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1. Introduction

Continued fractions, expressions of the form

b0 +
a1

b1 +
a2

b2 +
a3

b3 + .. .

,

are not exactly a new field of mathematical study. They were already known and used by
Euler, for example, to prove the irrationality of e. More recently, the study of continued
fractions gained prominence, starting with Oscar Perron in 1913, continuing through Wall
to Jones and Thron to Lorentzen and Waadeland. Despite that, continued fractions were
sparsely found in collections and handbooks of special functions, until the release of the
Handbook of Continued Fractions for Special Functions in 2008 [CBV+08], which collected
all known continued fraction representations of most special constants and functions into
a single reference work.
The main focus of this thesis is to present a variation of an algorithm first presented by
Maulat and Salvy, with which it is possible to algorithmically guess as well as prove con-
tinued fraction expansions of analytical expressions with the help of ordinary differential
equations.
To that end, Chapter 1, which you are reading now, gives an overview of this thesis and
its contents. Chapter 2 will lay the groundwork, giving definitions and basic properties
in relation to continued fractions, as well as tools with which to check continued fractions
for convergence. It also contains a short excursion to the Riemann zeta function ζ and,
more specifically, continued fraction expansions of ζ(3), both previously known as well as
new ones, the latter derived from known continued fraction expansions of the tetragamma
function. The final stretch contains basic definitions from the field of hypergeometric
summation that are relevant to the changes to the algorithm of Maulat and Salvy, as well
as a basic overview of the approaches of both Petkovšek and van Hoeij to the problem of
finding all hypergeometric term solutions of a given holonomic recurrence equation.
Chapter 3 will first present the theoretical underpinnings of the guess and prove method.
The main changes compared to the work of Maulat and Salvy is support for differential
equations of order higher than one as well as applying van Hoeij’s algorithm instead of
a second guessing step. The van Hoeij algorithm is extended and used, since in the
verification step of the guess and prove algorithm two-term right factors of a holonomic
recurrence satisfied by some sequence Hn are of interest. A two-term right factor of order
m corresponds to an m-fold hypergeometric term solution. As it turns out, it suffices to
consider two-term right factors of a holonomic recurrence satisfied by any subsequence
Hln+i. Because of this, the method used in this thesis does not produce true m-fold
hypergeometric term solutions of a given holonomic recurrence. The chosen approach can
however easily be generalized to do just that.
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1. Introduction

After the presentation of the main algorithm follow detailed demonstrations for tan x and
expx, as well as less detailed examples mostly from the Handbook of Continued Fractions
for Special Functions. This also includes two new continued fraction representations of
expx derived from the generating function of the Euler polynomials. It follows a section
concentrating on how to find differential equations satisfied by a given expression, which
of course has applications for the presented algorithm, but can be of interest elsewhere.
This section also contains some examples concerning implicit differential equations.
Finally, the fully automated algorithm presented in Chapter 3 was implemented using
Maple 18 in the package guessandprove.mpl, which is an integral part of this thesis,
hence the appendix contains instructions and examples for the use of this package.
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2. Basics

In this chapter, some basic definitions and properties will be given, beginning in the first
section with the topic of continued fractions. This is followed by a section on the Riemann
zeta function ζ, as introduced by Riemann in [Rie60], culminating in the presentation
of three families of continued fraction representations of ζ(3) not mentioned in [BC].
The chapter is finished by a section on hypergeometric terms and series, as well as a
general overview of the algorithmic approaches of both Petkovšek and van Hoeij to the
problem of finding all hypergeometric term solutions of a given holonomic recurrence
equation. Because of its efficiency, van Hoeij’s algorithm is used in the verification step of
the main algorithm presented in this thesis in Chapter 3. None of these sections are meant
to be exhaustive; for a more complete treatment of continued fractions, see [CBV+08],
[LW92], [Per13] or [JT80]; for a more complete treatment of hypergeometric summation,
see [Koe14].

2.1. Continued fractions

Definition 2.1.1. [LW92, p. 7] A continued fraction is an ordered pair((
(an)n≥1 , (bn)n≥0

)
, (fn)n≥0

)
, where (an), (bn) are sequences of complex numbers with

an 6= 0, (fn) is a sequence of extended complex numbers, and (an), (bn) give rise to
complex functions sn(ω), Sn(ω) with

S0(ω) = s0(ω), Sn(ω) = Sn−1(sn(ω)) for n ≥ 1,

s0(ω) = b0 + ω, sn(ω) = an
bn + ω

for n ≥ 1,

such that

fn = Sn(0) for n ≥ 0.

The complex numbers an and bn are called n-th partial numerators and n-th partial denom-
inators, respectively. Without distinguishing the partial numerators and denominators,
they are also called the elements of the continued fraction.
The extended complex number fn is called the n-th approximant of the continued fraction.
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2. Basics

A continued fraction is denoted by any of the expressions

b0 +
a1

b1 +
a2

b2 +
a3

b3 + .. .

= b0 +
∞

K
n=1

an
bn

= b0 + a1
b1

+ a2
b2

+ a3
b3

+ . . . .

Analogously the n-th approximant fn of a continued fraction is expressed by

fn = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

. . . +
an

bn

= b0 +
n

K
k=1

ak
bk

= b0 + a1
b1

+ a2
b2

+ a3
b3

+ . . .+ an
bn

;

an expression of this form is also called a finite continued fraction.

Definition 2.1.2. [CBV+08, p. 12] A continued fraction is said to converge to the exten-
ded complex number f , if and only if its sequence of approximants (fn) converges to f .
In this case, the notations introduced in Definition 2.1.1 also denote the value f .

Definition 2.1.3. [CBV+08, p. 23] For a given continued fraction b0 +
∞
K
k=1

ak
bk

, tn denotes

its n-th tail, given by

tn =
∞

K
k=n+1

ak
bk

for n ≥ 0.

From this it follows that tn satisfies

Sn(tn) = b0 +
∞

K
k=1

ak
bk

for n ≥ 0.

It is easy to see that convergence of a continued fraction implies convergence of all its tails
(which are continued fractions in their own right) and conversely convergence of at least
one of its tails implies convergence of a continued fraction.

Theorem 2.1.4. [LW92, p. 8] Let (An)n≥−1, (Bn)n≥−1 be sequences of complex numbers
satisfying the recurrence relations[

An
Bn

]
= bn

[
An−1
Bn−1

]
+ an

[
An−2
Bn−2

]
for n ≥ 1

4



2.1. Continued fractions

with initial conditions
A−1 = B0 = 1, A0 = b0, B−1 = 0,

where the sequences (an), (bn) are given by the continued fraction b0 +
∞
K
n=1

an
bn

.

Then the sequences (An) and (Bn) satisfy

Sn(ω) = An +An−1ω

Bn +Bn−1ω
for n ≥ 0.

Proof. The claim follows by induction. For n = 0 one has

S0(ω) = s0(ω) = b0 + ω = b0 + 1 · ω
1 + 0 · ω .

Assuming Sn(ω) = An +An−1ω

Bn +Bn−1ω
holds for some n ∈ N≥0, one obtains

Sn+1(ω) = Sn(sn+1(ω)) =
An +An−1

an+1
bn+1 + ω

Bn +Bn−1
an+1

bn+1 + ω

= bn+1An + an+1An−1 +Anω

bn+1Bn + an+1Bn−1 + ωBn

= An+1 +Anω

Bn+1 +Bnω
.

Definition 2.1.5. [LW92, p. 9] For a given continued fraction b0 +
∞
K
n=1

an
bn

the recurrence

relations and initial conditions given in Theorem 2.1.4 define sequences (An) and (Bn)
satisfying

fn = Sn(0) = An
Bn

for n ≥ 0.

In this case the complex numbers An and Bn are called the n-th (canonical) numerator
and n-th (canonical) denominator, respectively, of the continued fraction.

Theorem 2.1.6. [CBV+08, p. 14] The canonical numerators and denominators An and
Bn of a continued fraction b0 +

∞
K
n=1

an
bn

satisfy the determinant formula

∣∣∣∣∣ An An−1
Bn Bn−1

∣∣∣∣∣ = AnBn−1 −An−1Bn = (−1)n−1
n∏
k=1

ak

for n ≥ 0.

Proof. The claim follows by induction. For n = 0 one has

A0B−1 −A0B−1 = −1 = (−1)−1
0∏

k=1
ak.

5



2. Basics

Assuming the determinant formula holds for some n ∈ N≥0, it follows from Theorem 2.1.4
that

An+1Bn −AnBn+1 = bn+1AnBn + an+1An−1Bn − bn+1AnBn − an+1AnBn−1

= −an+1(AnBn+1 −An+1Bn)

= −an+1(−1)n−1
n∏
k=1

ak

= (−1)n
n+1∏
k=1

ak.

Definition 2.1.7. [LW92, p. 72] Two continued fractions b0 +
∞
K
n=1

an
bn

and b′0 +
∞
K
n=1

a′n
b′n

are
equivalent, denoted by

b0 +
∞

K
n=1

an
bn
≡ b′0 +

∞

K
n=1

a′n
b′n
,

if and only if their approximants fn respectively f ′n satisfy

fn = f ′n for n ≥ 0.

Theorem 2.1.8. [LW92, p. 73] Two continued fractions b0 +
∞
K
n=1

an
bn

and b′0 +
∞
K
n=1

a′n
b′n

are

equivalent, if and only if there exists a sequence of complex numbers (rn)n≥0 with r0 = 1
and rn 6= 0 for n ≥ 1 satisfying

a′n = rn−1rnan, b
′
0 = b0, b

′
n = rnbn for n ≥ 1.

Proof. Given a sequence of complex numbers (rn)n≥0 with r0 = 1 and rn 6= 0 for n ≥ 1,
by simplifying one easily obtains

f ′n = r0b0 + r0
r1a1

r1b1 + r1
r2a2

r2b2 + r2
r3a3

. . . + rn−1
rnan

rnbn

= b0 +
a1

b1 +
a2

b2 +
a3

. . . +
an

bn

= fn

for n ≥ 0.
Conversely, if fn = f ′n for n ≥ 0 is given, it follows from

b0 = f0 = f ′0 = b′0 and B′0 = 1

that
b′0 = r0b0, A

′
0 = r0A0, B

′
0 = r0B0, where r0 := 1.

Assuming for some non-negative integer N one has r0, . . ., rN satisfying

r0 = 1, rn 6= 0, a′n = rn−1rnan, b
′
0 = b0, b

′
n = rnbn for 1 ≤ n ≤ N

6



2.1. Continued fractions

as well as
A′n =

(
n∏
k=0

rk

)
An, B

′
n =

(
n∏
k=0

rk

)
Bn for 0 ≤ n ≤ N,

then it follows that

AN+1
BN+1

= fN+1 = f ′N+1 =
A′N+1
B′N+1

=
b′N+1A

′
N + a′N+1A

′
N−1

b′N+1B
′
N + a′N+1B

′
N−1

=
b′N+1

(
N∏
k=0

rk

)
AN + a′N+1

(
N−1∏
k=0

rk

)
AN−1

b′N+1

(
N∏
k=0

rk

)
BN + a′N+1

(
N−1∏
k=0

rk

)
BN−1

=
b′N+1rNAN + a′N+1AN−1

b′N+1rNBN + a′N+1BN−1

=

(
rNaN+1
a′N+1

)
b′N+1AN + aN+1AN−1(

rNaN+1
a′N+1

)
b′N+1BN + aN+1BN−1

.

From this one obtains
b′N+1 =

a′N+1
rNaN+1

bN+1.

Setting

rN+1 :=
a′N+1
rNaN+1

,

it follows that
rN+1 6= 0, a′N+1 = rNrN+1aN+1, b

′
N+1 = rN+1bN+1

and

A′N+1 =
(
N+1∏
k=0

rk

)
AN+1, B

′
N+1 =

(
N+1∏
k=0

rk

)
BN+1.

Theorem 2.1.9. [LW92, p. 69] Two sequences of complex numbers (An)n≥−1 and
(Bn)n≥−1 are the canonical numerators and denominators of a continued fraction
b0 +

∞
K
n=1

an
bn

, if and only if
A−1 = B0 = 1, B−1 = 0

and
AnBn−1 −An−1Bn 6= 0 for n ≥ 1.

In this case the continued fraction is uniquely determined by

b0 = A0, b1 = B1, a1 = A1 −A0B1

7



2. Basics

and

an = − AnBn−1 −An−1Bn
An−1Bn−2 −An−2Bn−1

, bn = AnBn−2 −An−2Bn
An−1Bn−2 −An−2Bn−1

for n ≥ 2.

Proof. If the continued fraction is given, the canonical numerators and denominators sat-
isfy

A−1 = B0 = 1, B−1 = 0, AnBn−1 −An−1Bn 6= 0 for n ≥ 1

by Theorem 2.1.4 and Theorem 2.1.6.
Conversely, if (An) and (Bn) satisfying

A−1 = B0 = 1, B−1 = 0, AnBn−1 −An−1Bn 6= 0 for n ≥ 1

are given, the linear systems

An = bnAn−1 + anAn−2

Bn = bnBn−1 + anBn−2

have the unique solutions an and bn for n ≥ 1, given by

b1 = B1, a1 = A1 −A0B1

and

an = − AnBn−1 −An−1Bn
An−1Bn−2 −An−2Bn−1

, bn = AnBn−2 −An−2Bn
An−1Bn−2 −An−2Bn−1

for n ≥ 2.

By additionally setting b0 = A0, (An) and (Bn) then satisfy the recurrence formulas and
initial conditions given in Theorem 2.1.4. Thus by Definition 2.1.5 (An) and (Bn) are the
canonical numerators and denominators of the continued fraction b0 +

∞
K
n=1

an
bn

, completing
the proof.

Proposition 2.1.10. [CBV+08, p. 19] Given a formal series
∞∑
k=0

ck with ck ∈ C\{0} and

partial sums fn, there exists a continued fraction b0+
∞
K
n=1

an
bn

such that its n-th approximant
equals fn for n ≥ 0.

Proof. Setting
A−1 = 1, B−1 = 0, An = fn, Bn = 1 for n ≥ 0

one has
AnBn−1 −An−1Bn = fn − fn−1 = cn 6= 0 for n ≥ 1.

Utilizing Theorem 2.1.9 one obtains the continued fraction b0 +
∞
K
n=1

an
bn

with its elements
given by

b0 = c0, b1 = 1, a1 = c1

and
an = − cn

cn−1
, bn = 1 + cn

cn−1
for n ≥ 1.

8



2.1. Continued fractions

Definition 2.1.11. [CBV+08, p. 35] A continued fraction of the form

b0 +
∞

K
n=1

anz
αn

1

with an ∈ C \ {0} and αn ∈ N for n ∈ N is called a C-fraction. In the case of αn = 1 for
all n ∈ N, the continued fraction is called a regular C-fraction.

The name C-fraction refers to the fact that there is a unique one-to-one correspondence
between the set of (possibly finite) C-fractions and the set of power series

∞∑
n=0

cnz
n, as

shown for example in [CBV+08, p. 39] and [LW92, p. 253].

Definition 2.1.12. [CBV+08, pp. 59ff.] Let f(z) be a complex function. A rational
function

Rm,n(z) = Pm,n
Qm,n

=

m∑
k=0

ckz
k

1 +
n∑
k=1

dkzk

is called a Padé approximant of f of order [m,n] for some m,n ∈ N≥0, if and only if

f (i)(0) = R(i)
m,n(0), i = 0, . . . ,m+ n,

or equivalently the coefficients of the Taylor expansions of f and Rm,n in z = 0 agree up
to inclusively m+ n-th degree.
The Padé approximants Rm,n are arranged in the Padé table, wherem denotes the row and
n denotes the column of the entry Rm,n. The Padé approximant Rm,n is called normal,
if and only if its occurrence in the Padé table is unique in the sense that there are no
n̂, m̂ ∈ N≥0 with (n,m) 6= (n̂, m̂) and Rn,m = Rn̂,m̂. In the same vein, the Padé table
being normal is equivalent to all Padé approximants being normal.

Regular C-fractions especially are closely connected to Padé approximants: If the Padé
table of a given power series S(z) is normal, then the descending staircase

(R0,0, R1,0, R1,1, . . .)

is the sequence of approximants of a regular C-fraction corresponding to S(z) [CBV+08,
p. 65].
Even with full knowledge of the elements of a continued fraction, it is usually not im-
mediately obvious wether the continued fraction in question converges or not. As is the
case with series, there are a multitude of convergence theorems to decide the question of
convergence of a given continued fraction, some examples of which are covered below.
The following convergence theorem was first formulated and proven by Śleszyński in
[Sle89b] and [Sle89a].

Theorem 2.1.13 (Śleszyński-Pringsheim’s Theorem). [LW92, p. 30] Let |bn| ≥ |an| + 1
for all n ∈ N. Then the continued fraction

∞
K
n=1

an
bn

converges to a value f with |f | ≤ 1 and

its approximants fn satisfy |fn| < 1 for all n ∈ N.

9



2. Basics

Proof. Let |bn| ≥ |an|+ 1 for all n ∈ N, then∣∣∣∣anbn
∣∣∣∣ ≤ |an|
|an|+ 1 < 1

holds, in particular |f1| < 1.
Consider for some k with 1 ≤ k < n and n ≥ 2 that∣∣∣f (k)

n

∣∣∣ =
∣∣∣∣∣ ak+1
bk+1

+ . . .+ an
bn

∣∣∣∣∣ < 1

holds, then ∣∣∣f (k−1)
n

∣∣∣ =
∣∣∣∣∣ ak

bk + f
(k)
n

∣∣∣∣∣ ≤ |ak|
|bk| −

∣∣∣f (k)
n

∣∣∣ ≤ |ak|
|ak|+ 1−

∣∣∣f (k)
n

∣∣∣ < 1.

Iterating on k gives
|fn| =

∣∣∣f (0)
n

∣∣∣ < 1.

By Theorem 2.1.6 for n ∈ N one has

fn = An
Bn

=
n∑
k=1

(
Ak
Bk
− Ak−1
Bk−1

)
=

n∑
k=1

(−1)k−1∏k
i=1 ai

BkBk−1
,

so convergence of fn is equivalent to convergence of the series
∞∑
k=1

(−1)k−1∏k
i=1 ai

BkBk−1
.

For k ∈ N it follows from the recurrence formulas given by Theorem 2.1.4 that

|Bk| = |bkBk−1 + akBk−2| ≥ |bk| |Bk−1| − |ak| |Bk−2|
≥ (|ak|+ 1) |Bk−1| − |ak| |Bk−2| .

Thus
|Bk| − |Bk−1| ≥ |ak| (|Bk−1| − |Bk−2|)

holds for k ∈ N. Iterating gives

|Bk| − |Bk−1| ≥
k∏
i=1
|ai|

and hence ∣∣∣∣∣(−1)k−1∏k
i=1 ai

BkBk−1

∣∣∣∣∣ ≤ 1
|Bk−1|

− 1
|Bk|

.

From this it follows that
n∑
k=1

∣∣∣∣∣(−1)k−1∏k
i=1 ai

BkBk−1

∣∣∣∣∣ ≤ 1
|B0|

− 1
|Bk|

= 1− 1
|Bk|

< 1.

So the series f =
∞∑
k=1

(−1)k−1∏k
i=1 ai

BkBk−1
converges absolutely and thus converges. Since

|fn| < 1, one has |f | ≤ 1.

10



2.1. Continued fractions

With this, the next convergence theorem going back to Worpitzky in [Wor65] can be
proven.

Theorem 2.1.14 (Worpitzky’s Theorem). [LW92, p. 35] Let |an| ≤ 1/4 for all n ∈ N,
then the continued fraction

∞
K
n=1

an
1 converges to f with |f | ≤ 1/2 and the approximants fn

satisfy |fn| < 1/2 for all n ∈ N.

Proof. Let |an| ≤ 1/4 and r0 = 1, rn = 2 for n ∈ N. Then by Theorem 2.1.8 one has the
following equivalence between continued fractions

∞

K
n=1

an
1 ≡

2a1
2 +

∞

K
n=2

4an
2 .

By Theorem 2.1.13 the right-hand side converges, since it follows from |an| ≤ 1/4 for n ≥ 1
that

|2a1|+ 1 ≤ 2 and |4an|+ 1 ≤ 2 for all n ≥ 2,

and the approximants all have an absolute value strictly smaller than one. This upper
bound can be improved by considering that Theorem 2.1.13 is still applicable after mul-

tiplying 2a1
2 +

∞
K
n=2

4an
2 by 2, yielding the continued fraction

∞
K
n=1

4an
2 . Since the approx-

imants of
∞
K
n=1

4an
2 all have an absolute value strictly smaller than one, the approximants

of 2a1
2 +

∞
K
n=2

4an
2 all have an absolute value strictly smaller than 1/2. Since

∞

K
n=1

an
1 ≡

2a1
2 +

∞

K
n=2

4an
2 ,

by using Definition 2.1.7 one obtains that the original continued fraction
∞
K
n=1

an
1 = f

converges with approximants fn with |fn| < 1/2 and thus |f | ≤ 1/2.

The following trio of convergence theorems were unified and extended by Beardon and
Short in 2010 [BS10]. The Stern-Stolz Theorem goes back to Stern in [Ste60] and Stolz
in [Sto86], the Seidel-Stern Theorem to Stern in [Ste48] and Seidel [Sei46]. Van Vleck’s
Theorem was first published in [VV01].

Theorem 2.1.15 (Stern-Stolz Theorem). [LW92, p.94] The continued fraction
∞
K
n=1

1
bn

diverges, if
∞∑
n=1
|bn| <∞.

Theorem 2.1.16 (Seidel-Stern Theorem). [LW92, p.98] Let
∞
K
n=1

1
bn

be a continued fraction
with bn > 0 for all n ∈ N. Then the continued fraction converges, if and only if

∞∑
n=1

bn =∞.

11
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Theorem 2.1.17 (Van Vleck’s Theorem). [LW92, p. 32] Let 0 < ε < π/2 and

−π2 + ε < arg bn <
π

2

for all n ∈ N. Then the approximants fn of the continued fraction
∞
K
n=1

1
bn

satisfy

|fn| <∞ and − π

2 + ε < arg fn <
π

2 .

Furthermore the sequences f2n and f2n+1 converge with

lim
n→∞

|f2n| <∞ and lim
n→∞

|f2n+1| <∞

and lastly the continued fraction
∞
K
n=1

1
bn

converges, if and only if

∞∑
n=1
|bn| =∞.

2.2. The Riemann zeta function and related functions

2.2.1. Definitions and basic properties

Definition 2.2.1. [Rie60] For z ∈ C, Re z > 1 the Riemann zeta function ζ(z) is defined
by

ζ(z) :=
∞∑
n=1

n−z.

Proposition 2.2.2. [Eul44, p. 174] Let P ⊂ N be the set of all prime numbers. Then for
z ∈ C, Re z > 1, the Riemann zeta function can also be written as

ζ(z) =
∏
p∈P

1
1− p−z .

Definition 2.2.3. [AS84, p. 76] For z ∈ C, Re z > 0 the Gamma function Γ(z) is defined
by

Γ(z) =
∞∫

0

xz−1e−x dx.

Proposition 2.2.4. [AS84, pp. 76f.] The Gamma function Γ satisfies both Γ(1) = 1 and
the functional equation

Γ(z + 1) = zΓ(z).

Utilizing the identity Γ(z) = Γ(z + 1)/z iteratively, the Gamma function can then be
uniquely extended to a meromorphic function Γ : C→ Ĉ with simple poles on the set Z≤0.

12
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Proof. For z = 1 one obtains from Definition 2.2.3

Γ(1) =
∞∫

0

e−x dx = 0− (−1) = 1.

Integration by parts on the formula for Γ(z + 1) given by Definition 2.2.3 yields

Γ(z + 1) =
∞∫

0

xze−x dx = 0− (−z)
∞∫

0

xz−1e−x dx = zΓ(z).

Proposition 2.2.5. [AS84, p. 77] For z ∈ C \ Z the Gamma function Γ satisfies the
reflection formula

Γ(z)Γ(1− z) = π

sin πz .

Proposition 2.2.6. [Rie60] Let C be a curve starting at +∞, circling the origin once in
positive direction without enclosing any other integer multiple of 2πi and returning back
towards +∞. Then the Riemann zeta function satisfies

2 sin (πz) Γ(z)ζ(z) = i

∮
C

(−t)z−1

et − 1 dt

for z ∈ C \ {1}.
This identity can be used to construct the analytic continuation of ζ(z) for all complex
z 6= 1 with a simple pole at z = 1.

Proposition 2.2.7. [Rie60] For z ∈ C \ {0, 1} the Riemann zeta function ζ satisfies the
reflection formulas

Γ
(
z

2

)
π−

z
2 ζ(z) = Γ

(1− z
2

)
π−

1−z
2 ζ(1− z)

and
ζ(z) = 2(2π)z−1 sin

(
πz

2

)
Γ(1− z)ζ(1− z).

Definition 2.2.8. [Rie60] The Riemann Xi functions ξ(z) and Ξ(z) = ξ(1/2 + zi) are
defined by

ξ(z) = Γ
(
z

2

)
z(z − 1)

2 π−
z
2 ζ(z).

By Proposition 2.2.7 they satisfy the simple reflection formulas

Ξ(z) = Ξ(−z) and ξ(z) = ξ(1− z).

Proposition 2.2.9. [Rie60] Outside the critical strip 0 ≤ Re z ≤ 1 the Riemann zeta
function ζ has only the trivial zeroes ζ(−2n), n ∈ N.

Proof. By Proposition 2.2.2 it is easy to see that ζ(z) 6= 0 for Re z > 1. Since Γ has no
zeroes for Re z > 1 as well, by Proposition 2.2.7, the zeroes of ζ for Re z < 0 are exactly
the zeroes of sin(πz/2), that is z = −2n, n ∈ N.

13
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The well-known Riemann hypothesis [Rie60] states that for all non-trivial zeroes z0 of
ζ one has Re(z0) = 1

2. Proving or disproving the hypothesis would have far reaching
consequences for many different branches of mathematics.

Proposition 2.2.10. [AS84, p. 361][Nør24, p. 66] For n ∈ N, the values ζ(2n) can be
expressed as

ζ(2n) = (2π)2n

2(2n)! |B2n| ,

and the values ζ(2n+ 1) can be expressed as

ζ(2n+ 1) = (−1)n+1(2π)2n+1

2(2n+ 1)!

1∫
0

B2n+1(x) cot(πx) dx,

where Bn(x) are the Bernoulli polynomials and Bn = Bn(0) are the Bernoulli numbers
defined by the generating function

z exp(xz)
exp z − 1 =

∞∑
k=0

zk

k!Bk(x), |x| < 2π.

Since the Bernoulli numbers are rational and thus ζ(2n)/π2n is rational, it is easily deduced
that ζ(2n) is transcendental for all n ∈ N. For ζ(2n+ 1), the case is far less clear cut, and
in fact Kohnen conjectures in [Koh89] that ζ(2n+ 1)/π2n+1 is transcendental.

Definition 2.2.11. [AS84, pp. 79ff.] The digamma function ψ is defined as the logarithmic
derivative of the Gamma function Γ, that is

ψ(z) = Γ′(z)
Γ(z) = d

dz ln Γ(z).

The polygamma function ψn of order n is defined as the n-th derivative of the digamma
function ψ, that is

ψn(z) = dn

dzψ(z) = dn+1

dz ln Γ(z).

Proposition 2.2.12. [CBV+08, p. 229] For z ∈ C \ Z≤0 the polygamma functions have
the series representations

ψ(z) = −γ +
∞∑
k=0

( 1
1 + k

− 1
z + k

)
,

ψn(z) = (−1)n+1n!
∞∑
k=0

1
(z + k)n+1 , n ≥ 1,

where γ is the Euler-Mascheroni constant

γ = lim
n→∞

(
n∑
k=0

1
k
− lnn

)
.

From this it is easy to see that the polygamma functions are related to the ζ-function by

ψn(k + 1) = (−1)n+1n!
(
ζ(n+ 1)−

k∑
m=1

1
mn+1

)
.
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2.2.2. Continued fraction representations

In [CK97], Cvijović and Klinowski give the continued fraction representation

ζ(n) = 1
1− 21−n

∞

K
k=1

ak(n)
1

for n ∈ N, n ≥ 2, where

a1(n) = 1, a2k(n) = −D1,k(n)D0,k−1(n)
D0,k(n)D1,k−1(n) , a2k+1(n) = −D1,k−1(n)D0,k+1(n)

D0,k(n)D1,k(n) for k ≥ 1

and

Dr,k(n) = det

 d1,1(n) · · · d1,k(n)
... . . . ...

dk,1(n) · · · dk,k(n)

 , di,j(n) = (−1)i+j+r

(r + i+ j − 1)n ,

although they noted that their proof can be extended to any real n > 1. Unfortunately
there is no known closed form for the Dr,k(n), so the elements of the continued fraction
cannot be given explicitly.
There are known explicit continued fraction representations for ζ(2) and ζ(3), perhaps
most famously the continued fraction representation

ζ(3) =
∞

K
n=1

an
bn
,

with

a1 = 6, an = (n− 1)6 for n ≥ 2,
bn = 34n3 + 51n2 + 27n+ 5 for n ≥ 1,

given by Apéry in [Apé79], which he used to prove the irrationality of ζ(3). A more
detailed version of this proof was given by Cohen in [Coh78]. See also [vdP79].
Alternative approaches to derive this continued fraction were given by Batut and Olivier
in [BO79] as well as Prévost in [Pré96]. Unfortunately both approaches fail to give an
explicit continued fraction representation of ζ(5).

Proposition 2.2.13. [CBV+08, pp. 235 - 236] The tetragamma function ψ2(z) has the
following three continued fraction representations:

ψ2(z) = − 1
z2 −

1
z3 −

1
z2

∞

K
k=1

ak/z
2

1 , | arg(z)| < π

2

with
a1 = 1

2 , a2k = k2(k + 1)
2(2k + 1) , a2k+1 = k(k + 1)2

2(2k + 1) , k ≥ 1;

ψ2(z) =
∞

K
k=1

ak/z(z − 1)
k

, Re z > 1
2 , z /∈

]1
2 , 1

]
,

where
a1 = −1, a2k = a2k+1 = k4, k ≥ 1;
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and
ψ2(z) = −1

z
+
∞

K
k=1

ak/z

1 , Re z > 1,

with

a1 = 1, a4k−2 = k2 − 2k + 2
2k − 1 , a4k−1 = (k − 1)(k − 3)

2k − 1 ,

a4k = k3

2(k2 + 1) , a4k+1 = − k3

2(k2 + 1) , k ≥ 1.

Note that even though the form of these continued fractions might lead to such an as-
sumption, they cannot be obtained with the algorithm presented and implemented later in
this thesis, as it requires a differential equation of specific type satisfied by the expression
in question.

Corollary 2.2.14. ζ(3) has three families of continued fraction representations

ζ(3) =
k∑

m=1

1
m3 −

1
2ψ2(k + 1), k ≥ 1

where ψ2(k+1) is expressed using one of the three continued fraction representations given
by Proposition 2.2.13.

Proof. This result is a simple consequence of rearranging the formula expressing the rela-
tion between the polygamma functions and the ζ-function given in Proposition 2.2.12 for
n = 2 and then applying Proposition 2.2.13.

Substituting ψ2(z) with the first representation given in Proposition 2.2.13, the formula
given in Corollary 2.2.14 actually holds for k = 0 as well, yielding the continued fraction

ζ(3) = −1
2ψ2(1) = 1 +

∞

K
j=1

aj
1 ,

where
a1 = 1

4 , a2j = j2(j + 1)
2(2j + 1) , a2j+1 = j(j + 1)2

2(2j + 1) , j ≥ 1;

that is
ζ(3) = 1 + 1/4

1 + 1/3

1 + 2/3

1 + 6/5

1 + 9/5
1 + . . .

.

2.3. Hypergeometric terms and series
Definition 2.3.1. [Koe14, p. 12] A series S of the form

S =
∞∑

k=−∞
ck

16
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is called a hypergeometric series if and only if the quotient ck+1/ck can be expressed as a
rational function in k. In that case ck is called a hypergeometric term.

Definition 2.3.2. [Koe14, p. 3] Let z ∈ C and n ∈ N≥0, then the rising factorial or
Pochhammer symbol zn is defined by

zn =
n−1∏
k=0

(z + k) = Γ(z + n)
Γ(z) .

The right-hand side allows to extend the definition to arbitrary n ∈ C.

Definition 2.3.3. [Koe14, pp. 12f.] The generalized hypergeometric function pFq is given
by

pFq(α1, . . . , αp;β1, . . . , βq; z) =
∞∑
k=0

ckz
k =

∞∑
k=0

αk1 · . . . · αkp
βk1 · . . . · βkq

zk

k!

with βi /∈ Z≤0 for 1 ≤ i ≤ q. The αi are called upper parameters, the βi lower parameters.

Note that if any αi ∈ Z≤0, then pFq is a polynomial in z. In general pFq is a convergent
series, if p ≤ q, or p = q + 1 and |z| < 1.
By Definition 2.3.2 it is easy to see that the term ratio

ck+1z
k+1

ckzk
= (α1 + k) · . . . · (αp + k)

(β1 + k) · . . . · (βq + k)
z

k + 1

is rational in k and that every rational function with known zeros and poles has such a
representation.
Study of generalized hypergeometric functions is of interest for the fact that many special
functions can be expressed in terms of a generalized hypergeometric function, for example
the exponential function

exp z =
∞∑
k=0

zk

k! = 0F0(z)

and geometric series
1

1− z =
∞∑
k=0

zk = 1F0(1;−; z)

as seen in [Koe14, p.14]. A more complex example is

erf z = 2z√
π

1F1(1
2; 3

2;−z2) = 2z√
π

exp(−z2)1F1(1; 3
2; z2)

where erf is the error function [AS84, p.85].
Representing special functions in terms of generalized hypergeometric functions can also
be useful regarding continued fraction representations. Consider for example the Legendre
function Pλ(z). In [Dav74] David presents an iterative approach to construct a continued

fraction representation of P
′
λ(z)
Pλ(z) as follows:

Pλ(z) satisfies the differential equation(
1− z2

)
Y ′′ − 2zY ′ + λ(λ+ 1)Y = 0,
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which can be rearranged to yield
Y ′

Y
= λ(λ+ 1)

2z − (1− z2) Y
′′

Y ′

.

The term Y ′′

Y ′
can be substituted by differentiating the differential equation once and

rearranging the result to obtain
Y ′′

Y ′
= λ(λ+ 1)− 2

4z − (1− z2) Y
′′′

Y ′′

.

Iterating this process leads to the continued fraction

P ′λ(z)
Pλ(z) = − 1

1− z2

∞

K
k=0

(
1− z2) (λ(λ+ 1)− k(k + 1))

2(k + 1)z ,

although this identity is only formal and one does not know the domain on which the right-
hand side converges. The exception are the values λ ∈ N≥0, in which case the continued
fraction is finite and corresponds to a logarithmic derivative of a Legendre polynomial.
Now consider instead the Nörlund fraction given by [CBV+08, p.300]

2F1(a, b; c; z)
2F1(a+ 1, b+ 1; c+ 1; z) = c− (a+ b+ 1)z

c
+ 1
c

∞

K
k=1

ck
(
z − z2)

dk + ekz

with Re z < 1/2, a, b ∈ C and c ∈ C \ Z≤0, where

ck = (a+ k)(b+ k), dk = c+ k, ek = −(a+ b+ 2k + 1), k ≥ 1.

Applying this identity to P ′λ(z)
Pλ(z) with Pλ(z) = 2F1

(
−λ, λ+ 1; 1; 1− z

2

)
[AS84, p.94] and

P ′λ(z) = λ(λ+ 1)
2 2F1

(
−λ+ 1, λ+ 2; 2; 1− z

2

)
yields

P ′λ(z)
Pλ(z) = λ(λ+ 1)

2
1(

2F1(−λ, λ+ 1; 1, (1− z)/2)
2F1(−λ+ 1, λ+ 2; 2; (1− z)/2)

)
= − 1

1− z2
−
(
1− z2) (λ(λ+ 1)− 0 · 1) /2

(0 + 1)z +
∞
K
k=1

−
(
1− z2) (λ(λ+ 1)− k(k + 1)) /4

(k + 1)z

,

which is equivalent to the continued fraction given by David by Theorem 2.1.8 with
r1 = 1, rk = 2 for k ≥ 0. By considering the restrictions on the Nörlund fraction,
one can see that this continued fraction converges for all λ ∈ C and z ∈ C with Re z > 0.

2.3.1. Hypergeometric term solutions of holonomic recurrence equations

The presentation in this section of both Petkovšek’s and van Hoeij’s approaches to the
computation of all hypergeometric term solutions of a given holonomic recurrence equation

0 =
J∑
j=0

cj(n)Hn+j

18
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follows [Koe14, Ch. 9].
Petkovšek presented an algorithm to solve the stated problem in [Pet92]. His approach
works in two parts. The first part is an algorithm to compute all polynomial solutions of
a given holonomic recurrence equation (Algorithm 1, as presented here found in [Koe14,
p. 177]).

Input : A holonomic recurrence equation 0 =
J∑
j=0

cj(n)Hn+j with polynomial

coefficients cj(n) =
M∑
l=0

αijn
M−l ∈ Q[n] and M = max deg cj(n)

Output: The set of all polynomial solutions of the given holonomic recurrence
equation

for m = 0, 1, . . . do
for l = 0, . . . ,m do

blm ←
J∑
j=0

jlαj,m−l

end
if blm 6= 0 for at least one l ∈ {0, . . . ,m} then

break
end

end

N ← the set of nonnegative integer roots N ∈ N≥0 of the polynomial
m∑
l=0

(N
l

)
blm

if N = ∅ then
return ∅

end
N ← maxN
p← generic polynomial of degree N

equate coefficients of 0 =
J∑
j=0

cj(n)p(n+ j)

return solutions of the resulting linear system
Algorithm 1: Polynomial solutions of holonomic recurrences

The second part requires the following Lemma.

Lemma 2.3.4. [Koe14, pp. 177ff.] Any rational function tn ∈ Q(n)\{0} can be expressed
uniquely in the form

tn = C
pn+1
pn

qn+1
rn+1

,

where pn, qn, rn are rational polynomials in n with leading coefficient 1, C is a rational
number and the following divisibility properties hold:

(i) gcd (qn, rn+j) = 1 for all j ∈ Z≥0,

(ii) gcd (pn, qn+1) = 1,
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(iii) gcd (pn, rn) = 1.

Now note that if a solution Hn of the holonomic recurrence equation

0 =
J∑
j=0

cj(n)Hn+j

is assumed to be a hypergeometric term with the term ratio Hn+1/Hn = tn, by dividing
both sides by Hn the recurrence equation can be transformed to

0 =
J∑
j=0

cj(n)
j−1∏
i=0

tn+i.

Expressing tn in the form
tn = C

pn+1
pn

qn+1
rn+1

as in Lemma 2.3.4 and multiplying the equation with pnrn+1 . . . rn+J yields

0 =
J∑
j=0

cj(n)Cjpn+j

 j∏
i=1

qn+i

 J∏
i=j+1

rn+i

 .
From the divisibility properties stated in Lemma 2.3.4 it follows that qn+1 is relatively
prime to each of pn, rn+1, . . . , rn+J . Thus dividing the equation by qn+1 shows that qn+1
must be a factor of c0(n). It follows analogously that rn+J is a factor of cJ(n). With an
index shift this can instead be stated in the form that qn is a factor of c0(n − 1) and rn
is a factor of cJ(n− J). Since both qn and rn have leading coefficient 1 by Lemma 2.3.4,
there are only finitely many possible choices for each.
Do note though that the number of possible choices of pairs (qn, rn), though finite, can
still be exceedingly large. Let d0 and dJ be the degree of c0(n − 1) and cJ(n − J) in n,
respectively. In the worst case scenario of both c0(n−1) and cJ(n−J) having the maximum
possible amount of distinct monic linear factors, there are 2d0+dJ possible choices for the
pair (qn, rn).
To determine the constant C, consider the leading coefficient of

J∑
j=0

cj(n)Cjpn+j

 j∏
i=1

qn+i

 J∏
i=j+1

rn+i

 ,
which is a polynomial of degree at most J in C, yielding at most J possible choices for
the constant C.
For any fixed choice of the triple (qn, rn, C), Algorithm 1 can be used to check

0 =
J∑
j=0

cj(n)Cjpn+j

 j∏
i=1

qn+i

 J∏
i=j+1

rn+i


for nonzero polynomial solutions pn. Each such solution found gives a hypergeometric
term solution of

0 =
J∑
j=0

cj(n)Hn+j .
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Input : A holonomic recurrence equation 0 =
J∑
j=0

cj(n)Hn+j with polynomial

coefficients cj(n) ∈ Q[n]
Output: The set L of term ratios of all hypergeometric term solutions of the given

holonomic recurrence equation
L← ∅
for all monic factors qn of c0(n− 1) and rn of cJ(n− J) do

for j = 0, . . . , J do

hj(n)← cj(n)
j∏
l=1

qn+l
J∏

l=j+1
rn+l

end
M ← max

j
deg hj(n)

for j = 0, . . . , J do
αj ← coefficient of nM in hj(n)

end

for solutions C of 0 =
J∑
j=0

αjC
j do

P ← the result of applying Algorithm 1 to the recurrence equation

0 =
J∑
j=0

Cjhj(n)pn+j

for pn ∈ P do
add the term ratio tn = C

pn+1
pn

qn+1
rn+1

to the set L

end
end

end
return L

Algorithm 2: Hypergeometric term solutions of holonomic recurrences

Conversely, each hypergeometric term solution will be found using this approach. This
algorithm is summarized in Algorithm 2 [Koe14, p. 187].
Next the main ideas behind the approach of van Hoeij to find the hypergeometric term
solutions of a holonomic recurrence equation ([vH99] and [CvH06]) will be presented. The
approach bears some similarity to Petkovšek’s method. Again a unique representation of
the term ratio Hn+1/Hn is needed first.

Lemma 2.3.5. [Koe14, pp. 190f.] Let Hn be a hypergeometric term, then it can be ex-
pressed in the form

Hn = R(n) · zn ·
J∏
j=1

Γ(n− γj)ej , R(n) ∈ Q(n), γj ∈ C, ej ∈ Z \ {0},

where all Re γj ∈ [m,m+ 1[ for some integer m. This representation is unique up to the
choice of m.
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Proof. As a hypergeometric term, Hn can be written as

Hn =
αn1 · . . . · αnp
βn1 · . . . · βnq

zn

n!
as in Definition 2.3.3. Using Definition 2.3.2 this can be rewritten in terms of Gamma
functions

Hn = C
Γ(n+ α1) . . .Γ(n+ αp)

Γ(n+ β1) . . .Γ(n+ βq) · Γ(n+ 1)z
n,

where C is a complex constant. With the functional equation of the Gamma function (Pro-
position 2.2.4) the Gamma factors can be rewritten such that Reαk,Reβk ∈ ]m,m+ 1]
for some integer m, yielding

Hn = R(n) Γ(n+ α1) . . .Γ(n+ αp)
Γ(n+ β1) . . .Γ(n+ βq) · Γ(n+ 1)z

n

for some rational function R(n) ∈ Q(n). This representation is unique up to the choice of
m. Since some of the αk and βk might coincide at this point, one ultimately obtains

Hn = R(n) · zn ·
J∏
j=1

Γ(n− γj)ej , R(n) ∈ Q(n), γj ∈ C, ej ∈ Z \ {0}.

Definition 2.3.6. [Koe14, p. 191] Let Hn be a hypergeometric term uniquely expressed
as in Lemma 2.3.5, then the rational certificate cert(Hn) of Hn is defined by

cert(Hn) = Hn+1
Hn

= R(n+ 1)
R(n) · z ·

J∏
j=1

(n− γj)ej ∈ Q(n).

Each of the Gamma factors in the representation given by Lemma 2.3.5 creates a distinct
infinite number of zeroes or poles, but R(n) has only finitely many zeroes or poles. The idea
now is to check possible solutionsHn by investigating their zeroes and poles. By identifying
the so-called singularity structure, the solutions of a holonomic recurrence equation can
be found. This can be achieved by considering the zeroes of the leading and the trailing
coefficient of the underlying recurrence equation, where the zeroes of the leading coefficient
give the candidates for Gamma factors in the denominator and the zeroes of the trailing
coefficient give the candidates for Gamma factors in the numerator of the representation
given in Lemma 2.3.5. This can be seen by applying the holonomic recurrence equation
to compute the values of Hn in a forward or backward manner, respectively.
Definition 2.3.7. [Koe14, pp. 191f.] LetHn be a hypergeometric term uniquely expressed
as in Lemma 2.3.5, then the singularity structure of Hn at its finite singularities γj is given
by the the set of pairs

Sing(Hn) = {(γj , ej) | j = 1, . . . , J} ,

where the pairs (γj , ej) are called the local types of Hn at its finite singularities γj .
Substituting n = 1/t in the rational certificate and taking the asymptotic expansion, one
obtains

cert(Hn)
(1
t

)
= ct−v

(
1 + dt+O

(
t2
))

= cnv
(

1 + d

n
+O

( 1
n2

))
.

The uniquely determined triple (c, v, d) is called the local type of Hn at ∞.
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The number of considered cases can further be reduced by exploiting the following prop-
erties of the local type at ∞:

Theorem 2.3.8 (Fuchs relations). [Koe14, p. 192] Let Hn be a hypergeometric term
expressed as in Lemma 2.3.5, where R(n) = p(n)/q(n) with p(n), q(n) ∈ Q[n], and let
(c, v, d) be the local type of Hn at ∞. Then the following relations hold:

(i)

v =
J∑
j=1

ej ,

(ii)

d = −
J∑
j=1

γjej + deg(p(n))− deg(q(n)),

(iii)
c = z.

Proof. Expanding the rational certificate of Hn yields for n→∞

cert(Hn) = p(n)q(n+ 1)
p(n+ 1)q(n)z

J∏
j=1

(n− γj)ej

= z

n∑J

j=1 ej −
J∑
j=1

γjejn
∑J

j=1 ej−1 + (deg(p(n))− deg(q(n)))n
∑J

j=1 ej−1 + . . .

 .
From this the properties (i)-(iii) can be directly read off.

It turns out that van Hoeij’s approach is vastly more efficient than the approach of
Petkovšek, since it has to cosider fewer cases. Koepf demonstrates this with a comparative
example, where Petkovšek’s algorithm has to consider 15360 cases [Koe14, pp. 188ff.]. Van
Hoeij’s algorithm on the other hand only has to check 2304 possible solutions, which by
applying the Fuchs relations in Theorem 2.3.8 can be further reduced to an impressively
low 22 cases [Koe14, pp. 194ff.]. This efficiency is the motivation for using van Hoeij’s
algorithm for the algorithm presented in Chapter 3.
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3. Continued fraction solutions of
differential equations

In 2015 Sébastien Maulat and Bruno Salvy [MS15] presented an algorithmic approach
to construct general formulas for the elements of continued fraction solutions of explicit
non-linear differential equations with initial conditions. Their strategy given for the first
order case is roughly as follows:
Given an explicit non-linear differential operator D and the initial condition Y (0) = 0, take
the unique power series solution of D Y = 0 and compute the first few partial numerators
ak(x) of its corresponding C-fraction. On this basis a general formula for ak(x) can be
algorithmically guessed. This conjectured formula can then be proven by showing that
lim
k→∞

valD fk = ∞, where the fk are the convergents of the guessed C-fraction. To do
this, a linear recurrence for the numerator Hk of D fk is generated by linear algebra, since
valHk = valD fk.
In general, this recurrence will be too complex to directly check the increase in valuation of
Hk, so a simpler right factor of the recurrence operator is searched for. This is again done
by computing some initial values of Hk and based on this guessing a simpler recurrence.
Afterwards the numerator of the greatest common right divisor of the recurrence operators
is computed and checked for satisfying Hk.
In this chapter, I will present a modified version of Maulat’s and Salvy’s approach. The
changes consist of extending the algorithm to be applicable to differential equations of
order higher than one and replacing the second guessing step with an application of Mark
van Hoeij’s algorithm for computing a basis of hypergeometric term solutions of a linear
recurrence equation, presented in [vH99] and [CvH06] (see also [Koe14]).

3.1. The guess and prove method by Maulat and Salvy
Proposition 3.1.1. In the ring of formal power series K[[X]], the valuation of a formal
power series S =

∞∑
n=0

cnX
n is given by

valS = min{n ≥ 0 | cn 6= 0}

with the convention val 0 =∞; that is val has the following properties for all S, T ∈ K[[X]]:

(i) valS =∞⇔ S = 0,

(ii) val(S · T ) = valS + valT,

(iii) val(S + T ) ≥ min(valS, valT ).

This valuation induces a metric dist on K[[X]] given by

dist(S, T ) = 2− val(S−T ).
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3. Continued fraction solutions of differential equations

Both concepts are easily extended to include formal Laurent series S =
∞∑

n=−k
cnX

n with

k ∈ N to allow for negative valuations.

Proposition 3.1.2. Given a function F ∈ C(X)[Y, Y ′, . . . , Y (m−1)] that is not singular
in X = 0, the explicit differential equation Y (m) = F (X,Y, Y ′, . . . , Y (m−1)) with initial
conditions Y (i)(0) = yi0 for i = 0, . . . ,m− 1 has a unique power series solution S(X).

Proof. The value of Y (m)(0) can be computed from the given equation

Y (m) = F (X,Y, Y ′, . . . , Y (m−1))

by substituting the initial conditions Y (i)(0) = yi0, i = 0, . . . ,m − 1. Differentiating
both sides of the equation and substituting the values of Y (0), . . . , Y (m)(0) allows one to
compute Y (m+1)(0). By iterating this process the value of Y (n)(0) is uniquely determined
for all n ≥ 0.
As a result a power series S(X) =

∞∑
n=0

cnX
n is a solution of the differential equation if and

only if for all n ≥ 0

n!cn = S(n)(0) = Y (n)(0).

It follows that the power series

S(X) =
∞∑
n=0

Y (n)(0)
n! Xn

is the uniquely determined power series solution of the differential equation Y (m) =
F (X,Y, Y ′, . . . , Y (m−1)) with initial conditions Y (i)(0) = yi0, i = 0, . . . ,m− 1.

Proposition 3.1.3. [MS15, p. 278] Let F ∈ C(X)[Y, Y ′, . . . , Y (m−1)] be a function not
singular in X = 0 and (fn(X))n≥1 a sequence of power series in C[[X]]. Furthermore, let
S(X) be the unique power series solution of the explicit differential equation

Y (m) = F (X,Y, Y ′, . . . , Y (m−1))

with initial conditions Y (i)(0) = yi0, i = 0, . . . ,m − 1 given by Proposition 3.1.2. Then
fn(X) converges to S(X) if and only if

val
(
f (m)
n (X)− F (X, fn(X), f ′n(X), . . . , f (m−1)

n (X))
)
→∞

and f (i)
n (0) = yi0, i = 0, . . . ,m− 1 for sufficiently large n.

Proof. Let I : G(X) 7→
∫
G(X) dx and F : Y 7→ ImF (X,Y, Y ′, . . . , Y (m−1)), then this
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3.1. The guess and prove method by Maulat and Salvy

operator satisfies the inequality

val(F(Y1)−F(Y2))

= val
(
Im

(
F
(
X,Y1, Y

′
1 , . . . , Y

(m−1)
1

)
− F

(
X,Y2, Y

′
2 , . . . , Y

(m−1)
2

)))
= val

(
Im
(
F
(
X,Y2, Y

′
2 , . . . , Y

(m−1)
2

)

+
m−1∑
i=0

(
∂F

∂Y
(i)

1

(
X,Y2, . . . , Y

(i)
2 , Y

(i+1)
1 , . . . , Y

(m−1)
1

) (
Y

(i)
1 − Y (i)

2

)
+O

((
Y

(i)
1 − Y (i)

2

)2
))

− F
(
X,Y2, Y

′
2 , . . . , Y

(m−1)
2

)))

= val
(
Im

m−1∑
i=0

((
∂F

∂Y
(i)

1

(
X,Y2, . . . , Y

(i−1)
2 , Y

(i)
1 , . . . , Y

(m−1)
1

)
+O

(
Y

(i)
1 − Y (i)

2

))(
Y

(i)
1 − Y (i)

2

)))

≥ min
i

(
val
(
Im

(
∂F

∂Y
(i)

1

(
X,Y2, . . . , Y

(i−1)
2 , Y

(i)
1 , . . . , Y

(m−1)
1

)
+O

(
Y

(i)
1 − Y (i)

2

))(
Y

(i)
1 − Y (i)

2

)))
≥ min

i

(
val
(
Im

(
Y

(i)
1 − Y (i)

2

)))
> val (Y1 − Y2)

Now let f (i)
n (0) = yi0, i = 0, . . . ,m− 1 for n ≥ N for some N ∈ N and

val(f (m)
n − F (X, fn, f ′n, . . . , f

(m−1)
n ))→∞.

If val(f (m)
n − F (X, fn, f ′n, . . . , f

(m−1)
n )) = k for some n ≥ N , then

S − fn = (S(0)− fn(0)) + (S′(0)− f ′n(0))X + . . .+ (S(m−1)(0)− f (m−1)
n (0))Xm−1

+ Im(S(m) − f (m)
n )

= Im
(
F (X,S, S′, . . . , S(m−1))− (F (X, fn, f ′n, . . . , f (m)

n ) +O(Xk))
)

= Im
(
F (X,S, S′, . . . , S(m−1))− (F (X, fn, f ′n, . . . , f (m)

n )
)

+O(Xk+m)

= (F(S)−F(fn)) +O(Xk+m).

It follows that
val(S − fn) ≥ min(val(F(S)−F(fn)), k +m)

and since val(S − fn) < val(F(S)−F(fn))

val(S − fn) ≥ k +m > val(f (m)
n − F (X, fn, f ′n, . . . , f (m−1)

n ))

holds. From val(f (m)
n − F (X, fn, f ′n, . . . , f

(m−1)
n ))→∞ it can be concluded that

val(S − fn)→∞.

Conversely, if fn → S or that is to say val(S − fn) → ∞, then there exists some N ∈ N,
such that val(S − fn) ≥ m for n ≥ N . In other words S and fn agree up to m-th degree
for n ≥ N , so f (i)

n (0) = yi0, i = 0, . . . ,m− 1 for n ≥ N . Additionally, since the operator
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3. Continued fraction solutions of differential equations

D : Y 7→ Y (m)−F (X,Y, Y ′, . . . , Y (m−1)) is continuous, it follows from fn → S and DS = 0
that

val(Dfn)→ val(DS) =∞.

Even in the case that F ∈ C(X)[Y, Y ′, . . . , Y (m−1)] is singular in X = 0, Proposition 3.1.3
is still applicable, as long as the inequality

val(F(Y1)−F(Y2)) > val(Y1 − Y2)

can still be proven to hold and the differential equation

Y (m) = F (X,Y, Y ′, . . . , Y (m−1))

with initial conditions Y (i)(0) = yi0, i = 0, . . . ,m− 1 has at least one power series solution
S(X).
The uniqueness of this solution follows like this: Let T (X) be a power series solution of
the differential equation. Since T is a solution, its partial sums Tn satisfy

val
(
T (m)
n (X)− F (X,Tn(X), T ′n(X), . . . , T (m−1)

n (X))
)
→∞

and T
(i)
n (0) = yi0, i = 0, . . . ,m − 1 for sufficiently large n. But since Tn satisfies both

conditions, it follows that Tn → S. Hence S = T .

Theorem 3.1.4. [MS15, p. 278] Let (An) and (Bn) be holonomic sequences of rational
functions in X and let F ∈ C(X)

[
Y, Y ′, . . . , Y (m−1)

]
be a polynomial in Y and its de-

rivatives up to order m − 1 with degree d > 0. Further let Hn be the numerator of the
expression (

An
Bn

)(m)
− F

(
X,

(
An
Bn

)
,

(
An
Bn

)′
, . . . ,

(
An
Bn

)(m−1)
)
,

then the sequence (Hn) satisfies a linear recurrence with coefficients in C(n,X).

Proof. Let M be the order of recurrence satisfied by (An), then all An+l, l ∈ N can be
expressed as linear combinations of An+i, i = 0, . . . ,M − 1 with coefficients in C(n,X).
Further the derivatives A(r)

n+l with r = 1, . . . ,m can be expressed as linear combinations of
the An+i and their derivatives up to order r for i = 0, . . . ,M − 1 simply by differentiating
the corresponding expression for An+l.
Let M̂ be the order of the recurrence satisfied by (Bn), then an analogous argument applies
for expressing the Bn+l and their derivatives as linear combinations.
By definition Hn is a polynomial of degree at most d̂ := max(m + 1, dm) in An, Bn and
their derivatives up to order m. Hence, all Hn+l can be rewritten as linear combinations
of monomials of degree at most d̂ in An+i, Bn+j for i = 0, . . . ,M −1 and j = 0, . . . , M̂ −1
and their respective derivatives. There are only finitely many such monomials, at most
N = ((m + 1)(M + M̂))d̂. Thus a linear dependency between Hn, . . . ,Hn+N , that is to
say a linear recurrence of order N with coefficients in C(n,X), can be found by linear
algebra.
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3.1. The guess and prove method by Maulat and Salvy

Proposition 3.1.5. [MS15, p. 280] Let F ∈ C(X)
[
Y, Y ′, . . . , Y (m−1)

]
be a function

not singular in X = 0 and S(X) the unique power series solution of the explicit dif-
ferential equation Y (m) = F (X,Y, Y ′, . . . , Y (m−1)) with initial conditions Y (i)(0) = yi0,
i = 0, . . . ,m− 1 given by Proposition 3.1.2. Let an be a rational function in X and n with
positive valuation in X. Let An and Bn be sequences satisfying the recurrences

An = An−1 + anAn−2 and Bn = Bn−1 + anBn−2 for n ≥ 1

with initial conditions A−1 = B0 = 1 and A0 = B−1 = 0. Finally let Hn be defined as in
Theorem 3.1.4.
Then, if for some o, p ∈ N≥0, o > p, one has valHno+p →∞ as n→∞ and f (i)

n (0) = yi0,

i = 0, . . . ,m−1 where fn = Ano+p
Bno+p

for sufficiently large n, the continued fraction K∞n=1
an
1

is the continued fraction solution of the differential equation Y (m) = F (X,Y, Y ′, . . . , Y (m−1))
with initial conditions Y (i)(0) = 0, i = 0, . . . ,m− 1.

Proof. Since val an > 0 for all n ≥ 1, the C-fraction K∞n=1
an
1 with canonical numerators

An and canonical denominators Bn corresponds to a power series G(X). Let o, p ∈ N≥0,

o > p. If the subsequence fn = Ano+p
Bko+p

converges to S(X), it follows that G(X) = S(X)

and thus the continued fraction corresponds to the power series solution of the given
differential equation.
Since an(0) = 0 for n ≥ 1, iterating over the corresponding recurrence relation shows that
Bn(0) = 1 for all n ≥ 0. It follows that val(Bn) = 0 and since

Hn =
((

An
Bn

)(m)
− F

(
X,

(
An
Bn

)
,

(
An
Bn

)′
, . . . ,

(
An
Bn

)(m−1)
))

Bs
n

for some s ∈ N, one obtains valHno+p = val
(
f

(m)
n − F

(
(X, fn, f ′n, . . . , f

(m−1)
n

))
for n ≥ 0.

Assuming f (i)
n (0) = yi0, i = 0, . . . ,m − 1 for sufficiently large n and valHno+p → ∞ as

n→∞, it finally follows by Proposition 3.1.3 that fn converges to S(X).

The typical setting for this approach would be that some analytic expression f is given
and a continued fraction expansion of f is wanted. A general algorithmic approach can
be outlined as follows:

Given the expression f , first compute an explicit differential equation D satisfied by f .
One possible method is described by Algorithm 6 in Section 3.3.
Next, compute the partial sum SN of the power series expansion of f for some N ∈ N and
convert it to a finite C-fraction KN̂

n=1
an
1 . Note that it is possible that N̂ < N . In Maple

18, this conversion is possible with the commands Term and ContinuedFraction in the
NumberTheory package. To ensure the condition f (i)

n (0) = f (i)(0) = yi0, i = 0, . . . ,m − 1
is met later on in the process, N should be chosen to be at least the order of D, although
in practical terms N tends to be larger anyway.
By way of rational interpolation guess a general formula for an based on a1, . . . , aN̂ . In the
accompanyingMaple 18 implementation this is done by using the RationalInterpolation
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3. Continued fraction solutions of differential equations

function in the CurveFitting package. Since the rational interpolation step is always suc-
cessful, it is advisable to choose a suitable stepsize s and guess the general formula of an
based on SN+is and SN+(i+1)s, i ≥ 0 until both guesses coincide. The general formula of
an is not neccessarily represented by a single rational function, but can instead exhibit
an l-fold symmetry; that is, there exist l rational functions ain, i = 0, . . . , l − 1, such that
an = a

(n mod l)
n for n ≥ 1. The case l = 2 is an especially common case, see Example 3.2.2

for a demonstration in the case of expx.
Define An and Bn as in Proposition 3.1.5 to obtain Hn from Proposition 3.1.4. Since
f

(i)
n (0) = f (i)(0) = yi0, i = 0, . . . ,m − 1, is ensured due to choice of N , it is sufficient by
Proposition 3.1.5 to show valHno+p →∞ for some o, p ∈ N≥0, o > p as n→∞, to prove
that the guessed formula holds. One way to show this is to take a look at the recurrence
satisfied by Hn, the existence and construction of which are provided by Proposition 3.1.4.
In the case that an exhibits an l-fold symmetry, it is advisable to instead look at the sub-
sequence Hnl to ensure the recurrence has a single explicit form.
If a two-term right factor H(n+j)l − rnlHnl can be found for some j ∈ N, such that

val
H(n+j)l
Hnl

= val rnl ≥ 1,

it easily follows that valHnl → ∞ as n → ∞. Finding a two-term right factor of the
recurrence satisfied by Hnl is equivalent to searching for a j-fold hypergeometric term
solution.
Since Proposition 3.1.5 allows restriction to subsequences of Hn and thus subsequences
of Hnl, it is actually sufficient to find hypergeometric term solutions of the holonomic
recurrence satisfied by Hnlj+lp for some j, p ∈ N≥0, j > p. This can be achieved with
Mark van Hoeij’s algorithm [vH99] (see also [Koe14]), implemented in Maple 18 under
the name hypergeomsols in the LRETools package. This is the approach chosen in this
thesis.
Alternatively one could also directly search for j-fold hypergeometric term solutions, see
[HKS12] and [PS93].

3.2. Detailed examples and further results
Example 3.2.1. Starting from the expression tan x it is both well known and easy to see
that tan x satisfies the differential equation

0 = DY := d
dxY (x)− Y (x)2 − 1, Y (0) = 0.

By Proposition 3.1.2 the power series expansion of tan x is the unique power series solution
of this differential equation. Truncating the expansion at order O(x15) gives

x+ 1
3x

3 + 2
15x

5 + 17
315x

7 + 62
2835x

9 + 1382
155925x

11 + 21844
6081075x

13

and converting this into a finite continued fraction of the form
N̂

K
n=1

an
1 yields

x

1 + −x2/3
1 + −x2/15

1 + −x2/35
1 + −x2/63

1 + −x2/99
1 + −x2/143

1 .
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Input : An analytic expression f(x), natural numbers N , L, and s
Output: A conjectural continued fraction representation b0 + K∞n=1

an
1 of f in the

form of an expression b0, a list of expressions a1, . . . , an̂ and a list of
functions a1

n, . . . , a
l−1
n , a0

n rational in n, where an = a
(n mod l)
n for n > n̂ or

FAIL if none is found
for l = 1, . . . , L do

for ord = sl, 2sl, . . . and ord ≤ Nl do

newS ← ord-th partial sum Sord =
ord∑
k=0

ckx
k of the power series expansion of f

if newS = oldS then
next

end

C ← finite C-fraction b0 +
N̂

K
n=1

an
1 corresponding to newS

for j = 1, . . . , l do
ajn ← guess a general formula by rational interpolation on ail+j , where
i ∈ N and il + j ≤ N̂
a0
n ← aln

end
if oldguess(j) = ajn for j = 0, . . . , l − 1 then

n̂← maximal index n ≤ N̂ such that an 6= a
(n mod l)
n

return b0, a list containing a1, . . . , an̂, and a list containing
a1
n, . . . , a

l−1
n , a0

n

else
oldS ← newS
for j = 0, . . . , l − 1 do

oldguess(j)← ajn
end

end
end

end
return FAIL

Algorithm 3: guessCfracFromExpr
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3. Continued fraction solutions of differential equations

Input : An explicit differential equation 0 = DY (x) of order d, a continued fraction
b0 + K∞n=1

an
1 in the form of an expression b0, a list of expressions

a1, . . . , an̂ and a list of functions a1
n, . . . , a

l−1
n , a0

n rational in n, where
an = a

(n mod l)
n for n > n̂

Output: A corresponding holonomic recurrence 0 = RHln(x) of order i with initial
values H0(x), Hl(x), . . . ,Hli(x), with Hn defined as in Proposition 3.1.4

compute a linear recurrence Al(n+2) = rn+2Al(n+1) + sn+2Aln from
An+2 = An+1 + an+2An with linear algebra (also satisfied by Bln)
compute initial values A0, Al, B0, Bl from the recurrences An+2 = An+1 + an+2An,
Bn+2 = Bn+1 + an+2Bn with initial values A0 = b0, A1 = b0 + a1, B0 = 1, B1 = 1

T0(n)← DAln
Bln

for i = 1, 2, . . . do
Ti(n)← Ti−1(n+ 1) rewritten in terms of Al(n+1), Aln, Bl(n+1), Bln and their
derivatives up to order d

if the linear equation Ti(n) +
i−1∑
k=0

ckTk(n) has a solution in the unknowns

c0, . . . , ci−1 then
H0(x), Hl(x), . . . ,Hli(x)← T0(0), T1(0), . . . , Ti(0)

return Hl(n+i)(x) +
i−1∑
k=0

ckHl(n+k)(x) and H0(x), Hl(x), . . . ,Hli(x)

end
end

Algorithm 4: searchCorrRec

From these initial elements a general formula for the elements of the C-fraction corres-
ponding to tan x can be guessed by rational interpolation, namely

a1 = x, an = − x2

(2n− 1)(2n− 3) .

Let fn = An
Bn

be the sequence of approximants of the conjectured continued fraction. Using
Proposition 3.1.3 the conjectured formula can be proven to hold: The condition fn(0) = 0
is obviously true for all n ≥ 0 by nature of the construction. To show valDfn →∞ let

Hn := A′nBn −B2
n −A2

n −AnB′n

as in Theorem 3.1.4. As canonical numerators and denominators of the continued fraction∞
K
n=1

an
1 both An and Bn satisfy the recurrences

[
An
Bn

]
=
[
An−1
Bn−1

]
+ an

[
An−2
Bn−2

]
for n ≥ 1

with initial conditions
A−1 = B0 = 1, A0 = B−1 = 0.
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Input : A holonomic recurrence 0 = RHn(x) = Hn+ord(x) +
ord−1∑
k=0

ck(x)Hn+k(x), its

initial values H0(x), . . . ,Hord−1(x), a natural number L
Output: The term ratio corresponding to a two-term right factor of the recurrence

proving the increase of valHn(x) as n→∞ or FAIL if none is found
try to compute a hypergeometric term solution of the recurrence 0 = RHn(x) with
initial conditions H0(x), . . . ,Hord−1(x) with the van Hoeij algorithm
if a hypergeometric term solution is found then

sol(n, x)← hypergeometric term solution

v ← val
(
sol(n+ 1, x)
sol(n, x)

)
if v > 0 then

return Hn+1(x) = sol(n+ 1, x)
sol(n, x) Hn(x)

end
end
for l = 2, . . . , L do

compute initial values H(l−1)ord(x), . . . ,Hl·ord−1(x) from H0(x), . . . ,H(l−1)ord−1(x)
and 0 = RHn(x)
for m = 0, . . . , l − 1 do

construct a holonomic recurrence
0 = Rl,mHln+mn(x) = Hl(n+ord)+m(x) +

ord−1∑
k=0

ck(x)Hl(n+k)+m(x) from the

recurrence 0 = RHn(x) with linear algebra
try to compute a hypergeometric term solution of the recurrence
0 = Rl,mHln+m(x) with initial conditions Hl·0+m(x), . . . ,Hl(ord−1)+m(x) with
the van Hoeij algorithm
if a hypergeometric term solution is found then

sol(n, x)← hypergeometric term solution

v ← val
(
sol(n+ 1, x)
sol(n, x)

)
if v > 0 then

return Hl(n+1)+m(x) = sol(n+ 1, x)
sol(n, x) Hln+m(x)

end
end

end
end
return FAIL

Algorithm 5: checkValIncrease
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3. Continued fraction solutions of differential equations

From an(0) = 0 for all n ≥ 1 it follows that Bn(0) = 1 for all n ≥ 0 by iteratively applying
the recurrence formula for Bn. Thus valBn = 0 and therefore valHn = valDfn.
As described in Theorem 3.1.4 any Hn+l, l ≥ 0 can be rewritten as a linear combination
in terms of

A′n+iBn+j , An+iB
′
n+j , An+iAn+j , Bn+iBn+j

with i, j ∈ {0, 1} by applying the recurrence formulas for An and Bn. There are only 16
such terms, so (Hn, . . . ,Hn+16) must be linearly dependent. As such there must exist a
linear recurrence of order at most 16. Searching for a recurrence

Hn+l =
l−1∑
i=0

cn+iHn+i, 1 ≤ l ≤ 16

with linear algebra yields the fourth order recurrence relation

Hn+4 =H(n+ 3)− x2(4n2 − x2 + 20n+ 21)
(2n+ 3)(2n+ 5)(2n+ 7)2Hn+2 + x4

(2n+ 3)(2n+ 5)2(2n+ 7)Hn+1

− x8

(2n+ 1)2(2n+ 3)3(2n+ 5)2(2n+ 7)Hn,

with initial conditions

H0 = −1, H(1) = −x2, H(2) = −x
4

9 , H(3) = − x6

225

obtained by substituting the corresponding values of the sequences An and Bn.
From this, van Hoeij’s algorithm yields the hypergeometric term solution

Hn = − π(x2/4)n

Γ(n+ 1/2)2 ,

that is the term ratio

Hn+1 = x2

(2n+ 1)2Hn

corresponding to the right factor

RHn = Hn+1 −
x2

(2n+ 1)2Hn.

From this it is evident that valHn →∞ as n→∞, so the conjectured continued fraction
indeed corresponds to the power series expansion of tan x. In other words

tan x = x

1 +
∞
K
n=2

an
1

, an = − x2

(2n− 1)(2n− 3) , n ≥ 2.

This continued fraction is equivalent to the one Lambert used in his proof of the irration-
ality of π, see [Lam61] and [CBV+08, p. 202].
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3.2. Detailed examples and further results

Example 3.2.2. Starting from the expression exp(x) one easily obtains the differential
equation

0 = DY := d
dxY (x)− Y (x), Y (0) = 1.

The power series expansion of exp(x) is the unique power series solution of this differential
equation by Proposition 3.1.2. Truncating the expansion at order O(x10) one obtains

1 + x+ 1
2x

2 + 1
6x

3 + 1
24x

4 + 1
120x

5 + 1
720x

6 + 1
5040x

7 + 1
40320x

8 + 1
362880x

9.

A conversion to a finite C-fraction 1 +
N̂

K
n=1

an
1 yields

1 + x

1 + −x/2
1 + x/6

1 + −x/6
1 + x/10

1 + −x/10
1 + x/14

1 + −x/14
1 + x/18

1 .

Guessing a general formula from these initial elements by rational interpolation leads to

a1 = x, a2n = − x

2(2n− 1) , a2n+1 = x

2(2n+ 1) .

This guessed formula agrees with the one given in [CBV+08, p. 194].
Let fn = An

Bn
be the sequence of approximants of the conjectured continued fraction. As

in Example 3.2.1 the conjectured formula can be proven to hold by considering Hn as
defined in Theorem 3.1.4. Since an exhibits 2-fold symmetry, the recurrences[

An
Bn

]
=
[
An−1
Bn−1

]
+ an

[
An−2
Bn−2

]
for n ≥ 1

with initial conditions
A−1 = B0 = 1, A0 = B−1 = 0

are not holonomic. Nonetheless, the process described in Theorem 3.1.4 can be applied to
Hn defined as the numerator of the expression(

An
Bn

)(m)
− F

(
X,

(
An
Bn

)
,

(
An
Bn

)′
, . . . ,

(
An
Bn

)(m−1)
)

to yield the recurrence

Hn+4 =−
an+3a

′
n+4 − a′n+3(an+4 + 1)

a′n+3
Hn+3 +

(a2
n+3 + an+3)a′n+4 + a′n+3(a2

n+4 + an+4)
a′n+3

Hn+2

+
a2
n+3

(
an+3a

′
n+4 − a′n+3an+4 + a′n+4

)
a′n+3

Hn+1 +
a2
n+2a

2
n+3a

′
n+4

a′n+3
Hn

for Hn. Owing to the 2-fold symmetry of an, this recurrence has no general explicit
form. By Proposition 3.1.5 it is sufficient to instead consider a recurrence relation for H2n
though, which can be obtained by constructing holonomic recurrence formulas for A2n
and B2n from the respective recurrence formulas for An and Bn and only then applying
Theorem 3.1.4. To this end consider that both A2(n+1) and A2(n+2) can be rewritten as a
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3. Continued fraction solutions of differential equations

linear combination in terms of A2n and A2n+1, so A2(n+2) can also be rewritten as a linear
combination in terms of A2n and A2(n+1), namely

A2(n+2) = (1 + a2n+3 + a2n+4)A2(n+1) − a2n+3a2n+4A2n.

A holonomic recurrence formula for B2k can be obtained in the same way. The initial
conditions

A0 = 0, A2 = a1 = x, B0 = 1, B2 = 1 + a2 = 1− x/2

can be computed from the original recurrence.
Applying Theorem 3.1.4 to A2n and B2n yields the recurrence

H2(n+4) = H2(n+3) + x2(16n2 + x2 + 80n+ 84)
8(2n+ 3)(2n+ 5)(2n+ 7)2H2(n+2)

+ x4

16(2n+ 3)(2n+ 5)2(2n+ 7)H2(n+1)

− x8

256(2n+ 1)2(2n+ 3)3(2n+ 5)2(2n+ 7)H2n

satisfied by H2n with initial conditions

H0 = −1, H2 = x2

4 , H4 = − x4

144 , H6 = x6

14400 .

Applying van Hoeij’s algorithm to Ĥn = H2n yields the hypergeometric term solution

H2n = Ĥn = − π(x2/16)n

Γ(n+ 1/2)2 ,

that is the term ratio
H2(n+1) = − x2

4(2n+ 1)2H2n

corresponding to a two-term right factor. Note that this approach does not necessarily
yield a 2-fold hypergeometric term solution of the original recurrence equation forHn, since
H2n+1 wasn’t considered at all. But for the purposes of the algorithm this is sufficient
to show that valH2n → ∞ as n → ∞. In that case by Proposition 3.1.5 the conjectured
continued fraction indeed corresponds to the power series expansion of exp(x), that is

expx = 1 + x

1 +
∞
K
n=2

an
1

, a2n = − x

2(2n− 1) , a2n+1 = x

2(2n+ 1) , n ≥ 1.

3.2.1. The exponential and logarithm function

Besides the continued fraction given in Example 3.2.2 expx can also be expressed by the
continued fraction (see [CBV+08, p. 194])

expx = 1 + 2x
2− x + x2/6

1 +
∞

K
n=3

an
1 , an = 1

4(2n− 3)(2n− 1) .
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3.2. Detailed examples and further results

This representation is easily guessed by considering the series expansion of the expression
2x

exp(x)− 1 − (2− x)

to ensure the specific form of the first partial numerator and denominator. Unfortunately,
the corresponding differential equation

0 = DY := 2x d
dxY (x) + Y (x)2 + 2Y (x)− x2, Y (0) = 0

is singular in x = 0, preventing Proposition 3.1.3 from being applicable. Nevertheless,
computing Hn and the corresponding recurrence formula yields

Hn+4 = Hn+3+x2(16n2 + x2 + 112n+ 180)
8(2n+ 5)(2n+ 7)(2n+ 9)2 Hn+2

+ x4

16(2n+ 5)(2n+ 7)2(2n+ 9)Hn+1

− x8

256(2n+ 3)2(2n+ 5)3(2n+ 7)2(2n+ 9)Hn

with initial conditions

H0 = −x2, H1 = x4

36 , H2 = − x6

3600 , H3 = x8

705600 .

This recurrence has a right factor with the corresponding term ratio

Hn+1 = − x2

4(2n+ 3)2Hn,

showing the increase of valuation of Hn. This suggests there may be a way to extend the
applicability of Proposition 3.1.3 to some cases where the differential equation is singular
in x = 0.
Moving on, the logarithm function ln(1 + x) has a power series representation in x = 0
and satisfies the differential equation

0 = DY := (1 + x) d
dxY (x)− 1, Y (0) = 0.

Guessing the continued fraction representation (see [CBV+08, p. 196])

ln(1 + x) = x

1 +
∞

K
n=2

anx

1 , a2k = n

2(2n− 1) , a2n+1 = n

2(2n+ 1) ,

it is proven by computing the recurrence

H2(n+4) =(x+ 2)2

4 H2(n+3)

− x2(n+ 3)2

16(2n+ 3)(2n+ 5)(2n+ 7)2

· (6n2x2 + 32n2x+ 30nx2 + 32n2 + 160xn+ 31x2 + 160n+ 168x+ 168)H2(n+2)

+ x4(x+ 2)2(n+ 2)2(n+ 3)2

64(2n+ 3)(2n+ 5)2(2n+ 7)H2(n+1)

− x8(n+ 1)4(n+ 2)2(n+ 3)2

256(2n+ 1)2(2n+ 3)3(2n+ 5)2(2n+ 7)H2n
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3. Continued fraction solutions of differential equations

with initial values

H0 = −1, H2 = −x
2

4 , H4 = −x
4

36 , H6 = − x6

400
and term ratio

H2(n+1) = x2(n+ 1)2

4(2n+ 1)2H2n

corresponding to a two-term right factor, which shows the increase in valuation of H2n.
The expression ln

(1 + x

1− x

)
satisfies the differential equation

0 = DY := (x2 − 1) d
dxY (x) + 2, Y (0) = 0.

Guessing a C-fraction representation based on the inital terms of its power series expansion
yields (see [CBV+08, p. 196])

ln
(1 + x

1− x

)
= 2x

1 +
∞

K
n=1

anx
2

1 , an = −n2

(2n− 1)(2n+ 1) .

The corresponding recurrence formula is

Hn+4 = Hn+3+x2(n+ 3)2(2n2x2 + 10nx2 − 8n2 + 11x2 − 40n− 42)
(2n+ 3)(2n+ 5)(2n+ 7)2 Hn+2

+ x4(n+ 2)2(n+ 3)2

(2n+ 3)(2n+ 5)2(2n+ 7)Hn+1

− x8(n+ 1)4(n+ 2)2(n+ 3)2

(2n+ 1)2(2n+ 3)3(2n+ 5)2(2n+ 7)Hn

with inital values
H0 = 2, H1 = 2x2, H2 = 8

9x
4, H3 = 8

25x
6.

The right factor with corresponding term ratio

Hn+1 = x2(n+ 1)2

(2n+ 1)2 Hn

proves the validity of the guessed continued fraction formula.

3.2.2. Trigonometric functions and inverse trigonometric functions

A continued fraction expression for tan x was proven in Example 3.2.1. For arctan x the
C-fraction representation (see[CBV+08, p. 207])

arctan x = x

1 +
∞

K
n=1

anx
2

1 , an = n2

(2n− 1)(2n+ 1) ,

can either be computed with the guess and prove algorithm or it can be obtained from
the continued fraction formula for ln

(1 + x

1− x

)
presented in the previous section, since it

is easily seen that
arctan x = 1

2i ln
(1 + ix

1− ix

)
,

38



3.2. Detailed examples and further results

as both sides agree in x = 0 and have identical derivatives. Note that all occurences of x
in the continued fraction formula for ln

(1 + x

1− x

)
are quadratic except for the first partial

numerator, where it occurs linearly. Because of this, upon substituting ix for x all complex
units simplify to real factors with exception of the first one, which gets canceled by the
factor 1/2i. Hence all elements of the given continued fraction expansion of arctan x have
real coefficients.
Guessing a continued fraction representation of the expression arcsin x√

1− x2
yields (see [CBV+08,

p. 205])

arcsin x√
1− x2

= x

1 +
∞

K
n=2

anx
2

1 , a2n = − 2n(2n− 1)
(4n− 1)(4n− 3) , a2n+1 = − 2n(2n− 1)

(4n+ 1)(4n− 1) .

Taking the differential equation

0 = DY := (x2 − 1) d
dxY (x) + xY (x) + 1, Y (0) = 0

satisfied by arcsin x√
1− x2

leads to a corresponding recurrence formula of fourth order for H2n

omitted due to length for H2n with initial values

H0 = 1, H2 = 4
9x

4, H4 = 64
1225x

8, H6 = 256
53361x

12

and right factor with corresponding term ratio

H2(n+1) = 4x4(n+ 1)2(2n+ 1)2

(4n+ 3)2(4n+ 1)2 H2n.

3.2.3. Hyperbolic functions and inverse hyperbolic functions

Conjecturing a continued fraction representation of tanh x based on its power series ex-
pansion leads to the C-fraction (see [CBV+08, p. 211])

tanh x = x

1 +
∞

K
n=2

anx
2

1 , an = 1
(2n− 1)(2n− 3) .

Taking the differential equation

0 = DY := d
dxY (x) + Y (x)2 − 1, Y (0) = 0,

which holds for Y = tanh, yields the corresponding recurrence formula

Hn+4 = Hn+3+ 2x2(4n2 + x2 + 20n+ 21)
8(2n+ 3)(2n+ 5)(2n+ 7)2Hn+2

+ x4

16(2n+ 3)(2n+ 5)2(2n+ 7)Hn+1

− x8

(2n+ 1)2(2n+ 3)3(2n+ 5)2(2k + 7)Hn
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3. Continued fraction solutions of differential equations

with initial values
H0 = −1, H1 = x2, H2 = −x

4

9 , H3 = x6

225 .

This recurrence has a two-term right factor with corresponding term ratio

Hn+1 = − x2

(2n+ 1)2Hn,

showing that the guessed continued fraction formula is correct.
The continued fraction expansion (see [CBV+08, p. 214])

Asinh x = x
√

1 + x2

1 +
∞

K
n=2

anx
2

1 , a2n = 2n(2n− 1)
(4n− 1)(4n− 3) , a2n+1 = 2n(2n− 1)

(4n+ 1)(4n− 1) .

can be obtained either by applying the guess and prove algorithm to the expression
Asinh x√

1 + x2
or by utilizing the relation

Asinh x = i arcsin
(
x

i

)
and the C-fraction expansion of arcsin x shown in the previous section.
The same holds true for the C-fraction expansion (see [CBV+08, p. 216])

Atanh x = x

1 +
∞

K
n=1

anx
2

1 , an = − n2

(2n− 1)(2n+ 1)
and the relation

Atanh x = i arctan
(
x

i

)
.

3.2.4. Power functions

For the power function (1 + x)α three known continued fraction representations due to
Perron can be found in [Per13, p. 348] and [CBV+08, p. 218]. The first continued fraction

(1 + x)α = 1 + αx

1 +
∞

K
n=2

anx

1 , a2n = (n− α)
2(2n− 1) , a2n+1 = (n+ α)

2(2n+ 1)
can be obtained by directly applying the guess and prove algorithm to the expression
(1 + x)α. This expression satisfies the differential equation

0 = DY := (1 + x) d
dxY (x)− αY (x), Y (0) = 1,

yielding the corresponding recurrence relation

H2(n+4) =(x+ 2)2

4 H2(n+3)

+ (2α2x2 + 6n2x2 + 32n2x+ 30nx2 + 32n2 + 160xn+ 31x2 + 160n+ 168x+ 168)

· x2(α+ n+ 3)(α− n− 3)
16(2n+ 3)(2n+ 5)(2n+ 7)2H2(n+2)

+ x4(x+ 2)2(α+ n+ 2)(α− n− 2)(α+ n+ 3)(α− n− 3)
64(2n+ 3)(2n+ 5)2(2n+ 7) H2(n+1)

− x8(α+ n+ 1)2(α− n− 1)2(α+ n+ 2)(α− n− 2)(α+ n+ 3)(α− n− 3)
256(2n+ 1)2(2n+ 3)3(2n+ 5)2(2n+ 7) H2n
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3.2. Detailed examples and further results

for H2n with the initial values

H0 = −α, H2 = α3 − b
4 x2, H4 = −α

5 − 5α3 + 4α
144 x4, H6 = α7 − 14α5 + 49α3 − 36α

14400 x6.

The term ratio
H2(n+1) = −x

2(α+ n+ 1)(α− n− 1)
4(2n+ 1)2 H2n

corresponding to a right factor proves the conjectured formula.
Note that just like ((1 + x)α − 1) /α→ ln(1+x) as α→ 0, the previously shown continued
fraction expansion of ln(1+x) can be obtained by substituting the above continued fraction
representation of (1 + x)α into ((1 + x)α − 1) /α and taking the limit for α→ 0.
A second continued fraction representation of (1 + x)α is

(1 + x)α = 1
1 + −αx

1 + K
n=3

anx

1 , a2n = n− 1− α
2(2n− 1) , a2n+1 = n+ α

2(2n− 1) .

It is obtained by applying the guess and prove algorithm to the expression 1
(1 + x)α and

rearranging the result. It also follows directly by utilizing the relation

(1 + x)α = 1
(1 + x)−α .

The third continued fraction expansion of (1 + x)α is

(1+x)α = 1
1 + −αx/(1 + x)

1 +
∞

K
n=3

anx/(1 + x)
1 , a2n = −α− n+ 1

2(2n− 1) , a2n+1 = α− n
2(2n− 1) .

To obtain this continued fraction with the guess and prove algorithm, substitute
x = z/(1 − z), consider the expression 1

(1 + z/(1− z))α , rearrange the result, and re-

substitute z = x/(1 +x). Using the same substitutions for x and z, the continued fraction
also follows directly from the relation

(1 + x)α =
(

1 + z

1− z

)α
= 1

(1 + (−z))α

by rewriting (1 + (−z))α in terms of the first given continued fraction expansion.
The following continued fraction representation for

(1 + x

1− x

)α
due to Perron can be found

in [Per13, p. 350] and [CBV+08, p. 220]:(1 + x

1− x

)α
= 1 + 2αx

1− αx +
∞

K
n=2

anx
2

1 , an = (α− n+ 1)(α+ n− 1)
(2n− 3)(2n− 1) .

To search for this representation with the guess and prove algorithm consider the expres-
sion

2αx(1 + x

1− x

)α
− 1
− (1− αx),
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3. Continued fraction solutions of differential equations

which tends to 0 as x→ 0. Unfortunately, the differential equation

0 = DY := x(x2 − 1) d
dxY (x)− Y (x)2 − (x2 + 1)Y (x) + x2(α2 − 1)

found for this expression is singular in x = 0, conflicting with the applicability of Pro-
position 3.1.3. Similar to the previous case where this occured with expx all further
steps would still be successful though, again suggesting there may be a way to extend the
applicability of Proposition 3.1.3 to further cases.

3.2.5. Airy functions

In [MS15, p. 281] Maulat and Salvy give the following C-fraction involving the Airy func-
tion Ai:

x
Ai′

Ai

( 1
x2

)
= −1− x3/4

1 +
∞

K
n=2

anx
3

1 , a2n = 6n− 1
8 , a2n+1 = 6n+ 1

8 .

Due to the fact that along the real axis the left- and right-handed limit in x = 0 of
the considered expression differ, being 2 and 0 respectively, restrict the domain to the
positive real numbers. In this case the C-fraction is easily guessed from the resulting
series representation.
The corresponding differential equation

0 = DY := x4 d
dxY (x)− 2Y (x)2 − x3Y (x) + 2

is unfortunately again singular in x = 0. But just as is the case for expx and
(1 + x

1− x

)α
,

all further steps would be successful, leading to a corresponding linear recurrence for H2n
with initial values

H0 = x3, H2 = 35
64x

9, H4 = −5005
4096x

15, H6 = 1616615
262144 x

21

and right factor exhibiting the desired increase in valuation, as seen in the corresponding
term ratio

H2(n+1) = x6(6n+ 7)(6n+ 5)
64 H2n.

3.2.6. New results

Noting in Subsection 3.2.1 that the expression 2x
exp(x)− 1 − (2 − x), considered in order

to find a continued fraction representation of expx, contains the generating function

x exp(xt)
exp(x)− 1 =

∞∑
n=0

Bn(t)x
n

n!

of the Bernoulli polynomials for t = 0 (or in other words the Bernoulli numbers), it may be
worthwhile instead to try applying the algorithm to an expression involving the generating
function for the related Euler polynomials

2 exp(xt)
exp(x) + 1 =

∞∑
n=0

En(t)x
n

n! ,
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3.2. Detailed examples and further results

both found, for example, in [AS84, p. 358]. And indeed, this leads to two new continued
fraction expansions of expx, as follows.
Consider the expression 2

exp(x) + 1, satisfying the differential equation

0 = DY := 2 d
dxY (x)− Y (x)2 + 2Y (x), Y (0) = 1,

which is not singular in x = 0. The C-fraction representation

2
exp(x) + 1 = 1− x/2

1 +
∞

K
n=2

anx
2

1 , an = 1
4(2n− 1)(2n− 3)

can be guessed by rational interpolation. The corresponding linear recurrence is

Hn+4 = Hn+3+ x2(16n2 + x2 + 80n+ 84)
8(2n+ 3)(2n+ 5)(2n+ 7)2Hn+2

+ x4

16(2n+ 3)(2n+ 5)2(2n+ 7)Hn+1

− x8

256(2n+ 1)2(2n+ 3)3(2n+ 5)2(2n+ 7)Hn

with initial values

H0 = 1, H1 = −x
2

4 , H2 = x4

144 , H3 = − x6

14400 .

The right factor with corresponding term ratio

Hn+1 = x2

4(2n+ 1)2Hn

of this recurrence proves the conjectured C-fraction representation. Furthermore, rearran-
ging the representation formula easily yields the following continued fraction expansion of
expx:

expx = −1 + 2
1 + −x/2

1 +
∞

K
n=2

anx
2

1 , an = 1
4(2n− 1)(2n− 3) .

Another continued fraction can be found and proven by considering t = 1 instead of t = 0
in the generating function of the Euler polynomials. The continued fraction representation

2 exp(x)
exp(x) + 1 = 1 + x/2

1 +
∞

K
n=2

anx
2

1 , an = 1
4(2n− 1)(2n− 3)

can be proven by applying the guess and prove algorithm, but it also follows directly from
the relation

2 exp(x)
exp(x) + 1 − 1 = 2 exp(x)

exp(x) + 1 − 2 + 1 = − 2
exp(x) + 1 + 1 = −

( 2
exp(x) + 1 − 1

)
.

This representation formula can again be rearranged to obtain a continued fraction rep-
resentation of expx:

expx = −1
1 + −2

1 + x/2
1 +

∞

K
n=2

anx
2

1 , an = 1
4(2n− 1)(2n− 3) .
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3. Continued fraction solutions of differential equations

Both continued fractions converge for all x ∈ C. To prove this, it suffices to show that the

continued fraction
∞
K
n=2

anx
2

1 with an = 1
4(2n− 1)(2n− 3) converges in C, since it appears

as a tail of both as defined in Definition 2.1.3. By Worpitzky’s Theorem (Theorem 2.1.14)
∞
K
n=2

anx
2

1 converges, if
∣∣anx2∣∣ ≤ 1/4, that is

∣∣∣∣∣ x2

4(2n− 1)(2n− 3)

∣∣∣∣∣ ≤ 1
4

or equivalently
|x| ≤

√
|(2n− 1)(2n− 3)|,

for all n ≥ 2.
Now let x ∈ C, then there is some N ∈ N, such that |x| ≤

√
|(2n− 1)(2n− 3)| for

all n ≥ N , since the right-hand side is unbounded and monotonously increasing. In

other words, by Worpitzky’s Theorem the tail
∞
K
n=N

anx
2

1 is convergent and thus
∞
K
n=2

anx
2

1
converges. Hence both given continued fraction representations of expx converge for the
given x ∈ C. Since the choice of x is arbitrary, it follows that both continued fractions
converge on all of C.

3.3. Constructing differential equations satisfied by a given
expression

As the algorithm presented in the previous section requires knowledge of an explicit dif-
ferential equation satisfied by the given analytic expression, an algorithm to construct
such a differential equation from an expression is desirable. The algorithm presented in
the following is a generalisation of the algorithm FindDE contained in the Maple package
FPS.mpl [GMK], which tries to find a linear differential equation with rational coefficients
satisfied by a given expression. The algorithm can be outlined as follows:
Starting with some expression f(x) and upper bounds o, d ∈ N for the order and degree
of the desired differential equation respectively, compute the derivatives f ′, . . . , f (o). Let

0 = DY := Y (o) +
d∑
|α|=0

cα

o−1∏
i=0

(
Y (i)

)αi
,

where α = (α0, . . . , αo−1) with αi ≥ 0 for all i and |α| =
o−1∑
i=0

αi. Substitute Y (i) = f (i) for
all i, expand the result and then collect those terms that are rational multiples of each
other. Setting each of these grouped summands to 0 leads to a set of equations that can
be solved for the coefficients cα. If no solution can be found, the algorithm fails under
the given restrictions, but increasing o, d or both may yield a positive result. Otherwise
0 = DY is an explicit differential equation with initial conditions Y (i)(0) = f (i)(0) for
i = 0, . . . , o − 1 satisfied by f . Since in general coefficients that are rational in x are
preferable, check the cα for rationality in x and reject the result in the case of irrationality.
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Example 3.3.1. Starting from the expression tan x the well known differential equation

0 = d
dxY (x)− Y (x)2 − 1, Y (0) = 0

is obtained as follows:
Set o = 1, d = 2 and

0 = DY := d
dxY (x) + c2Y (x)2 + c1Y (x) + c0.

Substituting tan x for Y (x) and expanding results in

0 = (1 + tan(x)2) + c2 tan(x)2 + c1 tan(x) + c0 = (1 + c2) tan(x)2 + c1 tan(x) + (1 + c0).

Setting each summand equal to 0 leads to a system of equations

0 = (1 + c2) tan(x)2

0 = c1 tan(x)
0 = 1 + c0

with the solution c0 = c2 = −1 and c1 = 0, yielding the differential equation

0 = d
dxY (x)− Y (x)2 − 1

with initial condition Y (0) = tan(0) = 0.

In practical applications, a higher order and degree usually increase computational costs
in relation to the differential equation. To ensure that the resulting order and degree are
reasonably low, start by setting o = d = 1 and increasing them iteratively up to some
upper bounds O and D, until a differential equation is found. For the purposes of this
thesis, the implementation of this algorithm prioritizes a small order over a small degree.
It should be mentioned that the result of this algorithm for special functions depends on
the representation of the derivatives f (i)(x) of the given expression f . If the derivatives are
not represented in terms of the original expression f , the algorithm will usually result in
differential equations of higher order and degree than necessary or fail altogether. A prime
example for this using the accompanying implementation of this algorithm are the various
types of generalized hypergeometric functions. Applying the process presented here to
some pFq will usually result in a recurrence that is not (yet) automatically recognized
as true by Maple and as such the algorithm fails, even though a differential equation
under the given restrictions may exist. To counteract this, one would have to extend the
algorithm with specific suitable derivative rules to support each type of special function
one is intereseted in. This problem is also discussed by Gruntz und Koepf in [GK95, p. 4]
in the context of a Maple algorithm to find linear differential equations and the Airy wave
function.

3.3.1. Further results

While for the purposes of the guess and prove algorithm mainly explicit differential equa-
tions are of interest, the algorithm to search differential equations is easily modified to
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3. Continued fraction solutions of differential equations

Input : An expression f(x), a name Y , natural numbers O and D
Output: An explicit differential equation 0 = DY satisfied by f of order at most O

and degree at most D with coefficients rational in x or FAIL if none is
found

F (0)← f
for o = 1, . . . , O do

F (o)← f (o)(x)
for d = 1, . . . , D do

mon← list of monomials in F (0), . . . , F (o− 1) of degree at most d

deq ← F (o) +
|mon|∑
i=1

ci ·mon(i)

deq ← substitute F (i) = f (i)(x) for i = 0, . . . , o in deq and expand the result
deq ← collect summands that are rational multiples of each other in x
terms← list of summands of deq
if the system of equations (terms(1) = 0, . . . , terms(|terms|) = 0) in the
unknowns c1, . . . , c|mon| has a solution rational in x then

deq ← F (o) +
|mon|∑
i=1

ci ·mon(i)

deq ← substitute F (i) = Y (i)(x) in deq
return deq

end
end

end
return FAIL

Algorithm 6: searchODE

allow for implicit differential equations as well by considering

0 = DY :=
d∑
|α|=0

cα

o∏
i=0

(
Y (i)

)αi
,

instead, where α = (α0, . . . , αo) with αi ≥ 0 for all i and |α| =
o∑
i=0

αi.
A neat side effect of allowing implicit differential equations is that for many expressions
involving n-th powers of elementary functions, it allows to find simple forms of differential
equations.

For example, for both sin(x)n and cos(x)n one finds the differential equation

0 = n

(
d2

dx2Y (x)
)
Y (x)− (n− 1)

( d
dxY (x)

)2
+ n2Y (x)2.
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3.4. Conclusion

For both their sum sin(x)n + cos(x)n and difference sin(x)n − cos(x)n one instead obtains

0 =(n− 1)
(

d3

dx3Y (x)
)( d

dxY (x)
)
− (2− n)

(
d2

dx2Y (x)
)2

+ (n3 − 5n2 + 6n)
(

d2

dx2Y (x)
)
Y (x)− (n3 − 7n2 + 10n− 4)

( d
dxY (x)

)2

+ (n4 − 4n3 + 4n2)Y (x)2.

Taking their quotients, for both tan(x)n and cot(x)n one gets

0 =− n2
(

d2

dx2Y (x)
)2

Y (x)2 + 2n2
(

d2

dx2Y (x)
)( d

dxY (x)
)2
Y (x)− (n2 − 1)

( d
dxY (x)

)4

− 4n2
( d

dxY (x)
)2
Y (x)2.

For secx one obtains

0 = n

(
d2

dx2Y (x)
)
Y (x)− (n+ 1)

( d
dxY (x)

)2
− n2Y (x)2.

Considering the generating functions of the Bernoulli and Euler polynomials, one finds

0 =nx
(

d2

dx2Y (x)
)
− x(n+ 1)

( d
dxY (x)

)2
+ n(2tx− x+ 2)

( d
dxY (x)

)
Y (x)

−n2
(
t2x− tx+ 2t− 1

)
Y (x)2

for
(
x exp(xt)

exp(x)− 1

)n
and

0 =n
(

d2

dx2Y (x)
)
Y (x)− (n+ 1)

( d
dxY (x)

)2
+ n(2t− 1)

( d
dxY (x)

)
Y (x)

− n2t(t− 1)Y (x)2

for
( 2 exp(xt)

exp(x) + 1

)n
.

Similar results can be produced for the inverse trigonometric functions, hyperbolic func-
tions, inverse hyperbolic functions, and many more cases.

3.4. Conclusion

It should be mentioned that the guess and prove algorithm only results in a formal identity
and makes no statement with regard to questions of convergence. Having obtained a formal
continued fraction representation, to answer questions regarding its convergence one has to
fall back on other means, namely convergence criteria like Worpitzky’s Theorem (Theorem
2.1.14).
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3. Continued fraction solutions of differential equations

Furthermore it would be remiss not to mention that even though theoretically the guess
and prove algorithm as presented here has the capability to handle cases with differential
equations of order higher than one, the author has yet to find a working example of such
a case. Just experimenting with cases where the differential equation is of order 2, a
common occurence is that these differential equations are typically singular in x = 0.
For example trying to retrieve the continued fraction representation given in [CBV+08,
p. 206] of arccosx

arccosx = x
√

1− x2

1 +
∞

K
n=2

−an(1− x2)
1 , a2n = 2n(2n− 1)

(4n− 1)(4n− 3) , a2n+1 = 2n(2n− 1)
(4n+ 1)(4n− 1) ,

one substitutes x =
√

1− z2 and considers the expression
z

arccos(
√

1− z2)√
1− z2

,

but this yields the second order differential equation

0 = DY :=
(
x6 − 2x4 + x2

) d2

dx2Y (x)−
(
3x5 − 5x3 + 2x

) d
dxY (x)− 2Y (x)3

+
(
4x4 − 4x2 − 4

)
Y (x),

which is singular in x = 0. Unlike the similiar cases in the previous sections, in this
particular case looking for a right factor of H2n does not succeed as well, despite the fact
the initial values H0, H2, . . . ,H14 exhibit the desired increase in valuation, following the
formula valH2n = 2n+2. It is important to note that this does not disprove the existence
of a right factor in general, but only in the scope of reasonable parameters.
Another example is the still conjectural continued fraction identity

sin(x)
cos(x)− 1 = −2

x
+ x/6

1 +
∞

K
n=2

an
1 , an = − x2

4(2n− 1)(2n+ 1) .

Considering the expression −x2
sin x

cos(x)− 1−1 leads to the second order differential equation

0 = DY :=x2 d2

dx2Y (x) + 4x d
dxY (x) + 6x

( d
dxY (x)

)
Y (x)

+4Y (x)3 + 6Y (x)2 +
(
x2 + 2

)
Y (x) + x2,

which is singular in x = 0. As in the case before, searching for a right factor of Hn proves
not successful, although the initial values H0, H1, . . . ,H7 exhibit the increase in valuation,
following the formula valHn = 2n + 2. A very similar case with the same limitations is

sinh(x)
cosh(x)− 1.
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A. The Maple-package guessandprove.mpl

The algorithms presented in Chapter 3 were implemented in the package guessandprove.mpl
using Maple 18. It depends on the built-in packages NumberTheory and LREtools as well
as the external package hsum17.mpl by Koepf and Sprenger [KS]. This appendix contains
information regarding the concrete implementation and instructions for using the package.
To start using the package, first load the package hsum17.mpl, followed by
guessanprove.mpl, with the read command.

A.1. searchODE

Algorithm 6, searchODE, is based on the algorithm FindDE from the package FPS.mpl
[GMK], which searches for linear ordinary differential equations satisfied by a given ex-
pression. The procedure searchODE takes the arguments expr, an analytical expression for
which a differential equation is desired, and func, a name of the form Y(x). Furthermore,
searchODE can take additional optional arguments with their respective default values.
First is params = alpha, a name used in the case that the differential equation contains
additional parameters, which can occur when looking for implicit differential equations;
if they occur, they are called params(1), params(2), and so on. The second and third
optional arguments are maxOrder = 4 and maxDegree = 4, defining upper bounds for the
polynomial degree and derivative order in Y of the sought differential equation to ensure
termination of the algorithm. The final optional parameter ist explicit = true, a binary
flag setting wether the algorithm searches for an explicit or implicit differential equation.
If a differential equation in Y (x) satisfied by the given expression is found, the algorithm
returns the whole equation in such a form that its right-hand side is zero.
As an example, to obtain the explicit differential equations satisfied by tan x and exp(x)
as in Example 3.2.1 and Example 3.2.2, call

deq := searchODE (tan (x) , Y (x))

deq := d
dxY (x)− 1− (Y (x))2 = 0

and
deq2 := searchODE (ex, Y (x))

deq2 := d
dxY (x)− Y (x) = 0

respectively.
Note that searchODE prioritizes a small order over a small degree and to that end passes
through the whole range of possible degrees each time the sought order is increased. In
practical terms this means that depending on the values of maxOrder and maxDegree the
result might be a differential equation of for example order 1 and degree 100, even though
there exists another differential equation of order and degree 2.
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Since Riccati differential equations, that is differential equations of first order and second
degree, are ubiquitous in practical applications, the package also contains a procedure
searchRiccatiDE for ease of use, which takes the arguments expr and func, as well
as the optional argument params = alpha, which work just like the identically named
arguments of searchODE.

A.2. guessCfracFromExpr

Algorithm 3, guessCfracFromExpr, takes the arguments expr and partnum. Here, expr is
the expression from which a continued fraction is to be constructed and partnum is a name
of the form a(n,x), where a is the name of the partial numerators, n is the index and x
is the indeterminate of expr. In addition, guessCfracFromExpr takes the optional argu-
ments lbound = 20, ubound = 50, stepsize = 10, which are respectively lower bound,
upper bound and stepsize when iterating over the order of the partial sum on which the
guess is based, as well as symlbound = 1 and symubound = 4, which are respectively the
lower and upper bound for the parameter l, such that only l-fold symmetries of the partial
numerators are admissible.
The result is returned in the form [b,inits,pnums], where b is the value of expr at
x = 0, pnums is a list of general formulas for the partial numerators of length l, such that
the i-th entry of pnums corresponds to ain and inits is the list of initial partial numerators
a1, . . . , aN , where N is the largest index, such that aN mod l

N 6= aN .
The algorithm uses the procedures Term and ContinuedFraction from the built-in pack-
age NumberTheory to construct finite continued fractions from the partial sums of expr,
and the procedure RationalInterpolation to guess the general formula(s).
If infolevel[guessandprove] is set to at least 4, the algorithm additionally prints the
initial terms of the series on which the guess is based, as well as the corresponding finite
C-fraction.
To continue with the examples of tan x and exp(x), the corresponding call to guess the
continued fraction from Example 3.2.1 would look like

pnum := guessCfracFromExpr (tan (x) , a (k, x) , lbound = 3, stepsize = 1)
guessCfracFromExpr: guess based on initial series terms

x+ 1/3x3 + 2/15x5 + 17x7

315 + 62x9

2835 + 1382x11

155925 + 21844x13

6081075 +O
(
x15
)

guessCfracFromExpr: corresponding finite C-fraction

[0, [x, 1], [−1/3x2, 1], [−1/15x2, 1], [−1/35x2, 1], [−x
2

63 , 1], [−x
2

99 , 1], [− x2

143 , 1]]

pnum := [0, [x], [− x2

(2 k − 1) (2 k − 3) ]]

and for the continued fraction from Example 3.2.2 the call is
pnum2 := guessCfracFromExpr (ex, a (k, x) , lbound = 3, stepsize = 1)

guessCfracFromExpr: guess based on initial series terms

1 + x+ 1/2x2 + 1/6x3 + 1/24x4 + x5

120 + x6

720 + x7

5040 + x8

40320 + x9

362880 +O
(
x10
)

guessCfracFromExpr: corresponding finite C-fraction
[1, [x, 1], [−x/2, 1], [x/6, 1], [−x/6, 1], [x/10, 1], [−x/10, 1], [x/14, 1], [−x/14, 1], [x/18, 1]]
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pnum2 := [1, [x], [ x

4 k − 2 ,−
x

4 k − 2]]

A.3. searchCorrRec

Algorithm 4, searchCorrRec, takes the arguments deq, func, recname, partnum and
deqOrder, where deq is an explicit ordinary differential equation of order deqOrder format-
ted as in the output of searchODE, func and recname are names of the form Y(x) and
H(n), corresponding to Y (x) and Hn respectively, and partnum is a continued fraction
expressed and formatted as in the output of guessCfracFromExpr.
The result is returned in the form [inits,rec], where rec is the sought holonomic re-
currence and inits is the list of initial values of rec.
Considering again the examples of tan x and exp(x), with deq, deq2, pnum and pnum2
carried over from the preceding two subsections, the corresponding calls are

rec := searchCorrRec (deq, Y (x) , H (k) , pnum, 1)

rec := [[H (0) = −1, H (1) = −x2, H (2) = −1/9x4, H (3) = − x6

225], H (k + 4) = H (k + 3)

−2 x
2 (4 k2 − x2 + 20 k + 21

)
H (k + 2)

(2 k + 5) (2 k + 3) (2 k + 7)2 + x4H (k + 1)
(2 k + 7) (2 k + 3) (2 k + 5)2

− x8H (k)
(2 k + 7) (2 k + 5)2 (2 k + 1)2 (2 k + 3)3 ]

and

rec2 := searchCorrRec (deq2 , Y (x) , H (k) , pnum2 , 1)

rec2 := [[H (0) = −1, H (2) = x2

4 , H (4) = − x4

144 , H (6) = x6

14400], H (2 k + 8)

= H (2 k + 6) + x2 (16 k2 + x2 + 80 k + 84
)
H (2 k + 4)

8 (2 k + 5) (2 k + 3) (2 k + 7)2 + x4H (2 k + 2)
16 (2 k + 7) (2 k + 3) (2 k + 5)2

− x8H (2 k)
256 (2 k + 7) (2 k + 5)2 (2 k + 1)2 (2 k + 3)3 ]

respectively.
This algorithm can also be used to search for general corresponding recurrences by
giving partnum in the form [0,[],a(n,x)], where a(n,x) is a name corresponding to
an(x). For example, to obtain the general form of recurrences corresponding to Riccati
differential equations already seen in Example 3.2.2, one would call

riccdeq := d
dxY (x) + f (x) (Y (x))2 + g (x)Y (x) + h (x) = 0

searchCorrRec (riccdeq, Y (x) , H (k) , [0, [], [a (k, x)]], 1)
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[[H (0) = h (x) , H (1) = f (x) (a (1, x))2 + g (x) a (1, x) + h (x) +D2 (a) (1, x) ,
H (2) = f (x) (a (1, x))2 + g (x) a (1, x) a (2, x) + h (x) (a (2, x))2 + g (x) a (1, x)
+ 2h (x) a (2, x)− a (1, x)D2 (a) (2, x) +D2 (a) (1, x) a (2, x)
+ h (x) +D2 (a) (1, x) ,
H (3) = (a (3, x))2 f (x) (a (1, x))2 + (a (3, x))2 g (x) a (1, x)
+ 2 a (3, x) f (x) (a (1, x))2 + a (3, x) g (x) a (1, x) a (2, x) + (a (3, x))2 h (x)
+ (a (3, x))2D2 (a) (1, x) + 2 a (3, x) g (x) a (1, x) + 2 a (3, x)h (x) a (2, x)
− a (3, x) a (1, x)D2 (a) (2, x) + a (3, x)D2 (a) (1, x) a (2, x)
+D2 (a) (3, x) a (1, x) a (2, x) + f (x) (a (1, x))2 + g (x) a (1, x) a (2, x)
+ h (x) (a (2, x))2 + 2 a (3, x)h (x) + 2 a (3, x)D2 (a) (1, x) + g (x) a (1, x)
+ 2h (x) a (2, x)− a (1, x)D2 (a) (2, x) +D2 (a) (1, x) a (2, x)
+ h (x) +D2 (a) (1, x)],
H (k + 4) = − (a(k+3,x)D2(a)(k+4,x)−D2(a)(k+3,x)a(k+4,x)−D2(a)(k+3,x))H(k+3)

D2(a)(k+3,x)

+ ((a(k+3,x))2D2(a)(k+4,x)+(a(k+4,x))2D2(a)(k+3,x)+a(k+3,x)D2(a)(k+4,x)+D2(a)(k+3,x)a(k+4,x))H(k+2)
D2(a)(k+3,x)

+ (a(k+3,x))2(a(k+3,x)D2(a)(k+4,x)−D2(a)(k+3,x)a(k+4,x)+D2(a)(k+4,x))H(k+1)
D2(a)(k+3,x)

− (a(k+2,x))2(a(k+3,x))2D2(a)(k+4,x)H(k)
D2(a)(k+3,x) ]

Interestingly, except for the initial values this recurrence depends only on the partial
numerators, not on the coefficient functions of the differential equation. Unfortunately
the size of these general corresponding recurrences increases very swiftly; for differential
equations of order 1 and degree 3 the corresponding recurrence already spans multiple
pages, despite only increasing the degree of the differential equation by 1.

A.4. checkValIncrease

Algorithm 5, checkValIncrease, takes the arguments rec, recname, inits and indet,
where rec is a holonomic recurrence formatted as in the output of searchCorrRec,
recname is a name of the form H(n) corresponding to Hn, inits is the list of initial
values of rec formatted as in the output of searchCorrRec and indet is the name of the
indeterminate. In addition checkValIncrease accepts the optional argument symbound
= 4, giving an upper bound for the parameter l when looking for hypergeometric term
solutions of subrecurrences Hln+m, 0 ≤ m < l to ensure that the algorithm terminates.
To search for hypergeometric term solutions, this algorithm uses the van Hoeij algorithm,
inMaple 18 implemented in the built-in package LREtools under the name hypergeomsols.
To compute the ratio of the solution to check for the increase in valuation, the algorithm
uses the procedure ratio from the package hsum17.mpl by Koepf and Sprenger [KS].
If the check was successful, the algorithm returns the term ratio of the corresponding right
factor of the given recurrence in the form H(l(n+1)+m) = r H(ln+m), where r is the ratio
corresponding to the found hypergeometric term solution; should the check not have been
successful, the algorithm returns FAIL.
If infolevel[guessandprove] is set to at least 5, the algorithm additionally prints the
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hypergeometric term solution.
To finish with the examples of tan x and exp(x), the corresponding calls are

checkValIncrease (op (2, rec) , H (k) , op (1, rec) , x)
checkValIncrease: found hypergeometric term solution with increasing valuation

− π
(
1/4x2)k

(Γ (k + 1/2))2

H (k + 1) = x2H (k)
(2 k + 1)2

and
checkValIncrease (op (2, rec2 ) , H (k) , op (1, rec2 ) , x)

checkValIncrease: found hypergeometric term solution with increasing valuation

−π
(
−1/16x2)k

(Γ (k + 1/2))2

H (k + 1) = −1/4 x2H (k)
(2 k + 1)2

A.5. gapCfrac

This is a simple wrapper function for the preceding algorithms. It takes the argument
expr, an expression a C-fraction expansion is desired of. The optional arguments funcname
= Y(x), pnumname = a(k,x) and recname = H(k) name the variables used in the pro-
cess. The optional arguments paramname, maxDiffOrder and maxPolDegree correspond
in function in default value to the optional arguments params, maxOrder and maxDegree of
searchODE respectively. The optional arguments serieslbound, seriesubound,
seriesstepsize, pnumsymlbound, pnumsymubound correspond in function and default
value to the optional arguments lbound, ubound, stepsize, symlbound, symubound of
guessCfracFromExpr. The optional argument recsymbound correspond in function and
from to the optional argument symbound of checkValIncrease.
In case of success, this algorithm returns the now proven C-fraction expansion of the
given expression as computed by the subalgorithm guessCfracFromExpr, otherwise an
error message will signify the point of failure.
If infolevel[guessandprove] is set to at least 3, the algorithm additionally prints the
results of the preceding subalgorithms during computation.

A.6. Examples from Chapter 3 in Maple 18

For all of the following calls, infolevel[guessandprove] was set to 5. In the case of
2-fold symmetries of the partial numerators, recurrence equations for H2n are rewritten
as recurrences for Hn by substituting H with F , where F (k) := H(k/2), and evaluating
the result. This is necessary so that van Hoeij’s algorithm hypergeomsols can be applied
to the recurrence equations in question. The output of the substitution calls has been
omitted. Some (parts of) outputs have been omitted if they are too large to be reasonably
readable.
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infolevelguessandprove := 5
infolevelguessandprove := 5

F (k) := H (k/2)
F := k → H (k/2)

A.6.1. Examples from Section 3.2.1

exp(x)
A continued fraction representation of exp(x) is obtained by rearranging
the result for 2*x/(exp(x)-1) - (2-x).
Problem: The differential equation is singular in x=0, so uniqueness of the
power series solution is not assured.

deq3 := searchODE
(

2·x
ex−1 + (x− 2) , Y (x)

)
deq3 := 2

( d
dxY (x)

)
x+ (Y (x))2 − x2 + 2Y (x) = 0

pnum3 := guessCfracFromExpr
(

2·x
ex−1 + (x− 2) , a (k, x) , lbound = 4, stepsize = 2

)
guessCfracFromExpr: guess based on initial series terms

1/6x2 − x4

360 + x6

15120 −
x8

604800 + x10

23950080 −
691x12

653837184000 + x14

37362124800 +O
(
x15
)

guessCfracFromExpr: corresponding finite C-fraction

[0, [1/6x2, 1], [x
2

60 , 1], [ x
2

140 , 1], [ x
2

252 , 1], [ x
2

396 , 1], [ x
2

572 , 1], [ x
2

780 , 1]]

pnum3 := [0, [1/6x2], [1/4 x2

(2 k − 1) (2 k + 1)]]

rec3 := searchCorrRec (deq3 , Y (x) , H (k) , pnum3 , 1)

rec3 := [[H (0) = −x2, H (1) = 1/36x4, H (2) = − x6

3600 , H (3) = x8

705600], H (k + 4)

= H (k + 3) + 1/8 x
2 (16 k2 + x2 + 112 k + 180

)
H (k + 2)

(2 k + 7) (2 k + 5) (2 k + 9)2

+1/16 x4H (k + 1)
(2 k + 9) (2 k + 5) (2 k + 7)2 −

x8H (k)
(512 k + 2304) (2 k + 7)2 (2 k + 3)2 (2 k + 5)3 ]

checkValIncrease (op (2, rec3 ) , H (k) , op (1, rec3 ) , x)
checkValIncrease: found hypergeometric term solution with increasing valuation

−1/4 x
2π
(
−1/16x2)k

(Γ (k + 3/2))2

H (k + 1) = −1/4 x2H (k)
(2 k + 3)2

ln(1+x)
deq4 := searchODE (ln (1 + x) , Y (x))

deq4 := −1 + (1 + x) d
dxY (x) = 0
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pnum4 := guessCfracFromExpr (ln (1 + x) , a (k, x) , lbound = 3, stepsize = 1)
guessCfracFromExpr: guess based on initial series terms

x− 1/2x2 + 1/3x3 − 1/4x4 + 1/5x5 − 1/6x6 + 1/7x7 − 1/8x8 + 1/9x9

−1/10x10 + 1/11x11 +O
(
x12
)

guessCfracFromExpr: corresponding finite C-fraction

[0, [x, 1], [x/2, 1], [x/6, 1], [x/3, 1], [x/5, 1], [3/10x, 1], [3/14x, 1],

[2/7x, 1], [2/9x, 1], [5x18 , 1], [5x22 , 1]]

pnum4 := [0, [x], [x (k − 1)
4 k − 2 ,

xk

4 k − 2]]

rec4 := searchCorrRec (deq4 , Y (x) , H (k) , pnum4 , 1)

rec4 := [[H (0) = −1, H (2) = −1/4x2, H (4) = −1/36x4, H (6) = − x6

400], H (2 k + 8)

= 1/4 (x+ 2)2H (2 k + 6)

−1/16 x2(k+3)2(6 k2x2+32xk2+30 kx2+32 k2+160xk+31x2+160 k+168x+168)H(2 k+4)
(2 k+5)(2 k+3)(2 k+7)2

+x4(x+2)2(k+3)2(k+2)2H(2 k+2)
(128 k+448)(2 k+3)(2 k+5)2 − x8(k+3)2(k+2)2(k+1)4H(2 k)

(512 k+1792)(2 k+5)2(2 k+1)2(2 k+3)3 ]

rec4 := eval (subs (H = F, rec4 ))
checkValIncrease (op (2, rec4 ) , H (k) , op (1, rec4 ) , x)

checkValIncrease: found hypergeometric term solution with increasing valuation

−π
(
1/16x2)k (Γ (k + 1))2

(Γ (k + 1/2))2

H (k + 1) = 1/4 x
2 (k + 1)2H (k)

(2 k + 1)2

ln((1+x)/(1-x))

deq5 := searchODE
(
ln
(

1+x
1−x

)
, Y (x)

)
deq5 := 2 +

(
x2 − 1

) d
dxY (x) = 0

pnum5 := guessCfracFromExpr
(
ln
(

1+x
1−x

)
, a (k, x) , lbound = 3, stepsize = 1

)
guessCfracFromExpr: guess based on initial series terms

2x+ 2/3x3 + 2/5x5 + 2/7x7 + 2/9x9 + 2/11x11 + 2/13x13 + 2/15x15 +O
(
x17
)

guessCfracFromExpr: corresponding finite C-fraction

[0, [2x, 1], [−1/3x2, 1], [−4x2

15 , 1], [−9x2

35 , 1], [−16x2

63 , 1], [−25x2

99 , 1], [−36x2

143 , 1], [−49x2

195 , 1]]

pnum5 := [0, [2x], [− x2 (k − 1)2

(2 k − 1) (2 k − 3) ]]

rec5 := searchCorrRec (deq5 , Y (x) , H (k) , pnum5 , 1)
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rec5 := [[H (0) = 2, H (1) = 2x2, H (2) = 8x4

9 , H (3) = 8x6

25 ], H (k + 4) = H (k + 3)

+x2 (k + 3)2 (2 k2x2 + 10 kx2 − 8 k2 + 11x2 − 40 k − 42
)
H (k + 2)

(2 k + 5) (2 k + 3) (2 k + 7)2

+(k + 3)2 (k + 2)2 x4H (k + 1)
(2 k + 7) (2 k + 3) (2 k + 5)2 −

x8 (k + 3)2 (k + 2)2 (k + 1)4H (k)
(2 k + 7) (2 k + 5)2 (2 k + 1)2 (2 k + 3)3 ]

checkValIncrease (op (2, rec5 ) , H (k) , op (1, rec5 ) , x)
checkValIncrease: found hypergeometric term solution with increasing valuation

2 π
(
1/4x2)k (Γ (k + 1))2

(Γ (k + 1/2))2

H (k + 1) = x2 (k + 1)2H (k)
(2 k + 1)2

A.6.2. Examples from Section 3.2.2

arctan(x)
deq6 := searchODE (arctan (x) , Y (x))

deq6 := −1 +
(
x2 + 1

) d
dxY (x) = 0

pnum6 := guessCfracFromExpr (arctan (x) , a (k, x) , lbound = 3, stepsize = 1)
guessCfracFromExpr: guess based on initial series terms

x− 1/3x3 + 1/5x5 − 1/7x7 + 1/9x9 − 1/11x11 + 1/13x13 − 1/15x15 +O
(
x17
)

guessCfracFromExpr: corresponding finite C-fraction

[0, [x, 1], [1/3x2, 1], [4x
2

15 , 1], [9x
2

35 , 1], [16x2

63 , 1], [25x2

99 , 1], [36x2

143 , 1], [49x2

195 , 1]]

pnum6 := [0, [x], [ x2 (k − 1)2

(2 k − 1) (2 k − 3) ]]

rec6 := searchCorrRec (deq6 , Y (x) , H (k) , pnum6 , 1)

rec6 := [[H (0) = −1, H (1) = x2, H (2) = −4/9x4, H (3) = 4x6

25 ], H (k + 4) = H (k + 3)

+x2 (k + 3)2 (2 k2x2 + 10 kx2 + 8 k2 + 11x2 + 40 k + 42
)
H (k + 2)

(2 k + 5) (2 k + 3) (2 k + 7)2

+(k + 3)2 (k + 2)2 x4H (k + 1)
(2 k + 7) (2 k + 3) (2 k + 5)2 −

x8 (k + 3)2 (k + 2)2 (k + 1)4H (k)
(2 k + 7) (2 k + 5)2 (2 k + 1)2 (2 k + 3)3 ]

checkValIncrease (op (2, rec6 ) , H (k) , op (1, rec6 ) , x)
checkValIncrease: found hypergeometric term solution with increasing valuation

−π
(
−1/4x2)k (Γ (k + 1))2

(Γ (k + 1/2))2
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H (k + 1) = −x
2 (k + 1)2H (k)

(2 k + 1)2

Asinh(x)
deq7 := searchODE

(
arcsin(x)√
−x2+1 , Y (x)

)
deq7 := 1 +

(
x2 − 1

) d
dxY (x) + xY (x) = 0

pnum7 := guessCfracFromExpr
(

arcsin(x)√
−x2+1 , a (k, x) , lbound = 3, stepsize = 2

)
guessCfracFromExpr: guess based on initial series terms

x+ 2/3x3 + 8x5

15 + 16x7

35 + 128x9

315 + 256x11

693 + 1024x13

3003 + 2048x15

6435

+ 32768x17

109395 + 65536x19

230945 + 262144x21

969969 + 524288x23

2028117

+ 4194304x25

16900975 + 8388608x27

35102025 + 33554432x29

145422675 +O
(
x31
)

guessCfracFromExpr: corresponding finite C-fraction

[0, [x, 1], [−2/3x2, 1], [−2/15x2, 1], [−12x2

35 , 1], [−4x2

21 , 1],

[−10x2

33 , 1], [−30x2

143 , 1], [−56x2

195 , 1], [−56x2

255 , 1],

[−90x2

323 , 1], [−30x2

133 , 1], [−44x2

161 , 1], [−132x2

575 , 1],

[−182x2

675 , 1], [−182x2

783 , 1]]

pnum7 := [0, [x], [−2 x
2 (k − 1) (2 k − 3)

(4 k − 3) (4 k − 5) ,−2 kx2 (2 k − 1)
(4 k − 1) (4 k − 3) ]]

rec7 := searchCorrRec (deq7 , Y (x) , H (k) , pnum7 , 1)
rec7 := eval (subs (H = F, rec7 ))
checkValIncrease (op (2, rec7 ) , H (k) , op (1, rec7 ) , x)

checkValIncrease: found hypergeometric term solution with increasing valuation

2 π
(
1/16x4)k (Γ (k + 1))2 (Γ (k + 1/2))2

(Γ (k + 1/4))2 (Γ (k + 3/4))2

H (k + 1) = 4 x
4 (k + 1)2 (2 k + 1)2H (k)
(4 k + 3)2 (4 k + 1)2

A.6.3. Examples from Section 3.2.3

tanh(x)
deq8 := searchODE (tanh (x) , Y (x))

deq8 := d
dxY (x)− 1 + (Y (x))2 = 0

pnum8 := guessCfracFromExpr (tanh (x) , a (k, x) , lbound = 3, stepsize = 1)
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guessCfracFromExpr: guess based on initial series terms

x− 1/3x3 + 2/15x5 − 17x7

315 + 62x9

2835 −
1382x11

155925 + 21844x13

6081075 +O
(
x15
)

guessCfracFromExpr: corresponding finite C-fraction

[0, [x, 1], [1/3x2, 1], [1/15x2, 1], [1/35x2, 1], [x
2

63 , 1], [x
2

99 , 1], [ x
2

143 , 1]]

pnum8 := [0, [x], [ x2

(2 k − 1) (2 k − 3) ]]

rec8 := searchCorrRec (deq8 , Y (x) , H (k) , pnum8 , 1)

rec8 := [[H (0) = −1, H (1) = x2, H (2) = −1/9x4, H (3) = x6

225], H (k + 4) = H (k + 3)

+2 x
2 (4 k2 + x2 + 20 k + 21

)
H (k + 2)

(2 k + 5) (2 k + 3) (2 k + 7)2 + x4H (k + 1)
(2 k + 7) (2 k + 3) (2 k + 5)2

− x8H (k)
(2 k + 7) (2 k + 5)2 (2 k + 1)2 (2 k + 3)3 ]}

checkValIncrease (op (2, rec8 ) , H (k) , op (1, rec8 ) , x)
checkValIncrease: found hypergeometric term solution with increasing valuation

− π
(
−1/4x2)k

(Γ (k + 1/2))2

H (k + 1) = − x2H (k)
(2 k + 1)2

Asinh(x)
deq9 := searchODE

(
arcsinh(x)√

x2+1 , Y (x)
)

deq9 := −1 +
(
x2 + 1

) d
dxY (x) + xY (x) = 0

pnum9 := guessCfracFromExpr
(

arcsinh(x)√
x2+1 , a (k, x) , lbound = 3, stepsize = 2

)
guessCfracFromExpr: guess based on initial series terms

x− 2/3x3 + 8x5

15 −
16x7

35 + 128x9

315 − 256x11

693 + 1024x13

3003 − 2048x15

6435

+ 32768x17

109395 − 65536x19

230945 + 262144x21

969969 − 524288x23

2028117

+ 4194304x25

16900975 − 8388608x27

35102025 + 33554432x29

145422675 +O
(
x31
)

guessCfracFromExpr: corresponding finite C-fraction

[0, [x, 1], [2/3x2, 1], [2/15x2, 1], [12x2

35 , 1], [4x
2

21 , 1],

[10x2

33 , 1], [30x2

143 , 1], [56x2

195 , 1], [56x2

255 , 1], [90x2

323 , 1],

[30x2

133 , 1], [44x2

161 , 1], [132x2

575 , 1], [182x2

675 , 1], [182x2

783 , 1]]
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pnum9 := [0, [x], [2 x
2 (k − 1) (2 k − 3)

(4 k − 3) (4 k − 5) , 2
kx2 (2 k − 1)

(4 k − 1) (4 k − 3) ]]

rec9 := searchCorrRec (deq9 , Y (x) , H (k) , pnum9 , 1)
rec9 := eval (subs (H = F, rec9 ))
checkValIncrease (op (2, rec9 ) , H (k) , op (1, rec9 ) , x)

checkValIncrease: found hypergeometric term solution with increasing valuation

−2 π
(
1/16x4)k (Γ (k + 1))2 (Γ (k + 1/2))2

(Γ (k + 1/4))2 (Γ (k + 3/4))2

H (k + 1) = 4 x
4 (k + 1)2 (2 k + 1)2H (k)
(4 k + 3)2 (4 k + 1)2

Atanh(x)
deq10 := searchODE (arctanh (x) , Y (x) )

deq10 := 1 +
(
x2 − 1

) d
dxY (x) = 0

pnum10 := guessCfracFromExpr (arctanh (x) , a (k, x) , lbound = 3, stepsize = 1)
guessCfracFromExpr: guess based on initial series terms

x+ 1/3x3 + 1/5x5 + 1/7x7 + 1/9x9 + 1/11x11 + 1/13x13 + 1/15x15 +O
(
x17
)

guessCfracFromExpr: corresponding finite C-fraction

[0, [x, 1], [−1/3x2, 1], [−4x2

15 , 1], [−9x2

35 , 1], [−16x2

63 , 1], [−25x2

99 , 1], [−36x2

143 , 1], [−49x2

195 , 1]]

pnum10 := [0, [x], [− x2 (k − 1)2

(2 k − 1) (2 k − 3) ]]

rec10 := searchCorrRec (deq10 , Y (x) , H (k) , pnum10 , 1)

rec10 := [[H (0) = 1, H (1) = x2, H (2) = 4/9x4, H (3) = 4x6

25 ], H (k + 4) = H (k + 3)

+x2 (k + 3)2 (2 k2x2 + 10 kx2 − 8 k2 + 11x2 − 40 k − 42
)
H (k + 2)

(2 k + 5) (2 k + 3) (2 k + 7)2

+ (k + 3)2 (k + 2)2 x4H (k + 1)
(2 k + 7) (2 k + 3) (2 k + 5)2 −

x8 (k + 3)2 (k + 2)2 (k + 1)4H (k)
(2 k + 7) (2 k + 5)2 (2 k + 1)2 (2 k + 3)3 ]

checkValIncrease (op (2, rec10 ) , H (k) , op (1, rec10 ) , x)
checkValIncrease: found hypergeometric term solution with increasing valuation

π
(
1/4x2)k (Γ (k + 1))2

(Γ (k + 1/2))2

H (k + 1) = x2 (k + 1)2H (k)
(2 k + 1)2

A.6.4. Examples from Section 3.2.4

(1+x)^a
deq11 := searchODE ((1 + x)a , Y (x))
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deq11 := (1 + x) d
dxY (x)− aY (x) = 0

pnum11 := guessCfracFromExpr ((1 + x)a , a (k, x) , lbound = 3, stepsize = 1)
guessCfracFromExpr: guess based on initial series terms

1 + ax+
(
1/2 a2 − a/2

)
x2 +

(
a/3− 1/2 a2 + 1/6 a3)x3

+
(
−a/4 + 11 a2

24 − 1/4 a3 + 1/24 a4
)
x4

+
(
a/5− 5 a2

12 + 7 a3

24 − 1/12 a4 + a5

120

)
x5

+
(
−a/6 + 137 a2

360 −
5 a3

16 + 17 a4

144 − 1/48 a5 + a6

720

)
x6

+
(
a/7− 7 a2

20 + 29 a3

90 −
7 a4

48 + 5 a5

144 −
a6

240 + a7

5040

)
x7

+
(

363 a2

1120 −
469 a3

1440 + 967 a4

5760 −
7 a5

144 + 23 a6

2880 −
a7

1440 + a8

40320 − a/8
)
x8

+
(
−761 a2

2520 + 29531 a3

90720 −
89 a4

480 + 1069 a5

17280 −
a6

80 + 13 a7

8640 −
a8

10080 + a9

362880 + a/9
)
x9

+
(

7129 a2

25200 −
1303 a3

4032 + 4523 a4

22680 −
19 a5

256 + 3013 a6

172800 −
a7

384 + 29 a8

120960 −
a9

80640 + a10

3628800 − a/10
)
x10

+
(
− 671 a2

2520 + 16103 a3

50400 −
7645 a4

36288 + 31063 a5

362880 −
781 a6

34560 + 683 a7

172800 −
11 a8

24192 + a9

30240 −
a10

725760

+ a11

39916800 + a/11
)
x11 +O

(
x12)

guessCfracFromExpr: corresponding finite C-fraction

[1, [ax, 1], [−1/2 (a− 1)x, 1], [1/6 (a+ 1)x, 1], [−1/6 (a− 2)x, 1],
[1/10 (a+ 2)x, 1], [−1/10 (a− 3)x, 1], [1/14 (a+ 3)x, 1],
[−1/14
mbox (a− 4)x, 1], [1/18 (a+ 4)x, 1], [−1/18 (a− 5)x, 1], [1/22 (a+ 5)x, 1]]

pnum11 := [1, [ax], [x (a+ k − 1)
4 k − 2 ,−x (a− k)

4 k − 2 ]]

rec11 := searchCorrRec (deq11 , Y (x) , H (k) , pnum11 , 1)

rec11 := [[H (0) = −a,H (2) =
(
1/4 a3 − a/4

)
x2, H (4) =

(
5 a3

144 − a/36− a5

144

)
x4,

H (6) =
(

a7

14400 −
a

400 + 49 a3

14400 −
7 a5

7200

)
x6], H (2 k + 8) = 1/4 (x+ 2)2H (2 k + 6)

+1/16 x2(a+3+k)(a−3−k)(2 a2x2+6 k2x2+32 k2x+30 kx2+32 k2+160xk+31x2+160 k+168x+168)H(2 k+4)
(2 k+5)(2 k+3)(2 k+7)2

+ x4(x+2)2(a+k+2)(a−k−2)(a+3+k)(a−3−k)H(2 k+2)
(128 k+448)(2 k+3)(2 k+5)2

−x8(a+k+2)(a−k−2)(a+3+k)(a−3−k)(a+k+1)2(a−k−1)2H(2 k)
(512 k+1792)(2 k+5)2(2 k+1)2(2 k+3)3 ]

rec11 := eval (subs (H = F, rec11 ))

checkValIncrease (op (2, rec11 ) , H (k) , op (1, rec11 ) , x)
checkValIncrease: found hypergeometric term solution with increasing valuation
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−aπ
(
1/16x2)k Γ (a+ k + 1) Γ (k − a+ 1)

Γ (a+ 1) Γ (−a+ 1) (Γ (k + 1/2))2

H (k + 1) = −1/4 x
2 (a+ k + 1) (a− k − 1)H (k)

(2 k + 1)2

1/(1+x)^a
deq12 := searchODE

(
((1 + x)a)−1 , Y (x)

)
deq12 := (1 + x) d

dxY (x) + aY (x) = 0

pnum12 := guessCfracFromExpr
(
((1 + x)a)−1 , a (k, x) , lbound = 3, stepsize = 1

)
guessCfracFromExpr: corresponding finite C-fraction

[1, [−ax, 1], [1/2 (a+ 1)x, 1], [−1/6 (a− 1)x, 1], [1/6 (a+ 2)x, 1],
[−1/10 (a− 2)x, 1], [1/10 (a+ 3)x, 1], [−1/14 (a− 3)x, 1],
[1/14 (a+ 4)x, 1], [−1/18 (a− 4)x, 1], [1/18 (a+ 5)x, 1],
[−1/22 (a− 5)x, 1]]

pnum12 := [1, [−ax], [−x (a− k + 1)
4 k − 2 ,

x (a+ k)
4 k − 2 ]]

rec12 := searchCorrRec (deq12 , Y (x) , H (k) , pnum12 , 1)

rec12 := [[H (0) = a,H (2) =
(
−1/4 a3 + a/4

)
x2, H (4) =

(
−5 a3

144 + a/36 + a5

144

)
x4,

H (6) =
(
− a7

14400 + a
400 −

49 a3

14400 + 7 a5

7200

)
x6], H (2 k + 8) = 1/4 (x+ 2)2H (2 k + 6)

+1/16 x2(a+3+k)(a−3−k)(2 a2x2+6 k2x2+32 k2x+30 kx2+32 k2+160xk+31x2+160 k+168x+168)H(2 k+4)
(2 k+5)(2 k+3)(2 k+7)2

+ x4(x+2)2(a+k+2)(a−k−2)(a+3+k)(a−3−k)H(2 k+2)
(128 k+448)(2 k+3)(2 k+5)2

−x8(a+k+2)(a−k−2)(a+3+k)(a−3−k)(a+k+1)2(a−k−1)2H(2 k)
(512 k+1792)(2 k+5)2(2 k+1)2(2 k+3)3 ]

rec12 := eval (subs (H = F, rec12 ))
checkValIncrease (op (2, rec12 ) , H (k) , op (1, rec12 ) , x)

checkValIncrease: found hypergeometric term solution with increasing valuation
aπ

(
1/16x2)k Γ (a+ k + 1) Γ (k − a+ 1)

Γ (a+ 1) Γ (−a+ 1) (Γ (k + 1/2))2

H (k + 1) = −1/4 x
2 (a+ k + 1) (a− k − 1)H (k)

(2 k + 1)2

1/(1+x/(1-x))^a

deq13 := searchODE
(((

1 + x
1−x

)a)−1
, Y (x)

)
deq13 := (−1 + x) d

dxY (x)− aY (x) = 0

pnum13 := guessCfracFromExpr
(((

1 + x
1−x

)a)−1
, a (k, x) , lbound = 3, stepsize = 1

)
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guessCfracFromExpr: corresponding finite C-fraction

[1, [−ax, 1], [1/2 (a− 1)x, 1], [−1/6 (a+ 1)x, 1], [1/6 (a− 2)x, 1],
[−1/10 (a+ 2)x, 1], [1/10 (a− 3)x, 1], [−1/14 (a+ 3)x, 1],
[1/14 (a− 4)x, 1], [−1/18 (a+ 4)x, 1], [1/18 (a− 5)x, 1],
[−1/22 (a+ 5)x, 1]]

pnum13 := [1, [−ax], [−x (a+ k − 1)
4 k − 2 ,

x (a− k)
4 k − 2 ]]

rec13 := searchCorrRec (deq13 , Y (x) , H (k) , pnum13 , 1)

rec13 := [[H (0) = −a,H (2) =
(
1/4 a3 − a/4

)
x2, H (4) =

(
5 a3

144 − a/36− a5

144

)
x4, H (6) =

(
a7

14400 −
a

400 + 49 a3

14400 −
7 a5

7200

)
x6], H (2 k + 8) = 1/4 (x− 2)2H (2 k + 6)

+1/16 x2(a+3+k)(a−3−k)(2 a2x2+6 k2x2−32 k2x+30 kx2+32 k2−160xk+31x2+160 k−168x+168)H(2 k+4)
(2 k+5)(2 k+3)(2 k+7)2

+ x4(x−2)2(a+k+2)(a−k−2)(a+3+k)(a−3−k)H(2 k+2)
(128 k+448)(2 k+3)(2 k+5)2

−x8(a+k+2)(a−k−2)(a+3+k)(a−3−k)(a+k+1)2(a−k−1)2H(2 k)
(512 k+1792)(2 k+5)2(2 k+1)2(2 k+3)3 ]

rec13 := eval (subs (H = F, rec13 ))

checkValIncrease (op (2, rec13 ) , H (k) , op (1, rec13 ) , x)
checkValIncrease: found hypergeometric term solution with increasing valuation

−aπ
(
1/16x2)k Γ (a+ k + 1) Γ (k − a+ 1)

Γ (a+ 1) Γ (−a+ 1) (Γ (k + 1/2))2

H (k + 1) = −1/4 x
2 (a+ k + 1) (a− k − 1)H (k)

(2 k + 1)2

((1+x)/(1-x))^a
A continued fraction representation for ((1+x)/(1-x))^a can be obtained by
rearranging the result for (2*a*x)/(((1+x)/(1-x))^a-1)-(1-b*x).
Problem: The differential equation is singular in x=0, so uniqueness of the
power series solution is not assured.

deq14 := searchODE
(

2 ax
((

1+x
1−x

)a
− 1

)−1
+ ax− 1, Y (x)

)
deq14 :=

(
x3 − x

) d
dxY (x)− (Y (x))2 +

(
−x2 − 1

)
Y (x) + a2x2 − x2 = 0

pnum14 := guessCfracFromExpr
(
2 ax

((
1+x
1−x

)a
− 1

)−1
+ ax− 1, a (k, x) ,

lbound = 4, stepsize = 2
)

guessCfracFromExpr: corresponding finite C-fraction
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[0, [1/3
(
a2 − 1

)
x2, 1], [1/15

(
a2 − 4

)
x2, 1], [1/35

(
a2 − 9

)
x2, 1],

[
(
a2 − 16

)
x2

63 , 1], [
(
a2 − 25

)
x2

99 , 1], [
(
a2 − 36

)
x2

143 , 1]]

pnum14 := [0, [], [x
2 (a− k) (a+ k)

(2 k − 1) (2 k + 1)]]

rec14 := searchCorrRec (deq14 , Y (x) , H (k) , pnum14 , 1)

rec14 := [[H (0) =
(
a2 − 1

)
x2, H (1) =

(
5/9 a2 − 4/9− 1/9 a4

)
x4,

H (2) =
(
− 4

25 + 49 a2

225 + a6

225 −
14 a4

225

)
x6,

H (3) =
(
− a8

11025 −
64

1225 + 2 a6

735 −
13 a4

525 + 164 a2

2205

)
x8], H (k + 4) = H (k + 3)

+x2 (a+ 4 + k) (a− 4− k)
(
2 a2x2 − 2 k2x2 − 14 kx2 + 8 k2 − 23x2 + 56 k + 90

)
H (k + 2)

(2 k + 7) (2 k + 5) (2 k + 9)2

+ (a+ 3 + k) (a− 3− k) (a+ 4 + k) (a− 4− k)x4H (k + 1)
(2 k + 9) (2 k + 5) (2 k + 7)2

−x
8 (a+ 3 + k) (a− 3− k) (a+ 4 + k) (a− 4− k) (a+ k + 2)2 (a− k − 2)2H (k)

(2 k + 9) (2 k + 7)2 (2 k + 3)2 (2 k + 5)3 ]

checkValIncrease (op (2, rec14 ) , H (k) , op (1, rec14 ) , x)
checkValIncrease: found hypergeometric term solution with increasing valuation

1/4 x
2π
(
a2 − 1

) (
1/4x2)k Γ (a+ k + 2) Γ (k − a+ 2)

Γ (a+ 2) Γ (−a+ 2) (Γ (k + 3/2))2

H (k + 1) = −x
2 (a− k − 2) (a+ k + 2)H (k)

(2 k + 3)2

A.6.5. Examples from Section 3.2.5

x*(AiryAi’/AiryAi)(1/x^2)

deq15 := searchODE
(
xAi(1)(x−2)

Ai(x−2) , Y (x)
)

deq15 :=
( d

dxY (x)
)
x4 − Y (x)x3 − 2 (Y (x))2 + 2 = 0

pnum15 := assuming
(

[guessCfracFromExpr
(
xAi(1)(x−2)

Ai(x−2) , a (k, x)
)

], [0 ≤ x]
)

guessCfracFromExpr: guess based on initial series terms
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−1− 1/4x3 + 5x6

32 −
15x9

64 + 1105x12

2048 − 1695x15

1024 + 414125x18

65536

− 59025x21

2048 + 1282031525x24

8388608 − 242183775x27

262144

+ 1683480621875x30

268435456 − 198147676875x33

4194304 + 6718940277925125x36

17179869184

− 59217351295125x39

16777216 + 18962375127249928125x42

549755813888

− 97404235669134375x45

268435456 + 575440151532675686278125x48

140737488355328

− 844097335215098919375x51

17179869184 + 2824650747089425586152484375x54

4503599627370496

− 2329896471102350138203125x57

274877906944 +O
(
x60
)

guessCfracFromExpr: corresponding finite C-fraction

[−1, [−1/4x3, 1], [5/8x3, 1], [7x
3

8 , 1], [11x3

8 , 1],

[13x3

8 , 1], [17x3

8 , 1], [19x3

8 , 1], [23x3

8 , 1], [25x3

8 , 1],

[29x3

8 , 1], [31x3

8 , 1], [35x3

8 , 1], [37x3

8 , 1], [41x3

8 , 1],

[43x3

8 , 1], [47x3

8 , 1], [49x3

8 , 1], [53x3

8 , 1], [55x3

8 , 1]]

pnum15 := [−1, [−1/4x3], [1/8x3 (6 k − 5) , 1/8x3 (6 k − 1)]]

rec15 := searchCorrRec (deq15 , Y (x) , H (k) , pnum15 , 1)

rec15 := eval (subs (H = F, rec15 ))

checkValIncrease (op (2, rec15 ) , H (k) , op (1, rec15 ) , x)
checkValIncrease: found hypergeometric term solution with increasing valuation

3 x
3Γ (k + 5/6) Γ (k + 7/6)

π

(
9x6

16

)k

H (k + 1) = x6 (6 k + 7) (6 k + 5)H (k)
64

A.6.6. Examples from Section 3.2.6

2/(exp(x)+1)

deq16 := searchODE
(
2 (ex + 1)−1 , Y (x)

)
deq16 := − (Y (x))2 + 2 d

dxY (x) + 2Y (x) = 0

pnum16 := guessCfracFromExpr
(
2 (ex + 1)−1 , a (k, x)

)
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guessCfracFromExpr: guess based on initial series terms

1− x/2 + 1/24x3 − x5

240 + 17x7

40320 −
31x9

725760 + 691x11

159667200

− 5461x13

12454041600 + 929569x15

20922789888000 −
3202291x17

711374856192000

+ 221930581x19

486580401635328000 −
4722116521x21

102181884343418880000

+ 56963745931x23

12165654935945871360000 −
14717667114151x25

31022420086661971968000000

+ 2093660879252671x27

43555477801673408643072000000 −
86125672563201181x29

17683523987479403909087232000000
+O

(
x30
)

guessCfracFromExpr: corresponding finite C-fraction

[1, [−x/2, 1], [1/12x2, 1], [x
2

60 , 1], [ x
2

140 , 1], [ x
2

252 , 1],

[ x
2

396 , 1], [ x
2

572 , 1], [ x
2

780 , 1], [ x2

1020 , 1], [ x2

1292 , 1],

[ x2

1596 , 1], [ x2

1932 , 1], [ x2

2300 , 1], [ x2

2700 , 1], [ x2

3132 , 1]]

pnum16 := [1, [−x/2], [1/4 x2

(2 k − 1) (2 k − 3) ]]

rec16 := searchCorrRec (deq16 , Y (x) , H (k) , pnum16 , 1)

rec16 := [[H (0) = 1, H (1) = −1/4x2, H (2) = x4

144 , H (3) = − x6

14400], H (k + 4) = H (k + 3)

+ 1/8 x
2 (16 k2 + x2 + 80 k + 84

)
H (k + 2)

(2 k + 5) (2 k + 3) (2 k + 7)2 + 1/16 x4H (k + 1)
(2 k + 7) (2 k + 3) (2 k + 5)2

− x8H (k)
(512 k + 1792) (2 k + 5)2 (2 k + 1)2 (2 k + 3)3 ]

checkValIncrease (op (2, rec16 ) , H (k) , op (1, rec16 ) , x)
checkValIncrease: found hypergeometric term solution with increasing valuation

π
(
−1/16x2)k

(Γ (k + 1/2))2

H (k + 1) = −1/4 x2H (k)
(2 k + 1)2

2*exp(x)/(exp(x)+1)
deq17 := searchODE

(
2 ex

ex+1 , Y (x)
)

deq17 := (Y (x))2 + 2 d
dxY (x)− 2Y (x) = 0

pnum17 := guessCfracFromExpr
(
2 ex

ex+1 , a (k, x)
)
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guessCfracFromExpr: guess based on initial series terms

1 + x/2− 1/24x3 + x5

240 −
17x7

40320 + 31x9

725760 −
691x11

159667200

+ 5461x13

12454041600 −
929569x15

20922789888000 + 3202291x17

711374856192000

− 221930581x19

486580401635328000 + 4722116521x21

102181884343418880000

− 56963745931x23

12165654935945871360000 + 14717667114151x25

31022420086661971968000000

− 2093660879252671x27

43555477801673408643072000000 + 86125672563201181x29

17683523987479403909087232000000
+O

(
x30
)

guessCfracFromExpr: corresponding finite C-fraction

[1, [x/2, 1], [1/12x2, 1], [x
2

60 , 1], [ x
2

140 , 1], [ x
2

252 , 1],

[ x
2

396 , 1], [ x
2

572 , 1], [ x
2

780 , 1], [ x2

1020 , 1], [ x2

1292 , 1],

[ x2

1596 , 1], [ x2

1932 , 1], [ x2

2300 , 1], [ x2

2700 , 1], [ x2

3132 , 1]]

pnum17 := [1, [x/2], [1/4 x2

(2 k − 1) (2 k − 3) ]]

rec17 := searchCorrRec (deq17 , Y (x) , H (k) , pnum17 , 1)

rec17 := [[H (0) = −1, H (1) = 1/4x2, H (2) = − x4

144 , H (3) = x6

14400], H (k + 4) = H (k + 3)

+1/8 x
2 (16 k2 + x2 + 80 k + 84

)
H (k + 2)

(2 k + 5) (2 k + 3) (2 k + 7)2 + 1/16 x4H (k + 1)
(2 k + 7) (2 k + 3) (2 k + 5)2

− x8H (k)
(512 k + 1792) (2 k + 5)2 (2 k + 1)2 (2 k + 3)3 ]

checkValIncrease (op (2, rec17 ) , H (k) , op (1, rec17 ) , x)
checkValIncrease: found hypergeometric term solution with increasing valuation

−π
(
−1/16x2)k

(Γ (k + 1/2))2

H (k + 1) = −1/4 x2H (k)
(2 k + 1)2

A.6.7. Examples from Section 3.3.1
searchODE ((sin (x))n , Y (x) , explicit = false)

n2 (Y (x))2 +
(

d2

dx2Y (x)
)
Y (x)n+ (−n+ 1)

( d
dxY (x)

)2
= 0
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searchODE ((cos (x))n , Y (x) , explicit = false)

n2 (Y (x))2 +
(

d2

dx2Y (x)
)
Y (x)n+ (−n+ 1)

( d
dxY (x)

)2
= 0

searchODE ((sin (x))n + (cos (x))n , Y (x) , explicit = false)

(
n4 − 4n3 + 4n2

)
(Y (x))2 +

(
n3 − 5n2 + 6n

)( d2

dx2Y (x)
)
Y (x)

+
(
−n3 + 7n2 − 10n+ 4

)( d
dxY (x)

)2
+ (n− 1)

(
d3

dx3Y (x)
)

d
dxY (x)

+ (−n+ 2)
(

d2

dx2Y (x)
)2

= 0

searchODE ((sin (x))n − (cos (x))n , Y (x) , explicit = false)

(
n4 − 4n3 + 4n2

)
(Y (x))2 +

(
n3 − 5n2 + 6n

)( d2

dx2Y (x)
)
Y (x)

+
(
−n3 + 7n2 − 10n+ 4

)( d
dxY (x)

)2
+ (n− 1)

(
d3

dx3Y (x)
)

d
dxY (x)

+ (−n+ 2)
(

d2

dx2Y (x)
)2

= 0

searchODE ((tan (x))n , Y (x) , explicit = false)

(
−n2 + 1

)( d
dxY (x)

)4
− 4

( d
dxY (x)

)2
(Y (x))2 n2 + 2

(
d2

dx2Y (x)
)( d

dxY (x)
)2
Y (x)n2

−
(

d2

dx2Y (x)
)2

(Y (x))2 n2 = 0

searchODE ((cot (x))n , Y (x) , explicit = false)

(
−n2 + 1

)( d
dxY (x)

)4
− 4

( d
dxY (x)

)2
(Y (x))2 n2 + 2

(
d2

dx2Y (x)
)( d

dxY (x)
)2
Y (x)n2

−
(

d2

dx2Y (x)
)2

(Y (x))2 n2 = 0

searchODE ((sec (x))n , Y (x) , explicit = false)

−n2 (Y (x))2 +
(

d2

dx2Y (x)
)
Y (x)n+ (−n− 1)

( d
dxY (x)

)2
= 0

searchODE
((

xext

−1+ex

)n
, Y (x) , explicit = false

)
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(
−n2t2x+ n2tx− 2n2t+ n2

)
(Y (x))2 + (2ntx− nx+ 2n)

( d
dxY (x)

)
Y (x)

+
(

d2

dx2Y (x)
)
Y (x)nx+ (−nx− x)

( d
dxY (x)

)2
= 0

searchODE
((

2 ext

ex+1

)n
, Y (x) , explicit = false

)
(
−n2t2 + n2t

)
(Y (x))2 + (2nt− n)

( d
dxY (x)

)
Y (x) +

(
d2

dx2Y (x)
)
Y (x)n

+ (−n− 1)
( d

dxY (x)
)2

= 0

A.6.8. Examples from Section 3.4

x*sqrt(-x^2+1)/arccos(sqrt(-x^2+1))-1
A continued fraction representation for arccos(x) can be obtained by re-
arranging the result and substituting x = sqrt(1-z^2).
Problems: The differential equation is singular in x=0, so uniqueness of the
power series solution is not assured. Checking for the increase in valuation
of H(k) does not terminate in a reasonable timeframe, though looking at
the initial values indicates it is indeed increasing.

deq18 := searchODE
(

x
√
−x2+1

arccos(√−x2+1) , Y (x)
)

deq18 :=
(
x6 − 2x4 + x2

) d2

dx2Y (x)− 2 (Y (x))3 +
(
4x4 − 4x2 + 2

)
Y (x)

+
(
−3x5 + 5x3 − 2x

) d
dxY (x) = 0

pnum18 := assuming
(
[guessCfracFromExpr

(
x
√
−x2+1

arccos(√−x2+1) , a (k, x) , lbound = 4,

stepsize = 2
)
], [0 < Re (x)]

)
guessCfracFromExpr: guess based on initial series terms

1− 2/3x2 − 4x4

45 −
8x6

189 −
368x8

14175 −
8416x10

467775 −
8562368x12

638512875

− 20097152x14

1915538625 −
4151058176x16

488462349375 −
1377000432128x18

194896477400625

− 27538553375744x20

4593988395871875 −
11470339948890112x22

2218896395206115625

− 13683206209614761984x24

3028793579456347828125 −
7255218559282143232x26

1817276147673808696875
+O

(
x28
)

guessCfracFromExpr: corresponding finite C-fraction
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[1, [−2/3x2, 1], [−2/15x2, 1], [−12x2

35 , 1], [−4x2

21 , 1],

[−10x2

33 , 1], [−30x2

143 , 1], [−56x2

195 , 1], [−56x2

255 , 1],

[−90x2

323 , 1], [−30x2

133 , 1], [−44x2

161 , 1], [−132x2

575 , 1],

[−182x2

675 , 1]]

pnum18 := [1, [], [−2 kx2 (2 k − 1)
(4 k − 1) (4 k − 3) ,−2 kx2 (2 k − 1)

(4 k − 1) (4 k + 1)]]

op(1, rec18),map (term→ ldegree (rhs (term)) , op (1, rec18))

[2, 6, 10, 14, 18, 22, 26, 30]
-(1/2)*x*sin(x)/(cos(x)-1)-1
Problems: The differential equation is singular in x=0, so uniqueness of the
power series solution is not assured. Checking for the increase in valuation
of H(k) does not terminate in a reasonable timeframe, though looking at
the initial values indicates it is indeed increasing.

deq19 := searchODE
(
−1/2 x sin(x)

cos(x)−1 − 1, Y (x)
)

deq19 :=
(

d2

dx2Y (x)
)
x2 + 4 (Y (x))3 + 6 (Y (x))2 + 6

( d
dxY (x)

)
Y (x)x

+
(
x2 + 2

)
Y (x) + 4

( d
dxY (x)

)
x+ x2 = 0

pnum19 := guessCfracFromExpr
(
−1/2 x sin(x)

cos(x)−1 − 1, a (k, x) , lbound = 5, stepsize = 1
)

guessCfracFromExpr: guess based on initial series terms

−1/12x2 − x4

720 −
x6

30240 −
x8

1209600 −
x10

47900160 +O
(
x12
)

guessCfracFromExpr: corresponding finite C-fraction

[0, [−1/12x2, 1], [−x
2

60 , 1], [− x2

140 , 1], [− x2

252 , 1], [− x2

396 , 1]]

pnum19 := [0, [], [−1/4 x2

(2 k − 1) (2 k + 1)]]

rec19 := searchCorrRec (deq19 , Y (x) , H (k) , pnum19 , 2)
map (term→ ldegree (rhs (term)) , op (1, rec19))

[2, 4, 6, 8, 10, 12, 14, 16]
-(1/2)*x*sinh(x)/(cosh(x)-1)-1
Problems: The differential equation is singular in x=0, so uniqueness of the
power series solution is not assured. Checking for the increase in valuation
of H(k) does not terminate in a reasonable timeframe, though looking at
the initial values indicates it is indeed increasing.
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deq20 := searchODE
(
1/2 sinh(x)x

cosh(x)−1 − 1, Y (x)
)

deq20 :=
(

d2

dx2Y (x)
)
x2 + 4 (Y (x))3 + 6 (Y (x))2 + 6

( d
dxY (x)

)
Y (x)x

+
(
−x2 + 2

)
Y (x) + 4

( d
dxY (x)

)
x− x2 = 0

pnum20 := guessCfracFromExpr
(
1/2 sinh(x)x

cosh(x)−1 − 1, a (k, x) , lbound = 5, stepsize = 1
)

guessCfracFromExpr: guess based on initial series terms

1/12x2 − x4

720 + x6

30240 −
x8

1209600 + x10

47900160 +O
(
x12
)

guessCfracFromExpr: corresponding finite C-fraction

[0, [1/12x2, 1], [x
2

60 , 1], [ x
2

140 , 1], [ x
2

252 , 1], [ x
2

396 , 1]]

pnum20 := [0, [], [1/4 x2

(2 k − 1) (2 k + 1)]]

rec20 := searchCorrRec (deq20 , Y (x) , H (k) , pnum20 , 2)
map (term→ ldegree (rhs (term)) , op (1, rec20))

[2, 4, 6, 8, 10, 12, 14, 16]
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