln q
ln x. (6.7)

However, the formula (6.3) gives∫ 1
x

dp,qx = (p− q)
∞

∑
j=0

1 = ∞.

The formula fails because f (x)xα is not bounded for any 0 ≤ α < 1. Note that ln x is not
continuous at x = 0.
We now apply formula (6.3) to define the definite (p, q)-integral.

Definition 61 (Njionou [69]). Let f be an arbitrary function and a be a real number, we set

∫ a

0
f (x)dp,qx = (q− p)a

∞

∑
k=0

pk

qk+1 f
(

pk

qk+1 a
)

if
∣∣∣∣ p

q

∣∣∣∣ < 1 (6.8)

∫ a

0
f (x)dp,qx = (p− q)a

∞

∑
k=0

qk

pk+1 f
(

qk

pk+1 a
)

if
∣∣∣∣ p

q

∣∣∣∣ > 1. (6.9)

Example 62. Let us compute the (p, q)-integral of the function f (x) = xn. We take the case where∣∣∣∣ p
q

∣∣∣∣ < 1, the other case being similar:

∫ a

0
xndp,qx = (q− p)a

∞

∑
k=0

pk

qk+1

(
pk

qk+1 a
)n

=
q− p

qn
1

1− pn+1

qn+1

an+1

=
q− p

qn+1 − pn+1 an+1

=
an+1

[n + 1]p,q
.

Example 63. For g(x) = ep,q(x) =
∞
∑

n=0

xn

[n]p,q!
.

∫ a

0
ep,q(x)dp,qx =

∞

∑
n=0

∫ a

0

xn

[n]pq!
dp,qx

=
∞

∑
n=0

an+1

[n]p,q![n + 1]p,q
=

∞

∑
n=0

an+1

[n + 1]p,q!

= ep,q(a)− 1.
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Remark 64. Note that for p = 1, the definition (6.9) reduces to the well known Jackson integral
(see [52, P. 67]) ∫

f (x)dqx = (1− q)x
∞

∑
k=0

qk f (qkx).

For p = r1/2, q = s−1/2, ∣∣∣∣ p
q

∣∣∣∣ < 1 ⇐⇒ |rs| < 1,

the formula (6.8) reads∫ a

0
f (x)dp,qx = (s−1/2 − r1/2)a

∞

∑
k=0

rk/2s(k+1)/2 f
(

rk/2s(k+1)/2a
)

,

which is the formula (11) given in [23]. Once more, for p = r1/2, q = s−1/2,∣∣∣∣ p
q

∣∣∣∣ > 1 ⇐⇒ |rs| > 1,

the formula (6.9) reads∫ a

0
f (x)dp,qx = (r1/2 − s−1/2)a

∞

∑
k=0

s−k/2r−(k+1)/2 f
(

s−k/2r−(k+1)/2a
)

,

which is the formula (10) given in [23].

Definition 65 (Njionou [69]). Let f be an arbitrary function, a and b be two non-negative numbers
such that a < b, then we set∫ b

a
f (x)dp,qx =

∫ b

0
f (x)dp,qx−

∫ a

0
f (x)dp,qx. (6.10)

We cannot obtain a good definition of the improper integral by simply letting a→ ∞ in
(6.9). Instead, since

∫ qj/pj

qj+1/pj+1
f (x)dp,qx =

∫ qj

pj

0
f (x)dp,qx−

∫ qj+1

pj+1

0
f (x)dp,qx

= (p− q)

{
∞

∑
k=0

qk+j

pk+1+j f
(

qk+j

pk+1+j

)
−

∞

∑
k=0

qk+j+1

pk+j+2 f
(

qk+j+1

pk+j+2

)}

= (p− q)
qj

pj+1 f
(

qj

pj+1

)
,

it is natural to define the improper (p, q)-integral as follows.

Definition 66 (Njionou [69]). The improper (p, q)-integral of f (x) on [0; ∞) is defined to be

∫ ∞

0
f (x)dp,qx =

∞

∑
j=−∞

∫ qj/pj

qj+1/pj+1
f (x)dp,qx

= (p− q)
∞

∑
j=−∞

qj

pj+1 f
(

qj

pj+1

)
(6.11)
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if 0 <
q
p
< 1 or

∫ ∞

0
f (x)dp,qx =

∞

∑
j=−∞

∫ qj+1/pj+1

qj/pj
f (x)dp,qx (6.12)

if
q
p
> 1 where the formula is used.

Proposition 67 (Njionou [69]). Suppose that 0 <
q
p
< 1. The improper (p, q)-integral defined

above converges if xα f (x) is bounded in a neighbourhood of x = 0 with α < 1 and for sufficiently
large x with some α > 1.

Proof. By (6.11) we have

∫ ∞

0
f (x)dp,qx = (p− q)

∞

∑
j=−∞

qj

pj+1 f
(

qj

pj+1

)

= (p− q)

{
∞

∑
j=0

qj

pj+1 f
(

qj

pj+1

)
+

∞

∑
j=1

q−j

p−j+1 f
(

q−j

p−j+1

)}

The convergence of the first sum is proved by Theorem 59. For the second sum, suppose
for x large we have |xα f (x)| < M where α > 1 and M > 0. Then, we have for sufficiently
large j, ∣∣∣∣ q−j

p−j+1 f
(

q−j

p−j+1

)∣∣∣∣= pα−1
(

q
p

)j(α−1)
∣∣∣∣∣
(

q−j

p−j+1

)α

f
(

q−j

p−j+1

)∣∣∣∣∣
< Mpα−1

(
q
p

)j(α−1)

.

Therefore, the second sum is also bounded above by a convergent geometric series, and
thus converges.

Note that a similar proposition can be stated when
q
p
> 1.

Definition 68 (Njionou [69]). Let f be an arbitrary function and a be a nonnegative real number,
then we put

∫ ∞

a
f (x)dp,qx = (q− p)a

∞

∑
k=0

p−k

q−(k+1)
f
(

p−k

q−(k+1)
a
)

if
∣∣∣∣ p

q

∣∣∣∣ < 1 (6.13)

∫ ∞

a
f (x)dp,qx = (p− q)a

∞

∑
k=0

q−k

p−(k+1)
f
(

q−k

p−(k+1)
a
)

if
∣∣∣∣ p

q

∣∣∣∣ > 1. (6.14)

Remark 69. Combining (6.8) with (6.13) and (6.9) with (6.14) we get for a = 1

∫ ∞

0
f (x)dp,qx = (q− p)

∞

∑
k=−∞

pk

qk+1 f
(

pk

qk+1

)
if

∣∣∣∣ p
q

∣∣∣∣ < 1 (6.15)

∫ ∞

0
f (x)dp,qx = (p− q)

∞

∑
k=−∞

qk

pk+1 f
(

qk

pk+1

)
if

∣∣∣∣ p
q

∣∣∣∣ > 1. (6.16)



6.3 The fundamental theorem of (p, q)-calculus 36

6.3 The fundamental theorem of (p, q)-calculus

In ordinary calculus, a derivative is defined as the limit of a ratio, and a definite integral is
defined as the limit of an infinite sum. Their subtle and surprising relation is given by the
Newton-Leibniz formula, also called the fundamental theorem of calculus. Following the
work done in q-calculus, where the introduction of the definite integral (see [52]) has been
motivated by an antiderivative, the relation between the (p, q)-derivative and the (p, q)-
integral is more obvious. Similarly to the ordinary and the q cases, we have the following
fundamental theorem, or (p, q)-Newton-Leibniz formula.

Theorem 70 (Fundamental theorem of (p, q)-calculus (Njionou [69])). If F(x) is a (p, q)-
antiderivative of f (x) and F(x) is continuous at x = 0, we have∫ b

a
f (x)dp,qx = F(b)− F(a), (6.17)

where 0 ≤ a < b ≤ ∞.

Proof. Since F(x) is continuous at x = 0, F(x) is given by the formula

F(x) = (p− q)x
∞

∑
j=0

qj

pj+1 f
(

qj

pj+1 x
)
+ F(0).

Since by definition, ∫ a

0
f (x)dp,qx = (p− q)a

∞

∑
j=0

qj

pj+1 f
(

qj

pj+1 a
)

,

we have ∫ a

0
f (x)dp,qx = F(a)− F(0).

Similarly, we have, for finite b, ∫ b

0
f (x)dp,qx = F(b)− F(0),

and thus ∫ b

a
f (x)dp,qx =

∫ b

0
f (x)dp,qx−

∫ a

0
f (x)dp,qx = F(b)− F(a).

Putting a =
qj+1

pj+1 and b =
qj

pj and considering the definition of the improper (p, q)-integral

(6.11), we see that (6.17) is true for b = ∞.

Corollary 71. If f ′(x) exists in a neighbourhood of x = 0 and is continuous at x = 0, where f ′(x)
denotes the ordinary derivative of f (x), we have∫ b

a
Dp,q f (x)dp,qx = f (b)− f (a). (6.18)

Proof. Using L’Hospital’s rule, we get

lim
x→0

Dp,q f (x) = lim
x→0

f (px)− f (qx)
(p− q)x

= lim
x→0

p f ′(px)− q f ′(qx)
p− q

= f ′(0).

Hence Dp,q f (x) can be made continuous at x = 0 if we define (Dp,q f )(0) = f ′(0), and (6.18)
follows from the theorem.
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Similarly as the q-integral, an important difference between the (p, q)-integral and the
its ordinary counterpart is that even if we are integrating a function on an interval like
[1; 2], we have to care about the behaviour at x = 0. This has to do with the definition of the
definite (p, q)-integral and the condition for the convergence of the (p, q)-integral.

Now suppose that f (x) and g(x) are two functions whose ordinary derivatives exist in
a neighbourhood of x = 0. Using the product rule (2.13), we have

Dp,q( f (x)g(x)) = f (px)Dp,qg(x) + g(qx)Dp,q f (x).

Since the product of differentiable functions is also differentiable in ordinary calculus, we
can apply Corollary 71 to obtain

f (b)g(b)− f (a)g(a) =
∫ b

a
f (px)

(
Dp,qg(x)

)
dp,qx +

∫ b

a
g(qx)

(
Dp,q f (x)

)
dp,qx,

or ∫ b

a
f (px)

(
Dp,qg(x)

)
dp,qx = f (b)g(b)− f (a)g(a)−

∫ b

a
g(qx)

(
Dp,q f (x)

)
dp,qx, (6.19)

which is the formula of (p, q)-integration by part. Note that b = ∞ is allowed.



Chapter 7

(p, q)-Gamma and (p, q)-Beta
functions

Being related to solutions of special types of differential equations, many important func-
tions in analysis are defined in terms of definite integrals. The following two functions,
introduced by Euler,

Γ(t) =
∫ ∞

0
xt−1e−xdx, t > 0, (7.1)

B(t, s) =
∫ 1

0
xt−1(1− x)s−1dx, , s, t > 0, (7.2)

and called the gamma and the beta functions respectively, are the most important examples.
The Euler Gamma function Γ(t) first happens in 1729 in a correspondance between Euler
and Goldbach. Euler gave an equivalent representation of the Gamma function (see [12, 14,
86])

Γ(t) = lim
n→∞

n!nt

t(t + 1) · · · (t + n)
. (7.3)

Some of their most important properties are

Γ(t + 1) = tΓ(t), (7.4)
Γ(n + 1) = n! if n is a non-negative integer, (7.5)

B(t, s) =
Γ(t)Γ(s)
Γ(t + s)

. (7.6)

Note that equation (7.5) tells us that the gamma function may be regarded as a generaliza-
tion of the classical factorial. Also, from (7.6), we see that the beta function is symmetric in
t and s.
The q-gamma function Γq(t), a q-analogue of Euler’s gamma function, was introduced by
Thomae [87] and later by Jackson [44] as the infinite product

Γq(t) =
(1	 q)t−1

q

(1− q)t−1 , t > 0, (7.7)

where q is a fixed real number 0 < q < 1. Notice that, under this assumption on q, the
infinite product (7.7) is convergent. Its q-integral representation was given in [52, 83]. Note
that for when t is a non-negative integer, (7.7) becomes

Γq(n + 1) =
(1	 q)n

(1− q)n =
(q; q)n

(1− q)n = [n]q!.
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Hence, the q-gamma function is regarded as a generalization of the q-factorial. In this chap-
ter we study the (p, q)-analogues of these two functions and their various properties, in-
cluding the (p, q)-analogues of (7.4)-(7.6). Unless otherwise stated, we shall always assume
that 0 < q < p < 1.

Before we give our definitions of (p, q)-gamma and (p, q)-beta functions, we first give fur-
ther useful properties for the (p, q)-power.

7.1 Some properties of the (p, q)-power

We prove here some important formulas for the (p, q)-power.

Let us recall the so-called (p, q)-powers

(x	 a)n
p,q = (x− a)(px− aq) · · · (xpn−1 − aqn−1),

(x⊕ a)n
p,q = (x + a)(px + aq) · · · (xpn−1 + aqn−1).

These definitions are extended to

(a	 b)∞
p,q =

∞

∏
k=0

(apk − qkb), (7.8)

(a⊕ b)∞
p,q =

∞

∏
k=0

(apk + qkb) (7.9)

with the assumption that the infinite products are convergent.

Proposition 72 (Njionou [67]). The following identities are easily verified

(a	 b)n
p,q =

(a	 b)∞
p,q

(apn 	 bqn)∞
p,q

, (7.10)

(a	 b)n+k
p,q = (a	 b)n

p,q(apn 	 bqn)k
p,q, (7.11)

(apn 	 bqn)k
p,q =

(a	 b)k
p,q(apk 	 bqk)n

p,q

(a	 b)n
p,q,

(7.12)

(apk 	 bqk)n−k
p,q =

(a	 b)n
p,q

(a	 b)k
p,q

, (7.13)

(ap2k 	 bq2k)n−k
p,q =

(a	 b)n
p,q(apn 	 bqn)k

p,q

(a	 b)2k
p,q

, (7.14)

(a2 	 b2)n
p2,q2 = (a	 b)n

p,q(a⊕ b)n
p,q, (7.15)

(a	 b)2n
p,q = (a	 b)n

p2,q2(ap	 bq)n
p2,q2 , (7.16)

(a	 b)3n
p,q = (a	 b)n

p3,q3(ap	 bq)n
p3,q3(ap2 	 bq2)n

p3,q3 , (7.17)

(a	 b)`n
p,q =

`−1

∏
j=0

(apj 	 bqj)n
p`,q` . (7.18)
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Proof. From (7.8), we can write

(a	 b)∞
p,q =

∞

∏
k=0

(apk − qkb)

=
n−1

∏
k=0

(apk − qkb)
∞

∏
k=n

(apk − qkb)

=
n−1

∏
k=0

(apk − qkb)
∞

∏
k=0

(apn pk − qnqkb)

= (a	 b)n
p,q(aqn 	 bqn)∞

p,q.

This proves (7.10). Next,

(a	 b)n+k
p,q =

n+k

∏
k=0

(apk − qkb)

=
n−1

∏
k=0

(apk − qkb)
n+k

∏
k=n

(apk − qkb)

=
n−1

∏
k=0

(apk − qkb)
n

∏
k=0

(apn pk − qnqkb)

= (a	 b)n
p,q(apn 	 bqn)k

p,q.

Hence (7.11) is proved. Commuting the role of n and k in (7.11), we can write

(a	 b)n+k
p,q = (a	 b)n

p,q(apn 	 bqn)k
p,q

= (a	 b)k
p,q(apk 	 bqk)n

p,q,

so we obtain (7.12). (7.13) is obtained from (7.11) by substituting n by n− k.

From equation (7.10) we can define the (p, q)-power for any complex number α as follows

(a	 b)α
p,q =

(a	 b)∞
p,q

(apα 	 bqα)∞
p,q

. (7.19)

7.2 The (p, q)-Gamma functions

Definition 73 (Njionou [67, 68]). Let x be a complex number. We define the (p, q)-Gamma func-
tion as

Γp,q(x) =
(p	 q)∞

p,q

(px 	 qx)∞
p,q

(p− q)1−x, 0 < q < p < 1. (7.20)

Remark 74. Note that in (7.20), if we set p = 1, then Γp,q reduces to Γq.

Proposition 75 (Njionou [67, 68]). The (p, q)-Gamma function fulfils the following fundamental
relation

Γp,q(x + 1) = [x]p,qΓp,q(x). (7.21)

Proof. From definition (7.20), we can write

Γp,q(x + 1) =
(p	 q)∞

p,q

(px+1 	 qx+1)∞
p,q

(p− q)−x.
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Since
(px+1 	 qx+1)∞

p,q =
1

px − qx (px 	 qx)∞
p,q,

it follows that

Γp,q(x + 1) = (px − qx)
(p	 q)∞

p,q

(px 	 qx)∞
p,q

(p− q)−x

=
(px − qx)

p− q
(p	 q)∞

p,q

(px 	 qx)∞
p,q

(p− q)1−x

= [x]p,qΓ(x).

This is the desired result.

Remark 76. If n is a nonnegative integer, it follows from (7.21) that

Γp,q(n + 1) = [n]p,q!.

It can be also easily seen from the definition that

Γp,q(n + 1) =
(p	 q)n

p,q

(p− q)n .

Proposition 77 ((p, q)-Legendre’s multiplication formula, Njionou [67]). The following mul-
tiplication formula applies

Γp,q(2x)Γp2,q2

(
1
2

)
= (p + q)2x−1Γp2,q2(x)Γp2,q2

(
x +

1
2

)
. (7.22)

Proof. From the definition, we have

Γp2,q2(x) =
(p2 	 q2)∞

p2,q2

(p2x 	 q2x)∞
p2,q2

(p2 − q2)1−x

Γp2,q2

(
x +

1
2

)
=

(p2 	 q2)∞
p2,q2

(p2x+1 	 q2x+1)∞
p2,q2

(p2 − q2)
1
2−x

Γp2,q2

(
1
2

)
=

(p2 	 q2)∞
p2,q2

(p	 q)∞
p2,q2

(p2 − q2)
1
2 .

Hence,

Γp2,q2(x)Γp2,q2

(
x + 1

2

)
Γp2,q2

( 1
2

) =
(p2 	 q2)∞

p2,q2(p	 q)∞
p2,q2

(p2x 	 q2x)∞
p2,q2(p2x+1 	 q2x+1)∞

p2,q2

(p2 − q2)1−2x

=
(p	 q)∞

p,q

(p2x 	 q2x)∞
p,q

(p− q)1−2x(p + q)1−2x

= (p + q)1−2xΓp,q(2x).

This proves the proposition.

The (p, q)-Legendre’s multiplication formula is generalized as follows.



7.2 The (p, q)-Gamma functions 42

Proposition 78 ((p, q)-Gauss’ multiplication formula, Njionou [67]). The following multipli-
cation formula applies

Γp,q(nx)
n−1

∏
k=1

Γpn,qn

(
k
n

)
= ([n]p,q)

nx−1
n−1

∏
k=0

Γpn,qn

(
x +

k
n

)
. (7.23)

Proof. As for the previous proposition, we start by using the definition as follows

Γpn,qn

(
k
n

)
=

(pn 	 qn)∞
pn,qn

(pk 	 qk)∞
pn,qn

(pn − qn)1− k
n ,

Γpn,qn

(
x +

k
n

)
=

(pn 	 qn)∞
pn,qn

(pnx+k 	 qnx+k)∞
pn,qn

(pn − qn)1− k
n−x.

Hence, we have

n−1

∏
k=1

Γpn,qn

(
k
n

)
=

[
(pn 	 qn)∞

pn,qn

]n−1

n−1
∏

k=1
(pk 	 qk)∞

pn,qn

(pn − qn)

n−1
∑

k=1
(1− k

n )

=

[
(pn 	 qn)∞

pn,qn

]n

n−1
∏

k=0
(p.pk 	 q.qk)∞

pn,qn

(pn − qn)
n−1

2

=

[
(pn 	 qn)∞

pn,qn

]n

(p	 q)∞
p,q

(pn − qn)
n−1

2

and

n−1

∏
k=0

Γpn,qn

(
x +

k
n

)
=

[
(pn 	 qn)∞

pn,qn

]n

n−1
∏

k=0
(pnx+k 	 qnx+k)∞

pn,qn

(pn − qn)

n−1
∑

k=0
(1− k

n−x)

=

[
(pn 	 qn)∞

pn,qn

]n

(pnx 	 qnx)∞
p,q

(pn − qn)(
n−1

2 +1−nx).

It follows that

n−1
∏

k=0
Γpn,qn

(
x + k

n

)
n−1
∏

k=1
Γpn,qn

(
k
n

) =
(p	 q)∞

p,q

(pnx 	 qnx)∞
p,q

(pn − qn)1−nx

=
(p	 q)∞

p,q

(pnx 	 qnx)∞
p,q

(p− q)1−nx
(

pn − qn

p− q

)1−nx

= ([n]p,q)
1−nxΓp,q(nx).

The proposition is therefore proved.

Proposition 79 (Njionou [68]). The (p, q)-Gamma function (7.20) has the (p, q)-integral repre-
sentation

Γp,q(z) = p
z(z−1)

2

∫ ∞

0
tz−1Ep,q(−qt)dp,qt. (7.24)
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Proof. It is enough to prove that both Γp,q(z) defined by (7.20) and

G(z) = p
z(z−1)

2

∫ ∞

0
tz−1Ep,q(−qt)dp,qt

satisfy the same recurrence relation with the same initial condition. Obviously,

G(1) =
∫ ∞

0
Ep,q(−qt)dp,qt =

[
−Ep,q(−t)

]∞
0 = −Ep,q(∞) + Ep,q(0) = 1.

Moreover, using equation (7.24) and the (p, q)-integration by part (6.19), we have:

Γp,q(z + 1) = p
z(z+1)

2

∫ ∞

0
tzEp,q(−qt)dp,qt

=−p
z(z−1)

2

∫ ∞

0
(pt)zDp,qEp,q(−t)dp,qt

=−p
z(z−1)

2
[
tzEp,q(−t)

]∞
0 + p

z(z−1)
2 [z]p,q

∫ ∞

0
tz−1Ep,q(−qt)dp,qt

= [z]p,qΓp,q(z).

Hence, G(z) = Γp,q(z).

7.3 The (p, q)-Beta functions

7.3.1 (p, q)-Beta function of the first kind

We introduce the following (p, q)-Beta function of the first kind.

Definition 80. Let m and n be to non-negative integers. We define the (p, q)-integral of the first
kind by

Bp,q(m, n) = p(
m
2 )
∫ p

0
xm−1(p	 qx)n−1

p,q dp,qx. (7.25)

Note that for p = 1, (7.25) reduces to the q-Beta function of the first kind [83, 52].

Theorem 81. The following equation is valid:

Bp,q(m, n) = pmn+(n
2)

Γp,q(m)Γp,q(n)
Γp,q(m + n)

. (7.26)

Proof. Using the definition of the (p, q)-function (7.25) and the formula of integration by
parts (6.19) with f (x) = xm and g(x) = (p	 x)n−1

p,q , it follows that

Bp,q(m + 1, n) = p(
m+1

2 )
∫ p

0
xm(p	 qx)n−1

p,q dp,qx

= p(
m
2 )
∫ p

0
(px)m(p	 qx)n−1

p,q dp,qx

=− p(
m
2 )

[n]p,q

∫ p

0
f (px)Dp,qg(x)dp,qx

=− p(
m
2 )

[n]p,q

{
[ f (x)g(x)]p0 −

∫ p

0
g(qx)Dp,q f (x)dp,qx

}
=

[m]p,q

[n]p,q
p(

m
2 )
∫ p

0
xm−1(p	 qx)n

p,qdp,qx

=
[m]p,q

[n]p,q
B(m, n + 1).
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Also, we have

Bp,q(m, n + 1) = p(
m
2 )
∫ p

0
xm−1(p	 qx)n

p,qdp,qx

= p(
m
2 )
∫ p

0
xm−1(p	 qx)n−1

p,q (pn − qnx)dp,qx

= pn p(
m
2 )
∫ p

0
xm−1(p	 qx)n−1

p,q dp,qx− qn p(
m
2 )
∫ p

0
xm(p	 qx)n−1

p,q dp,qx

= pnBp,q(m, n)− qn

pm p(
m+1

2 )
∫ p

0
xm(p	 qx)n−1

p,q dp,qx

= pnBp,q(m, n)− qn

pm B(m + 1, n).

Hence,

Bp,q(m, n + 1) = pnB(m, n)− qn

pm B(m + 1, n)

= pnB(m, n)− qn

pm

[m]p,q

[n]p,q
B(m, n + 1).

This gives the following relation

Bp,q(m, n + 1) = pn+m [n]p,q

[n + m]p,q
B(m, n).

Iterating this relation gives

Bp,q(m, n) = pn+m−1 [n− 1]p,q

[n + m− 1]p,q
B(m, n− 1)

= pn+m−1 [n− 1]p,q

[n + m− 1]p,q
pn+m−2 [n− 2]p,q

[n + m− 2]p,q
B(m, n− 2)

= p(n+m−1)+(n+m−2)+...+(m+1) [n− 1]p,q[n− 2]p,q . . . [1]p,q

[n + m− 1]p,q[n + m− 2]p,q . . . [m + 1]p,q
B(m, 1).

Further, by definition of (p, q)-integration, it follows that

Bp,q(m, 1) =
∫ p

0
xm−1dp,qx =

pm

[m]p,q
.

Hence,

Bp,q(m, n) = p(n+m−1)+(n+m−2)+...+(m+1)+m [n− 1]p,q[n− 2]p,q . . . [1]p,q

[n + m− 1]p,q[n + m− 2]p,q . . . [m + 1]p,q[m]p,q

= pmn+(n
2)

Γp,q(m)Γp,q(n)
Γp,q(m + n)

.

Another (p, q)-Beta function of the first kind was introduced in [62] as follows.

Definition 82 (Milovanović, Gupta and Malik [62]). Let m and n be two non-negative integers,
the (p, q)-Beta function is defined as

B̃p,q(m, n) =
∫ 1

0
xm−1(1	 qx)n−1

p,q dp,qx. (7.27)



7.3 The (p, q)-Beta functions 45

This (p, q)-Beta of the first kind fulfil the following property.

Proposition 83 (Milovanović, Gupta and Malik [62]). The (p, q)-Gamma and the (p, q)-Beta
functions fulfil the following fundamental relation:

B̃p,q(m, n) = p(n−1)(2m+n−2)/2 Γp,q(m)Γp,q(n)
Γp,q(m + n)

. (7.28)

7.3.2 (p, q)-Beta function of the second kind

The (p, q)-Beta of the second kind was defined in [17] as follows.

Definition 84 (Aral and Gupta [17]). Let m, n be to non-negative integer, the (p, q)-Beta function
of the second kind is defined by

Bp,q(m, n) =
∫ ∞

0

xm−1

(1⊕ px)m+n
p,q

dp,qx. (7.29)

The following theorem provides the link between the (p, q)-Beta function of the second kind
and the (p, q)-Gamma function of the first kind.

Theorem 85 (Compare to [17]). Let m, n be two non-negative integers, the following equation
holds

Bp,q(m, n) = p−mq−(
m
2 )

Γp,q(m)Γp,q(n)
Γp,q(m + n)

. (7.30)

Proof. From (3.13), we can write

Dp,q
1

(a⊕ x)p,q
= −

p[n]p,q

(a⊕ px)n+1
p,q

.

By choosing f (x) =
1

(1⊕ x)n+m
p,q

and g(x) = xm and using the formula of (p, q)-integration

by parts (6.19), we get

Bp,q(m, n) =
∫ ∞

0

xm−1

(1⊕ px)m+n
p,q

dp,qx

=
1

[m]p,q

∫ ∞

0
f (px)Dp,qg(x)dp,qx

=
1

[m]p,q

{
[ f (x)g(x)]∞0 −

∫ ∞

0
Dp,q f (x)g(qx)dp,qx

}
=

1
[m]p,q

{
0−

∫ ∞

0
(qx)mDp,q

1
(1⊕ x)m+n

p,q
dp,qx

}

=
pqm[m + n]p,q

[m]p,q

∫ ∞

0

xm

(1⊕ px)m+n+1
p,q

dp,qx

=
pqm[m + n]p,q

[m]p,q
Bp,q(m + 1, n).

Hence

Bp,q(m + 1, n) =
[m]p,q

pqm[m + n]p,q
Bp,q(m, n).
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Iterating this relation leads to

Bp,q(m, n) =
[m− 1]p,q

pqm−1[m + n− 1]p,q
Bp,q(m− 1, n)

=
[m− 1]p,q

pqm−1[m + n− 1]p,q

[m− 2]p,q

pqm−2[m + n− 2]p,q
Bp,q(m− 2, n)

=
[m− 1]p,q

pqm−1[m + n− 1]p,q

[m− 2]p,q

pqm−2[m + n− 2]p,q
. . .

1
pq[n + 1]p,q

Bp,q(1, n).

Using the fact that

Bp,q(1, n) =
∫ ∞

0

1
(1⊕ px)n+1

p,q
dp,qx = − 1

p[n]p,q

∫ ∞

0
Dp,q

1
(1⊕ x)n

p,q
dp,qx =

1
p[n]p,q

,

it follows that

Bp,q(m, n) =
1

pmq(
m
2 )

Γp,q(m)Γp,q(n)
Γp,q(m + n)

.



Chapter 8

(p, q)-Hypergeometric Series

8.1 (p, q)-Hypergeometric series

We first recall that the q-hypergeometric or basic hypergeometric series [53] is defined by

rφs

 a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣∣∣ q

z =
∞

∑
n=0

(a1, . . . , ar; q)n

(b1, . . . , bs; q)n

zn

(q; q)n

(
(−1)nq

n(n−1)
2
)1+s−r, (8.1)

where
(a1, . . . , ar; q)n = (a1; q)1 · · · (ar; q)n,

and

(a; q)n =

{
1 n = 0
(1− a)(1− aq) · · · (1− aqn−1) n > 0

is the so-called q-Pochhammer.

It is clear from the definition that

lim
q→1

rφs

 qa1 , . . . , qar

qb1 , . . . , qbs

∣∣∣∣∣∣∣ q, (q− 1)1+s−rz

 = rFs

 a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣∣∣ z

, (8.2)

where

rFs

 a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣∣∣ z

 =
∞

∑
j=0

(a1, . . . , ar)j

(b1, . . . , bs)j

zj

j!
,

denotes the usual hypergeometric series in which

(a1, . . . , ar)j = (a1)j · · · (ar)j,

where

(a)n =

{
1 n = 0
a(a + 1) · · · (a + n− 1) n > 0

is the Pochhammer symbol.

The q-hypergeometric series is extended to the (p, q)-hypergeometric series in the following
way [23, 48, 49, 68, 78].
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Definition 86 (Compare [49]). The (p, q)-hypergeometric series is defined by

rΦs

(a1p, a1q), . . . (arp, arq)

(b1p, b1q), . . . , (bsp, bsq)

∣∣∣∣∣∣∣ (p, q); z


=

∞

∑
n=0

(a1p 	 a1q)
n
p,q · · · (arp 	 arq)n

p,q

(b1p 	 b1q)n
p,q · · · (bsp 	 bsq)n

p,q(p	 q)n
p,q

[
(−1)n

(
q
p

)(n
2) ]1+s−r

zn. (8.3)

Note that for s = r− 1, (8.3) reads

rΦr−1

(a1p, a1q), . . . (arp, arq)

(b1p, b1q), . . . , (bsp, bsq)

∣∣∣∣∣∣∣ (p, q); z


=

∞

∑
n=0

(a1p 	 a1q)
n
p,q · · · (arp 	 arq)n

p,q

(b1p 	 b1q)n
p,q · · · (bsp 	 bsq)n

p,q(p	 q)n
p,q

zn. (8.4)

Also, when a1p = a2p = · · · = arp = b1p = b2p = · · · = bsp = 1, a1q = a1, . . . , arq = ar and
b1q = b1, . . . , bs,q = bs we get

lim
p→1

rΦs

(1, a1), . . . , (1, ar)

(1, b1), . . . , (1, bs)

∣∣∣∣∣∣∣ (p, q); z

 = rφs

 a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣∣∣ q; z

.

As we will see later, note that any well behaved φ-series can be written as a Φ-series but the
converse of this proposition is not true in general (see [48, 49]).

8.2 From the rφs-series to the rΦs-series

In this section we show how to embed the usual rφs-series (8.1) from new defined rΦs series
(8.3).
Let us start with some links between the (p, q)-power and the q-Pochhammer symbol.

Proposition 87. Let a and b be two non-zero complex numbers. The following property is valid.

(a	 b)n
p,q = an p(

n
2)

(
b
a

;
q
p

)
n

. (8.5)

Proof. From the definition of the (p, q)-power basis (3.1), it follows that

(a	 b)n
p,q = (a− b)(ap− bq) · · · (apn−1 − bqn−1)

= a
(

1− b
a

)
× ap

(
1− b

a
q
p

)
× · · · × apn−1

(
1− b

a

(
q
p

)n−1
)

= an p(
n
2)

(
b
a

;
q
p

)
n

.

Corollary 88. Let a, b, c and d be four non-zero complex numbers. The following property is valid.(
b
a ; q

p

)
∞(

d
c ; q

p

)
∞

=
(a	 b)∞

p,q(
a	 ad

c

)∞

p,q

=
(c	 cb

a )
∞
p,q

(c	 d)∞
p,q

. (8.6)
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Proof. It follows from (8.5) that(
b
a

;
q
p

)
n
= a−n p−(

n
2)(a	 b)n

p,q,

hence, (
b
a ; q

p

)
∞(

d
c ; q

p

)
∞

= lim
n→∞

(
b
a ; q

p

)
n(

d
c ; q

p

)
n

= lim
n→∞

a−n p−(
n
2)(a	 b)n

p,q

c−n p−(
n
2)(c	 d)n

p,q

=


lim
n→∞

( c
a

)n
(a	 b)n

p,q

(c	 d)n
p,q

lim
n→∞

(a	 b)n
p,q( a

c

)n
(c	 d)n

p,q

=


lim
n→∞

(c	 cb
a )

n
p,q

(c	 d)n
p,q

=
(c	 cb

a )
∞
p,q

(c	 d)∞
p,q

lim
n→∞

(a	 b)n
p,q

(c	 ad
c )

n
p,q

=
(a	 b)∞

p,q

(a	 ad
c )

∞
p,q

.

This proves the corollary.

Remark 89. Note that for every complex number λ, the following equation applies

(λa	 λb)n
p,q = λn (a	 b)n

p,q . (8.7)

Proposition 90 (Jagannathan and Srinisvasa [49]). The following relation between the rφs-series
and the rΦs-series is valid:

rφs

 a1q
a1p

, a2q
a2p

, . . . , arq
arp

b1q
b1p

, b2q
b2p

, . . . , bsq
bsp

∣∣∣∣∣∣∣
q
p

; z



=



rΦs

(
(a1p, a1q), . . . , (arp, arq)

(b1p, b1q), . . . , (bsp, bsq)

∣∣∣∣∣ (p, q); µz

)
, s = r− 1

s+1Φs

(
(a1p, a1q), . . . , (arp, arq), (0, 1), . . . , (0, 1)

(b1p, b1q), . . . , (bsp, bsq)

∣∣∣∣∣ (p, q); µz

)
, s > r− 1

rΦr−1

(
(a1p, a1q), . . . , (arp, arq)

(b1p, b1q), . . . , (bsp, bsq, (0, 1), . . . , (0, 1))

∣∣∣∣∣ (p, q); µz

)
, s < r− 1.

(8.8)

with

µ =
pb1pb2p . . . bsp

a1pa2p . . . arp
. (8.9)

Proof. We write the proof for s = r − 1. The cases s > r − 1 and s < r − 1 are done in a
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similar way. For s = r− 1, using (8.6) and (8.4), it follows that

rΦs

(a1p, a1q), . . . , (arp, arq)

(b1p, b1q), . . . , (bsp, bsq)

∣∣∣∣∣∣∣ (p, q); z

= rΦs

(a1p, a1q), . . . , (arp, arq)

(b1p, b1q), . . . , (bsp, bsq)

∣∣∣∣∣∣∣ (p, q); z


=

∞

∑
n=0

(a1p 	 a1q)
n
p,q · · · (arp 	 arq)n

p,q

(b1p 	 b1q)n
p,q · · · (bsp 	 bsq)n

p,q(p	 q)n
p,q

zn

=
∞

∑
n=0

r
∏
i=1

an
ip p(

n
2)
(

aiq
aip

; q
p

)
n

s
∏
i=1

bn
ip p(

n
2)
(

biq
bip

; q
p

)
n

pn p(
n
2)
(

q
p ; q

p

) zn

=
∞

∑
n=0

(
a1q
a1p

; q
p

)
n

. . .
(

arq
arp

; q
p

)
n(

b1q
b1p

; q
p

)
n

. . .
(

bsq
bsp

; q
p

)
n

(
a1pa2p . . . arp

b1pb2p . . . brp p
z
)n

= rφs

 a1q
a1p

, . . . arq
arp

b1q
b1p

, . . . bsq
bsp

∣∣∣∣∣∣∣
a1pa2p . . . arp

b1pb2p . . . brp p
z

,

where it is assumed that the rφs-series is convergent or terminating. This proves the propo-
sition for s = r− 1.

Remark 91. From the Proposition 90, it is seen that any well behaved φ-series can be written as a
Φ-series. But the converse is not true, in general; in the general case, when p 6= 1, this is possible
only for an rΦr−1. To see this, it is enough to look at the 0Φ0 case. Indeed,

0Φ0

 −

(p, q)

∣∣∣∣∣∣∣ (p, q); z

 =
∞

∑
n=0

(−1)n(q/p)(
n
2)

(p	 q)n
p,q

zn (8.10)

=
∞

∑
n=0

(−1)n(ρ/p)(
n
2)

(ρ; ρ)n
(z/ρ)n, with ρ = q/p, (8.11)

which shows that 0Φ0 becomes a φ-series if and only if p = 1. Similarly, one is easily convinced that
a generic rΦs-series cannot be identified within the class of φ-series unless p = 1 or s = r− 1. It is
now clear that the (p, q)-series is larger than structure in which the q-series gets embedded.

Remark 92. Note that in the usual φ-series theory, there is no direct analogue for the choice aip = 0
or bip = 0, for any i, permissible, in general (of course, subject to conditions of convergence and so
on), in the (p, q)-series; to obtain a corresponding result in the case of the φ-series one will have to
resort to the limit process of confluence, namely, replacing z by z/ar and taking the limit ar → ∞.
For example

lim
ar→∞

rφs

 a1, . . . ar

b1, . . . bs

∣∣∣∣∣∣∣ q;
z
ar

 = r−1φs

 a1, . . . , ar−1

b1, . . . bs

∣∣∣∣∣∣∣ q; z

. (8.12)

For the (p, q)-hypergeometric series, using the fact that

lim
a→∞

(a	 b)n
p,q

an = lim
a→∞

(
1	 b

a

)n

p,q
= (1	 0)n

p,q ,
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or

lim
b→∞

(a	 b)n
p,q

bn = lim
b→∞

( a
b
	 1
)n

p,q
= (0	 1)n

p,q ,

it follows that

lim
arp→∞ rΦs

(a1p, a1q), . . . (arp, arq)

(b1p, b1q), . . . , (bsp, bsq)

∣∣∣∣∣∣ (p, q);
z

arp

= rΦs

(a1p, a1q), . . . (a(r−1)p, a(r−1)q), (1, 0)

(b1p, b1q), . . . , (bsp, bsq)

∣∣∣∣∣∣ (p, q); z


lim

arq→∞ rΦs

(a1p, a1q), . . . (arp, arq)

(b1p, b1q), . . . , (bsp, bsq)

∣∣∣∣∣∣ (p, q);
z

arq

= rΦs

(a1p, a1q), . . . (a(r−1)p, a(r−1)q), (0, 1)

(b1p, b1q), . . . , (bsp, bsq)

∣∣∣∣∣∣ (p, q); z

.

Also, we can obtain the following formulas

lim
bsp→∞

rΦs

(a1p, a1q), . . . (arp, arq)

(b1p, b1q), . . . , (bsp, bsq)

∣∣∣∣∣∣ (p, q); zbsp

= rΦs

 (a1p, a1q), . . . (arp, arq)

(b1p, b1q), . . . , (b(s−1)p, b(s−1)q), (1, 0)

∣∣∣∣∣∣ (p, q); z


lim

brq→∞
rΦs

(a1p, a1q), . . . (arp, arq)

(b1p, b1q), . . . , (bsp, bsq)

∣∣∣∣∣∣ (p, q); zbrq

= rΦs

 (a1p, a1q), . . . (arp, arq)

(b1p, b1q), . . . , (b(s−1)p, b(s−1)q), (0, 1)

∣∣∣∣∣∣ (p, q); z

.

and

lim
arp ,bsp→∞

rΦs

(a1p, a1q), . . . (arp, arq)

(b1p, b1q), . . . , (bsp, bsq)

∣∣∣∣∣∣ (p, q); zbsp

= r−1Φs−1

(a1p, a1q), . . . (a(r−1)p, a(r−1)q)

(b1p, b1q), . . . , (b(s−1)p, b(s−1)q)

∣∣∣∣∣∣ (p, q); z


lim

arq,brq→∞
rΦs

(a1p, a1q), . . . (arp, arq)

(b1p, b1q), . . . , (bsp, bsq)

∣∣∣∣∣∣ (p, q); zbrq

= r−1Φs−1

(a1p, a1q), . . . (a(r−1)p, a(r−1)q)

(b1p, b1q), . . . , (b(s−1)p, b(s−1)q)

∣∣∣∣∣∣ (p, q); z

.

Now we write in detail some relevant cases of Proposition 90 that we will use to obtain
some (p, q)-transformations and (p, q)-summation formulas.

1φ1

 b
a

d
c

∣∣∣∣∣∣∣
q
p

; θ

 = 2Φ1

(a, b), (0, 1)

(c, d)

∣∣∣∣∣∣∣ (p, q);
pcθ

a

; (8.13)

2φ1

 b
a

,
d
c

f
e

∣∣∣∣∣∣∣
q
p

, θ

 = 2Φ1

(a, b), (c, d)

(e, f )

∣∣∣∣∣∣∣ (p, q);
peθ

ac

; (8.14)

2φ2

 b
a

,
d
c

f
e

,
h
g

∣∣∣∣∣∣∣
q
p

, θ

 = 3Φ2

(a, b), (c, d), (0, 1)

(e, f ), (g, h))

∣∣∣∣∣∣∣ (p, q);
pegθ

ac

; (8.15)

3φ2

 b
a

,
d
c

,
f
e

h
g

,
j
i

∣∣∣∣∣∣∣
q
p

, θ

 = 3Φ2

(a, b), (c, d), (e, f )

(g, h), (i, j))

∣∣∣∣∣∣∣ (p, q);
pgiθ
ace

. (8.16)



8.2 From the rφs-series to the rΦs-series 52

8.2.1 The (p, q)-binomial theorem

The q-binomial theorem (Kac and Cheung [52] or Koekoek, Lesky and Swarttouw [53])
states that

1φ0

 a

−

∣∣∣∣∣∣∣ q; z

 =
∞

∑
n=0

(a; q)n

(q; q)n
zn =

(az; q)∞

(z; q)∞
. (8.17)

The following theorem is a (p, q)-analogue of (8.17).

Theorem 93 (Jagannathan [48]). Let a, b be two non-zero complex numbers, then we have the
following

1Φ0

(a, b)

−

∣∣∣∣∣∣∣ (p, q); z

 =
∞

∑
n=0

(a	 b)n
p,q

(p	 q)n
p,q

zn =
(p	 bz)∞

p,q

(p	 az)∞
p,q

. (8.18)

Proof. We first note that
(a	 b)n

p,q

(p	 q)n
p,q

=

(
b
a ; q

p

)
n(

q
p ; q

p

)
n

(
a
p

)n

. It follows from the q-binomial theo-

rem that

∞

∑
n=0

(a	 b)n
p,q

(p	 q)n
p,q

zn =
∞

∑
n=0

(
b
a ; q

p

)
n(

q
p ; q

p

)
n

(
az
p

)n

=

(
bz
p ; q

p

)
∞(

az
p ; q

p

)
∞

=
(p	 bz)∞

p,q

(p	 az)∞
p,q

.

The usual q-binomial theorem (8.17) is obtained when a = 1 and p = 1. An interesting
feature of the (p, q)-binomial theorem (8.18) may be noted here. The product

n

∏
k=1

1Φ0

(akp, akq)

−

∣∣∣∣∣∣∣ (p, q); z


is seen to be an invariant under the group of independent permutations of parameters of
the p-components (a1p, a2p, . . . , anp) and the q-components (a1q, a2q, . . . , anq). This product
has value 1 if the n-tuple of p-components (a1p, a2p, . . . , anp) is related to the n-tuple of com-
ponents (a1q, a2q, . . . , anq) by a mere permutation.

For the case n = 2 this result implies that

1Φ0

(a, b)

−

∣∣∣∣∣∣∣ (p, q); z

1Φ0

(b, a)

−

∣∣∣∣∣∣∣ (p, q); z

 = 1. (8.19)

A special case of this equation is

1Φ0

(1, 0)

−

∣∣∣∣∣∣∣ (p, q); z

1Φ0

(0, 1)

−

∣∣∣∣∣∣∣ (p, q); z

 = 1. (8.20)
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Recognizing that

1Φ0

(1, 0)

−

∣∣∣∣∣∣∣ (p, q); z

 =
∞

∑
n=0

p(
n
2)

(p	 q)n
p,q

zn =
∞

∑
n=0

p(
n
2)

[n]p,q!
((p− q)z)n = ep,q((p− q)z) (8.21)

and

1Φ0

(0, 1)

−

∣∣∣∣∣∣∣ (p, q);−z

 =
∞

∑
n=0

q(
n
2)

(p	 q)n
p,q

zn =
∞

∑
n=0

q(
n
2)

[n]p,q!
((p− q)z)n = Ep,q((p− q)z) (8.22)

we recover the relation (5.3). For p = 1, ep,q(z) and Ep,q(z) reduces to eq(z) and Eq(z), re-
spectively.

For n = 3, the above general result and the relation (8.18) imply

1Φ0

(u, v)

−

∣∣∣∣∣∣∣ (p, q); z

1Φ0

(v, w)

−

∣∣∣∣∣∣∣ (p, q); z

 = 1Φ0

(u, w)

−

∣∣∣∣∣∣∣ (p, q); z

. (8.23)

Choose u = 1, v = a, w = ab and p = 1 in (8.23), to obtain

1Φ0

(1, a)

−

∣∣∣∣∣∣∣ (1, q); z

1Φ0

(a, ab)

−

∣∣∣∣∣∣∣ (1, q); z

 = 1Φ0

(1, ab)

−

∣∣∣∣∣∣∣ (1, q); z

,

which is nothing but the well known product formula for the 1φ0 function, namely

1φ0

 a

−

∣∣∣∣∣∣∣ q; z

1φ0

 b

−

∣∣∣∣∣∣∣ q; az

 = 1φ0

 ab

−

∣∣∣∣∣∣∣ q; z

. (8.24)

8.2.2 (p, q)-Heine transformation for 2Φ1

The Heine transformation of the 2φ1 series states that [38, (III.1) P. 359]

2φ1

 a, b

c

∣∣∣∣∣∣∣ q; z

 =
(b, az; q)∞

(c, z; q)∞
2φ1

 c/b, z

az

∣∣∣∣∣∣∣ q; b

. (8.25)

Proposition 94 (Jagannathan and Srinisvasa [49]). The following (p, q)-Heine transformation
formula holds for the 2Φ1

2Φ1

(a, b), (c, d)

(e, f )

∣∣∣∣∣∣∣ (p, q); z

 =
(ce	 de)∞

p,q(pe	 bcz)∞
p,q

(ce	 c f )∞
p,q(pe	 acz)∞

p,q
2Φ1

(dc, c f ), (pe, acz)

(pe, bcz)

∣∣∣∣∣∣∣ (p, q);
p
ce

.

(8.26)
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Proof. From the Heine transformation formula (8.25), we can write

2φ1

 b
a

,
d
c

f
e

∣∣∣∣∣∣∣
q
p

, θ

 =

(
d
c

;
q
p

)
∞

(
bθ

a
;

q
p

)
∞(

f
e

;
q
p

)
∞

(
θ;

q
p

)
∞

2φ1

 c f
de

, θ

bθ

a

∣∣∣∣∣∣∣
q
p

,
d
c

.

Using the first case of (8.8), we can write

2φ1

 b
a

,
d
c

f
e

∣∣∣∣∣∣∣
q
p

, θ

 = 2Φ1

(a, b), (c, d)

(e, f )

∣∣∣∣∣∣∣ (p, q);
peθ

ac

,

2φ1

 c f
de

, θ

bθ

a

∣∣∣∣∣∣∣
q
p

,
d
c

 = 2Φ1

(de, c f ), (1, θ)

(a, bθ)

∣∣∣∣∣∣∣ (p, q);
pa
ce

.

Next the use of (8.6) produces(
d
c

;
q
p

)
∞

(
bθ

a
;

q
p

)
∞(

f
e

;
q
p

)
∞

(
θ;

q
p

)
∞

=
(c	 d)∞

p,q (a	 bθ)∞
p,q(

c	 c f
e

)∞

p,q
(a	 aθ)∞

p,q

=
(ce	 de)∞

p,q(pe	 bcz)∞
p,q

(ce	 c f )∞
p,q(pe	 acz)∞

p,q
.

Hence,

2Φ1

(de, c f ), (1, θ)

(a, bθ)

∣∣∣∣∣∣∣ (p, q);
pa
ce

 =
(ce	 de)∞

p,q(pe	 bcz)∞
p,q

(ce	 c f )∞
p,q(pe	 acz)∞

p,q
2Φ1

(de, c f ), (1, θ)

(a, bθ)

∣∣∣∣∣∣∣ (p, q);
pa
ce

.

Finally, taking θ =
acz
pe

we obtain the announced result.

Setting a = 0, b = c = e = 1 and p = 1, it follows that

2Φ1

(0, 1), (1, d)

(1, f )

∣∣∣∣∣∣∣ (1, q); z

 =
(1	 d)∞

1,q(1	 z)∞
1,q

(1	 f )∞
1,q(1	 0)∞

1,q
2Φ1

(d, f ), (1, 0)

(1, z)

∣∣∣∣∣∣∣ (1, q); 1

.

Using the facts that

(1	 x)n
1,q = (x; q)n, (d	 f )n

p,q = dn
(

1	 f
d

)n

p,q
,

we get the following transformation formula for the φ-series

1φ1

 d

f

∣∣∣∣∣∣∣ q; zn

 =
(d; q)∞(z; q)∞

( f ; q)∞
2φ1

 0, f
d

z

∣∣∣∣∣∣∣ q; d

.

By relabelling d as a and f as b, this read

1φ1

 a

b

∣∣∣∣∣∣∣ q; z

 =
(a; q)∞(z; q)∞

(b; q)∞
2φ1

 0, b
a

z

∣∣∣∣∣∣∣ q; a

. (8.27)
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8.2.3 (p, q)-Gauss sum

The q-Gauss sum is (Gasper and Rahman [38, (II.8) P. 354])

2φ1

 a, b

c

∣∣∣∣∣∣∣ q;
c

ab

 =

( c
a

; q
)

∞

( c
b

; q
)

∞

(c; q)∞

( c
ab

; q
)

∞

,
∣∣∣ c
ab

∣∣∣ < 1. (8.28)

Proposition 95 (Jagannathan and Srinisvasa [49]). The following (p, q)-Gauss sum holds:

2Φ1

(a, b), (c, d)

(e, f )

∣∣∣∣∣∣∣ (p, q);
p f
bd

 =
(be	 a f )∞

p,q (de	 c f )∞
p,q

(e	 f )∞
p,q (bde	 ac f )∞

p,q
,
∣∣∣∣ ac f
dbe

∣∣∣∣ < 1. (8.29)

Proof. Using the q-Gauss sum (8.28), it follows that

2φ1

 b
a

,
d
c

f
e

∣∣∣∣∣∣∣
q
p

;
ac f
bde

 =

(
a f
be

;
q
p

)
∞

(
c f
de

;
q
p

)
∞(

f
e

;
q
p

)
∞

(
ac f
bde

;
q
p

)
∞

.

Next, from the first case of (8.8), the left-hand side of the previous equation reads

2φ1

 b
a

,
d
c

f
e

∣∣∣∣∣∣∣
q
p

;
ac f
bde

 = 2Φ1

(a, b), (c, d)

(e, f )

∣∣∣∣∣∣∣ (p, q);
p f
bd

.

The use of (8.6) gives(
a f
be

;
q
p

)
∞

(
c f
de

;
q
p

)
∞(

f
e

;
q
p

)
∞

(
ac f
bde

;
q
p

)
∞

=
(be	 a f )∞

p,q (de	 c f )∞
p,q

(be	 b f )∞
p,q

(
de	 ac f

b

)∞

p,q

=
(be	 a f )∞

p,q (de	 c f )∞
p,q

(e	 f )∞
p,q (bde	 ac f )∞

p,q
.

This proves the desired result.

If we set a = c = 0, b = d = e = 1, f = qz and p = 1 in (8.29), it follows that

2Φ1

(0, 1), (0, 1)

(1, qz)

∣∣∣∣∣∣∣ (1, q); qz

 =
(1	 0)∞

1,q (1	 0)∞
1,q

(1	 qz)∞
1,q (1	 0)∞

1,q
.

which reads
∞

∑
n=0

qn2

(q, qz; q)∞
zn =

1
(qz; q)∞

. (8.30)

Note that this result is usually obtained from the q-Gauss sum (8.28) by setting c = qz and
letting a→ ∞ and b→ ∞.

Note also if we take c = 0 and d = 1, and relabelling e by c and f by d we get

2Φ1

(a, b), (0, 1)

(c, d)

∣∣∣∣∣∣∣ (p, q);
pd
b

 =
(bc	 ad)∞

p,q

(bc	 bd)∞
p,q

.
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The last equation is nothing but the well known summation formula (Gasper and Rahman
[38, (II-5), P. 354])

1φ1

 a

c

∣∣∣∣∣∣∣ q;
c
a

 =

( c
a

; q
)

∞
(c; q)∞

. (8.31)

Finally remark that (8.31) is usually obtained from the q-Gauss summation formula (8.28)
by letting b→ ∞.

8.2.4 The (p, q)-Kummer sum

The q-Kummer sum is (Gasper and Rahman [38, (II.9), P. 354])

2φ1

 a, b

aq
b

∣∣∣∣∣∣∣ q;−q
b

 =

(−q; q)∞

(
aq,

aq2

b2 ; q2
)

∞(
−q

b
,

aq
b

; q
)

∞

. (8.32)

Proposition 96. The following (p, q)-Kummer summation formula is valid:

2Φ1

(a, b), (c, d)

(adp, bcq)

∣∣∣∣∣∣∣ (p, q);−pq

 =
(dp⊕ dq)∞

p,q (ap	 bq)∞
p2,q2

(
ad2 p2 	 bc2q2)∞

p2,q2

(dp⊕ qc)∞
p,q (adp	 bcq)∞

p,q
. (8.33)

Proof. From (8.14) and (8.32), it follows that

2Φ1

(a, b), (c, d)

(adp, bcq)

∣∣∣∣∣∣∣ (p, q);−pq

= 2φ1

 b
a

,
d
c

bcq
adp

∣∣∣∣∣∣∣
q
p

;− cq
dp



=

(
− q

p
;

q
p

)
∞

(
bq
ap

;
q2

p2

)
∞

(
bc2q2

ad2 p2 ;
q2

p2

)
∞(

− cq
dp

;
q
p

)
∞

(
bcq
adq

;
q
p

)
∞

=

(
− q

p
;

q
p

)
∞

(
bq
ap

;
q2

p2

)
∞

(
bc2q2

ad2 p2 ;
q2

p2

)
∞(

− cq
dp

;
q
p

)
∞

(
bcq
adq

;
q2

p2

)
∞

(
bcq2

adq2 ;
q2

p2

)
∞

=
(p⊕ q)∞

p,q (ap	 bq)∞
p2,q2

(
ad2 p2 	 bc2q2)∞

p2,q2(
p⊕ qc

d

)∞

p,q

(
ap	 bcq

d

)∞

p2,q2
(ad2 p2 	 bcdq2)∞

p2,q2

=
(dp⊕ dq)∞

p,q (ap	 bq)∞
p2,q2

(
ad2 p2 	 bc2q2)∞

p2,q2

(dp⊕ qc)∞
p,q (adp	 bcq)∞

p2,q2 (adp2 	 bcq2)∞
p2,q2

=
(dp⊕ dq)∞

p,q (ap	 bq)∞
p2,q2

(
ad2 p2 	 bc2q2)∞

p2,q2

(dp⊕ qc)∞
p,q (adp	 bcq)∞

p,q
.

This proves (8.33).
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8.2.5 A (p, q)-analogue of Bailey’s 2F1(−1) sum

The q-analogue of the Bailey’s 2F1(−1) sum is (Gasper and Rahman [38, (II.10), P. 354])

2φ2

 a,
q
a

−q, b

∣∣∣∣∣∣∣ q;−b

 =

(
ab,

bq
a

; q2
)

(b; q)∞
(8.34)

Proposition 97. The following (p, q)-analogue of the Bailey’s 2F1(−1) is valid:

3Φ2

(a, b), (pb, qa), (0, 1)

(p,−q), (c, d)

∣∣∣∣∣∣∣ (p, q);− pd
ab

 =
(ac	 bd)∞

p2,q2 (bcp	 adq)∞
p2,q2

(ac	 ad)∞
p2,q2 (bcp	 bdq)∞

p2,q2
. (8.35)

Proof. From (8.15) and (8.34) we get

3Φ2

(a, b), (pb, qa), (0, 1)

(p,−q), (c, d)

∣∣∣∣∣∣∣ (p, q);− pd
ab

= 2φ2


b
a

,
aq
bp

− q
p

,
d
c

∣∣∣∣∣∣∣∣
q
p

;−d
c



=

(
bd
ac

;
q2

p2

)
∞

(
adq
bcp

;
q2

p2

)
∞(

d
c

;
q2

p2

)
∞

(
dq
cp

;
q2

p2

)
∞

=
(ac	 bd)∞

p2,q2 (bcp	 adq)∞
p2,q2

(ac	 ad)∞
p2,q2 (bcp	 bdq)∞

p2,q2
.

Equation (8.35) is therefore proved.

8.2.6 A (p, q)-analogue of Gauss’s 2F1(−1) sum

A q-analogue of Gauss’s 2F1(−1) sum is (Gasper and Rahman [38, (II.11), P. 355])

2φ2

 a2, b2

abq1/2,−abq1/2

∣∣∣∣∣∣∣ q;−q

 =
(a2q, b2q; q2)∞

(q; a2b2q; q2)∞
. (8.36)

Proposition 98. The following (p, q)-analogue of the Gauss 2F1(−1) summation formula holds:

3Φ2

 (a2, b2), (c2, d2), (0, 1)

(acp1/2, bdq1/2), (acp1/2,−bdq1/2)

∣∣∣∣∣∣∣ (p, q);−pq

 =

(
a2 p	 b2q

)∞
p2,q2

(
c2 p	 d2q

)∞
p2,q2

(p	 q)∞
p2,q2 (a2c2 p	 b2d2q)∞

p2,q2

.

(8.37)
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Proof. From (8.15) and (8.36) we get

3Φ2

 (a2, b2), (c2, d2), (0, 1)

(acp1/2, bdq1/2), (acp1/2,−bdq1/2)

∣∣∣∣∣∣∣ (p, q);−pq

 = 2φ2


b2

a2 ,
d2

c2

bdq1/2

acp1/2 ,−bdq1/2

acp1/2

∣∣∣∣∣∣∣∣
q
p

,− q
p



=

(
b2q
a2 p

;
q2

p2

)
∞

(
d2q
c2 p

;
q2

p2

)
∞(

q
p

;
q2

p2

)
∞

(
b2d2q
a2c2 p

;
q2

p2

)
∞

=

(
a2 p	 b2q

)∞
p2,q2

(
c2 p	 d2q

)∞
p2,q2

(p	 q)∞
p2,q2 (a2c2 p	 b2d2q)∞

p2,q2

.

8.2.7 The (p, q)-Saalschütz sum

The q-Saalschütz sum (Gasper and Rahman [38, (II.12), P. 355]) is

3φ2

 q−n, a, b
ab

cqn−1 , c

∣∣∣∣∣∣∣ q; q

 =

( c
a

,
c
b

; q
)

n(
c;

c
ab

; q
)

n

. (8.38)

Proposition 99. The following (p, q)-Saalschütz sum holds

3Φ2

 (p−n, q−n), (a, b), (c, d)

(ac f p1−n, bdeq1−n), (e, f )

∣∣∣∣∣∣∣ (p, q); pq f

 =
(be	 a f )n

p,q (de	 c f )n
p,q

(e	 f )n
p,q (bde	 ac f )n

p,q
. (8.39)

Proof. From the relations (8.16) and (8.38), it follows that

3Φ2

 (p−n, q−n), (a, b), (c, d)

(ac f p1−n, bdeq1−n), (e, f )

∣∣∣∣∣∣∣ (p, q); pqe f

 = 3φ2


q−n

p−n ,
b
a

,
d
c

bdeq1−n

ac f p1−n ,
f
e

∣∣∣∣∣∣∣∣
q
p

;
q
p



=

(
a f
be

;
q
p

)
n

(
c f
de

;
q
p

)
n(

f
e

;
q
p

)
n

(
ac f
bde

;
q
p

)
n

=
(be	 a f )n

p,q (de	 c f )n
p,q

(e	 f )n
p,q (bde	 ac f )n

p,q
.

This proves (8.39).

8.2.8 (p, q)-Jackson’s transformations of 2Φ1

Jackson’s transformation formula for 2φ1, 2φ2 is (Gasper and Rahman [38, (III.4) P. 359])

2φ1

 a, b

c

∣∣∣∣∣∣∣ q; z

 =
(az; q)∞

(z; q)∞
2φ2

 a,
c
b

c, az

∣∣∣∣∣∣∣ q; bz

. (8.40)



8.2 From the rφs-series to the rΦs-series 59

Proposition 100. The following (p, q)-Jackson’s transformation is valid:

2Φ1

(a, b), (c, d)

(e, f )

∣∣∣∣∣∣∣ (p, q); z

 =
(pe	 bcz)∞

p,q

(pe	 acz)∞
p,q

3Φ2

(a, b), (de, c f ), (0, 1)

(e, f ), (a, bz)

∣∣∣∣∣∣∣ (p, q);
az
c

. (8.41)

Proof. From (8.14) and (8.40) it follows that

2Φ1

(a, b), (c, d)

(e, f )

∣∣∣∣∣∣∣ (p, q);
pe
ac

θ

 = 2φ1

 b
a

,
d
c

f
e

∣∣∣∣∣∣∣
q
p

; θ



=

(
bθ

a
;

q
p

)
∞

(θ;
q
p
)∞

2φ2

 b
a

,
c f
de

f
e

,
bθ

a

∣∣∣∣∣∣∣
q
p

;
dθ

c


=

(a	 bθ)∞
p,q

(a	 aθ)∞
p,q

3Φ2

(a, b), (de, c f ), (0, 1)

(e, f ), (a, bθ)

∣∣∣∣∣∣∣ (p, q);
pθ

c

.

Taking θ =
ac
pe

z, (8.41) follows.

8.2.9 Transformations of 3Φ2 series

The following transformations of 3φ2 series are valid (Gasper and Rahman [38, (III.9) and
(III.10), P 359])

3φ2

 a, b, c

d, e

∣∣∣∣∣∣∣ q;
de
abc

 =

(
e
a

,
de
bc

; q
)

∞(
e,

de
abc

; q
)

∞

3φ2

 a,
d
b

,
d
c

d,
de
bc

∣∣∣∣∣∣∣ q,
e
a

 (8.42)

=

(
b,

de
ab

,
de
bc

)
∞(

d, e,
de
abc

)
∞

3φ2

 d
b

,
e
b

,
de
abc

de
ab

,
de
bc

∣∣∣∣∣∣∣ q; b

. (8.43)

Proposition 101. The following transformation formula for the 3Φ2-series are valid:

3Φ2

(a, b), (c, d), (e, f )

(g, h), (i, j)

∣∣∣∣∣∣∣ (p, q);
phj
bd f


=

(bi	 aj)∞
p,q (d f gi	 cehj)∞

p,q(
bi	 bi2

j

)∞

p,q

(
d f gi	 acehj

b

)∞

p,q

3Φ2

(a, b), (dg, ch), ( f g, eh)

(g, h), (d f gi, cehj)

∣∣∣∣∣∣∣
q
p

;
aj
bi

. (8.44)
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3Φ2

(a, b), (c, d), (e, f )

(g, h), (i, j)

∣∣∣∣∣∣∣ (p, q);
phj
bd f


=

(c	 d)∞
p,q (bdgi	 achj)∞

p,q (d f gi	 cehj)∞
p,q

(cg	 ch)∞
p,q (di	 dj)∞

p,q (bd f gi	 acehj)∞
p,q

3Φ2

(dg, ch), (di, cj), (bd f gi, acehj)

(bdgi, achj), (d f gi, cehj)

∣∣∣∣∣∣∣ (p, q);
p
c

.

(8.45)

Proof. From (8.42) and (8.16) it follows that

3Φ2

(a, b), (c, d), (e, f )

(g, h), (i, j)

∣∣∣∣∣∣∣ (p, q);
phj
bd f

 = 3φ2

 b
a

,
d
c

,
f
e

h
g

,
j
i

∣∣∣∣∣∣∣
q
p

;
acehj
bd f gi



=

(
aj
bi

;
q
p

)
∞

(
cehj
d f gi

;
q
p

)
∞(

j
i
;

q
p

)
∞

(
acehj
bd f gi

;
q
p

)
∞

3φ2


b
a

,
ch
dg

,
eh
f g

h
g

,
cehj
d f gi

∣∣∣∣∣∣∣∣
q
p

;
aj
bi


=

(bi	 aj)∞
p,q (d f gi	 cehj)∞

p,q(
bi	 bi2

j

)∞

p,q

(
d f gi	 acehj

b

)∞

p,q

3Φ2

(a, b), (dg, ch), ( f g, eh)

(g, h), (d f gi, cehj)

∣∣∣∣∣∣∣
q
p

;
aj
bi

.

This proves (8.44). (8.45) is obtained in the same way. Indeed,

3Φ2

(a, b), (c, d), (e, f )

(g, h), (i, j)

∣∣∣∣∣∣∣ (p, q);
phj
bd f

 = 3φ2

 b
a

,
d
c

,
f
e

h
g

,
j
i

∣∣∣∣∣∣∣
q
p

;
acehj
bd f gi



=

(
d
c

;
q
p

)
∞

(
achj
bdgi

;
q
p

)
∞

(
cehj
d f gi

;
q
p

)
∞(

h
g

;
q
p

)
∞

(
j
i
;

q
p

)
∞

(
acehj
bd f gi

;
q
p

)
∞

3φ2


ch
dg

,
cj
di

,
acehj
bd f gi

achj
bdgi

,
cehj
d f gi

∣∣∣∣∣∣∣∣
q
p

;
d
c


=

(c	 d)∞
p,q (bdgi	 achj)∞

p,q (d f gi	 cehj)∞
p,q

(cg	 ch)∞
p,q (di	 dj)∞

p,q (bd f gi	 acehj)∞
p,q

3Φ2

(dg, ch), (di, cj), (bd f gi, acehj)

(bdgi, achj), (d f gi, cehj)

∣∣∣∣∣∣∣ (p, q);
p
c

.

8.3 Power representation of terminating (p, q)-series

The following power representations of some terminating q-series are valid:(
(−1)nq(

n
2)
)(s−r)

(a2, . . . , ar+1; q)n

(b1, b2, . . . , bs; q)n
xn =

n

∑
k=0

(−1)k
[n

k

]
q
q(

k
2)r+1φs

 q−k, a2, . . . , ar+1

b1, b2, . . . , bs

∣∣∣∣∣∣∣ q; qx

.

(8.46)
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and (
(−1)nq(

n
2)
)(s−r)

(a3, . . . , ar+1)n

(b1, b2, . . . , bs; q)n
xn

=
n

∑
k=0

[n
k

]
q

(−1)kq(
k
2)

(a2qk, ; q)k(a2q2k+1; q)n−k
r+1φs

 q−k, a2qk, a3, . . . , ar+1

b1, b2, . . . , bs

∣∣∣∣∣∣∣ q; qx

.(8.47)

They can be obtained [66] from Verma’s q-extension [88] of Fields and Wimp [36] expansion
of

r+tφs+u

 (ar), (ct)

(bs), (du)

∣∣∣∣∣∣∣ q; yω

=
∞

∑
j=0

((ct), (ek); q)j

(q, (du), γqj; q)j
yj
[
(−1)jq(

j
2)
]u+3−t−k

.t+kφu+1

 (ctqj), (ekqj)

γq2j+1, (duqj)

∣∣∣∣∣∣∣ q, yqj(u+2−t−k)


.r+2φs+k

 q−j, γqj, (ar)

(bs), (ek)

∣∣∣∣∣∣∣ q, ωq

 (8.48)

in powers of yω as given in Gasper and Rahman [38, (3.7.9)].

In this section we give (p, q)-analogues of (8.46) and (8.47).

Proposition 102. The following power representation is valid:

xn = An

n

∑
k=0

(−1)k
[n

k

]
p,q

p(
k+1

2 )−nkq(
k
2)Φk(x), (8.49)

where

An =

( a2p . . . a(r+1)p

b1p . . . bsp

)n
(
b1p 	 b1q

)n
p,q . . .

(
bsp 	 bsq

)n
p,q(

a2p 	 a2q
)n

p,q . . .
(

a(r+1)p 	 a(r+1)q

)n

p,q

(
(−1)nq(

n
2)
)r−s

, (8.50)

and

Φk(x) =



r+1Φs

(
(p−k, q−k), (a2p, a2q), . . . , (a(r+1)p, a(r+1)q)

(b1p,b1q), (b2p, b2q), . . . (bsp, bsq)

∣∣∣∣∣ (p, q); µx

)
s = r

s+1Φs

(
(p−k, q−k), (a2p, a2q), . . . , (a(r+1)p, a(r+1)q), (0, 1), . . . , (0, 1)

(b1p,b1q), (b2p, b2q), . . . (bsp, bsq)

∣∣∣∣∣ (p, q); µx

)
s > r

r+1Φr

(
(p−k, q−k), (a2p, a2q), . . . , (a(r+1)p, a(r+1)q)

(b1p,b1q), (b2p, b2q), . . . (bsp, bsq), (0, 1), . . . , (0, 1)

∣∣∣∣∣ (p, q); µx

)
s < r

.

(8.51)

with

µ =
pkb1pb2p . . . bsp

a2p . . . a(r+1)p
. (8.52)
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Proof. We give the proof for (8.49), that is for the case s = r. The other formulas are obtained
in the same way.
From (8.46), we can write(

a2q

a2p
, . . .

a(r+1)q

a(r+1)p
;

q
p

)
n(

b1q

b1p
, . . .

bsq

bsp
;

q
p

)
n

xn =
n

∑
k=0

(−1)k
[n

k

]
q
p

(
q
p

)(k
2)

r+1φs


q−k

p−k ,
a2q

a2p
, . . . ,

a(r+1)q

a(r+1)p
b1q

b1p
,

a2q

a2p
. . . ,

bsq

bsp

∣∣∣∣∣∣∣∣
q
p

;
qx
p

.

Next, using the relation [n
k

]
p,q

= pk(n−k)
[n

k

]
q
p

,

together with the first case of (8.8) and proceeding with some simplifications (8.49) follows.

Proposition 103. The following power representation holds:

xn = Bn

n

∑
k=0

(−1)k
[n

k

]
p,q

pn(k+1)−(k+1
2 )q(

k
2)(

a2p pk 	 a2qqk
)k

p,q

(
a2p p2k+1 	 a2qq2k+1

)n−k
p,q

Φk(x), (8.53)

where

Bn =

( a2pa3p . . . a(r+1)p

b1p . . . bsp

)n
(
b1p 	 b1q

)n
p,q . . .

(
bsp 	 bsq

)n
p,q(

a3p 	 a3q
)n

p,q . . .
(

a(r+1)p 	 a(r+1)q

)n

p,q

(
(−1)nq(

n
2)
)r−s

p(
n
2),

(8.54)

and

Φk(x) =



r+1Φs

(
(p−k, q−k), (a2p pk, a2qqk), . . . , (a(r+1)p, a(r+1)q)

(b1p,b1q), (b2p, b2q), . . . (bsp, bsq)

∣∣∣∣∣ (p, q); µx

)
s = r

s+1Φs

(
(p−k, q−k), (a2p pk, a2qqk), . . . , (a(r+1)p, a(r+1)q), (0, 1), . . . , (0, 1)

(b1p,b1q), (b2p, b2q), . . . (bsp, bsq)

∣∣∣∣∣ (p, q); µx

)
s > r

r+1Φr

(
(p−k, q−k), (a2p pk, a2qqk), . . . , (a(r+1)p, a(r+1)q)

(b1p,b1q), (b2p, b2q), . . . (bsp, bsq), (0, 1), . . . , (0, 1)

∣∣∣∣∣ (p, q); µx

)
s < r

(8.55)

with

µ =
qb1p . . . bsp

a2p . . . a(r+1)p
. (8.56)

Proof. The proof is achieved in the same way as for Proposition 102.

We write (8.49) and (8.53) for r = s = 1.

cn (a	 b)n
p,q

an (c	 d)n
p,q

xn =
n

∑
k=0

(−1)k
[n

k

]
p,q

p(
k+1

2 )−nkq(
k
2)2Φ1

(p−k, q−k), (a, b)

(c, d)

∣∣∣∣∣∣∣ (p, q);
cqpk

a
x

; (8.57)
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and

cn p(
n
2)

(c	 d)n
p,q

xn =
n

∑
k=0

[n
k

]
p,q

(−1)k p(
k+1

2 )+4k2−nkq(
k
2)a2k

(apk 	 bqk)
k
p,q (ap2k+1 	 bq2k+1)

n−k
p,q

2Φ1

(p−k, q−k), (apk, bqk)

(c, d)

∣∣∣∣∣∣∣ (p, q);
cq
a

x

.

(8.58)



Chapter 9

(p, q)-Sturm-Liouville Problems and
Their Orthogonal Solutions

In mathematics and its applications, a classical Sturm-Liouville theory, named after Jacques
Charles François Sturm (1803-1855) and Joseph Liouville (1809-1882), is the theory of a real
second-order linear differential equation of the form

d
dx

[
u(x)

dy
dx

]
+ v(x)y(x) = −λw(x)y, (9.1)

where y is a function of the free variable x. Here the functions u(x), v(x), and w(x) > 0 are
specified at the outset. In the simplest of cases all coefficients are continuous on the finite
closed interval [a, b], and u has continuous derivative. In this case, this function y is called
a solution if it is two times continuously differentiable on (a, b) and satisfies the equation
(9.1) at every point in (a, b). In addition, the unknown function y is typically required to
satisfy some boundary conditions at a and b. The function w(x), which is sometimes also
denoted ρ(x), is called the weight or density function.

The value of λ is not specified in the equation; finding the values of λ for which there
exists a non-trivial solution of (9.1) satisfying the boundary conditions is part of the Sturm-
Liouville (S-L) problem. Such values of λ, when they exist, are called the eigenvalues of the
boundary value problem defined by (9.1) and the prescribed set of boundary conditions.
The corresponding solutions (for each such λ) are the eigenfunctions of this problem.

The resulting theory of the existence and asymptotic behaviour of the eigenvalues, the cor-
responding qualitative theory of the eigenfunctions and their completeness in a suitable
function space became known as Sturm-Liouville theory. This theory is important in ap-
plied mathematics, where (S-L) problems occur very commonly, particularly when dealing
with linear partial differential equations that are separable.

A regular Sturm-Liouville problem of continuous type is a boundary value problem in the
form

d
dx

(
r(x)

dyn(x)
dx

)
+ λnw(x)yn(x) = 0 (r(x) > 0, w(x) > 0), (9.2)

which is defined on an open interval, say (a, b), with the boundary conditions

α1y(a) + β1y′(a) = 0, α2y(b) + β2y′(b) = 0, (9.3)

where α1, α2 and β1, β2 are constant numbers and r(x), r′(x) and w(x) in (9.2) are to be
assumed continuous for x ∈ [a, b]. In this sense, if yn and ym are two eigenfunctions of
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equation (9.2), then according to Sturm-Liouville theory [65], they are orthogonal with re-
spect to the weight function w(x) under the given condition (9.3), i.e. we have∫ b

a
w(x)yn(x)ym(x)dx = d2

nδm,n,

where d2
n =

∫ b
a w(x)y2

n(x)dx denotes the norm square of the functions yn and δm,n stands
for the Kronecker delta [58, 59].

It is well known that q-orthogonal functions may be solutions of a q-Sturm-Liouville prob-
lem [18]. One of the important cases of these functions are the q-classical orthogonal polyno-
mials which are of special interest inside the class of special functions and play an important
role in several problems such as Eulerian series and continued fractions [53], q-algebras and
quantum groups [56, 57] or q-oscillators [10, 19, 39].

q-Orthogonal functions can also be similarly solutions of a q-Sturm-Liouville problem in
the form [51]

(Dq(r Dqyn))(x; q) + λn,qw(x; q)yn(x; q) = 0 (r(x; q) > 0, w(x; q) > 0), (9.4)

with (Dq f )(0) = f ′(0) (provided f ′(0) exists), and (9.4) satisfies a set of boundary con-
ditions like (9.3). This means that if yn(x; q) and ym(x; q) are two eigenfunctions of the q-
difference equation (9.4), then they are orthogonal with respect to a weight function w(x; q)
on a discrete set [64].

In this chapter, we study the extension of q-Sturm-Liouville problems to (p, q)-Sturm-Liouville
problems and seek for finding some (p, q)-orthogonal functions that are solutions of them.

9.1 Eigenvalue problems

We consider the eigenvalue problem (see [60] or [84])

ϕ(x)(D2
p,qyn)(x) + ψ(x)(Dp,qyn)(px) = λnyn(pqx) (9.5)

for polynomials yn of degree n, where D2
p,qyn = Dp,q(Dp,qyn) with λn ∈ C and n ∈ {0, 1, 2, . . .},

ϕ is a polynomial of degree at most 2 and ψ is a polynomial of exact degree 1, say

ϕ(x) = ax2 + bx + c, ψ(x) = dx + e, a, b, c, d, e ∈ C, d 6= 0. (9.6)

Since
Dp,q(xn) =

pnxn − qnxn

(p− q)x
= [n]p,qxn−1,

comparing the coefficients of xn in (9.5), we get

λn =
[n]p,q

(pq)n

(
a[n− 1]p,q + dpn−1

)
. (9.7)

Consequently, the corresponding (p, q)-difference equation (9.5) takes the form

(ax2 + bx + c)(D2
p,qyn)(x) + (dx + e)(Dp,qyn)(px)

=
[n]p,q

(pq)n

(
a[n− 1]p,q + dpn−1

)
yn(pqx), n = 0, 1, 2, . . . . (9.8)
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Note that

(D2
p,qyn)(x) =

qyn(p2x)− (p + q)yn(pqx) + pyn(q2x)
(p− q)2 pqx2 . (9.9)

Therefore the equation (9.8) can be written in the form(
ax2 + bx + c
(p− q)2 px2 +

dx + e
(p− q)px

)
yn(p2x)

−
(
(ax2 + bx + c)(p + q)

(p− q)2 px2 +
dx + e

(p− q)px
− λn

)
yn(pqx)

+
(ax2 + bx + c)
(p− q)2qx2 y(q2x). (9.10)

If now we replace x by x/(pq) we obtain the so-called symmetric form

C(x)yn(p−1qx)− {C(x) + D(x)} yn(x) + D(x)yn(pq−1x)

=
(pn − qn)

(
aqn p− pnaq− dpn pq + q2dpn)
pn+1qn+1 (p− q)2 yn(x), (9.11)

for n = 0, 1, 2, . . . with

C(x) =
ax2 + bpqx + cp2q2

q (p− q)2 x2
(9.12)

and

D(x) =
(a + (p− q)d) x2 + (b + (p− q)e) pqx + cp2q2

p (p− q)2 x2
. (9.13)

Note that D(x) is related to C(x) by

D(x) =
q
p

C(x) +
dx + epq
p(p− q)x

. (9.14)

9.2 The regularity condition

In this section we will point out in which cases the eigenvalue problem (9.5) has essentially
unique polynomial solutions yn(x) of degrees n = 0, 1, 2, . . . , N for some positive integer N
with possibly N = ∞. Solutions are called essentially unique if they are determined up to a
factor independent of x. We have

Theorem 104. Let N denote a positive integer (possibly N → ∞). Then the following statements
are equivalent:

1. For each n = 0, 1, 2, . . . , N there exists a solution of the eigenvalue problem (9.5) and all
eigenspaces are one-dimensional.

2. For m, n ∈ {0, 1, 2, . . . , N} with m 6= n we have λm 6= λn.

Proof. Assume that λm = λn for m 6= n. Then there is either no polynomial solution for
one of the degrees m and n or the solutions ym and yn belong to the same eigenspace. This
shows that the first statement implies the second.
Now we use induction to show that the second statement implies the first. For n = 0,
we have λ0 = 0 and the one-dimensional eigenspace generated by y0(x) = 1. Now we
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assume that n ∈ {1, 2, 3, . . .}. Suppose that the polynomials yk(x) are solutions of degree k
for k = 0, 1, 2, . . . n− 1. Then the (monic) polynomial yn(x) of degree n given by

yn(x) = xn +
n−1

∑
k=0

αkyk(x) with αk ∈ C (9.15)

is clearly a solution of (9.5) if

ϕ(x)D2
p,q(xn) + ψ(x)(Dp,qLp)(xn)

+ ϕ(x)

(
D2

p,q

n−1

∑
k=0

αkyk

)
(x) + ψ(x)(Dp,qLp)

(
n−1

∑
k=0

αkyk

)
(x)

= λn

(
(px)n +

n−1

∑
k=0

αkyk(pqx

)
with Lp( f )(x) = f (px), holds. Clearly, the polynomial ϕ(x)D2

p,q(xn) + ψ(x)(Dp,qLp)(xn)
has degree at most n. Hence we may write

ϕ(x)D2
p,q(xn) + ψ(x)(Dp,qLp)(xn) = βn(px)n +

n−1

∑
k=0

βkyk(pqx)

with β j ∈ C for j = 0, 1, . . . , n. Combining the last two equations, we get

βn(px)n +
n−1

∑
k=0

(βk + λkαk)yk(pqx) = λn

(
(px)n +

n−1

∑
k=0

βkyk(pqx)

)
and therefore

(βn − λn)(px)n +
n−1

∑
k=0

(αk(λk − λn) + βk)yk(pqx) = 0.

Since λk 6= λn, this implies that the numbers αk are uniquely determined by this equation.
Hence the (monic) polynomial solution yn given by (9.15) is uniquely determined and this
implies that the corresponding eigenspace is one-dimensional.

Now, since λn =
[n]p,q

(pq)n

(
a[n− 1]p,q + dpn−1), using the relations (2.11) and (2.12) we get

(pq)n(λn − λm) = [n]p,q

(
a[n− 1]p,q + dpn−1

)
− (pq)n−m[m]p,q

(
a[m− 1]p,q + dpm−1

)
= a([n]p,q[n− 1]p,q − (pq)n−m[m]p,q[m− 1]p,q) + dpn−1([n]p,q − qn−m[m]p,q)

= a[n−m]p,q[n + m− 1]p,q + dpn+m−1[n−m]p,q

= [n−m]p,q

(
a[n + m− 1]p,q + dpn+m−1

)
, n ≥ m, n, m ∈ {0, 1, 2, . . .}.

Hence we have

λn − λm =
[n−m]p,q

(pq)n

(
a[n + m− 1]p,q + dpn+m−1

)
, n ≥ m, n, m ∈ {0, 1, 2, . . .}. (9.16)

For n 6= m, it follows that [n−m]p,q 6= 0 and so λm 6= λn is equivalent to a[n + m− 1]p,q +
dpn+m−1 6= 0. Therefore, Theorem 104 leads to:

Corollary 105. Let N denote a positive integer (possibly N → ∞). Then the eigenvalue prob-
lem (9.5) has polynomial solutions yn of degree n for all n = 0, 1, 2, . . . , N with one-dimensional
eigenspaces if and only if the regularity condition

a[n]p,q + dpn 6= 0, n = 0, 1, 2, . . . , 2N − 2 (9.17)

holds.
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9.3 Orthogonality of the polynomial solutions

In this section, we prove that the polynomial solutions of (9.5) are orthogonal with respect
to some measure ρ.

Theorem 106. If λn = −(pq)−n[n]p,q(a[n− 1]p,q + dpn−1), n ∈ N, then the (p, q)-differential
equation (9.5) has a polynomial solution of degree n, Pn(x). Moreover, if ρ is a nonnegative solution
of the Pearson type equation on an interval (a; b) (the latter interval may be finite or infinite)

Dp,q[φ(q−1x)ρ(q−1x)] = ψ(x)ρ(x), (9.18)

and if the limiting conditions

lim
x→a

xnφ(x)ρ(x) = lim
x→b

xnφ(x)ρ(x) = 0, ∀n ∈N (9.19)

hold. Then the polynomial system (Pn(x))n satisfies the orthogonality relation∫ b

a
ρ(x)Pm(pqx)Pn(pqx)dp,qx = knδn,m. (9.20)

Proof. When c = 0, it is clear that for λn = −(pq)−n[n]p,q(a[n− 1]p,q + dpn−1), fm = 0 for
m > n and fn 6= 0. Next, multipliying (9.5) by ρ(x), we get

φ(x)ρ(x)D2
p,qy(x) + ψ(x)ρ(x)(Dp,qy)(px) + λρ(x)y(pqx) = 0.

Using the (p, q)-Pearson equation (9.18), and the product rule (2.13), we get the following
self-adjoint form of (9.5)

Dp,q[φ(q−1x)ρ(q−1x)Dp,qy(x)] = −λρ(x)y(pqx).

We write this self-adjoint form for Pn and Pm, m 6= n

Dp,q[φ(q−1x)ρ(q−1x)Dp,qPm(x)] =−λmρ(x)Pm(pqx)

Dp,q[φ(q−1x)ρ(q−1x)Dp,qPn(x)] =−λnρ(x)Pn(pqx).

Multiplying the first equation by Pn(pqx) and the second one by Pm(pqx) and subtract the
second equation from the first one, it follows that

(λn − λm)ρ(x)Pm(pqx)Pn(pqx) = Pm(pqx)Dp,q[φ(q−1x)ρ(q−1x)Dp,qPn(x)]

−Pn(pqx)Dp,q[φ(q−1x)ρ(q−1x)Dp,qPm(x)]

= Dp,q

[
φ(q−1x)ρ(q−1x)

(
Pm(qx)Dp,qPn(x)− Pn(qx)Dp,qPm(x)

)]
Therefore

(λn − λm)
∫ b

a
ρ(x)Pm(pqx)Pn(pqx)dp,qx

=
[
φ(q−1x)ρ(q−1x)

(
Pm(qx)Dp,qPn(x)− Pn(qx)Dp,qPm(x)

)]b

a
= 0 ( limit conditions (9.19))

The orthogonality then follows from the regularity condition (9.17).
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Now, note that from the (p, q)-Pearson equation (9.18) we get

Dp,q[φ(q−1x)ρ(q−1x)] = ψ(x)ρ(x) ⇐⇒ φ(pq−1x)ρ(pq−1x)− φ(x)ρ(x)
(p− q)x

= ψ(x)ρ(x)

⇐⇒
ρ
(

p
q x
)

ρ(x)
=

φ(x) + (p− q)xψ(x)
φ(pq−1x)

.

We state the following theorem.

Theorem 107. Let θ(x) be a given function and consider the (p, q)-difference equation

ρ
(

p
q x
)

ρ(x)
= θ(x). (9.21)

Then,

1. If 0 < q < p,

ρ(x) =
∞

∏
k=0

θ

(
qk+1

pk+1 x
)

(9.22)

is a possible solution of (9.21) provided that the infinite series converges.

2. If 0 < p < q,

ρ(x) =

[
∞

∏
k=0

θ

(
pk

qk x
)]−1

(9.23)

is a possible solution of (9.21) provided that the infinite series converges.

Proof. 1. If 0 < q < p, then (9.21) reads

ρ(x)

ρ
(

q
p x
) = θ

(
q
p

x
)

,

or otherwise stated

ρ(x) = θ

(
q
p

x
)

ρ

(
q
p

x
)

.

Making the substitution of x by
q
p

x on both sides n times yields

ρ(x) = θ

(
q
p

x
)

θ

(
q2

p2 x
)

. . . θ

(
qn+1

pn+1 x
)

ρ

(
qn+1

pn+1 x
)

.

Letting n tend to infinity and assuming that the obtained infinite product is conver-
gent gives (9.22).

2. In the case 0 < p < q, we write (9.21) as

ρ(x) =
1

θ(x)
ρ

(
p
q

x
)

and proceed as previously.
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9.4 Structure relations for (p, q)-orthogonal polynomials

9.4.1 The three-term recurrence relation

Now since we have the orthogonality relation, it is clear that the polynomial solutions of
(9.5) satisfy a three-term recurrence relation of the form

xPn(x) = anPn+1(x) + bnPn(x) + cnPn−1(x), n ≥ 1 (9.24)

In order to obtain the expression of the coefficients an, bn and cn, following the method used
by Koepf and Schmersau in [55] and [54], we first write

Pn(x) = knxn + k′nxn−1 + k′′nxn−2 + · · · (n ∈N≥0 := {0, 1, 2 . . .}, kn 6= 0). (9.25)

Since one demands that Pn(x) has exactly degree n, we substitute Pn(x) in the q-differential
equation (9.5) and by equating the coefficients of xn, one gets (9.7).
Equating the coefficients of xn−1 and xn−2 gives k′n, and k′′n , respectively, as rational multi-
ples w.r.t. M = pm, and N = qn of kn:

k′n =
(M− N)

(
Mepq−Meq2 + Mbq− Nbp

)
q2 p2

(p− q) (M2dq2 p−M2dq3 + M2aq2 − N2ap2)
kn (9.26)

and

k′′n = kn (M− N) (Mq− Np)
(

M2e2 p2q3 − 2 M2e2 pq4 + M2e2q5 + 2 M2bepq3 − 2 M2beq4

+M2cdp2q2 − 2 M2cdpq3 + M2cdq4 −MNbep3q + MNbepq3 + M2acpq2 −M2acq3 + M2b2q3

−MNb2 p2q−MNb2 pq2 − N2acp3 + N2acp2q + N2b2 p3) q4 p4
)/[

(p + q) (p− q)2(
M2dpq3 −M2dq4 + M2aq3 − N2ap3

) (
M2dpq2 −M2dq3 + M2aq2 − N2ap2) ]. (9.27)

An important point is that the coefficients an, bn and cn appearing in this formula (9.24) can
be computed directly in terms of the coefficients of the polynomials φ(x) and ψ(x), which
completely characterize the second order (p, q)-differential equation (9.5).
Next, we substitute Pn(x) in the proposed equation (9.24) and equate the three highest co-
efficients. This yields an, bn, and cn in terms of a, b, c, d, e, q, qn, pn, kn−1, kn, kn+1, k′n−1,
k′n, k′n+1, k′′n−1, k′′n , k′′n+1 by linear algebra.
Finally, substituting the values of k′n−1, k′n, k′n+1, k′′n−1, k′′n , and k′′n+1 given by (9.26) and (9.27)
yields the following formulas.

an =
kn

kn+1
. (9.28)

bn = −
(

M2dep2q2 − 2 M2depq3 + M2deq4 + M2aepq2 −M2aeq3 + M2bdp2q−M2bdq3

−MNaep3 + MNaepq2 −MNbdp2q + MNbdq3 + N2aep2q− N2aepq2 + M2abpq + M2abq2

−MNabp2 − 2 MNabpq−MNabq2 + N2abp2 + N2abpq
)

NMpq
/ (

M2dpq2 −M2dq3 + M2aq2

−N2ap2) (M2dp−M2dq + M2a− N2a
)

(9.29)
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and

cn = − kn

nn−1
NMp3q3 (M− N)

(
pq2Md− q3Md + q2Ma− p2Na

) (
M4cd2 p2q4 − 2 M4cd2 pq5

+M4cd2q6 −M3Nbdep3q3 + 2 M3Nbdep2q4 −M3Nbdepq5 + M2N2ae2 p4q2 − 2 M2N2ae2 p3q3

+M2N2ae2 p2q4 + 2 M4acdpq4 − 2 M4acdq5 −M3Nabep2q3 + M3Nabepq4 −M3Nb2dp2q3

+M3Nb2dpq4 + 2 M2N2abep3q2 − 2 M2N2abep2q3 − 2 M2N2acdp3q2 + 2 M2N2acdp2q3

+M2N2b2dp3q2 −M2N2b2dp2q3 −MN3abep4q + MN3abep3q2 + M4a2cq4 −M3Nab2 pq3

−2 M2N2a2cp2q2 + 2 M2N2ab2 p2q2 −MN3ab2 p3q + N4a2cp4
)/(

M2dpq3 −M2dq4 + M2aq3

−N2ap3) (M2dpq2 −M2dq3 + M2aq2 − N2ap2)2 (
M2dpq−M2dq2 + M2aq− N2ap

)
(9.30)

9.4.2 Further structure relations

In this section we give several other structure relations for the (p, q)-orthogonal polynomi-
als.

Proposition 108 (Compare with [60]). If y(x) is a solution of equation (9.5), then y1 = Dp,qy is
a solution of

φ1(x)D2
p,qy1(x) + ψ1(x)(Dp,qy1)(px) + µ1y1(pqx) = 0 (9.31)

where

φ1(x) = φ(qx), (9.32)
ψ1(x) = Dp,qφ(x) + pψ(px), (9.33)

µ1 = Dp,qψ(x) + pqλ. (9.34)

Proof.
Dp,q

[
φ(x)D2

p,qy(x)
]
+ Dp,q

[
ψ(x)(Dp,qy)(px)

]
+ λDp,q [y(pqx)] = 0 (9.35)

Applying the product rule (2.13) it follows that:

φ(qx)D2
p,q
[
Dp,qy(x)

]
+ Dp,qφ(x)(D2

p,qy)(px) + ψ(px)Dp,q
[
(Dp,qy)(px)

]
+ Dp,qψ(x)(Dp,qy)(pqx) + λDp,q [y(pqx)] = 0.

Next, using the product rule (2.13) and using the relation

Dp,q[ f (αx)] = α(Dp,q f )(αx),

we get

φ(qx)D2
p,q
[
Dp,qy(x)

]
+
[
Dp,qφ(x) + pψ(px)

]
(D2

p,qy)(px)

+
[
Dp,qψ(x) + pqλ

]
Dp,qy)(pqx) = 0.

This proves the result.

By induction, it can be seen that if y(x) is solution of (9.5), then Dn
p,qy(x) (for n ≥ 1) is

solution of the equation (see [60])

φn(x)D2
p,qy(x) + ψn(x)(Dp,qy)(px) + µny(pqx) = 0, (9.36)
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where

φn(x) = φ(qnx) (9.37)
ψn(x) = pψn−1(px) + Dp,qφn−1(x). (9.38)

Setting φ(x) = ax2 + bx + c and ψ(x) = dx + e, we see that

φn(x) = aq2nx2 + bqnx + c.

Also, setting ψ(x) = dx + e and ψn(x) = dnx + en, it follows that φn+1(x) = dn+1x + en+1.
Using (9.38), it follows that

ψn+1(x) = Dp,qφn(x) + pψ(px)

= a(p + q)q2nx + bqn + p(pdnx + en)

=
(

p2dn + a(p + q)q2n)x + bqn + pen

Hence, by identification we obtain the following recurrences for (dn) and (en)

dn+1 = p2dn + a(p + q)q2n, d0 = d (9.39)
en+1 = pen + bqn, e0 = e. (9.40)

If we write en = pnSn, then from (9.40) we get

Sn+1 = Sn +
b
p

(
q
p

)n

.

Solving this recurrence gives Sn = e +
b[n]p,q

pn and hence

en = pnSn = pne + b[n]pq.

By a similar approach we obtain

dn = p2nd + a[2n]p,q. (9.41)

Now since we have the expressions for φn and ψn, it is interesting to get a closed formula
for µn. As for the previous cases, by induction it is easy to see that

µn+1 = Dp,qψn(x) + pqµn.

Using the expression for ψn we obtain the following recurrence for the µns

µn+1 = (pq)µn + a[2n]p,q + dp2n, µ0 = λ.

This time putting µn = (pq)Tn, it follows that

Tn+1 = Tn +
1

(pq)n

(
a[2n]p,q + dp2n) .

Hence
Tn =

a
(pq)n [n]p,q[n− 1]p,q +

d
pqn + λ.

The representation of µn follows and we then have the following proposition.
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Proposition 109 (Compare with [60]). If y(x) is a solution of equation (9.5), then Dp,qy is a
solution of

φ1(x)D2
p,qy(x) + ψ1(x)(Dp,qy)(px) + µny(x) = 0 (9.42)

where

φn(x) = φ(qnx) = aq2nx2 + bqnx + c,

ψn(x) = (a[2n]p,q + dp2n)x + (b[n]p,q + epn),

µn = a[n]p,q[n− 1]p,q + dpn−1[n]p,q + (pq)nλ.

Theorem 110 (Compare with [60]). Let {Pn} be a polynomial set, solutions of the (p, q)-differential
equation (9.5), then the following structure relation holds:

Pn(px) = ân(Dp,qPn+1)(x) + b̂n(Dp,qPn)(x) + ĉn(Dp,qPn−1)(x). (9.43)

Moreover, if we write
Pn(x) = knxn + ...,

then, the coefficients ân, b̂n and ĉn can be computed using the formulas:

ân =
kn

kn+1

pn

[n + 1]p,q
,

b̂n = −
(

M2bdpq−M2bdq2 −MNaep2 + MNaeq2 + M2abq−MNabp−MNabq + N2abp
)

(M2dpq2 −M2dq3 + M2aq2 − N2ap2) (M2dp−M2dq + M2a− N2a)
×MpqN (p− q)

ĉn =
kn

kn−1
× q3 p4M (M− N) N2a (p− q)

(M2dpq3 −M2dq4 + M2aq3 − N2ap3)

×
[

M4cd2 p2q4 − 2 M4cd2 pq5 + M4cd2q6 −M3Nbdep3q3 + 2 M3Nbdep2q4 −M3Nbdepq5

(M2dq2 p−M2dq3 + M2aq2 − N2ap2)2 (M2dpq−M2dq2 + M2aq− N2ap)

+
M2N2ae2 p4q2 − 2 M2N2ae2 p3q3 + M2N2ae2 p2q4 + 2 M4acdpq4 − 2 M4acdq5

(M2dq2 p−M2dq3 + M2aq2 − N2ap2)2 (M2dpq−M2dq2 + M2aq− N2ap)

+
−M3Nabep2q3 + M3Nabepq4 −M3Nb2dp2q3 + M3Nb2dpq4 + 2 M2N2abep3q2−

(M2dq2 p−M2dq3 + M2aq2 − N2ap2)2 (M2dpq−M2dq2 + M2aq− N2ap)

+
2 M2N2abep2q3 − 2 M2N2acdp3q2 + 2 M2N2acdp2q3 + M2N2b2dp3q2 −M2N2b2dp2q3

(M2dq2 p−M2dq3 + M2aq2 − N2ap2)2 (M2dpq−M2dq2 + M2aq− N2ap)

+
−MN3abep4q + MN3abep3q2 + M4a2cq4 −M3Nab2 pq3 − 2 M2N2a2cp2q2

(M2dq2 p−M2dq3 + M2aq2 − N2ap2)2 (M2dpq−M2dq2 + M2aq− N2ap)

+
2 M2N2ab2 p2q2 −MN3ab2 p3q + N4a2cp4

(M2dq2 p−M2dq3 + M2aq2 − N2ap2)2 (M2dpq−M2dq2 + M2aq− N2ap)

]

Proof. From Proposition 108, it follows that if {Pn} is a family of solutions of (9.5) the family
{Dp,qPn} forms solutions of (9.42). Hence, they are orthogonal and therefore satisfy a three-
term recurrence relation of the form

xDp,qPn(x) = an,1Dp,qPn+1(x) + bn,1Dp,qPn(x) + cn,1Dp,qPn−1(x), n ≥ 2. (9.44)

Now, applying the Dp,q operator on both sides of equation (9.24), it follows that

Dp,q[xPn(x)] = an(Dp,qPn+1)(x) + bn(Dp,qPn)(x) + cn(Dp,qPn−1)(x), (9.45)
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Using the product rule (2.13), the left-hand side of the above equation reads

Dp,q[xPn(x)] = qx(Dp,qPn)(x) + Pn(px).

Using (9.44), it follows that

Dp,q[xPn(x)] = Pn(px) + q
[
an,1(Dp,qPn+1)(x) + bn,1(Dp,qPn)(x) + cn,1(Dp,qPn−1)(x)

]
.

(9.46)

Now combining (9.45) and (9.46) it follows that

Pn(px) = (an− qan,1)(Dp,qPn+1)(x)+ (bn− qbn,1)(Dp,qPn)(x)+ (cn− qcn,1)(Dp,qPn−1)(x).

Therefore, the structure relation is obtained. In order to get the explicit relation for the
coefficients, we proceed exactly as in Proposition 9.24.

9.5 Some special cases of (p, q)-orthogonal polynomials

In this section we discuss two special cases of (p, q)-orthogonal polynomials.

9.5.1 General solutions of the (p, q)-differential equations (9.5) and (9.18)

First, we obtain the recurrence equation for the coefficients of the power series solution of
(9.5).

Theorem 111. Let

y(x) =
∞

∑
m=0

fmxm (9.47)

be a solution of (9.5), then the coefficients fm satisfy the second-order recurrence equation

c[m + 2]p,q[m + 1]p,q fm+2 + (b[m + 1]p,q[m]p,q + epm[m + 1]p,q) fm+1

+(a[m]p,q[m− 1]p,q + dpm−1[m]p,q + λ(pq)m) fm, m ≥ 0. (9.48)

In particular, if c = 0, the recurrence equation

(b[m + 1]p,q[m]p,q + epm[m + 1]p,q) fm+1 + (a[m]p,q[m− 1]p,q + dpm−1[m]p,q + λ(pq)m) fm = 0, (9.49)

is valid and

fm =
(−1)m f0

[m]p,q!

m−1

∏
k=0

a[k]p,q[k− 1]p,q + dpk−1[k]p,q + λ(pq)k

(b[k]p,q + eqk)
. (9.50)

Proof. We have

Dp,qy(x) =
∞

∑
m=1

[m]p,q fmxm−1, D2
p,qy(x) =

∞

∑
m=2

[m]p,q[m− 1]p,q fmxm−2.

Thus

σ(x)D2
p,qy(x) =

∞

∑
m=2

a[m]p,q[m− 1]p,q fmxm +
∞

∑
m=1

b[m + 1]p,q[m]p,q fm+1xm

+
∞

∑
m=0

c[m + 2]p,q[m + 1]p,q fm+2xm

τ(x)(Dp,qy)(px) =
∞

∑
m=1

dpm−1[m]p,q fmxm +
∞

∑
m=0

epm[m + 1]p,q fm+1xm

λy(pqx) =
∞

∑
m=0

λ(pq)m fmxm
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Hence we get

σ(x)D2
p,qy(x) + τ(x)(Dp,qy)(qx) + λy(x)

=
∞

∑
m=2

[
c[m + 2]p,q[m + 1]p,q fm+2 + (b[m + 1]p,q[m]p,q + epm[m + 1]p,q) fm+1

+(a[m]p,q[m− 1]p,q + dpm−1[m]p,q + λ(pq)m) fm

]
xm

=
∞

∑
m=0

[
c[m + 2]p,q[m + 1]p,q fm+2 + (b[m + 1]p,q[m]p,q + epm[m + 1]p,q) fm+1

+(a[m]p,q[m− 1]p,q + dpm−1[m]p,q + λ(pq)m) fm

]
xm.

The recurrence equation for fm is then obtained. When c = 0, the recurrence reads

(b[m + 1]p,q[m]p,q + epm[m + 1]p,q) fm+1 + (a[m]p,q[m− 1]p,q + dpm−1[m]p,q + λ(pq)m) fm = 0,

so
fm+1

fm
= −

a[m]p,q[m− 1]p,q + dpm−1[m]p,q + λ(pq)k

[m + 1]p,q(b[m]p,q + epm)
.

Hence

fm =
(−1)m f0

[m]p,q!

m−1

∏
k=0

a[k]p,q[k− 1]p,q + dpk−1[k]p,q + λ(pq)k

(b[k]p,q + epk)
.

Corollary 112. Let Pn(x) =
n

∑
m=0

fm(n)xm be a polynomial solution of the equation

φ(x)D2
p,qPn(x) + ψ(x)(Dp,qPn)(px) + λnPn(pqx) = 0 (9.51)

where

φ(x) = ax2 + bx + c, ψ(x) = dx + e and λn = − 1
(pq)n [n]p,q

(
a[n− 1]p,q + dpn−1

)
.

Then, the coefficients fm(n), m = 0, 1, . . . , n, are solutions of the recurrence equation

c[m + 2]p,q[m + 1]p,q fm+2(n) + (b[m + 1]p,q[m]p,q + epm[m + 1]p,q) fm+1(n)

+(a[m]p,q[m− 1]p,q + dpm−1[m]p,q + λn(pq)m) fm(n), m ≥ 0. (9.52)

In particular if c = 0, the recurrence equation

(b[m + 1]p,q[m]p,q + epm[m + 1]p,q) fm+1(n) + [m− n]
(

a[n + m− 1] + dpm+n−1
)

fm(n) = 0, (9.53)

is valid and the solutions take the form

Pn(x) = Kn2Φ1

(p−n, q−n), ((a + d(p− q))pn−1, aqn−1)

(b + e(p− q), b)

∣∣∣∣∣∣∣ (p, q),−x

. (9.54)

Proof. Equation (9.52) follows directly from (9.48). When c = 0, then (9.52) becomes

(b[m + 1]p,q[m]p,q + epm[m + 1]p,q) fm+1(n) + (a[m]p,q[m− 1]p,q + dpm−1[m]p,q + λn(pq)m) fm(n) = 0
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and hence
fm+1(n)
fm(n)

= −
a[m]p,q[m− 1]p,q + dpm−1[m]p,q + λn(pq)m

[m]p,q
(
b[m + 1]p,q + epm

) .

But, it is not difficult to see that

a[m]p,q[m− 1]p,q + dpm−1[m]p,q + λn(pq)m

= a[m]p,q[m− 1]p,q + dpm−1[m]p,q − [n]p,q
(
a[n− 1]p,q + dpn−1)(pq)m−n

= [m− n]p,q

(
a[m + n− 1]p,q + dpm+n−1

)
.

Hence,

fm(n) =
(−1)m f0(n)

[m]p,q!

m−1

∏
k=0

[k− n]p,q
(
a[k + n− 1]p,q + dpk+n−1)
b[k]p,q + epk−1 .

Next, we remark that
m−1

∏
k=0

[k− n]p,q =
(p−n 	 q−n)

m
p,q

(p− q)m (9.55)

also
m−1

∏
k=0

(
a[k + n− 1]p,q + dpk+n−1

)
=

(
(a + (p− q))pn−1 	 aqn−1)m

p,q

(p− q)m (9.56)

and
m−1

∏
k=0

(
b[k]p,q + epk

)
=

(b + (p− q)e	 b)m
p,q

(p− q)m (9.57)

From (9.55), (9.56) and (9.57), we get

fm(n) = (−1)m f0(n)
(p−n 	 q−n)m

p,q
(
(a + (p− q))pn−1 	 aqn−1)m

p,q

(p	 q)m
p,q (b + (p− q)e	 b)m

p,q
. (9.58)

The representation (9.54) is therefore proved.

9.5.2 The (p, q)-Jacobi polynomials

(p, q)-Hypergeometric representation

Let us consider now the second order (p, q)-difference equation (9.5) with

a = q2, b = −pq, c = 0, (p− q)d = p2

((
p
q

)α+β

− q2

)
, (p− q)e = pq− p2

(
p
q

)α

.

In this case we get:

Corollary 113 (Compare with [60]). The polynomial solutions of equation (9.5) can be explicitly
given by

P(α,β)
n (x; p, q) = 2Φ1

(p−n, q−n), (pα+β+n+1, qα+β+n+1)

(pα+1, qα+1)

∣∣∣∣∣∣∣ (p, q);
xq−β

p

 (9.59)

up to a normalizing constant.
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Proof. For these special values, we have(
(a + (p− q))pn−1 	 aqn−1

)m

p,q
=

(
pn+1

(
p
q

)α+β

	 qn+1

)m

p,q

=
(

q−α−β
)m (

pα+β+n+1 	 qα+β+n+1
)m

p,q

and

(b + (p− q)e	 b)m
p,q =

(
−p2

(
p
q

)α

	−pq
)m

p,q

=

(
− p

qα

)m (
pα+1 	 qα+1

)m

p,q
.

Putting together these two relations combining with (9.58) provides the (p, q)-hypergeometric
representation (9.59).

Orthogonality relation

Corollary 114 (Compare with [60]). Let {P(α,β)
n (x; p, q)}n be the sequence of polynomials given

by (9.59). Then, according to Theorem 106, we have∫ p/q

0
ρ(α,β)(pqx; p, q)P(α,β)

n (pqx; p, q)P(α,β)
m (pqx; p, q)dp,qx

=

(∫ p/q

0
ρ(α,β)(x; p, q)

(
P(α,β)

n (pqx; p, q)
)2

dp,qx
)

δn,m,

where α, β > −1 and ρ(α,β)(x; p, q) is a solution of the (p, q)-Pearson equation

ρ(α,β)(pq−1x; p, q)
ρ(α,β)(x; p, q)

=

(
qα+β+2 + pα+β+2 − qα+β+2 p2) x− qβ pα+2

(x− 1) p2qα+β
.

This can be written in the form

ρ(α,β)(pq−1x; p, q)
ρ(α,β)(x; p, q)

=
θx− 1
x− 1

×
(

p
q

)α

.

with

θ =
pα+β+2 + (1− p2)qα+β+2

qβ pα+2 =

(
p
q

)β

+ (1− p2)

(
q
p

)α+2

.

We can therefore write ρ(x) = ρ1(x)ρ(x) with

ρ1

(
p
q x
)

ρ1(x)
=

(
p
q

)α

and
ρ2

(
p
q x
)

ρ2(x)
=

θx− 1
x− 1

×
(

p
q

)α

..

The relation
ρ1

(
p
q x
)

ρ1(x)
=

(
p
q

)α

has a solution ρ1(x) = xα and applying Theorem 9.21 to the second

equation it follows that a solution of
ρ2

(
p
q x
)

ρ2(x)
=

θx− 1
x− 1

may be written as

ρ2(x) =
∞

∏
k=0

pk+1 − xqk+1

pk+1 − qk+1x
=

(p	 θqx)∞
p,q

(p	 qx)∞
p,q

.
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Therefore, the we get

ρα,β(x; p, q) = xα
(p	 θqx)∞

p,q

(p	 qx)∞
p,q

. (9.60)

Three-term recurrence relation

From the (p, q)-hypergeometric representation (9.59), we see that the leading coefficient of
P(α)

n (x; p, q) is given by

kn =
(p−n 	 q−n)

n
p,q
(

pn+α+β+1 	 qn+α+β+1)n
p,q

(p	 q)n
p,q (pα+1 	 qα+1)

n
p,q

(pqβ)n.

Then, the (p, q)-Jacobi polynomials satisfy the three-term recurrence relation (9.24) with

an =
kn

kn+1
= − pn+2qn+β+1(pn+α+1 − qn+α+1)(pn+α+β+1 − qn+α+β+1)

(p2n+α+β+2 − q2n+α+β+2)(p2n+α+β+1 − q2n+α+β+1)

bn = −qβ+1 p2MN
(

M2q2α+β+2 p3 + M2qα+β+2 pα+3 −MNq2α+β+2 p3 −MNq2α+β+3 p2

−M2q2α+β+2 p−M2qα+β+2 pα+1 −M2qα pα+β+3 −M2 p2α+β+3 + MNpq2α+β+2

+MNq2α+β+3 + MNqα+β pα+3 + MNqα+β+1 pα+2 + MNqα pα+β+3 + MNqα+1 pα+β+2

−N2 p2q2α+β+1 − N2qα+β+1 pα+2
)/ [(

M2qα+β+2 p2 −M2qα+β+2 −M2 pα+β+2 + N2qα+β+2
)

×
(

M2qα+β+2 p2 −M2qα+β+2 −M2 pα+β+2 + N2 p2qα+β
)]

cn = qα+β+1 p5NM (N −M)
(

Mqα+β+2 p2 −Mqα+β+2 −Mpα+β+2 + Nqβ pα+2
) (

Mqα+β+2 p2

−Mqα+β+2 −Mpα+β+2 + Nqα+β p2
) (

M2 pα+β − N2qα+β
) (

M2 pα+βq− pqα+βN2
)/

(
M2qα+β+2 p2 −M2qα+β+2 −M2 pα+β+2 + N2 pqα+β+1

) (
M2qα+β+2 p2 −M2qα+β+2 −M2 pα+β+2

+N2 p2qα+β
)2 (

M2qα+β+3 p2 −M2qα+β+3 −M2 pα+β+2q + N2 p3qα+β
) (

Mpα+β − Nqα+β
)

with N = qn and M = pn.

9.5.3 (p, q)-Laguerre polynomials

(p,q)-Hypergeometric representation

In this section we discuss the case where

a = 0, b = −pq, c = 0, (p− q)d = p2
(

p
q

)α

, (p− q)e = −p2
(

p
q

)α

+ pq.

In this case we have the following corollary.

Corollary 115. With the special coefficients above, the polynomials solutions of (9.5) have the rep-
resentation

L(α)
n (x; p, q) = 2Φ1

(p−n, q−n), (pn, 0)

(pα+1, qα+1)

∣∣∣∣∣∣∣ (p, q);−pαx

, (9.61)

up to a normalization constant.
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Proof. For these special values, we have(
(a + (p− q)d)pn−1 	 aqn−1

)m

p,q
=

(
pn+1

(
p
q

)α

	 qn+1
)m

p,q

=

(
pα+1

qα

)m

(pn 	 0)m
p,q

and

(b + (p− q)e	 b)m
p,q =

(
−p2

(
p
q

)α

	−pq
)m

p,q

=

(
− p

qα

)m (
pα+1 	 qα+1

)m

p,q
.

Putting together these two relations combining with (9.58) provides the (p, q)-hypergeometric
representation (9.61).

Orthogonality relation

From the (p, q)-Pearson equation (9.18) we see that the weight function of the (p, q)-Laguerre
polynomials satisfies the relation

ρ
(

p
q x
)

ρ(x)
= −

(
p
q

)α

(x− 1). (9.62)

We can therefore write ρ(x) = ρ1(x)ρ(x) with

ρ1

(
p
q x
)

ρ1(x)
=

(
p
q

)α

and
ρ2

(
p
q x
)

ρ2(x)
= 1− x.

The relation
ρ1

(
p
q x
)

ρ1(x)
=

(
p
q

)α

has a solution ρ1(x) = xα and applying Theorem 9.21 to the

second equation it follows that a solution of
ρ2

(
p
q x
)

ρ2(x)
= 1− x may be written as

ρ2(x) =
∞

∏
k=0

ppk − (xq)qk

ppk =
(p	 xq)∞

p,q

(p	 0)∞
p,q

.

Next using the (p, q)-Binomial theorem (8.18) with its special case (8.22) it follows that

ρ2(x) = Ep,q((q− p)qx).

Finally we get
ρ(x) = ρ1(x)ρ2(x) = xαEp,q((q− p)qx).

Corollary 116. Let {L(α)
n (x; p, q)}n be the sequence of polynomials given by (9.61). Then, according

to Theorem 106, the following orthogonality relation holds true∫ ∞

0
xαEp,q((q− p)qx)L(α)

n (pqx; p, q)L(α)
m (pqx; p, q)dp,qx

=

(∫ ∞

0
xαEp,q((q− p)qx)

(
L(α)

n (x; p, q)
)2

dp,qx
)

δn,m (9.63)



9.5 Some special cases of (p, q)-orthogonal polynomials 80

Three-term recurrence relation

From the (p, q)-hypergeometric representation (9.61), we see that the leading coefficient of
L(α)

n (x; p, q) is given by

kn =
(p−n 	 q−n)

n
p,q (pn 	 0)n

p,q

(p	 q)n
p,q (pα 	 qα)n

p,q
(−pα)n.

Then, the (p, q)-Laguerre polynomials satisfy the three-term recurrence relation (9.24) with

an =
kn

kn+1
=

qn+1

pα+2n

(
pn+α+1 − qα+n+1

)
bn =

qn+1

p2n+α

(
pn+α+1 − qn+α+1 + p

(
pn+α − qn+α

))
cn =

qn+α+1

p2n+α−1 (pn − qn).

9.5.4 (p, q)-Hermite polynomials

In this section we discuss the case a = b = e = 0 and c = 1.

(p,q)-Hypergeometric representation

The (p, q)-difference equation (9.52) becomes

[m + 2]p,q[m + 1]p,q fm+2(n) + dpm+n−1[m− n] fm(n) = 0. (9.64)

We discuss two cases, m = 2` and m = 2`+ 1.

• If m = 2`, (9.64) becomes

f2(`+1) = −
[2`− n]p,qdp2`+n−1

[2`+ 2]p,q[2`+ 1]p,q
f2`(n).

Solving this recurrence yields

f2` =
(

d(q− p)pn−1
)` (p−n 	 q−n)

`
p2,q2 (1	 0)`p2,q2

(p	 q)`p2,q2 (p2 	 q2)`p2,q2

f0(n)

or otherwise stated

f2` = ((q− p))`
(p−n 	 q−n)

`
p2,q2

(
dpn−1 	 0

)`
p2,q2

(p	 q)`p2,q2 (p2 	 q2)`p2,q2

f0(n) (9.65)

• If m = 2`+ 1, (9.64) becomes

f2`+3(n) = −
[2`+ 1− n]p,qdp2`+n

[2`+ 3]p,q[2`+ 2]p,q
f2`+1(n).
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Solving this recurrence yields

f2`+1 = (d(q− p)pn)`
(

p1−n 	 q1−n)`
p2,q2 (1	 0)`p2,q2

(p2 	 q2)`p2,q2 (p3 	 q3)`p2,q2

f1(n).

or otherwise stated

f2`+1 = ((q− p))`
(

p1−n 	 q1−n)`
p2,q2 (dpn 	 0)`p2,q2

(p2 	 q2)`p2,q2 (p3 	 q3)`p2,q2

f1(n). (9.66)

From (9.65) and (9.66), we get the following (p, q)-hypergeometric representation for the
(p, q)-Hermite polynomials (compare with [60])

Hn(x; p, q) = xσn
2Φ1

(pσn−n, qσn−n), (dp2[(n−1)/2]−1, 0)

(p2σn+1, q2σn+1)

∣∣∣∣∣∣∣ (p2, q2); (q− p)x2

 (9.67)

up to a normalization constant where

σn =
1− (−1)n

2
.

Orthogonality relation

From the (p, q)-Pearson equation (9.18) we see that the weight function of the (p, q)-Laguerre
polynomials satisfies the relation

ρ
(

p
q x
)

ρ(x)
= 1 + d(p− q)x2, (9.68)

whose solution is
ρ(x; p, q) = Ep2,q2

(
−((p− q)qx)2) .

Hence the (p, q)-Hermite polynomials fulfil the orthogonality relation

∫ ∞

−∞
Hn(pqx; p, q)Hm(pqx; p, q)Ep2,q2

(
−d((p− q)qx)2) dp,qx

=

(∫ ∞

−∞
H2

n(pqx; p, q)Ep2,q2

(
−d((p− q)qx)2) dp,qx

)
δn,m.

Three-term recurrence relation

From the (p, q)-hypergeometric representation (9.67), we see that the leading coefficient of
Hn(x; p, q) is given by

k2n =
(

d(q− p)pn−1
)n (p−n 	 q−n)

n
p2,q2 (p2)(

n
2)

(p	 q)n
p2,q2 (p2 	 q2)n

p2,q2

and

k2n+1 = (d(q− p)pn)n

(
p1−n 	 q1−n)n

p2,q2 (p2)(
n
2)

(p2 	 q2)n
p2,q2 (p3 	 q3)n

p2,q2
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Therefore, the (p, q)-Hermite polynomials satisfy the three-term recurrence relation (9.24)
with

an =
kn

kn+1

bn = 0

cn = −
[n]p,qqn+1

dp2n−3
kn

kn−1
.



Chapter 10

(p, q)-Laplace Transform and
Applications

The classical Laplace transform of a function f is given by

L{ f (t)}(s) =
∫ ∞

0
e−st f (t)dt, s = a + ib ∈ C, (10.1)

and plays a fundamental role in pure and applied analysis, specially in solving differential
equations. If a function of a discrete variable f (t), t ∈ Z is considered, then the integral
transform (10.1) reads

F(z) =
∞

∑
j=0

f (j)z−j, z = e−p. (10.2)

Equation (10.2) is referred to as Z-transform and plays a similar role in difference analysis
as Laplace transform in continuous analysis, specially in solving difference equations.

In order to deal with q-difference equations, q-versions of the classical Laplace trans-
form have been consecutively introduced in the literature. Studies of q-versions of Laplace
transform go back to Hahn [40]. Abdi [1, 2, 3] published also many results in this domain.

The q-deformed algebras [73, 74] and their generalizations ((p, q)-deformed algebras)
[23, 37, 48, 5, 6, 43, 7] attracted much attention these last years. The main reason is that
these topics stand for a meeting point of today’s fast developing areas in mathematics and
physics like the theory of quantum orthogonal polynomials and special functions, quantum
groups, conformal field theories and statistics. From these works, many generalizations of
special functions arise. There is a considerable list of references.

In this chapter, we introduce two (p, q)-versions of the Laplace transform and provide
some of their main properties. Next, some applications are done to solve some (p, q)-
difference equations, for example the (p, q)-oscillator is introduced and solved using the
(p, q)-Laplace transform of first kind.

10.1 (p, q)-Laplace transform of the first kind

Definition 117 (Njionou [68]). For a given function f (t), we define its (p, q)-Laplace transform
of the first kind as the function

F(s) = Lp,q{ f (t)}(s) =
∫ ∞

0
f (t)Ep,q(−qts)dp,qt, s > 0. (10.3)

Of course, by definition the (p, q)-Laplace transform of the first kind is linear.
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Proposition 118. For any two complex numbers α and β, we have

Lp,q{α f (t) + βg(t)} = αLp,q{ f (t)}+ βLp,q{g(t)}.

In what follows, we give some examples. From (10.3), we note that:

Lp,q{1}(s) =
∫ ∞

0
Ep,q(−qst)dp,qt = −1

s

∫ ∞

0
Dp,qEp,q(−st)dp,qt

=−1
s
[
Ep,q(−st)

]∞
0 =

1
s

, s > 0.

Lp,q{t}(s) =
∫ ∞

0
tEp,q(−qst)dp,qt = − 1

ps

∫ ∞

0
(pt)Dp,qEp,q(−st)dp,qt

=− 1
ps

{[
tEp,q(−st)

]∞
0 −

∫ ∞

0
Ep,q(−qst)dp,qt

}
=

1
ps2 , s > 0.

Lp,q{1 + 5t}(s) = Lp,q{1}(s) + 5Lp,q{t}(s) =
1
s
+

5
ps2 , s > 0.

Proposition 119 (Njionou [68]). Let α be a non-zero complex number, then∫ ∞

0
f (αt)dp,qt =

1
α

∫ ∞

0
f (t)dp,qt. (10.4)

Theorem 120 (Scaling, (Njionou [68])). Let a be a non-zero complex number, then the following
formula applies

Lp,q{ f (at)}(s) = 1
a

Lp,q{ f (t)}
( s

a

)
. (10.5)

Proof. Using the definition and Proposition 119, it follows that

Lp,q{ f (at)}(s) =
∫ ∞

0
f (at)Ep,q(−qst)dp,qt

=
∫ ∞

0
f (at)Ep,q(−aq

s
a

t)dp,qt

=
1
a

∫ ∞

0
f (t)Ep,q(−q

s
a

t)dp,qt =
1
a

Lp,q{ f (t)}
( s

a

)
.

Theorem 121 (Njionou [68]). For α > −1, the following equation is valid:

Lp,q(tα) =
Γp,q(α + 1)

p
α(α+1)

2 sα+1
. (10.6)

Proof. Of course, it follows from the definition that

Lp,q{tα}(s) =
∫ ∞

0
tαEp,q(−qst)dp,qt =

1
sα+1

∫ ∞

0
Ep,q(−qt)tαdp,qt

=
1

p
α(α+1)

2 sα+1

∫ ∞

0
p

α(α+1)
2 t(α+1)−1Ep,q(−qt)dp,qt

=
Γp,q(α + 1)

p
α(α+1)

2 sα+1
.



10.1 (p, q)-Laplace transform of the first kind 85

The following theorem is a particular case of Theorem (121) when α = n is a nonnegative
integer.

Theorem 122 (Njionou [68]). Let n ∈N, then for s > 0 the following equation holds:

Lp,q{tn}(s) =
[n]p,q!

p(
n+1

2 )sn+1
. (10.7)

Proof. We provide a proof by induction for this result. The result is obvious for n = 0.
Assume that it holds true for some nonnegative integer n, then using the (p, q)-integration
by parts (6.19) , we have

Lp,q{tn+1}(s) =
∫ ∞

0
tn+1Ep,q(−qst)dp,qt

=− 1
pn+1s

∫ ∞

0
(pt)n+1Dp,qEp,q(−ts)dp,qt

=− 1
pn+1s

{[
tn+1Ep,q(−st)

]∞

0
− [n + 1]p,q

∫ ∞

0
tnEp,q(−qts)dp,qt

}
=

[n + 1]p,q

pn+1s
Lp,q{tn}(s) =

[n + 1]p,q

pn+1s
[n]p,q!

p(
n+1

2 )sn+1
=

[n + 1]p,q!

p(
n+2

2 )sn+2
.

This proves the assertion.

Next, we give formulas for the transform for the (p, q)-exponential and the (p, q)-trigonometric
functions.

Theorem 123 (Njionou [68]). Let a be a real number, then

Lp,q{ep,q(at)}(s) = p
ps− a

, s >
a
p

, (10.8)

Lp,q{Ep,q(at)}(s) = 1
s

∞

∑
n=0

(−1)n
(

q
p

)(n
2)
(

a
ps

)n

. (10.9)

Proof. Using (5.1), (5.2) and (10.7), we can write:

Lp,q{ep,q(at)}(s) =
∫ ∞

0
Ep,q(−qst)ep,q(at)dp,qt =

∞

∑
n=0

an p(
n
2)

[n]p,q!

∫ ∞

0
Ep,q(−qst)tndp,qt

=
∞

∑
n=0

an p(
n
2)

[n]p,q!
[n]p,q!

p(
n+1

2 )sn+1
=

1
s

∞

∑
n=0

(
a
ps

)n

=
p

ps− a
,

Lp,q{Ep,q(at)}(s) =
∫ ∞

0
Ep,q(−qst)Ep,q(at)dp,qt

=
∞

∑
n=0

(−1)n anq(
n
2)

[n]p,q!

∫ ∞

0
Ep,q(−qst)tndp,qt

=
∞

∑
n=0

(−1)n anq(
n
2)

[n]p,q!
[n]p,q!

p(
n+1

2 )sn+1
=

1
s

∞

∑
n=0

(−1)n
(

q
p

)(n
2)
(

a
ps

)n

.
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Theorem 124 (Njionou [68]). The following relations apply:

Lp,q{cosp,q(at)}(s) = p2s
(ps)2 + a2 ,

Lp,q{sinp,q(at)}(s) = pa
(ps)2 + a2 .

Proof. Using equations (5.8), (5.9) and (10.3), it follows that:

Lp,q{cosp,q(at)}(s) =
∫ ∞

0
Ep,q(−qst) cosp,q(at)dp,qt

=
∞

∑
n=0

(−1)na2n p(
2n
2 )

[2n]p,q!

∫ ∞

0
Ep,q(−qst)t2ndp,qt

=
∞

∑
n=0

(−1)na2n p(
2n
2 )

[2n]p,q!
[2n]p,q!

p(
2n+1

2 )s2n+1

=
1
s

∞

∑
n=0

(−1)n
(

a
ps

)2n

=
p2s

(ps)2 + a2 ,

Lp,q{sinp,q(at)}(s) =
∫ ∞

0
Ep,q(−qst) sinp,q(at)dp,qt

=
∞

∑
n=0

(−1)na2n+1 p(
2n+1

2 )

[2n + 1]p,q!

∫ ∞

0
Ep,q(−qst)t2n+1dp,qt

=
∞

∑
n=0

(−1)na2n+1 p(
2n+1

2 )

[2n + 1]p,q!
[2n + 1]p,q!

p(
2n+2

2 )s2n+2

=
1
s

∞

∑
n=0

(−1)n
(

a
ps

)2n+1

=
pa

(ps)2 + a2 .

Remark 125. Note that one could also use (10.8), (5.8) and (5.9) to obtain the results.

Theorem 126 (Njionou [68]). The following equations apply

Lp,q{coshp,q(at)}(s) = p2s
(ps)2 − a2 , s >

∣∣∣∣ a
p

∣∣∣∣
Lp,q{sinhp,q(at)}(s) = pa

(ps)2 − a2 , s >
∣∣∣∣ a

p

∣∣∣∣ .

Proof. Using (10.3), (5.13) and (5.14) we have

Lp,q{coshp,q(at)}(s) = 1
2
{

Lp,q{ep,q(at)}(s) + Lp,q{ep,q(−at)}(s)
}

=
1
2

(
p

ps− a
+

p
ps + a

)
=

p2s
(ps)2 − a2 ,
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Lp,q{sinhp,q(at)}(s) = 1
2
{

Lp,q{ep,q(at)}(s)− Lp,q{ep,q(−at)}(s)
}

=
1
2

(
p

ps− a
− p

ps + a

)
=

pa
(ps)2 − a2 .

Next, f being a function, we provide some properties related to the (p, q)-derivative of the
(p, q)-Laplace transform of f and the (p, q)-Laplace transform of the (p, q)-derivative of f .
Let us introduce the following notation which makes clear the relative variable to which the
(p, q)-derivative is applied:

∂p,q

∂p,qs
f (x, s) =

f (x, ps)− f (x, qs)
(p− q)s

,

and
∂n+1

p,q

∂p,qsn+1 =
∂n

p,q

∂p,qsn ◦
∂p,q

∂p,qs
, n ≥ 1, and

∂0
p,q

∂p,qs0 f = f .

Theorem 127 (Njionou [68]). For n ∈N, the following equation holds:

Lp,q{tn f (t)}(s) = (−1)nq(
n
2)

∂n
p,q

∂p,qsn

[
F
(
q−ns

)]
. (10.10)

Proof. The result is obvious for n = 0. Let n ≥ 1, then

∂n
p,q

∂p,qsn [F(q
−ns)] =

∫ ∞

0

∂n
p,q

∂p,qsn

[
Ep,q(−q−n+1st)

]
f (t)dp,qt

Using equation (5.6), it follows that

∂n
p,q

∂p,qsn

[
Ep,q(−q−n+1st)

]
=

n−1

∏
j=0

(
−qn−1−jt

)
Ep,q(−qst)

= (−1)nq−(
n
2)tnEp,q(−qst).

The proof is therefore completed.

Note that (10.7) can be obtained using Theorem 127. Of course, taking f (t) = 1 in (10.10)

and using (2.20), we have F(s) =
1
s

and

Lp,q{tn}(s) = (−1)nq(
n
2)

∂n
p,q

∂p,qsn

[
qn

s

]
= (−1)nq(

n+1
2 ) (−1)n[n]p,q!

(pq)(
n+1

2 )sn+1
=

[n]p,q!

p(
n+1

2 )sn+1
.

Corollary 128 (Njionou [68]). The following equation applies:

Lp,q{tnep,q(at)}(s) =
pn+1q(

n+1
2 )[n]p,q!

(pn+1s− aqn)(pnqs− aqn) · · · (p2qn−1s− aqn)(pqns− aqn)

=
pn+1q(

n+1
2 )[n]p,q!

n
∏

k=0
(pn+1−kqks− aqn)

.
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Proof. The proof follows from (2.21) and (10.10).

Theorem 129 (Transform of the (p, q)-derivative, (Njionou [68])). The following transform
rule applies.

Lp,q

{
Dn

p,q f (t)
}
(s) =

sn

p(
n+1

2 )
Lp,q{ f (t)}

(
s

pn

)
−

n−1

∑
k=0

sn−1−k

p(
n−k

2 )
(Dk

p,q f )(0). (10.11)

Proof. Let f be a function for which the (p, q)-Laplace transform exists. Then, for n = 1,

Lp,q
{

Dp,q f (t)
}
(s) =

∫ ∞

0
Ep,q(−qst)Dp,q f (t)dp,qt

=
[

f (t)Ep,q(−st)
]∞

0 −
∫ ∞

0
f (pt)Dp,qEp,q(−st)dp,qt

=− f (0) + s
∫ ∞

0
f (pt)Ep,q(−qst)dp,qt

=− f (0) +
s
p

∫ ∞

0
f (t)Ep,q(−q

s
p

t)dp,qt

=− f (0) +
s
p

Lp,q{ f (t)}
(

s
p

)
.

Let n ≥ 1, assume (10.11) holds true. Then, applying the result for n = 1 with Dn
p,q f (t), we

get

Lp,q

{
Dn+1

p,q f (t)
}
(s) =−(Dn

p,q f )(0) +
s
p

Lp,q{Dn
p,q f (t)}

(
s
p

)
=−(Dn

p,q f )(0) +
s
p

{
sn

p(
n+1

2 )+n
Lp,q{ f (t)}

(
s

pn+1

)

−
n−1

∑
k=0

sn−1−k

p(
n−k

2 )+n−1−k
(Dk

p,q f )(0)

}

=−(Dn
p,q f )(0) +

{
sn+1

p(
n+1

2 )+n+1
Lp,q{ f (t)}

(
s

pn+1

)

−
n−1

∑
k=0

sn−k

p(
n−k

2 )+n−k
(Dk

p,q f )(0)

}

=−(Dn
p,q f )(0) +

{
sn+1

p(
n+2

2 )
Lp,q{ f (t)}

(
s

pn+1

)

−
n−1

∑
k=0

sn−k

p(
n−k+1

2 )
(Dk

p,q f )(0)

}

=
sn+1

p(
n+2

2 )
Lp,q{ f (t)}

(
s

pn+1

)
−

n

∑
k=0

sn−k

p(
n−k+1

2 )
(Dk

p,q f )(0)

This completes the proof.

As a direct application, observe that taking f (t) = tn in (10.11), we obtain

Lp,q{Dn
p,qtn}(s) = sn

p(
n+1

2 )
Lp,q{tn}

(
s

pn

)
.
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Taking care that Dn
p,qtn = [n]p,q!, and Lp,q{1}(s) =

1
s

, it follows that

Lp,q{tn}
(

s
pn

)
= p(

n+1
2 ) [n]p,q!

sn Lp,q{1}(1) = p(
n+1

2 ) [n]p,q!
sn+1 .

Replacing s by spn, it follows that

Lp,q{tn} (s) = p(
n+1

2 ) [n]p,q!
sn+1 pn(n+1)

=
[n]p,q!

p(
n+1

2 )sn+1
.

10.2 (p, q)-Laplace transform of the second kind

Whereas in the previous section we introduced the (p, q)-Laplace transform of the first kind
and proved some of its important properties, in this section, we introduce the (p, q)-Laplace
transform of the second kind. The main difference is at the level of the (p, q)-exponential
function used in the definition. The motivation of the next definition comes from the fact
that when we transform the big (p, q)-exponential function, the result remains in terms of a
series which we cannot simplify.

Definition 130 (Njionou [68]). For a given function f (t), we define its (p, q)-Laplace transform
of the second kind as the function

F(s) = Lp,q{ f (t)}(s) =
∫ ∞

0
f (t)ep,q(−pts)dp,qt, s > 0. (10.12)

Proposition 131 ((Linearity)). By (10.12), the following equation applies:

Lp,q{α f (t) + βg(t)} = αLp,q{ f (t)}+ βLp,q{g(t)}.

Proposition 132 (Njionou [68]). For any real number α > −1, we have

Lp,q{tα}(s) =
γp,q(α + 1)

q
α(α−1)

2 sα+1
. (10.13)

Proof. By definition, one has

Lp,q{tα}(s) =
∫ ∞

0
tαep,q(−pts)dp,qt

=
1

sα+1

∫ ∞

0
tαep,q(−pt)dp,qt

=
γp,q(α + 1)

q
α(α−1)

2 sα+1
.

Proposition 133 (Njionou [68]). For n ∈N, it is valid that

Lp,q{tn}(s) =
[n]p,q!

q(
n+1

2 )sn+1
. (10.14)
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Proof. Clearly, the results holds for n = 0. Indeed

Lp,q{1}(s) =
∫ ∞

0
ep,q(−pts)dp,qt = −1

s
[
ep,q(ts)

]∞
0 =

1
s

.

Next, for n > 0,

Lp,q{tn}(s) =
∫ ∞

0
tnep,q(−pts)dp,qt

=− 1
qns

∫ ∞

0
(qt)nDp,qep,q(−ts)dp,qt

=− 1
qns

{[
tnep,q(−ts)

]∞
0 − [n]p,q

∫ ∞

0
tn−1ep,q(−pts)dp,qt

}
=

[n]p,q

qns
Lp,q{tn−1}(s).

The proof then follows by induction.

Proposition 134 (Njionou [68]). The following equation holds

Lp,q{Ep,q(at)}(s) = q
qs− a

, s >
∣∣∣∣ aq
∣∣∣∣ . (10.15)

Proof. From the definition of Lp,q and Ep,q(x), it follows that

Lp,q{Ep,q(at)}(s) =
∞

∑
n=0

q(
n
2)an

[n]p,q!

∫ ∞

0
tnep,q(−pts)dp,qt

=
∞

∑
n=0

q(
n
2)an

[n]p,q!
×

[n]p,q!

q(
n+1

2 )sn+1

=
1
s

∞

∑
n=0

(
a
qs

)n

=
q

qs− a
.

Corollary 135 (Njionou [68]). The following equations hold

Lp,q{Cosp,q(at)}(s) = q2s
(qs)2 + a2 , s >

∣∣∣∣ aq
∣∣∣∣ ,

Lp,q{Sinp,q(at)}(s) = qa
(qs)2 + a2 , s >

∣∣∣∣ aq
∣∣∣∣ .

Proof. The proof follows from the definitions (5.11), (5.12) and equation (10.15).

Corollary 136 (Njionou [68]). The following equations hold

Lp,q{Coshp,q(at)}(s) = q2s
(qs)2 − a2 , s >

∣∣∣∣ aq
∣∣∣∣ ,

Lp,q{Sinhp,q(as)}(s) = qa
(qs)2 − a2 , s >

∣∣∣∣ aq
∣∣∣∣ .

Proof. The proof is similar to the proof of Corollary 135.

Next, f being a function, we provide some properties related to the (p, q)-derivative of the
(p, q)-Laplace transform of f and the (p, q)-Laplace transform of the (p, q)-derivative of f .
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Theorem 137 (Njionou [68]). For n ∈N, we have

Lp,q{tn f (t)}(s) = (−1)n p(
n
2)

∂n
p,q

∂p,qsn

[
F
(

p−ns
)]

(10.16)

where F(s) = Lp,q{ f (t)}(s).

Proof. The result is obvious for n = 0. Let n ≥ 1, we have

∂n
p,q

∂p,qsn [F(p−ns)] =
∫ ∞

0

∂n
p,q

∂p,qsn

[
ep,q(−p−n+1st)

]
f (t)dp,qt

Using equation (5.5), it follows that

∂n
p,q

∂p,qsn

[
ep,q(−p−n+1st)

]
=

n−1

∏
j=0

(
−pn−1−jt

)
ep,q(−pst)

= (−1)n p−(
n
2)tnep,q(−pst).

The proof is therefore completed.

Note that (10.7) can be obtained using Theorem 137. Of course, taking f (t) = 1 in (10.16)

and using (2.20), we have F(s) =
1
s

and

Lp,q{tn}(s) = (−1)n p(
n
2)

∂n
p,q

∂p,qsn

[
pn

s

]
= (−1)n p(

n+1
2 ) (−1)n[n]p,q!

(pq)(
n+1

2 )sn+1
=

[n]p,q!

q(
n+1

2 )sn+1
.

Corollary 138 (Njionou [68]). The following equation applies:

Lp,q{tnEp,q(at)}(s) =
qn+1 p(

n+1
2 )[n]p,q!

(qn+1s− apn)(qn ps− apn) · · · (q2 pn−1s− apn)(pqns− apn)

=
qn+1 p(

n+1
2 )[n]p,q!

n
∏

k=0
(qn+1−k pks− apn)

.

Proof. The proof follows from (2.21) and (10.16).

Theorem 139 (Transform of the (p, q)-derivative, (Njionou [68])). For any nonnegative inte-
ger n, we have

Lp,q

{
Dn

p,q f (t)
}
=

sn

q(
n+1

2 )
Lp,q{ f (t)}

(
s

qn

)
−

n−1

∑
k=0

sn−1−k

q(
n−k

2 )

(
Dk

p,q f
)
(0). (10.17)

Proof. For n = 1, we have

Lp,q{ f (t)}(s) =
∫ ∞

0
Dp,q f (t)ep,q(−pst)dp,qt

=
[

f (t)ep,q(−st)
]
+ s

∫ ∞

0
f (qt)ep,q(−pst)dp,qt

=− f (0) +
s
q

∫ ∞

0
f (t)ep,q

(
−p

s
q

t
)

dp,qt

=− f (0) +
s
q
Lp,q{ f (t)}

(
s
q

)
.
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Hence the relation is true for n = 1. Let n ≥ 1, assume that (10.17) holds true, then using
the case n = 1, we can write

Lp,q

{
Dn+1

p,q f (t)
}
=−(Dn

p,q f )(0) +
s
q
Lp,q{Dn

p,q f (t)}
(

s
q

)
=−(Dn

p,q f )(0) +
s
q

{
sn

q(
n+1

2 )+n
Lp,q{ f (t)}

(
s

qn+1

)

−
n−1

∑
k=0

sn−1−k

q(
n−k

2 )+n−1−k

(
Dk

p,q f
)
(0)

}

=−(Dn
p,q f )(0) +

sn+1

q(
n+1

2 )+n+1
Lp,q{ f (t)}

(
s

qn+1

)

−
n−1

∑
k=0

sn−k

q(
n−k

2 )+n−k

(
Dk

p,q f
)
(0)

=
sn+1

q(
n+2

2 )
Lp,q{ f (t)}

(
s

qn+1

)
−

n

∑
k=0

sn−k

q(
n−k+1

2 )

(
Dk

p,q f
)
(0).

The relation holds therefore true for each integer n ≥ 1.

We now have another possibility to compute Lp,q{tn}(s) using (10.17). Of course, ap-
plying (10.17) to f (t) = tn, we have

Lp,q{Dn
p,qtn}(s) = sn

q(
n+1

2 )
Lp,q{tn}

(
s

qn

)
.

Taking care that Dn
p,qtn = [n]p,q!, it follows that

Lp,q{tn}
(

s
qn

)
= q(

n+1
2 ) [n]p,q!

sn Lp,q{1}(s) =
[n]p,q!q(

n+1
2 )

sn+1 .

Replacing s by sqn, it follows that

Lp,q{tn}(s) =
[n]p,q!q(

n+1
2 )

sn+1qn(n+1)
=

[n]p,q!

q(
n+1

2 )sn+1
.

10.3 Application to the resolution of some (p, q)-difference equa-
tions

As Laplace transform and Z-transform are largely applied in solving differential and differ-
ence equations, respectively, and the q-Laplace transforms are applied to solve q-difference
equations, the (p, q)-Laplace transforms are expected to play a similar role but now for
(p, q)-difference equations. The idea lying behind is always the same. In this section, we
show on few examples how the Laplace transforms introduced before can be used to solve
some (p, q)-differential equations.

10.3.1 Application 1

Consider the problem of finding f (t), where f (t) satifies (p, q)-Cauchy problem

Dp,q f (t) + c f (pt) = 0, f (0) = 1, (10.18)
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where c stands for a complex constant.
Applying the Laplace transform of the first kind to (10.18), we obtain

− f (0) +
s
p

Lp,q{ f (t)}
(

s
p

)
+ cLp,q{ f (pt)}(s) = 0.

Next, using equation (10.5), and the initial condition f (0) = 0, we get

−1 +
s
p

Lp,q{ f (t)}
(

s
p

)
+

c
p

Lp,q{ f (t)}
(

s
p

)
= 0.

Hence,

Lp,q{ f (t)}
(

s
p

)
=

p
s + c

,

and so
Lp,q{ f (t)} (s) = p

ps + c
,

It follows that f (t) = ep,q(−ct).

10.3.2 Application 2

Now, consider the (p, q)-differential equation

Dp,qh(t)− λh(pt) = ep,q(λqt), h(0) = 0. (10.19)

Applying the (p, q)-Laplace transform of first kind to (10.19), it follows that

−h(0) +
s
p

Lp,q{h(t)}
(

s
p

)
− λ

p
Lp,q{h(t)}

(
s
p

)
=

p
ps− λq

.

Simplification gives

Lp,q{h(t)}
(

s
p

)
=

p2

(s− λ)(ps− λq)
,

and finally, replacing s by ps, we have

Lp,q{h(t)} (s) =
p2

(ps− λ)(p2s− λq)
.

So, clearly h(t) = tep,q(λt).

10.3.3 Application 3

For the last example, we consider the classical (p, q)-oscillator

D2
p,q f (t) + ω2 f (p2t) = 0, Dp,q f (0) = A, f (0) = B. (10.20)

Applying the (p, q)-Laplace transform of the first kind to (10.20), it follows that

−A− Bs
p

+
s2

p3 Lp,q{ f (t)}
(

s
p2

)
+

ω2

p2 Lp,q{ f (t)}
(

s
p2

)
= 0.

By an easy simplification, we get

Lp,q{ f (t)}
(

s
p2

)
=

Bs + Ap
p

× p3

s2 + pω2 .
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It happens that

Lp,q{ f (t)} (s) = Bp2s

(ps)2 +
(

ω√
p

)2 + A
√

p
ω

p
ω
√

p

(ps)2 +
(

ω√
p

)2 .

Hence, the solutions of the (p, q)-oscillators are

f (t) = B cosp,q

(
ω
√

p
t
)
+ A
√

p
ω

sinp,q

(
ω
√

p
t
)

.

10.4 Double (p, q)-Laplace transform

The double Laplace transform of a function f (x, y) of two variables was first introduced in
1939 by Berstein in his dissertation [20] (later pubished as an article [21]) as

L2( f (x, y))(r, s) =
∫ ∞

0

∫ ∞

0
f (x, y)e−(rx+sy)dxdy. (10.21)

where x and y are two positive numbers, r and s are complex numbers. Very recently, sev-
eral interesting properties and applications of the double Laplace transform to functional,
integral and partial differential equations have been studied in [34].

In this section, we introduce three kinds of double (p, q)-Laplace transforms and prove
their main properties. Next, applications are done to solve some partial (p, q)-differential
equations. The double (p, q)-Laplace transform introduced here are clearly generalizations
of the double Laplace transform given in [20] and the double q-Laplace transform studied
in [72].

10.4.1 (p, q)-addition, (p, q)-subtraction, (p, q)-coaddition, (p, q)-cosubtraction

In the following definition, we generalize the notion of q-addition introduced by Jackson
and studied later by Ward and Al-Salam (see [8, 28] for more details). When p = 1, our
(p, q)-addition reduces to the q-addition defined by Euler and recalled in [80].

Definition 140 (Njionou and Duran [71]). Let x and y be two complex numbers.

1. The (p, q)-addition of x and y which we denote by x⊕p,q y is defined by

(
x⊕p,q y

)n
=

n

∑
k=0

[n
k

]
p,q

pk(k−n)xkyn−k. (10.22)

2. The (p, q)-subtraction of x and y which we denote by x	p,q y is defined by

(
x	p,q y

)n
=

n

∑
k=0

[n
k

]
p,q
(−1)n−k pk(k−n)xkyn−k. (10.23)

Proposition 141 (Njionou and Duran [71]). The following relations hold true for any x, y ∈ R:

ep,q(x)ep,q(y) = ep,q(x⊕p,q y), (10.24)
ep,q(x)ep,q(−y) = ep,q(x	p,q y). (10.25)
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Proof. By the definition of the (p, q)-addition and the Cauchy product we can readily see
that

ep,q(x)ep,q(y) =
∞

∑
k=0

p(
k
2)xk

[k]p,q!

∞

∑
`=0

p(
`
2)y`

[`]p,q!

=
∞

∑
n=0

(
n

∑
k=0

p(
k
2)+(n−k

2 )xkyn−k

[k]p,q![n− k]p,q!

)

=
∞

∑
n=0

 n

∑
k=0

[n
k

]
p,q

pk(k−n)xkyn−k

 p(
n
2)

[n]p,q!
= ep,q(x⊕p,q y).

The second assertion is proved in the same way.

Definition 142 (Njionou and Duran [71]). Let x and y be two complex numbers.

1. The (p, q)-coaddition of x and y which we denote by x �p,q y is defined by

(
x �p,q y

)n
=

n

∑
k=0

[n
k

]
p,q

qk(k−n)xkyn−k. (10.26)

2. The (p, q)-cosubtraction of x and y which we denote by x �p,q y is defined by

(
x �p,q y

)n
=

n

∑
k=0

[n
k

]
p,q

qk(k−n)xk(−y)n−k. (10.27)

Proposition 143 (Njionou and Duran [71]). The following relations hold true for any x, y ∈ R:

Ep,q(x)Ep,q(y) = Ep,q(x �p,q y), (10.28)
Ep,q(x)Ep,q(−y) = Ep,q(x �p,q y). (10.29)

Proof. The proof is similar to the proof of Proposition 141.

10.4.2 The double (p, q)-Laplace transform of the first kind

We define the double (p, q)-Laplace transform of the first kind of a function f as

L(1)
2,p,q[ f (x, y)](r, s) =

∫ ∞

0

∫ ∞

0
f (x, y)Ep,q(−qrx)Ep,q(−qsy)dp,qxdp,qy, (r, s > 0). (10.30)

Note that if f (x, y) = g(x)h(y), then

L(1)
2,p,q[ f (x, y)](r, s) = Lp,q{g(x)}(r)Lp,q{h(y)}(s). (10.31)

in particular, if h(y) = 1, or g(x) = 1, then (10.31) reads

L(1)
2,p,q[ f (y)](r, s) = Lp,q{1}(r)Lp,q{ f (y)}(s) = 1

r
Lp,q{ f (y)}(s). (10.32)

and
L(1)

2,p,q[ f (x)](r, s) = Lp,q{g(x)}(r)Lp,q{1}(s) =
1
s

Lp,q{g(x)}(r). (10.33)
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Proposition 144. For any two complex numbers α and β, we have

L(1)
2,p,q {α f (x, y) + βg(x, y)} = αL(1)

2,p,q{ f (x, y)}+ βL(1)
2,p,q{g(x, y)}.

We recall the following important relation [68],∫ ∞

0
f (αx)dp,qx =

1
α

∫ ∞

0
f (x)dp,qx, (10.34)

where α is a non-zero complex number and f is a one variable function.
Now we state the scaling theorem for L(1)

2,p,q.

Theorem 145. Let a and b two non-zero complex numbers, f a two variable function, then the
following formula applies

L(1)
2,p,q{ f (ax, by)}(r, s) =

1
ab
L(1)

2,p,q{ f (x, y)}
( r

a
,

s
b

)
. (10.35)

Proof. Using relation (10.34), we have

L(1)
2,p,q{ f (ax, by)}(r, s) =

∫ ∞

0

∫ ∞

0
f (ax, by)Ep,q(−qrx)Ep,q(−qsy)dp,qxdp,qy

=
∫ ∞

0

(∫ ∞

0
f (ax, by)Ep,q(−qrx)dp,qx

)
Ep,q(−qsy)dp,qy

=
1
a

∫ ∞

0

(∫ ∞

0
f (x, by)Ep,q

(
−qx

r
a

)
dp,qx

)
Ep,q(−qsy)dp,qy

=
1
a

∫ ∞

0

(∫ ∞

0
f (x, by)Ep,q(−qsy)dp,qy

)
Ep,q

(
−qx

r
a

)
dp,qx

=
1
ab

∫ ∞

0

(∫ ∞

0
f (x, y)Ep,q

(
−qy

s
b

)
dp,qy

)
Ep,q

(
−qx

r
a

)
dp,qx

=
1
ab

∫ ∞

0

∫ ∞

0
f (x, y)Ep,q

(
−qx

r
a

)
Ep,q

(
−qy

s
b

)
dp,qxdp,qy.

and the proof of the theorem is completed.

Theorem 146. For α > −1, β > −1, we have the following

L(1)
2,p,q{x

αyβ}(r, s) =
Γp,q(α + 1)

p
α(α+1)

2 rα+1

Γp,q(β + 1)

p
β(β+1)

2 sβ+1
. (10.36)

In particular, for α = n ∈N and β = m ∈N, we get

L(1)
2,p,q{x

nym}(r, s) =
[n]p,q![m]p,q!

p(
n+1

2 )+(m+1
2 )rn+1sm+1

. (10.37)

Proof. The proof follows from (10.6) and the obvious equation

L(1)
2,p,q{x

αyβ}(r, s) = Lp,q{xα}(r)× Lp,q{yβ}(s).
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Let us take for example α = −1
2

and β =
1
2

. Then we see that

L(1)
2,p,q

(√
y
x

)
(r, s) = Lp,q{x−

1
2 }(r)× Lp,q{y

1
2 }(s)

= Γp,q

(
1
2

)
Γp,q

(
3
2

)
p

1
4

s
√

rs
,

and for α = −1
2

and β = −1
2

we have

L(1)
2,p,q

(
1
√

xy

)
(r, s) = Lp,q{x−

1
2 }(r)× Lp,q{y−

1
2 }(s)

=

[
Γp,q

(
1
2

)]2 p−
1
4

√
rs

.

Theorem 147. Let a and b be two complex numbers, then

L(1)
2,p,q{ep,q(ax⊕p,q by)}(r, s) =

p2

(pr− a)(ps− b)
, r > Re(a/p), s > Re(b/p). (10.38)

Proof. Combining (10.8), (10.24) and (10.31) gives the result.

Proposition 148. The following formulas apply

L(1)
2,p,q{cosp,q(ax⊕p,q by)}(r, s) =

p2(p2rs− ab)
((pr)2 + a2)((ps)2 + b2)

(10.39)

L(1)
2,p,q{sinp,q(ax⊕p,q by)}(r, s) =

p3(as + br)
((pr)2 + a2)((ps)2 + b2)

. (10.40)

Proof. We remark first that for any complex number λ, we have

ep,q(λ(x⊕p,q y)) = ep,q(λx⊕p,q λy),

to write

cosp,q(ax⊕p,q by) =
1
2
(
ep,q(i(ax⊕p,q by)) + ep,q(−i(ax⊕p,q by))

)
=

1
2
(
ep,q((aix⊕p,q biy)) + ep,q((−aix⊕p,q −biy))

)
sinp,q(ax⊕p,q by) =

1
2i
(
ep,q(i(ax⊕p,q by))− ep,q(−i(ax⊕p,q by))

)
=

1
2i
(
ep,q((aix⊕p,q biy))− ep,q((−aix⊕p,q −biy))

)
.

Hence, using the linearity of L(1)
2,p,q, and equation (10.38), it follows that

L(1)
2,p,q{cosp,q(ax⊕p,q by)}(r, s) =

1
2

{
p2

(pr− ai)(ps− bi)
+

p2

(pr + ai)(ps + ib)

}
=

p3(rs− ab)
((pr)2 + a2)((ps)2 + b2)

.

This proves (10.39). (10.40) follows in the same way.
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Proposition 149. The following formulas apply

L(1)
2,p,q{coshp,q(ax⊕p,q by)}(r, s) =

p2(p2rs + ab)
((pr)2 − a2)((ps)2 − b2)

L(1)
2,p,q{sinhp,q(ax⊕p,q by)}(r, s) =

p3(as + br)
((pr)2 − a2)((ps)2 − b2)

.

Proof. The proof is similar to the proof of Proposition 148.

Theorem 150. Let f be a one variable function that has a q-Laplace transform. Assume that f has
the q-Taylor expansion

f (x) =
∞

∑
n=0

an
p(

n
2)xn

[n]p,q!
,

then the following relation holds:

L(1)
2,p,q

[
f (αx⊕p,q βy)

]
(r, s)

=
1

αs− βr

(
Lp,q

[
f (x)

] ( r
α

)
− Lp,q

[
f (x)

] ( s
β

))
. (10.41)

Proof. We have the following

f (αx⊕p,q βy) =
∞

∑
n=0

an
p(

n
2)(αx⊕p,q βy)n

[n]p,q!

=
∞

∑
n=0

 n

∑
k=0

[n
k

]
p,q

pk(k−n)(αx)k(βy)n−k

 an p(
n
2)

[n]p,q!
.

Hence it follows that

L(1)
2,p,q

[
f (x⊕q y)

]
(r, s) =

∞

∑
n=0

 n

∑
k=0

[n
k

]
q

αk[k]q!βn−k[n− k]q!
rk+1sn+1−k

 an

[n]q!

=
∞

∑
n=0

n

∑
k=0

αkβn−kan

rk+1sn+1−k

=
1

αs− βr

(
∞

∑
n=0

an

(α

r

)n+1
−

∞

∑
n=0

an

(
β

r

)n+1
)

=
1

αs− βr

(
Lq
[

f (x)
] ( r

α

)
− Lq

[
f (x)

] ( s
β

))
.

This ends the proof of the theorem.

10.4.3 The double (p, q)-Laplace transform of the second kind

We define the double (p, q)-Laplace transform of the second kind of a function f as follows

L(2)
2,p,q{ f (x, y)}(r, s) =

∫ ∞

0
f (t)ep,q(−prx)ep,q(−psy)dp,qxdp,qy, (r, s > 0). (10.42)

Note that if f (x, y) = g(x)h(y), then

L(2)
2,p,q[ f (x, y)](r, s) = Lp,q{g(x)}(r)Lp,q{h(y)}(s). (10.43)
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in particular, if h(y) = 1, or g(x) = 1, then (10.31) reads

L(2)
2,p,q[ f (y)](r, s) = Lp,q{1}(r)Lp,q{ f (y)}(s) = 1

r
Lp,q{ f (y)}(s). (10.44)

and
L(2)

2,p,q[ f (x)](r, s) = Lp,q{g(x)}(r)Lp,q{1}(s) =
1
s
Lp,q{g(x)}(r). (10.45)

Of course, by definition, L(2)
2,p,q is linear.

Proposition 151. For any two complex numbers α and β, we have

L(2)
2,p,q {α f (x, y) + βg(x, y)} = αL(2)

2,p,q{ f (x, y)}+ βL(2)
2,p,q{g(x, y)}.

Now we state the scaling theorem for L(2)
2,p,q.

Theorem 152. Let a and b two non zero-complex numbers, f a two variable function, then the
following formula applies

L(2)
2,p,q{ f (ax, by)}(r, s) =

1
ab
L(2)

2,p,q{ f (x, y)}
( r

a
,

s
b

)
. (10.46)

Proof. Using relation (10.34), we get

L(2)
2,p,q{ f (ax, by)}(r, s) =

∫ ∞

0

∫ ∞

0
f (ax, by)ep,q(−prx)ep,q(−psy)dp,qxdp,qy

=
∫ ∞

0

(∫ ∞

0
f (ax, by)ep,q(−prx)dp,qx

)
ep,q(−psy)dp,qy

=
1
a

∫ ∞

0

(∫ ∞

0
f (x, by)ep,q

(
−px

r
a

)
dp,qx

)
ep,q(−psy)dp,qy

=
1
a

∫ ∞

0

(∫ ∞

0
f (x, by)ep,q(−psy)dp,qy

)
ep,q

(
−px

r
a

)
dp,qx

=
1
ab

∫ ∞

0

(∫ ∞

0
f (x, y)ep,q

(
−py

s
b

)
dp,qy

)
ep,q

(
−px

r
a

)
dp,qx

=
1
ab

∫ ∞

0

∫ ∞

0
f (x, y)ep,q

(
−px

r
a

)
ep,q

(
−py

s
b

)
dp,qxdp,qy.

and the proof of the theorem is completed.

Theorem 153. For α > −1, β > −1, we have the following

L(2)
2,p,q{x

αyβ}(r, s) =
γp,q(α + 1)

q
α(α+1)

2 rα+1

γp,q(β + 1)

q
β(β+1)

2 sβ+1
. (10.47)

In particular, for α = n ∈N and β = m ∈N, we get

L(2)
2,p,q{x

nym}(r, s) =
[n]p,q![m]p,q!

q(
n+1

2 )+(m+1
2 )rn+1sm+1

. (10.48)

Proof. The proof follows from (10.13) and the obvious equation

L(1)
2,p,q{x

αyβ}(r, s) = Lp,q{xα}(r)×Lp,q{yβ}(s).
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Theorem 154. Let a and b two complex numbers, then

L(1)
2,p,q{Ep,q(ax �p,q by)}(r, s) =

q2

(qr− a)(qs− b)
, r > Re(a/p), s > Re(b/p). (10.49)

Proof. This result is obtained using equations (10.28), (10.45) and the fact that:

Lp,q(Ep,q(ax))(s) =
q

qs− a
. (10.50)

Proposition 155. The following formulas apply

L(2)
2,p,q{Cosp,q(ax �p,q by)}(r, s) =

q2(q2rs− ab)
((qr)2 + a2)((qs)2 + b2)

(10.51)

L(2)
2,p,q{Sinp,q(ax �p,q by)}(r, s) =

q3(as + br)
((qr)2 + a2)((qs)2 + b2)

. (10.52)

Proof. We remark first that for any complex number λ, we have

Ep,q(λ(x �p,q y)) = Ep,q(λx �p,q λy),

to write

Cosp,q(ax �p,q by) =
1
2
(
Ep,q(i(ax �p,q by)) + Ep,q(−i(ax �p,q by))

)
=

1
2
(
Ep,q((aix �p,q biy)) + Ep,q((−aix �p,q −biy))

)
,

Sinp,q(ax⊕p,q by) =
1
2i
(
Ep,q(i(ax �p,q by))− Ep,q(−i(ax �p,q by))

)
=

1
2i
(
Ep,q((aix �p,q biy))− Ep,q((−aix �p,q −biy))

)
.

Hence, using the linearity of L(2)
2,p,q, it follows that

L(1)
2,p,q{cosp,q(ax⊕p,q by)}(r, s) =

1
2

{
q2

(qr− ai)(qs− bi)
+

q2

(qr + ai)(qs + ib)

}
=

q3(rs− ab)
((qr)2 + a2)((qs)2 + b2)

.

This proves (10.51). (10.52) follows in the same way.

Proposition 156. The following formulas apply

L(2)
2,p,q{Coshp,q(ax �p,q by)}(r, s) =

q2(p2rs + ab)
((qr)2 − a2)((qs)2 − b2)

L(2)
2,p,q{Sinhp,q(ax �p,q by)}(r, s) =

q3(as + br)
((qr)2 − a2)((qs)2 − b2)

.

Proof. The proof is similar to the proof of Proposition 155.
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10.4.4 The double (p, q)-Laplace transform of the third kind

We define the double (p, q)-Laplace transform of the first kind of a function f as follows

L(3)
2,p,q{ f (x, y)}(r, s) =

∫ ∞

0
f (t)Ep,q(−qrx)ep,q(−psy)dp,qxdp,qy, (r, s > 0). (10.53)

Proposition 157. For any two complex numbers α and β, we have

L(3)
2,p,q {α f (x, y) + βg(x, y)} = αL(3)

2,p,q{ f (x, y)}+ βL(3)
2,p,q{g(x, y)}.

Theorem 158. Let a and b two non zero complex numbers, f a two variable function, then the
following formula applies

L(3)
2,p,q{ f (ax, by)}(r, s) =

1
ab
L(3)

2,p,q{ f (x, y)}
( r

a
,

s
b

)
. (10.54)

Proof. The proof is similar to the proof of (10.46).

Theorem 159. For α > −1, β > −1, we have the following

L(3)
2,p,q{x

αyβ}(r, s) =
Γp,q(α + 1)

p
α(α+1)

2 rα+1

γp,q(β + 1)

q
β(β+1)

2 sβ+1
. (10.55)

In particular, for α = n ∈N and β = m ∈N, we get

L(3)
2,p,q{x

nym}(r, s) =
[n]p,q![m]p,q!

p(
n+1

2 )q(
m+1

2 )rn+1sm+1
. (10.56)

10.4.5 Some applications

We consider the following q-Cauchy’s functional equation

f (x⊕p,q y) = f (x) + f (y), (10.57)

where f is an unknown function.
We apply the double (p, q)-Laplace transform L(1)

2,p,q to (10.57) combined with (10.41), (10.32)
and (10.33), to get

1
s− r

[
Lp,q[ f (x)](r)− Lp,q[ f (y)](s)

]
=

1
s

Lp,q[ f (x)](r) +
1
r

Lp,q[ f (y)](s)

that is

Lp,q[ f (x)](r)
[

1
s− r

− 1
s

]
= Lp,q[ f (y)](s)

[
1

s− r
+

1
r

]
.

Simplifying this equation, we obtain

r2Lp,q[ f (x)](r) = s2Lp,q[ f (y)](s),

where the left-hand side is a function of r alone and the right hand side is a function of s
alone. This equation is true provided each side is equal to an arbitrary constant k so that

r2Lp,q[ f (x)](r) = k,
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or
Lp,q[ f (x)](r) =

k
r2 .

This is the transform of f (x) = kx, hence the solution of the (p, q)-Cauchy functional equa-
tion (10.57) as

f (x) = kx, (10.58)

where k is an arbritrary constant.

We now consider the following (p, q)-Cauchy-Abel’s functional equation

f (x⊕p,q y) = f (x) f (y), (10.59)

where f is an unknown function.
We apply the double (p, q)-Laplace transform L(1)

2,p,q to (10.59) combined with (10.41) and
(10.31) to get

1
s− r

[
Lp,q[ f (x)](r)− Lp,q[ f (y)](s)

]
= Lp,q[ f (x)](r)Lp,q[ f (y)](s)

that is
1− rLp,q[ f (x)](r)

Lp,q[ f (x)](r)
=

1− sLp,q[ f (y)](s)
Lp,q[ f (y)](s)

,

where the left hand side is a function of r alone and the right hand side is a function of s
alone. This equation is true provided each side is equal to an arbitrary constant k so that

1− rLp,q[ f (x)](r)
Lp,q[ f (x)](r)

= k,

or
Lp,q[ f (x)](r) =

1
r + k

.

Identifying with the previous computed transforms, it follows that the solution of the q-
Cauchy-Abel’s functional equation (10.59) as

f (x) = ep,q(−λx), λ =
k
p

. (10.60)

where k is an arbritrary constant.



Chapter 11

(p, q)-Appell Polynomials

Let Pn(x), n = 0, 1, 2, . . . be a polynomial set, i.e. a sequence of polynomials with Pn(x) of
exact degre n. Assume further that

dPn(x)
dx

= P′n(x) = nPn−1(x) for n = 0, 1, 2, . . . .

Such polynomial sets are called Appell sets and received considerable attention since P. Ap-
pell [13] introduced them in 1880.

A basic (q-)analogue of Appell sequences was first introduced by Sharma and Chak [81]
and they called them q-harmonic. Later, Al-Salam [9] studied these families and referred to
them it as q-Appell sets in analogy with ordinary Appell sets. Note that both Sharma and
Al-Salam defined the so-called q-Appell sets as those sets {Pn(x)}∞

n=0 which satisfy

DqPn(x) = [n]qPn−1(x), n = 0, 1, 2, 3, . . . (11.1)

where [n]q = (1− qn)/(1− q). Note that when q→ 1, (11.1) reduces to

dPn(x)
dx

= nPn−1(x),

so that we may think of q-Appell sets as a generalization of Appell sets. We call these poly-
nomial sets q-Appell sets of type I. Al-Salam also introduced another q-analogue of Appell
sets satisfying

DqPn(x) = [n]qPn−1(qx), n = 0, 1, 2, 3, . . . (11.2)

Again (11.2) reduces to
d

dx
Pn(x) = nPn−1(x) as q → 1 so that we may also think of these

sets as another q-generalization of Appell sets. We call these polynomial sets q-Appell sets of
type II.

The purpose of this chapter is to study the class of polynomial sequences {Pn(x)} which
satisfy

Dp,qPn(x) = [n]p,qPn−1(px), n = 0, 1, 2, 3, . . . (11.3)

with the assumption that P−1(px) = 0. We note that when p = 1, (11.3) reduces to (11.1)
and for q = 1, (11.3) reduces to (11.2) so that we may think of (p, q)-Appell sets as a gener-
alization of both types of q-Appell sets.
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11.1 Characterization of (p, q)-Appell polynomials

Definition 160 (Njionou [70]). A polynomial sequence { fn(x)}∞
n=0 is called a (p, q)-Appell poly-

nomial sequence if and only if

Dp,q fn+1(x) = [n + 1]p,q fn(px), n ≥ 0. (11.4)

It is not difficult to see that the polynomial sequence { fn(x)}∞
n=0 with fn(x) = (x	 a)n

p,q is
a (p, q)-Appell polynomial sequence since (see [69])

Dp,q(x	 a)n
p,q = [n]p,q(px	 a)n−1

p,q , n ≥ 1.

Next, we give several characterizations of (p, q)-Appell polynomial sequences.

Theorem 161 (Njionou [70]). Let { fn(x)}∞
n=0 be a sequence of polynomials. Then the following

are all equivalent:

1. { fn(x)}∞
n=0 is a (p, q)-Appell polynomial sequence.

2. There exists a sequence (ak)k≥0, independent of n, with a0 6= 0 and such that

fn(x) =
n

∑
k=0

[n
k

]
p,q

p(
n−k

2 )akxn−k.

3. { fn(x)}∞
n=0 is generated by

A(t)ep,q(xt) =
∞

∑
n=0

fn(x)
tn

[n]p,q!
,

with the determining function

A(t) =
∞

∑
n=0

an
tn

[n]p,q!
. (11.5)

4. There exists a sequence (ak)k≥0, independent of n with a0 6= 0 and such that

fn(x) =

(
∞

∑
k=0

ak p(
n−k

2 )

[k]p,q!
Dk

p,q

)
xn.

Proof. First, we prove that (1) =⇒ (2) =⇒ (3) =⇒ (1).

(1) =⇒ (2). Since { fn(x)}∞
n=0 is a polynomial set, it is possible to write

fn(x) =
n

∑
k=0

an,k

[n
k

]
p,q

p(
n−k

2 )xn−k, n = 1, 2, . . . , (11.6)

where the coefficients an,k depend on n and k and an,0 6= 0. We need to prove that these
coefficients are independent of n. By applying the operator Dp,q to each member of
(11.6) and taking into account that { fn(x)}∞

n=0 is a (p, q)-Appell polynomial set, we
obtain

fn−1(px) =
n−1

∑
k=0

an,k

[n− 1

k

]
p,q

p(
n−1−k

2 )(px)n−1−k, n = 1, 2, . . . , (11.7)
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since Dp,qx0 = 0. Shifting the index n → n + 1 in (11.7) and making the substitution
x → xp−1, we get

fn(x) =
n

∑
k=0

an+1,k

[n
k

]
p,q

p(
n−k

2 )xn−k, n = 0, 1, . . . , (11.8)

Comparing (11.6) and (11.8), we obtain an+1,k = an,k for all k and n, and therefore
an,k = ak is independent of n.

(2) =⇒ (3). From (2), and the identity (5.4), it follows that

∞

∑
n=0

fn(x)
tn

[n]p,q!
=

∞

∑
n=0

 n

∑
k=0

[n
k

]
p,q

p(
n−k

2 )akxn−k

 tn

[n]p,q!

=

(
∞

∑
n=0

an
tn

[n]p,q!

)(
∞

∑
n=0

p(
n
2)

[n]p,q!
(xt)n

)
= A(t)ep,q(xt).

(3) =⇒ (1). Assume that { fn(x)}∞
n=0 is generated by

A(t)ep,q(xt) =
∞

∑
n=0

fn(x)
tn

[n]p,q!
.

Then, applying the operator Dp,q (with respect to the variable x) to each side of this
equation, we get

tA(t)ep,q(pxt) =
∞

∑
n=0

Dp,q fn(x)
tn

[n]p,q!
.

Moreover,

tA(t)ep,q(pxt) =
∞

∑
n=0

fn(px)
tn+1

[n]p,q!
=

∞

∑
n=0

[n]p,q fn−1(px)
tn

[n]p,q!
.

By comparing the coefficients of tn, we obtain (1).

Next, (2) ⇐⇒ (4) is obvious since Dk
p,qtn = 0 for k > n. This ends the proof of the

theorem.

11.2 Algebraic structure

We denote a given polynomial set { fn(x)}∞
n=0 by a single symbol f and refer to fn(x) as

the n-th component of f . We define (as done in [13, 82]) on the set P of all polynomials
sequences the following three operations +, · and ∗. The first one is given by the rule that
f + g is the polynomial sequence whose nth component is fn(x) + gn(x) provided that the
degree of fn(x) + gn(x) is exactly n. On the other hand, if f and g are two sets whose nth
components are, respectively,

fn(x) =
n

∑
k=0

α(n, k)xk, gn(x) =
n

∑
k=0

β(n, k)xk,
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then f ∗ g is the polynomial set whose nth component is given by

( f ∗ g)n(x) =
n

∑
k=0

α(n, k)p−(
k
2)gk(x).

If λ is a real or complex number, then λ · f is defined as the polynomial sequence whose nth
component is λ · fn(x). We obviously have

f + g = g + f for all f , g ∈ P ,
λ f ∗ g = ( f ∗ λg) = λ( f ∗ g).

Clearly, the operation ∗ is not commutative (see [82]). One commutative subclass is the set
A of all Appell polynomials (see [13]).

In what follows, A(p, q) denotes the class of all (p, q)-Appell sets.
In A(p, q) the identity element (with respect to ∗) is the (p, q)-Appell set I =

{
p(

n
2)xn

}
.

Note that I has the determining function A(t) = 1. This is due to identity (5.3). The follow-
ing theorem is easy to prove.

Theorem 162 (Njionou [70]). Let f , g, h ∈ A(p, q) with the determining functions A(t), B(t)
and C(t), respectively. Then

1. f + g ∈ A(p, q) if A(0) + B(0) 6= 0,

2. f + g belongs to the determining function A(t) + B(t),

3. f + (g + h) = ( f + g) + h.

The next theorem is less obvious.

Theorem 163 (Njionou [70]). If f , g, h ∈ A(p, q) with the determining functions A(t), B(t) and
C(t), respectively, then

1. f ∗ g ∈ A(p, q)

2. f ∗ g = g ∗ f ,

3. f ∗ g belongs to the determining function A(t)B(t),

4. f ∗ (g ∗ h) = ( f ∗ g) ∗ h.

Proof. It is enough to prove the first part of the theorem. The rest follows directly.
According to Theorem 161, we may put

fn(x) =
n

∑
k=0

[n
k

]
p,q

p(
n−k

2 )akxn−k =
n

∑
k=0

[n
k

]
p,q

p(
k
2)an−kxk

so that

A(t) =
∞

∑
n=0

an
tn

[n]p,q!
.

Hence

∞

∑
n=0

( f ∗ g)n(x)
tn

[n]p,q!
=

∞

∑
n=0

 n

∑
k=0

[n
k

]
p,q

an−kgk(x)

 tn

[n]p,q!

=

(
∞

∑
n=0

an
tn

[n]p,q!

)(
∞

∑
n=0

gn(x)
tn

[n]p,q!

)
= A(t)B(t)ep,q(xt).

This ends the proof of the theorem.
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Corollary 164 (Njionou [70]). Let f ∈ A(p, q), then f has an inverse with respect to ∗, i.e. there
is a set g ∈ A(p, q) such that

f ∗ g = g ∗ f = I.

Indeed g belongs to the determining function (A(t))−1 where A(t) is the determining
function for f .

In view of Corollary 164 we shall denote this element g by f−1. We are further motivated
by Theorem 163 and its corollary to define f 0 = I, f n = f ∗ ( f n−1) where n is a non-negative
integer, and f−n = f−1 ∗ ( f−n+1). We note that we have proved that the system (A(p, q), ∗)
is a commutative group. In particular this leads to the fact that if

f ∗ g = h

and if any two of the elements f , g, h are (p, q)-Appell then the third one is also (p, q)-
Appell.

Proposition 165 (Njionou [70]). If f is a (p, q)-Appell sequence with the determining function
A(t), and if we set

A−1(t) =
∞

∑
n=0

bn
tn

[n]p,q!

then

xn = p−(
n
2)

n

∑
k=0

[n
k

]
p,q

bk fn−k(x).

Proof. Since f is a (p, q)-Appell sequence, we have
∞

∑
n=0

p(
n
2)xn tn

[n]p,q!
= (A(t))−1A(t)ep,q(xt)

=

(
∞

∑
n=0

bn
tn

[n]p,q!

)(
∞

∑
n=0

fn(x)
tn

[n]p,q!

)

=
∞

∑
n=0

 n

∑
k=0

[n
k

]
p,q

bk fn−k(x)

 tn

[n]p,q!
.

The result follows by comparing the coefficients of tn.

11.3 Some (p, q)-Appell polynomial sequences

In this section, we give four examples of (p, q)-Appell polynomial sequences and prove
some of their main structure relations. The bivariate (p, q)-Bernoulli, the bivariate (p, q)-
Euler and the bivariate (p, q)-Genocchi polynomials are introduced in [35, Duran et al.] and
some of their relevant properties are given. Without any loss of generality, we will restrict
ourselves to the case y = 0. Also, we introduce a new generalization of the (p, q)-Hermite
polynomials.

11.3.1 The (p, q)-Bernoulli polynomials

The (p, q)-Bernoulli polynomials are (p, q)-Appell polynomials for the determining func-

tion A(t) =
t

ep,q(t)− 1
. Thus, the (p, q)-Bernoulli polynomials are defined by the generat-

ing function
t

ep,q(t)− 1
ep,q(xt) =

∞

∑
n=0
Bn(x; p, q)

tn

[n]p,q!
.
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Let us define the (p, q)-Bernoulli numbers Bn,p,q by the generating function

t
ep,q(t)− 1

=
∞

∑
n=0
Bn,p,q

tn

[n]p,q!

so that
Bn(0; p, q) = Bn,p,q, (n ≥ 0).

Proposition 166. The (p, q)-Bernoulli polynomials Bn(x; p, q) have the representation

Bn(x; p, q) =
n

∑
n=0

[n
k

]
p,q

p(
n−k

2 )Bk,p,qxn−k. (11.9)

Proof. The proof follows from Theorem 161.

11.3.2 The (p, q)-Euler polynomials

The (p, q)-Euler polynomials are (p, q)-Appell polynomials for the determining function

A(t) =
2

ep,q(t) + 1
. Thus, the (p, q)-Euler polynomials are defined by the generating func-

tion
2

ep,q(t) + 1
ep,q(xt) =

∞

∑
n=0
En(x; p, q)

tn

[n]p,q!
.

Let us define the (p, q)-Euler numbers En,p,q by the generating function

2
ep,q(t) + 1

=
∞

∑
n=0
En,p,q

tn

[n]p,q!

so that
En(0; p, q) = En,p,q, (n ≥ 0).

Proposition 167 (Duran et al. [35]). The (p, q)-Euler polynomials En(x; p, q) have the represen-
tation

En(x; p, q) =
n

∑
n=0

[n
k

]
p,q

p(
n−k

2 )Ek,p,qxn−k. (11.10)

Proof. The proof follows from Theorem 161.

11.3.3 The (p, q)-Genocchi polynomials

The (p, q)-Genocchi polynomials are (p, q)-Appell polynomials for the determining func-

tion A(t) =
2t

ep,q(t) + 1
. Thus, the (p, q)-Genocchi polynomials are defined by the generat-

ing function
2t

ep,q(t) + 1
ep,q(xt) =

∞

∑
n=0
Gn(x; p, q)

tn

[n]p,q!
.

Let us define the (p, q)-Genocchi numbers Gn,p,q by the generating function

2t
ep,q(t) + 1

=
∞

∑
n=0
Gn,p,q

tn

[n]p,q!

so that
Gn(0; p, q) = Gn,p,q, (n ≥ 0).
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Proposition 168 (Duran et al. [35], Njionou [70]). The (p, q)-Genocchi polynomials Gn(x; p, q)
have the representation

Gn(x; p, q) =
n

∑
n=0

[n
k

]
p,q

p(
n−k

2 )Gk,p,qxn−k. (11.11)

Proof. The proof follows from Theorem 161.

11.3.4 A second kind of (p, q)-Hermite polynomials

In this section we construct (p, q)-Hermite polynomials and give some of their proper-
ties. Also, we derive the three-term recurrence relation as well as the second-order (p, q)-
differential equation satisfied by these polynomials.

We define (p, q)-Hermite polynomials by means of the generating function

Fp,q(x, t) := Fp,q(t)ep,q(xt) =
∞

∑
n=0

Hn(x; p, q)
tn

[n]p,q!
. (11.12)

where

Fp,q(t) =
∞

∑
n=0

(−1)n pn(n−1) t2n

[2n]p,q!!
, with [2n]p,q!! =

n

∏
k=1

[2k]q, [0]p,q!! = 1. (11.13)

It is clear that

lim
p,q→1

Fp,q(x, t) = ext lim
p,q→1

∞

∑
n=0

(−1)n pn(n−1) t2n

[2n]p,q!!
= ext

∞

∑
n=0

(−1)n t2n

(2n)(2n− 2) · · · 2

= ext
∞

∑
n=0

(−1)n t2n

2nn!
= exp

(
tx− t2

2

)
.

Moreover,

D{t}p,q Fp,q(t) =
∞

∑
n=1

(−1)n pn(n−1) t2n−1

[2n− 2]p,q!!
=

∞

∑
n=0

(−1)n+1 pn(n−1)+2n t2n+1

[2n]p,q!!
= −tFp,q(pt),

Hence
D{t}p,q Fp,q(t)

Fp,q(pt)
= −t.

Theorem 169 (Njionou [70]). The (p, q)-Hermite polynomials Hn(x; p, q) have the following rep-
resentation

Hn(x, p, q) =
[ n

2 ]

∑
k=0

(−1)k p(
n−2k

2 )+k(k−1)[n]p,q!
[2k]p,q!![n− 2k]p,q!

xn−2k.

Proof. Indeed, expanding the generating function Hp,q(x, t), we have

Hp,q(x, t) =

(
∞

∑
k=0

(−1)k pk(k−1) t2k

[2k]p,q!!

)(
∞

∑
n=0

p(
n
2)xn tn

[n]p,q!

)

=
∞

∑
n=0

∞

∑
k=0

p(
n
2)xn tn

[n]p,q!
(−1)k pk(k−1) t2k

[2k]p,q!!
.

The result follows by using the series manipulation formula (7) of Lemma 11 in [75].
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Theorem 170 (Njionou [70]). The following linear homogeneous recurrence relation for the (p, q)-
Hermite polynomials holds true

Hn+1(px, p, q) = pn+1xHn(qx, p, q)− pn−1[n]p,qHn−1(qx, p, q), (n ≥ 1).

Proof. Note that D{t}p,q Fp,q(t) = −tFp,q(pt). Hence

∞

∑
n=0

Hn+1(x; p, q)
tn

[n]p,q!
= D{t}p,q Fp,q(x, t)

= Fp,q(qt)D{t}p,q ep,q(xt) + ep,q(pxt)D{t}p,q Fp,q(t)
= xFp,q(qt)ep,q(pxt)− tFp,q(pt)ep,q(pxt)

=
∞

∑
n=0

xHn(px/q; p, q)
qntn

[n]p,q!
−

∞

∑
n=1

[n]p,qHn−1(x; p, q)
pn−1tn

[n]p,q!

The result follows by equating the coefficients of tn on both sides and replacing x by qx.

Theorem 171 (Njionou [70]). The (p, q)-Hermite polynomials Hn(x; p, q) satisfy the (p, q)-difference
equation

L−2
p D2

p,qHn(x; p, q)− p2q−1xL−1
p Dp,qHn(x; p, q) + p2−n[n]p,qHn(px/q) = 0. (11.14)

Proof. The proof follows from Theorem 170.

Note that as p and q tend to 1, Equation (11.14) reduces to the second order differential
equation satisfied by the Hermite polynomials.

11.3.5 Two bivariate kinds of (p, q)-Bernoulli polynomials

Let x, y ∈ R. It is well-known that the Taylor expansion of the two functions ext cos yt and
ext sin yt are as follows [61]

ext cos yt =
∞

∑
n=0

Cn(x, y)
tn

n!
, (11.15)

and

ext sin yt =
∞

∑
n=0

Sn(x, y)
tn

n!
, (11.16)

where

Cn(x, y) =
b n

2 c

∑
k=0

(−1)k
(

n
2k

)
xn−2ky2k, (11.17)

and

Sn(x, y) =
b n−1

2 c

∑
k=0

(−1)k
(

n
2k + 1

)
xn−2k−1y2k+1. (11.18)

Here we introduce a (p, q)-extension of the two above polynomials Cn(x, y) and Sn(x, y) by
the following generating functions:

ep,q(xt) cosp,q(yt) =
∞

∑
k=0

Ck,p,q(x, y)
tk

[k]p,q!
, (11.19)
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and

ep,q(xt) sinp,q(yt) =
∞

∑
k=0

Sk,p,q(x, y)
tk

[k]p,q!
, (11.20)

Some particular cases are

C2n,p,q(0, y) = (−1)n p(
2n
2 )y2n, C2n+1,p,q(0, y) = 0

and
S2n,p,q(0, y) = 0, S2n+1,p,q(0, y) = (−1)n p(

2n+1
2 )y2n+1.

The following lemma will be useful in the derivation of several results.

Lemma 172 ( Rainville [75]). The following series manipulations hold

∞

∑
n=0

∞

∑
k=0

A(k, n) =
∞

∑
n=0

bn/2c

∑
k=0

A(k, n− 2k), (11.21)

∞

∑
n=0

∞

∑
k=0

B(k, n) =
∞

∑
n=0

b(n−1)/2c

∑
k=0

B(k, n− 1− 2k). (11.22)

Theorem 173 (Njionou and Duran [71]). The following representations hold

Cn,p,q(x, y) = p(
n
2)
b n

2 c

∑
k=0

(−1)k
[n

2k

]
p,q

p2k(k−n)xn−2ky2k (11.23)

and

Sn,p,q(x, y) = p(
n−1

2 )
b n−1

2 c

∑
k=0

(−1)k
[ n

2k + 1

]
p,q

p4k2−2knxn−2k−1y2k+1 (11.24)

Proof. By series manipulation procedure (11.21), we have

ep,q(xt) cosp,q(yt) =

(
∞

∑
n=0

p(
n
2)

[n]p,q!
(xt)n

)(
∞

∑
n=0

(−1)n p(
2n
2 )

[2n]p,q!
(yt)2n

)

=
∞

∑
n=0

bn/2c

∑
k=0

p(
n−2k

2 )

[n− 2k]p,q!
(xt)n−2k (−1)k p(

2k
2 )

[2k]p,q!
(yt)2k

=
∞

∑
n=0

p(
n
2)
b n

2 c

∑
k=0

(−1)k
[n

2k

]
p,q

p2k(k−n)xn−2ky2k

 tn

[n]p,q!
,

which proves (11.19). The proof of (11.20) is similar by means of the series manipulation
method (11.22).

Theorem 174 (Njionou and Duran [71]). The following derivative rules are valid

Dp,q,xCk,p,q(x, y) = [k]p,qCk−1,p,q(px, y), (11.25)

Dp,q,yCk,p,q(x, y) = −[k]p,qSk−1,p,q(x, py), (11.26)

Dp,q,xSk,p,q(x, y) = [k]p,qSk−1,p,q(px, y), (11.27)

Dp,q,ySk,p,q(x, y) = [k]p,qCk−1,p,q(x, py). (11.28)
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Proof. Relation (11.19) yields

∞

∑
n=1

Dp,q,xCn,p,q(x, y)
tn

[n]p,q!
= tep,q(pxt) cosp,q(yt) =

∞

∑
n=0

Cn,p,q(px, y)
tn+1

[n]p,q!

=
∞

∑
n=1

Cn−1,p,q(px, y)
tn

[n− 1]p,q!

=
∞

∑
n=0

[n]p,qCn−1,p,q(px, y)
tn

[n]p,q!
,

proving (11.25). The other equations (11.26), (11.27) and (11.28) can be similarly proved.

Theorem 175 (Njionou and Duran [71]). The following relations are valid

Cn,p,q(x, y) =
n

∑
k=0

[n
k

]
p,q

p(
n−k

2 )Ck,p,q(0, y)xn−k, (11.29)

Sn,p,q(x, y) =
n

∑
k=0

[n
k

]
p,q

p(
n−k

2 )Sk,p,q(0, y)xn−k. (11.30)

Theorem 176 (Njionou and Duran [71]). The following power representations hold

(−1)n p(
2n
2 )y2n =

2n

∑
k=0

(−1)kq(
k
2)

[2n

k

]
p,q

C2n−k,p,q(x, y)xk, (11.31)

and

(−1)n p(
2n+1

2 )y2n+1 =
2n+1

∑
k=0

(−1)kq(
k
2)

[2n + 1

k

]
p,q

S2n+1−k,p,q(x, y)xk. (11.32)

Proof. Multiplying both sides of (11.19) by Ep,q(−xt) and using (5.3), it follows that

∞

∑
n=0

(−1)n p(
2n
2 )y2n t2n

[n]p,q!
=

(
∞

∑
n=0

q(
n
2)
(−x)ntn

[n]p,q!

)(
∞

∑
n=0

Cn,p,q(x, y)
tn

[n]p,q!

)

=
∞

∑
n=0

 n

∑
k=0

(−1)kq(
k
2)

[n
k

]
p,q

Cn−k,p,q(x, y)xk

 tn

[n]p,q!
,

which proves (11.31). The proof of (11.32) is similar.

Theorem 177 (Njionou and Duran [71]). The following connection formulas hold

C2n+1,p,q(x, y) =
2n

∑
k=0

(−1)kq(
k+1

2 )

[2n + 1

k + 1

]
p,q

C2n−k,p,q(x, y)xk+1, (11.33)

and

S2n,p,q(x, y) =
2n−1

∑
k=0

(−1)kq(
k+1

2 )

[ 2n

k + 1

]
p,q

S2n−k−1,p,q(x, y)xk+1. (11.34)



11.3 Some (p, q)-Appell polynomial sequences 113

Proof. From the relation

∞

∑
n=0

(−1)n p(
2n
2 )y2n t2n

[n]p,q!
=

∞

∑
n=0

 n

∑
k=0

(−1)kq(
k
2)

[n
k

]
p,q

Cn−k,p,q(x, y)xk

 tn

[n]p,q!
,

it follows that
2n+1

∑
k=0

(−1)kq(
k
2)

[2n + 1

k

]
p,q

C2n+1−k,p,q(x, y)xk = 0.

Hence (11.33) is proved. We prove (11.34) in the same way.

We can now introduce two kinds of bivariate q-Bernoulli polynomials as

tep,q(xt)
ep,q(t)− 1

cosp,q(yt) =
∞

∑
n=0

B(c)
n,p,q(x, y)

tn

[n]p,q!
, (11.35)

and
tep,q(xt)

ep,q(t)− 1
sinp,q(yt) =

∞

∑
n=0

B(s)
n,p,q(x, y)

tn

[n]p,q!
. (11.36)

Upon setting x = y = 0 for both polynomials in (11.35) and (11.36), we have B(c)
n,p,q(0, 0) =

B(s)
n,p,q(0, 0) := Bn,p,q which are called (p, q)-Bernoulli polynomials defined in [35].

When y = 0 in (11.35) and (11.36), we get the usual (p, q)-Bernoulli polynomials, denoted
by Bn,p,q(x), see [35, 70].

Next, we give some basic properties of these polynomials.

Theorem 178 (Njionou and Duran [71]). B(c)
n,p,q(x, y) and B(s)

n,p,q(x, y) can be represented in terms
of (p, q)-Bernoulli numbers as follows

B(c)
n,p,q(x, y) =

n

∑
k=0

[n
k

]
p,q

Bk,p,qCn−k,p,q(x, y), (11.37)

and

B(s)
n,p,q(x, y) =

n

∑
k=0

[n
k

]
p,q

Bk,p,qSn−k,p,q(x, y), (11.38)

Proof. Using the Cauchy product rule, we have

∞

∑
n=0

B(c)
n,p,q(x, y)

tn

[n]p,q!
=

t
ep,q(t)− 1

ep,q(xt) cosp,q(yt)

=

(
∞

∑
n=0

Bn
tn

[n]p,q!

)(
∞

∑
n=0

Cn,p,q(x, y)
tn

[n]p,q!

)

=
∞

∑
n=0

 n

∑
k=0

[n
k

]
p,q

Bk,p,qCn−k,p,q(x, y)

 tn

[n]p,q!
,

which proves (11.37). The proof of (11.38) is similar.
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We now state the following theorem.

Theorem 179 (Njionou and Duran [71]). The following connection formulas are valid

B(c)
n,p,q(x, y) =

[ n
2 ]

∑
k=0

(−1)k
[n

2k

]
p,q

Bn−2k,p,q(x)p(
2k
2 )y2k, (11.39)

and

B(s)
n,p,q(x, y) =

[ n
2 ]

∑
k=0

(−1)k
[ n

2k + 1

]
p,q

Bn−1−2k,p,q(x)p(
2k+1

2 )y2k+1. (11.40)

Proof. The formula (11.39) follows from (11.21) since

∞

∑
n=0

B(c)
n,p,q(x, y)

tn

[n]q
=

tep,q(xt)
ep,q(t)− 1

cosp,q(yt)

=

(
∞

∑
n=0

Bn,p,q(x)
tn

[n]p,q!

)(
∞

∑
n=0

(−1)n p(
2n
2 )

[2n]p,q!
(yt)2n

)

=
∞

∑
n=0

 [ n
2 ]

∑
k=0

(−1)k
[n

2k

]
p,q

Bn−2k,p,q(x)p(
2k
2 )y2k

 tn

[n]p,q!
.

The proof of (11.40) is similar via (11.22).

Theorem 180 (Njionou and Duran [71]). The following connection formulas are valid

Cn,p,q(x, y) =
n

∑
k=0

p(
k+1

2 )

[k + 1]p,q

[n
k

]
p,q

B(c)
n,p,q(x, y), (11.41)

Sn,p,q(x, y) =
n

∑
k=0

p(
k+1

2 )

[k + 1]p,q

[n
k

]
p,q

B(s)
n,p,q(x, y). (11.42)

Proof. From (11.35), we have

∞

∑
n=0

B(c)
n,p,q(x, y)

tn

[n]p,q!
=

tep,q(xt)
ep,q(t)− 1

cosp,q(yt) =
t

ep,q(t)− 1

∞

∑
n=0

Cn,p,q(x, y)
tn

[n]p,q!
.

Hence

∞

∑
n=0

Cn,p,q(x, y)
tn

[n]p,q!
=

ep,q(t)− 1
t

∞

∑
n=0

B(c)
n,p,q(x, y)

tn

[n]p,q!

=

(
∞

∑
n=0

p(
n+1

2 )

[n + 1]p,q

tn

[n]p,q!

)(
∞

∑
n=0

B(c)
n,p,q(x, y)

tn

[n]p,q!

)

=
∞

∑
n=0

 n

∑
k=0

p(
k+1

2 )

[k + 1]p,q

[n
k

]
p,q

B(c)
n,p,q(x, y)

 tn

[n]p,q!
.

Thus (11.41) follows. (11.42) is proved in a similar way.
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Proposition 181 (Njionou and Duran [71]). For every n ∈N, the following identities hold

B(c)
n,p,q((1⊕p,q x), y)− B(c)

n,p,q(x, y) = [n]p,qCn−1,p,q(x, y), (11.43)

B(s)
n,p,q((1⊕p,q x), y)− B(s)

n,p,q(x, y) = [n]p,qSn−1,p,q(x, y). (11.44)

Proof. We have
∞

∑
n=0

B(c)
n,p,q((1⊕p,q x), y)

tn

[n]p,q!
=

tep,q[(1⊕p,q x)t]
ep,q(t)− 1

cosp,q(yt)

=
tep,q(xt)[ep,q(t)− 1 + 1]

ep,q(t)− 1
cosp,q(yt)

= tep,q(xt) cosp,q(yt) +
tep,q(xt)

ep,q(t)− 1
cosp,q(yt)

=
∞

∑
n=0

Cn,p,q(x, y)
tn+1

[n]p,q!
+

∞

∑
n=0

B(c)
n,p,q(x, y)

tn

[n]p,q!
,

which proves (11.43). The identity (11.44) is proved similarly.

Corollary 182 (Njionou and Duran [71]). The following relations hold

B(c)
2n+1,p,q(1, y)− B(c)

2n+1,p,q(0, y) = [2n + 1]p,q(−1)n p(
2n
2 )y2n,

B(s)
2n,p,q(1, y)− B(s)

2n,p,q(0, y) = [2n]p,q(−1)n+1 p(
2n−1

2 )y2n−1.

Proof. If we replace n by 2n + 1 in (11.43), and x by 0, we obtain

B(c)
2n+1,p,q(1, y)− B(c)

2n+1,p,q(0, y) = [2n + 1]p,qC2n,p,q(0, y).

The first relation is proved since from (11.23) we have C2n,q(0, y) = (−1)n p(
2n
2 )y2n. The

second relation is proved similarly.

Proposition 183 (Njionou and Duran [71]). For every n ∈N, the following identities hold

B(c)
n,p,q((x⊕p,q z), y) =

n

∑
k=0

[n
k

]
p,q

Bk,p,q(x)Cn−k,p,q(y, z), (11.45)

and

B(s)
n,p,q((x⊕p,q z), y) =

n

∑
k=0

[n
k

]
p,q

Bk,p,q(x)Sn−k,p,q(y, z), (11.46)

Proof. We have
∞

∑
n=0

B(c)
n,p,q((x⊕p,q z), y)

tn

[n]p,q!
=

tep,q((x⊕p,q z)t)
ep,q(t)− 1

cosp,q(yt)

=
tep,q(xt)

ep,q(t)− 1
× ep,q(zt) cosp,q(yt)

=

(
∞

∑
n=0

Bn,p,q(x)
tn

[n]p,q!

)(
∞

∑
n=0

Cn,p,q(y, z)
tn

[n]p,q!

)

=
∞

∑
n=0

 n

∑
k=0

[n
k

]
p,q

Bk,p,q(x)Cn−k(y, z)

 tn

[n]q!
,

which proves (11.45). The proof of (11.46) is similar.
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Proposition 184 (Njionou and Duran [71]). For every n ∈N, the following identities hold

B(c)
n,p,q((x⊕p,q z), y) =

n

∑
k=0

[n
k

]
p,q

p(
n−k

2 )B(c)
k,p,q(x, y)zn−k, (11.47)

and

B(s)
n,p,q((x⊕p,q z), y) =

n

∑
k=0

[n
k

]
p,q

p(
n−k

2 )B(s)
k,p,q(x, y)zn−k. (11.48)

Proof. We have

∞

∑
n=0

B(c)
n,p,q((x⊕p,q z), y)

tn

[n]p,q!
=

tep,q((x⊕p,q z)t)
ep,q(t)− 1

cosp,q(yt)

=
tep,q(xt)

ep,q(t)− 1
cosp,q(yt)× ep,q(zt)

=

(
∞

∑
n=0

B(c)
n,p,q(x, y)

tn

[n]p,q!

)(
∞

∑
n=0

p(
n
2)zn tn

[n]p,q!

)

=
∞

∑
n=0

 n

∑
k=0

[n
k

]
p,q

p(
n−k

2 )B(c)
k,p,q(x, y)zn−k

 tn

[n]q!
,

which proves (11.47). The proof of (11.48) is similar.

Proposition 185 (Njionou and Duran [71]). The following equations can be concluded

n

∑
k=0

[n + 1

k

]
p,q

p(
n+1−k

2 )B(c)
k,p,q(x, y) = [n + 1]p,qCn,p,q(x, y), (11.49)

n

∑
k=0

[n + 1

k

]
p,q

p(
n+1−k

2 )B(s)
k,p,q(x, y) = [n + 1]p,qSn,p,q(x, y). (11.50)

Proof. From (11.47), we have

B(c)
n+1,p,q((x⊕p,q 1), y)− B(c)

n+1,p,q(x, y) =
n

∑
k=0

[n + 1

k

]
p,q

p(
n+1−k

2 )B(c)
k,p,q(x, y).

Hence, by using (11.43), relation (11.49) is derived. The proof of (11.50) is concluded in a
similar way.

Corollary 186 (Njionou and Duran [71]). Relations (11.49) and (11.50) imply that

n

∑
k=0

[n + 1

k

]
p,q

p(
n+1−k

2 )B(c)
k,p,q(0, y)

=

(−1)m[2m + 1]p,q p(
2m
2 )y2m if n = 2m is odd,

0 if n = 2m + 1 is even,
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and

n

∑
k=0

[n + 1

k

]
p,q

p(
n+1−k

2 )B(s)
k,p,q(0, y)

=

0 if n = 2m is odd,

(−1)m[2m + 2]p,q p(
2m+1

2 )y2m+1 if n = 2m + 1 is even.

Corollary 187 (Njionou and Duran [71]). For every n ∈N, the following partial (p, q)-differential
equations hold

Dp,q,xB(c)
n,p,q(x, y) = [n]p,qB(c)

n−1,p,q(px, y),

Dp,q,yB(c)
n,p,q(x, y) = −[n]p,qB(c)

n−1,p,q(x, py),

Dp,q,xB(s)
n,p,q(x, y) = [n]p,qB(s)

n−1,p,q(px, y),

and

Dp,q,yB(c)
n,q(x, y) = [n]p,qB(s)

n−1,p,q(x, py). (11.51)

Corollary 188 (Njionou and Duran [71]). The following equations are valid∫ 1

0
B(c)

2n,p,q(px, y)dp,qx = (−1)n p(
2n
2 )y2n,∫ 1

0
B(s)

2n+1,p,q(px, y)dp,qx = (−1)n+1 p(
2n+1

2 )y2n+1,

which are proved by combining Proposition 187 and Corollary 182 using the definition of the (p, q)-
integral.



Conclusion and Further Perspectives

In this work we have provided several tools for the two parameter quantum calculus. Going
from the (p, q)-derivative in Chapter 2, we have introduced the so-called (p, q)-power basis
and the related (p, q)-Taylor expansions in Chapter 3. These Taylor expansions have en-
abled us to prove connections between several (p, q)-power bases and also used in Chapter
4 to prove the (p, q)-Vandermonde identity. Chapters 5 and 6 introduce (p, q)-Exponential,
(p, q)-Trigonometric functions and the (p, q)-integral with the associated fundamental the-
orem of (p, q)-calculus. These tools are used in Chapter 7 to define (p, q)-analogues of the
Gamma and the Beta functions with the proof of their main properties. (p, q)-analogues
of hypergeometric series are introduced in Chapter 8. In this chapter we provided sev-
eral (p, q)-analogues of the very known identities and transformations, namely the (p, q)-
Kummer sum, a (p, q)-analogue of Bailey’s 2F2(−1), a (p, q)-analogue of Gauss’s 2F1(−1)
sum, the (p, q)-Saalschütz sum, the (p, q)-Jackson’s transformation of the 2Φ1,. . . Chapter 9
deals with (p, q)-analogues of Sturm-Liouville problems. We provide the regularity condi-
tions to obtain orthogonal polynomial solutions. Some structure relations for these poly-
nomials are proved and some special examples are explained. In Chapter 10 we introduce
(p, q)-analogues of the Laplace transform and provide several properties of these trans-
forms with several applications in solving some functional equations, (p, q)-differential
equations and (p, q)-partial differential equations. In the last chapter, (p, q)-analogues are
introduced for a wide class of polynomials known as Appell polynomials. Of course, we
provide important relations these polynomial fulfil and give some connections with some
previous known special polynomials.

There are still many things to do. Since Appell polynomials are special cases of Sheffer
polynomials, one may think of defining (p, q)-Sheffer polynomials and start studying their
fundamental properties. We think of defining the (p, q)-Sheffer polynomials sn(x) by the
generating functions

A(t)ep,q(xB(t)) =
∞

∑
n=0

sn(x)
[n]p,q!

tn

where A and B are (formal) power series in t.
Also, several summation and transformation formulas are still to be stated. Concerning
the (p, q)-Sturm Liouville problems, there are still many unsolved problems and we think
that due to the very important applications of their solutions for the classical case, it should
be a good idea to look forward into this direction. Our future work will then consist in
completing missing informations and then provide new tools for application in numerical
analysis, partial differential equations, quantum mechanics,. . .
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