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Chapter 0

Introduction

0.1 Historical Introduction
The study of trigonometric series has started at the beginning of the nineteenth century. Joseph
Fourier made the important observation that every integrable function of a closed interval can be
decomposed into the sum of sine and cosine functions. This technique to develop a function into
a trigonometric series was published for the first time in 1822 by Joseph Fourier in [Fou22]. The
resulting series is nowadays called Fourier series.

Definition 0.1
The real and complex Fourier series of an integrable function f : [a, b]→ ℝ are the expressions

ℱ(f)(t) :=
a0
2

+
∞∑
n=1

an cos(n! t) +
∞∑
n=1

bn sin(n! t) =
∞∑

n=−∞

cn e
in!t , (1)

where ! = 2�
b−a is the circular frequency and the corresponding real Fourier coefficients are given

by

an =
2

b− a

∫ b

a

f(t) cos(n!t)dt ∈ ℝ , (2)

bn =
2

b− a

∫ b

a

f(t) sin(n!t)dt ∈ ℝ , (3)

whereas the complex Fourier coefficients are defined as

cn =
1

b− a

∫ b

a

f(t)e−in!tdt ∈ ℂ . (4)

We remark that a finite sum of the form (1) is called a Fourier polynomial. Of course, by definition
we have the relations c0 = a0

2
as well as

cn =
1

2
(an − i bn) and c−n =

1

2
(an + i bn) (n ∈ ℤ≧1)
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which—solving for an and bn—gives

an = cn + c−n and bn = i(cn − c−n) (n ∈ ℤ≧1) .

All above formulas are also valid if f : [a, b] → ℂ is a complex function. However if the input
function is real, then we get moreover cn = 1

2
(an + ibn) = c−n, which—solving for an and

bn—gives
an = cn + cn and bn = i(cn − cn) (n ∈ ℤ≧1) .

Under the additional assumption that f is continuous in (a, b), it turns out that pointwiseℱ(f)(t) =
f(t) for all t ∈ (a, b).1 As general references for elementary properties of Fourier series see e.g.
[BSM71],[BSMM98], [Sto99], [CB78] and [Stu74].

Note that we will not study any convergence issue and therefore we mention that the series (1)
is only the series which corresponds to f(t). The problem of convergence of Fourier series has
been investigated by many authors and one of the first is Lejeune-Dirichlet in [Dir29]. Since we
will need in some of our algorithms to compute successive derivatives, all the functions involved
in this thesis are assumed to be defined and continuous on an interval I = [a, b] and may be at
least N times continuously differentiable on I for suitable N ≥ 0. Furthermore the considered
function f can be periodically continued to ℝ with period T = b − a. Let’s denote the resulting
periodic function F : ℝ → ℝ. By definition, the function F is continuous in ℝ besides the points
a+ k T (k ∈ ℤ) which are (possible) discontinuities of step size Δ := f(a)− f(b).

Figure 0.1 Figure 0.2

The sawtooth wave of Figure 0.1 is given by f : [−�, �] → ℝ, f(t) = t, and yields the Fourier
series

ℱ(f)(t) =
∞∑
n=1

2
(−1)n+1

n
sin(nt)

and the partial sum of order 10 of the Fourier series
10∑
n=1

2 (−1)n+1

n
sin(nt) is represented by Fig-

ure 0.2. So we get for the function f(t) = t the simple formula an = 2 (−1)n+1

n
and bn = 0.

1One can furthermore prove that at the points of discontinuity one has ℱ(f)(a+ kT ) = 1
2 (f(a) + f(b)) (k ∈ ℤ).
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Since Fourier’s time, many different approaches to understand the concept of Fourier series have
been discovered, each of which emphasizes different aspects of the topic. Some of the more pow-
erful and elegant approaches are based on mathematical ideas and tools that were not available at
the time Fourier completed his original work. Although the original motivation was to solve the
heat equation in a metal plate, it later became obvious that the same technique could be applied to
a wide array of mathematical and physical problems and has many applications in electrical engi-
neering, vibration analysis, acoustics, optics, signal treatment, image processing, etc . . . . Despite
that increasing demand of those series, the method used until now to compute them via computer
algebra systems (CAS) is essentially based on the same principle as Fourier, i.e. using the defini-
tions (2)–(4). Unfortunately this technique is not successful for many functions. Although numeric
values of the Fourier coefficients might be available, symbolic values are often not accessible.

Modern CAS like Maple or Mathematica can compute such integrals in many cases for a given
n ∈ ℤ. However if one is interested in the Fourier coefficients for all n ∈ ℤ, then n is considered
as a given symbolic variable and such integrals can be computed only in few cases.

In general the computation process used by those CAS is as follows: First the corresponding
indefinite integral is computed. Secondly, the fundamental theorem of calculus is used to compute
the foresaid definite integral. If the first step is successful, then we get in this way a formula for the
searched Fourier coefficients. However the success of this first step depends on very complicated
algorithms, e.g. the Risch algorithm for elementary integrability [Bro96]. This computation can
sometimes be very time consuming although it happens that no elementary anti-derivative for the
considered function exists. In those cases there is typically no chance to get the result despite
that long computation time. We remark that this case can also happen even if a formula for the
searched Fourier coefficients can be found. Thus this method of computing that definite integral is
not optimal.

0.2 Summary of the Main Results

0.2.1 Computation of Fourier Series

The computation of the Fourier coefficients of a function f using formulas (2)–(4) is in some cases
very complicated, because of the integer parameter n in those formulas. We introduce in this thesis
an algorithmic approach to compute those Fourier coefficients, involving differential equations of
a particular form, and recurrence equations. This approach extrapolates the computation of the
Fourier series for functions whose computation of Fourier coefficients via definitions (2)–(4) is out
of reach for current CAS. Consider for example the function given as

f(t) = cos(5t) ln(2 + cos(5t)) .

whose graph is



4 Chapter 0. Introduction

Figure 0.3: Composition of logarithm with trigonometric functions

Using the algorithms presented in this thesis we get that its Fourier series on the interval I =
[0, 2�

5
] are

f(t)=2(2−
√

3)+(2
√

3−7

2
+ln(2+

√
3)−ln(2)) cos(5t)+

∞∑
n=2

2(−2 +
√

3)n(
√

3 + 2n)

(n+ 1)(n− 1)
cos(5nt) .

Note that this algorithmic approach is applicable to a rich family of functions denoted trigonomet-
ric holonomic functions, which is defined and characterized in the second chapter.
We would also like to mention that most of the expansions in Fourier series provided in [Sto99]
and [BSMM08] are also found with the algorithmic method described in this thesis.

0.2.2 Factorization of Holonomic Recurrence Operators
The search for hypergeometric solutions of holonomic recurrence equations is related to the search
of first order right factors of holonomic recurrence operators, more generally to the factorization
of those operators. Marko Petkovšek [Pet92], Mark van Hoeij [Hoe98] and Peter Horn [Hor08]
investigated that issue and brought important contributions to the factorization of such operators.
We give in this thesis another approach to factorize them by searching for a right factor of a given
holonomic recurrence operator, which returns in some cases a lowest order right factor, using this
time Fourier coefficients.

0.3 Outline of the Dissertation
In the first chapter we derive in Theorem 1.1 a connection between the complex Fourier coefficients
of a function f and those of its first derivative. This connection yields in Theorem 1.8 a more gen-
eral statement, this time between the complex Fourier coefficients of f and those of its successive
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derivatives, from which an explicit formula for the complex Fourier coefficients of polynomials
involving successive derivatives is deduced. We give in Theorem 1.7 an explicit formula for the
computation of the real Fourier coefficients of powers. Theorem 1.8 will be also used in the third
chapter in Theorem 3.9 to convert the differential equations obtained in the second chapter into
recurrence equations.

In the second chapter we introduce the set of trigonometric holonomic functions and we give
some of its characteristics and properties. This family contains not only some elementary func-
tions, but also many functions whose Fourier coefficients cannot be successfully computed in the
classical way. We give some example types of trigonometric holonomic functions. Algorithms 2.1,
2.2 and 2.3 for the computation of the trigonometric holonomic differential equations that those
functions satisfy are presented.

In the third chapter we present Algorithm 3.1 (THDEtoRE) and Algorithm 3.8 (ExpTHDEtoRE)
for the conversion of trigonometric holonomic differential equations into holonomic recurrence
equations for their Fourier coefficients. We focus on the rational trigonometric functions, by giv-
ing in Algorithm 3.4 (EfficientPL) a way to detect a recurrence equation of low order satisfied by
the complex Fourier coefficients of the considered function. The rest of the chapter is devoted
to the computation of the complex Fourier coefficients of the foresaid trigonometric holonomic
functions. Algorithms 3.2, 3.3, 3.5 and 3.9 give step by step the way to achieve that purpose.

The fourth chapter is devoted to the factorization of holonomic recurrence operators. We
present Algorithm 4.1 to convert a holonomic recurrence equation into a differential equation with
side conditions. That algorithm will be involved in Algorithm 4.2, which computes a right factor
of a given holonomic recurrence operator.

The use of Parseval’s identity in Fourier series is well-known as an efficient tool for the com-
putation of the sum of numeric series. The Fourier series of f being defined as in formulas 1–4,
we recall that Parseval’s identity is given as

∞∑
n=−∞

∣cn∣2 =
1

T

∫ T

0

∣f(t)∣2dt = ∥f(t)∥2 (5)

or

∥f(t)∥2 =
a20
4

+
1

2

∞∑
n=1

(a2n + b2n) . (6)

Generally a finite integral is used to compute a sum. For example if f(t) = t then we get

a0 = �, an = 0, bn =
−1

n
and

∫ 2�

0

t2dt =
4�2

3
.

Using equation (6) one deduces the sum
∞∑
n=1

1

n2
=
�2

6
.

In the fifth chapter we emphasize on the opposite way, i.e. we use the computation of infinite
sums to deduce the computation of finite integrals. Algorithm 5.1 outlines that technique to com-
pute definite integrals via Parseval’s identity using the algorithmic approach of the computation of
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Fourier series. Section 5.2 focusses on this approach to deduce the solving of boundary value prob-
lems involving initial conditions which are trigonometric holonomic functions and whose Fourier
coefficients can not be successfully computed via the classical way.

The appendix is devoted to the computation of the Fourier series of some specific trigonometric
holonomic functions. The examples are chosen such that one may remark the difficulties which
may be encountered during the computation of Fourier coefficients according to that algorithmic
approach. In some instances one gets an explicit solution for some given input, in other cases
one gets only a recurrence equation and some initial values. In the worst case only the recurrence
equation satisfied by the Fourier coefficients of the given function can be found, whereas the initial
values are not accessible in symbolic form. Nevertheless the latter is an important property of the
Fourier coefficients considered.
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Chapter 1

Some Particular Cases

In this chapter we derive an identity for the Fourier coefficients of a differentiable function
f(t) in terms of the Fourier coefficients of its derivative f ′(t). This yields an algorithm to com-
pute the Fourier coefficients of f(t) whenever the Fourier coefficients of f ′(t) are known, and
vice versa. Furthermore this generates an iterative scheme for N times differentiable functions
complementing the direct computation of Fourier coefficients via the defining integrals which can
be also treated automatically in certain cases, see [Wer98] using Maple [Mon03] and in [Den00]
using Mathematica [Wol99]. As direct consequence of that scheme we deduce an explicit formula
for the computation of the complex Fourier coefficients in the case of polynomials. In the third
chapter we will use that scheme to present an algorithm for the computation of the complex Fourier
coefficients of the set of trigonometric holonomic functions which will be introduced in the second
chapter. We would like to mention that [KNC06] is a part of this chapter.

1.1 Notation

Let f : [a, b] → ℝ be a continuous function in the interval I = [a, b] which is continuously
differentiable in (a, b). Then f ′ is continuous and has a Fourier series itself, for which we use the
following notations

ℱ(f ′)(t) =
a′0
2

+
∞∑
n=1

a′n cos(n! t) +
∞∑
n=1

b′n sin(n! t) =
∞∑

n=−∞

c′n e
in!t ,

i.e., the Fourier coefficients of the derivative function are denoted by dashes. If f ∈ CN [a, b], then
we can continue taking derivatives, and for the kth derivative (k ≦ N ) we use the notation

ℱ(f (k))(t) =
a
(k)
0

2
+
∞∑
n=1

a(k)n cos(n! t) +
∞∑
n=1

b(k)n sin(n! t) =
∞∑

n=−∞

c(k)n ein!t .
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1.2 An Identity for Fourier Coefficients
Let us recall that the complex Fourier coefficients cn of a continuous function f on an interval [a, b]
are given by the relation

cn =
1

b− a

∫ b

a

f(t)e−in
2�
b−a tdt =

1

T

∫ a+T

a

f(t)e−in!tdt ,

where b−a = T = 2�
!

. Integrating by parts, using u(t) = f(t), v′(t) = e−in!t, hence u′(t) = f ′(t)
and v(t) = 1

−in!e
−in!t, we get

cn =

[
f(t)e−in!t

−in!T

]a+T
a

+
1

T

∫ a+T

a

f ′(t)e−in!t

in!
dt

=
f(a+ T )e−in!(a+T ) − f(a)e−in!a

−in!T
+

1

in!

(
1

T

∫ a+T

a

f ′(t)e−in!tdt

)
=

f(a+ T )− f(a)

−2�in
e−in!a − i

n!
c′n .

Hence we have derived the identity

cn +
i

n!
c′n =

i

2�n
(f(b)− f(a))e−in!a . (1.1)

As we shall discuss later, this easy-to-derive relation has interesting applications, and can be used
to compute the Fourier coefficients recursively under certain conditions.

Next, we would like to rewrite the above equation in terms of the real Fourier coefficients an
and bn. Using the relation cn = 1

2
(an − ibn), we get from (1.1)

an − ibn +
i

n!
(a′n − ib′n) =

i

�n
(f(b)− f(a))e−in!a ,

and separating the real and imaginary parts, we conclude that

an +
1

n!
b′n =

1

�n
(f(b)− f(a)) sin(n!a) and

−bn +
1

n!
a′n =

1

�n
(f(b)− f(a)) cos(n!a) .

(1.2)

Finally, we summarize the above identities in the following

Theorem 1.1 (Fourier coefficients and derivatives )
Let f : [a, b] → ℝ be continuous in [a, b] and continuously differentiable in (a, b). Then the real
and complex Fourier coefficients of f(t) and of f ′(t) satisfy the identities

cn +
i

n!
c′n =

i

2�n
(f(b)− f(a))e−in!a (n ∈ ℤ, n ∕= 0)
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and
an +

1

n!
b′n =

1

�n
(f(b)− f(a)) sin(n!a) and

−bn +
1

n!
a′n =

1

�n
(f(b)− f(a)) cos(n!a) (n ∈ ℤ≧1) ,

respectively. In particular: If a = 0, i.e. if the interval is I = [0, T ], then

cn + i
T

2�n
c′n =

i

2�n
(f(T )− f(0))

and
an +

T

2�n
b′n = 0 and

−bn +
T

2�n
a′n =

1

�n
(f(T )− f(0)) .

(1.3)

Furthermore, if the interval is symmetric w.r.t the origin, i.e. if I = [−T
2 ,

T
2 ], then

cn + i
T

2�n
c′n =

i

2�n
(f(T

2
)− f(−T

2
))(−1)n

and
an +

T

2�n
b′n = 0 and

−bn +
T

2�n
a′n =

(−1)n

�n
(f(T

2
)− f(−T

2
)) .

(1.4)

Using these identities, one can easily compute the Fourier coefficients of f ′(t), if those of f(t) are known,
and vice versa.

1.3 Iterative Computation of Fourier Coefficients
Theorem 1.1 can be used to compute the Fourier coefficients iteratively. We give some examples
for this approach.

Example 1.2 (Fourier coefficients of powers)
Let f(t) = tm for some m ∈ ℤ≧1. First, we consider the case I = [0, T ]. For m = 1 and m = 2,
the corresponding periodic functions F are represented in Figure 1.1. Note that the periodic linear
function is called a sawtooth function.

Figure 1.1: The linear and square functions for T = 1

Whereas in these cases, it is easy to compute the Fourier coefficients directly from the defining
formulas, namely for f(t) = t:
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an =
2

T

∫ T

0
t cos

(
2�nt

T

)
dt = 0 ,

bn =
2

T

∫ T

0
t sin

(
2�nt

T

)
dt = − T

�n
,

and for f(t) = t2:

an =
2

T

∫ T

0
t2 cos

(
2�nt

T

)
dt =

T 2

�2n2
,

bn =
2

T

∫ T

0
t2 sin

(
2�nt

T

)
dt = −T

2

�n
,

we would like to use Theorem 1.1 instead. Let f(t) = t. Then the derivative f ′(t) = 1 obviously has
Fourier coefficients a′0 = 2 and a′n = 0, b′n = 0 (n ∈ ℤ≧1). Therefore we get from (1.3)

an +
T

2�n
b′n = 0 ,

hence an = 0 and

−bn +
T

2�n
a′n =

1

�n
(f(T )− f(0)) = T

�n
,

hence bn = − T
�n .

In the next step, we set f(t) = t2. Hence f ′(t) = 2t with a′n = 0 and b′n = −2T
�n by our previous

computation. Therefore, using (1.3), we get

an +
T

2�n
b′n = an −

T

2�n

2T

�n
= an −

T 2

�2n2
= 0 ,

hence an = T 2

�2n2 and

−bn +
T

2�n
a′n = −bn =

1

�n
(f(T )− f(0)) = T 2

�n
,

hence bn = −T 2

�n .
Obviously, this strategy can be used iteratively (or recursively) to compute the Fourier co-

efficients of every power f(t) = tm, and by linearity, of every polynomial. This algorithm is
considered in more generality in the next section.

Next, we consider the symmetric case I = [−T
2
, T
2
]. The corresponding functions for m = 1

and m = 2 are drawn in Figure 1.2.

Figure 1.2: The symmetric linear and square functions (f(t) = t and f(t) = 4t2) for T = 1
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Again one can compute the Fourier coefficients easily from their definition. For f(t) = t:

an =
2

T

∫ T/2

−T/2
t cos

(
2�nt

T

)
dt = 0 ,

bn =
2

T

∫ T/2

−T/2
t sin

(
2�nt

T

)
dt = −(−1)n T

�n
,

and for f(t) = t2:

an =
2

T

∫ T/2

−T/2
t2 cos

(
2�nt

T

)
dt =

(−1)n T 2

�2n2
,

bn =
2

T

∫ T/2

−T/2
t2 sin

(
2�nt

T

)
dt = 0 .

However, these results are contained in Formulas (1.4) and can be also computed iteratively.

Example 1.3 (Fourier coefficients including special functions)
Let f(t) = arctan t. Since f(t) is odd, it is clear that an = 0. However the coefficients bn cannot
be easily computed by the defining formula:

bn =
2

T

∫ T/2

−T/2
arctan t sin

(
2�nt

T

)
dt .

Note that Maple fails to compute bn even if T is given explicitly.
However, we can compute bn in terms of special functions using (1.4). Notice that for f(t) =

arctan t, we have f ′(t) = 1
1+t2

, a rational function. For the even function f ′(t) we get b′n = 0, and
for a′n we derive using Maple

> anprime:=2/T*int(1/(1+tˆ2)*cos(2*Pi*n*t/T),t=-T/2..T/2);

anprime := 2(−2 Si(
n� (T + 2 I)

T
) sinh(

n�

T
) cosh(

n�

T
) + Ci(−n� (T + 2 I)

T
) cosh(

n�

T
)2 I

− 1

2
I Ci(−n� (T + 2 I)

T
)− 2 Si(

n� (T − 2 I)

T
) sinh(

n�

T
) cosh(

n�

T
)

− Ci(−n� (T − 2 I)

T
) cosh(

n�

T
)2 I +

1

2
I Ci(−n� (T − 2 I)

T
)

− Ci(
n� (T − 2 I)

T
) cosh(

n�

T
)2 I +

1

2
I Ci(

n� (T − 2 I)

T
)

+ Ci(
n� (T + 2 I)

T
) cosh(

n�

T
)2 I − 1

2
I Ci(

n� (T + 2 I)

T
))/T

where

Ci(t) = −
∫ ∞
t

cosx

x
dx =  + ln t+

∫ t

0

cosx− 1

x
dx

( denoting the Euler-Mascheroni constant) and
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Si(t) =

∫ t

0

sinx

x
dx

denote the integral cosine and sine functions, respectively.

Since for f(t) = arctan t we have f(−T/2) = arctan(−T/2) = − arctan(T/2) = −f(T/2) it is
now clear that we get for bn by (1.4)

> f:=arctan(t);

f := arctan(t)

> bn:=T/(2*Pi*n)*anprime-(-1)ˆn/(Pi*n)*2*subs(t=T/2,f);

bn := (−2 Si(
n� (T + 2 I)

T
) sinh(

n�

T
) cosh(

n�

T
) + Ci(−n� (T + 2 I)

T
) cosh(

n�

T
)2 I

− 1

2
I Ci(−n� (T + 2 I)

T
)− 2 Si(

n� (T − 2 I)

T
) sinh(

n�

T
) cosh(

n�

T
)

− Ci(−n� (T − 2 I)

T
) cosh(

n�

T
)2 I +

1

2
I Ci(−n� (T − 2 I)

T
)

− Ci(
n� (T − 2 I)

T
) cosh(

n�

T
)2 I +

1

2
I Ci(

n� (T − 2 I)

T
)

+ Ci(
n� (T + 2 I)

T
) cosh(

n�

T
)2 I − 1

2
I Ci(

n� (T + 2 I)

T
))/(n�)−

2 (−1)n arctan(
T

2
)

n�

It turns out that for this particular example, the direct computation with Maple is not successful, but
Mathematica computes it and gives the above result directly from the defining integral. However,
our theorem gives an algorithmic approach which will lead to further examples that are out of reach
for Maple or Mathematica. Example 1.11 is an illustration of this.

Let us finish this section with the remark that for rational functions the algorithm described can be
used to lower the degree of powers of the denominator polynomial recursively.

1.4 Iterated Derivatives

In this section, we assume that f ∈ CN [0, T ] for some N ∈ ℤ≧1. Then by Theorem 1.1 we
can write down successive identities for successive derivatives of f . Using (1.1), we get for the
complex Fourier coefficients and for n ∈ ℤ, n ∕= 0
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cn + i
T

2�n
c′n =

i

2�n
(f(T )− f(0))

c′n + i
T

2�n
c′′n =

i

2�n
(f ′(T )− f ′(0))

c′′n + i
T

2�n
c(3)n =

i

2�n
(f ′′(T )− f ′′(0))

...

c(N−1)n + i
T

2�n
c(N)
n =

i

2�n
(f (N−1)(T )− f (N−1)(0)) .

In order to manipulate the previous relations easier, let us rewrite them in the following way:

cn + � c′n = �0

c′n + � c′′n = �1

c′′n + � c(3)n = �2

...
c(N−1)n + � c(N)

n = �N−1

with the abbreviations � = i T
2�n

and �k = i
2�n

(f (k)(T )− f (k)(0)).
Then multiplying the kth equation by (−1)k � k and summing up obviously yields a telescoping

sum with the result

cn = �0 − ��1 + � 2�2 − � 3�3 + ⋅ ⋅ ⋅+ (−1)N−1�N−1�N−1 + (−1)N�Nc(N)
n

which finally leads to the following theorem

Theorem 1.4 (Fourier coefficients and iterated derivatives)
For f ∈ CN [0, T ] the following identity for the complex Fourier coefficients is valid (n ∈ ℤ, n ∕=
0):

cn − (−1)N
(
Ti

2�n

)N
c(N)
n =

N−1∑
k=0

(−1)k
(
Ti

2�n

)k
i

2�n
(f (k)(T )− f (k)(0)) . (1.5)

As a consequence, since a polynomial f(t) of degree N satisfies f (N)(t) = constant, and therefore
c
(N)
n = 0 for n ∈ ℤ, n ∕= 0, Theorem 1.4 implies the following corollary

Corollary 1.5 (Fourier coefficients of polynomials )
Let f : [0, T ] → ℝ be a polynomial of degree N . Then the complex Fourier coefficients of f can
be written in the form (n ∈ ℤ, n ∕= 0)
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cn =
N−1∑
k=0

(−1)k
(
Ti

2�n

)k
i

2�n
(f (k)(T )− f (k)(0)) .

Similarly, we can treat the interval I = [−T
2
, T
2
]. In this case, �k = i (−1)

n

2�n
(f (k)(T ) − f (k)(0)),

hence we have

Theorem 1.6 (Fourier coefficients and iterated derivatives in symmetric intervals)
For
f ∈ CN [−T

2
, T
2
] the following identity for the complex Fourier coefficients is valid:

cn − (−1)N
(
Ti

2�n

)N
c(N)
n =

N−1∑
k=0

(−1)k+n
(
Ti

2�n

)k
i

2�n

(
f (k)

(
T

2

)
− f (k)

(
−T

2

))
. (1.6)

In particular: Let f : [−T
2
, T
2
] → ℝ be a polynomial of degree N . Then the complex Fourier

coefficients of f can be written in the form (n ∈ ℤ, n ∕= 0)

cn =
N−1∑
k=0

(−1)k+n
(
Ti

2�n

)k
i

2�n

(
f (k)

(
T

2

)
− f (k)

(
−T

2

))
. (1.7)

Note that the computation of the Fourier coefficients of tm, e.g., using (1.7) is much more
efficient than the computation using the definition. But for polynomials, we can do even more.

1.5 Fourier Coefficients of Polynomials
Although the algorithm of the previous section can be easily used to compute the Fourier coef-
ficients of every polynomial efficiently, in the current section we would like to mention that the
Fourier coefficients of polynomials can be even written down explicitly. By the linearity of the
Fourier coefficients, it is enough to know them for powers f(t) = tm (m ∈ ℤ≧1). In this case, we
have

Theorem 1.7 (Fourier coefficients of powers)
Let f(t) = tm (m ∈ ℤ≧1). The Fourier coefficients in the interval I = [−T

2
, T
2
] are given as

(n ∈ ℤ≧1)

an =

⎧⎨⎩
(
T

2�n

)m
(−1)n

m
2
−1∑

k=0

2m!
(2k+1)!

(n�)2k(−1)
m
2
−1+k if m is even

0 otherwise
(1.8)

and
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bn =

⎧⎨⎩
(
T

2�n

)m
(−1)n+1

m−1
2∑

k=0

2m!
(2k+1)!

(n�)2k(−1)
m−1

2
+k if m is odd

0 otherwise
. (1.9)

Proof: The formulas are obvious consequences of Theorem 1.6.
On the other hand, these formulas can also be obtained more directly from the definition. We would like

to find

an =
2

T

∫ T
2

−T
2

tm cos

(
n
2�

T
t

)
dt .

To do so it is enough to check the antiderivative∫
tm cos (n!t) dt =

1

(n!)m+1
×

⎡⎣1 + (−1)m

2

⎛⎝ m
2∑

k=0

(n!t)2k
m!

(2k)!
(−1)

m
2
+k sin(n!t) +

m
2
−1∑

k=0

(−1)
m+2

2
+k(n!t)2k+1 m!

(2k + 1)!
cos(n!t)

⎞⎠+

+
1− (−1)m

2

m−1
2∑

k=0

(−1)
m−1

2
+k

(
(n!t)2k

m!

(2k)!
cos(n!t) + (n!t)2k+1 m!

(2k + 1)!
sin(n!t)

)⎤⎦
of the integrand tm cos!t by differentiation. Formula (1.8) then follows by the fundamental theorem of
calculus. In a similar fashion the Fourier coefficient bn can be treated. □

We would like to mention that similar formulas can be obtained if the interval is given as
I = [0, T ].

1.6 Efficiency Considerations
Whereas it seems obvious that the formulas (1.8)–(1.9) should yield the fastest computation for
the Fourier coefficients of f(t) = tm whereas (1.7) should be weaker, and the direct computation
using the definition

cn =
1

T

∫ T/2

−T/2
tm exp

(
−int2�

T

)
dt (1.10)

should lead to the longest computation times, reality is a little more complicated. Undoubtedly,
the computation via the definition is the weakest method. Whether (1.7) or (1.8)–(1.9) are faster,
depends on implementation details, however, and the above assumption is true only for small
values of m. If (1.7) is programmed directly as sum, then (1.8)–(1.9) are faster since (1.7) needs
the repeated computation of high order derivatives. On the other hand, if (1.7) is programmed by
computing the high order derivatives iteratively, then this is faster than (1.8)–(1.9) for large m.
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The reason is that the calculation of large factorials m! and (2k+1)! and their gcd computation
in (1.8)–(1.9) is avoided. Detailed timings can be seen in Tables 1.1–1.3.1 The fastest codes for
large m in Maple and Mathematica, respectively, based on (1.7), are given in the appendix.

m = 100 (1.10) (1.7) with Σ (1.7) iteratively (1.8)–(1.9)
Maple 4.88 0.015 0.00 0.00

Mathematica 3.64 0.016 0.015 0.00

Table 1.1: Timings for the computation of cn in [−T
2
, T
2
] for f(t) = t100 with different algorithms

m = 1.000 (1.10) (1.7) with Σ (1.7) iteratively (1.8)–(1.9)
Maple ⋄ 0.859 0.203 0.031

Mathematica 31.80 1.13 0.25 0.06

Table 1.2: Timings for the computation of cn for f(t) = t1.000

m = 10.000 (1.10) (1.7) with Σ (1.7) iteratively (1.8)–(1.9)
Maple ⋄ 143.90 33.13 92.09

Mathematica 157.17 117.02 11.13 39.03

Table 1.3: Timings for the computation of cn for f(t) = t10.000

We note that the relations (1.5) and (1.6) can be summarized in the following theorem:

Theorem 1.8 (Fourier coefficients and iterated derivatives on the interval [a,b])
For f ∈ CN [a, b] and ! = 2�

b−a , the following identity for the complex Fourier coefficients is valid:

cn − (
−i
n!

)Nc(N)
n =

N−1∑
j=0

(−1)j(b− a)j(
i

2n�
)j+1(f (j)(b)− f (j)(a))e−in!a . (1.11)

Remark 1.9
The complex Fourier coefficients of a function f ∈ CN [a, b] and those of its successive derivatives
satisfy the matrix representation

c(P)
n = MP cn + BP, P ≤ N (1.12)

1All timings are in seconds and were done with Maple 12.0 / Mathematica 6.0.3.0 with a PC AMD Athlon(tm) 64
Processor 3200+, 2.21 GHz CPU and 1.00 GB RAM. The iteration is most efficient with Maple using a for loop, and
with Mathematica generating a list tab and using Apply[Plus,tab]. ⋄ indicates that the computation was not
successful within one hour.
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where

MP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

in! 0 ⋅ ⋅ ⋅ ⋅ 0
0 (in!)2 0 ⋅ ⋅ ⋅ ⋅
⋅ 0 (in!)3 0 ⋅ ⋅ ⋅
⋅ ⋅ 0 ⋅ 0 ⋅ ⋅
⋅ ⋅ ⋅ 0 ⋅ 0 ⋅
⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅
0 ⋅ ⋅ ⋅ ⋅ 0 (in!)P

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.13)

with ! = 2�
b−a .

Proof: From the relation (1.11) we deduce that

c(N)
n = (in!)Ncn − (in!)N

N−1∑
j=0

(−1)j(b− a)j( i

2n�
)j+1(f (j)(b)− f (j)(a))e−in!a (1.14)

Writing (1.14) successively for N ranging from 1 to P we get:

c′n = (in!)cn − (in!)
i

2n�
(f(b)− f(a))e−in!a

c′′n = (in!)2cn + (in!)2
(

i

2n�
(f(b)− f(a))− (b− a)( i

2n�
)2(f ′(b)− f ′(a))

)
e−in!a

...

c(P )
n = (in!)P cn − (in!)P

P−1∑
j=0

(−1)j(b− a)j( i

2n�
)j+1(f (j)(b)− f (j)(a))e−in!a

which may be brought into the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c′n
c′′n
c
(3)
n

⋅
⋅
⋅

c
(P )
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

in! 0 ⋅ ⋅ ⋅ ⋅ 0
0 (in!)2 0 ⋅ ⋅ ⋅ ⋅
⋅ 0 (in!)3 0 ⋅ ⋅ ⋅
⋅ ⋅ 0 ⋅ 0 ⋅ ⋅
⋅ ⋅ ⋅ 0 ⋅ 0 ⋅
⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅
0 ⋅ ⋅ ⋅ ⋅ 0 (in!)P

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cn
⋅
⋅
⋅
⋅
⋅
cn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(in!) i
2n� (f(b)− f(a))e

−in!a

(in!)2cn + (in!)2
(

i
2n� (f(b)− f(a))− (b− a)( i

2n� )
2(f ′(b)− f ′(a))

)
e−in!a

⋅
⋅
⋅

(in!)P cn − (in!)P
P−1∑
j=0

(−1)j(b− a)j( i
2n� )

j+1(f (j)(b)− f (j)(a))e−in!a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
which finally leads to the result. □

We can immediately see that (1.11) describes for a given function a relation between cn and c(N)
n . From

this relation we may also deduce by iteration a more general relation between c(p)n and c(q)n for p, q ≤ N .
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Remark 1.10
For many functions, the computations of their Fourier coefficients on an interval [a, b] via definitions (2)–(4)
using current CAS is not successful. However one can compute those of one of their successive derivatives.
In those cases Theorem 1.8 outlines the computation of the Fourier coefficients of the foresaid functions.
We summarize that process in the following algorithm:

Algorithm 1.1: Computation of the Fourier coefficients cn of a function from those of one of
its successive derivatives or anti-derivatives c(N)

n . (cnFromc(N)
n )

input : A function f ∈ CN [a, b] such that the computation of its Fourier coefficients on an
interval [a, b] also via definitions (2)–(4) using current CAS is not successful, and
however one can compute those of one of its successive derivatives or
anti-derivatives.

output: The complex Fourier coefficients of f on the interval [a, b] or ’the complex Fourier
coefficients of f cannot be computed in a reasonable time using this algorithm’.

begin1

m← 1.2

while m ≤M do3

Compute the complex Fourier coefficients of f (m).4

if the computation is successful then5

use relation (1.11) to achieve the computation of the Fourier coefficients of f .6

return the complex Fourier coefficients of f on the interval [a, b].7

end8

m← m+ 1.9

end10

The complex Fourier coefficients of f cannot be computed in a reasonable time using11

this algorithm.
end12

Note that the goal of the appearing M in the algorithm is to stop it after a reasonable run.

Example 1.11
Consider the function defined by

f(t) = arctan(2 + cos(t)eit) .

The complex Fourier coefficients of f and those of its successive derivatives cannot be successfully
computed using formulas (2)–(4). However we remark that the first derivative f ′ of f belongs to
the set of trigonometric holonomic functions which will be defined in the next chapter. Using Al-
gorithm 3.9 which will be presented in the fourth chapter, we can compute the Fourier coefficients
of f ′ and finally using Algorithm 1.1, we deduce those of f and we get:
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cn =

⎧⎨⎩
−i
n

(
1+(−1)n

2

) (
( 1
29

√
−145 + 58i)n − ( 1

29

√
−145− 58i)n

)
∀n ≥ 1

1
2
(� − arctan(20

21
)) if n = 0

0 otherwise .

Note that Algorithm 1.1 may also be used to give a simpler form of the Fourier coefficients in
certain cases where the computation is successful.
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Chapter 2

Trigonometric Holonomic Functions

For a moment, let’s have a break with the computation of Fourier coefficients. We introduce in
this chapter the set of trigonometric holonomic functions TH for which we will present in the
next chapter algorithms for the computation of their Fourier coefficients. We will present some
particular subsets of TH. Then we will give some algebraic properties of TH, focussing on the
aspects concerning the aims of the dissertation.

2.1 Notations and Recall
Let K denote the field ℚ, ℝ or ℂ or any subfield or transcendental extension, and K★=K ∖ {0}.
For simplification purposes we write K[cos(t), sin(t)] for the set of trigonometric polynomials
instead of K[x, y]/⟨x2 +y2−1⟩ and analogously in similar cases. We will also understand cos(2t),
e. g., by cos(2t) = cos(t)2 − sin(t)2 as a member of ℚ[cos(t), sin(t)]. It is well-known that

every trigonometric polynomial p =
I∑
i=0

J∑
j=0

aij cosi(t) sinj(t) ∈ K[cos(t), sin(t)] can be written

as a Fourier polynomial in the form
K∑
k=0

(ak cos(kt) + bk sin(kt)) and vice versa via the following

addition theorems
cos(a+ b) = cos(a) cos(b)− sin(a) sin(b) (2.1)

cos(a− b) = cos(a) cos(b) + sin(a) sin(b) (2.2)

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) (2.3)

sin(a− b) = sin(a) cos(b)− cos(a) sin(b) (2.4)

and the substitution rules

cos(a) cos(b) =
1

2
cos(a− b) +

1

2
cos(a+ b) (2.5)

sin(a) cos(b) =
1

2
sin(a− b) +

1

2
sin(a+ b) (2.6)
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sin(a) sin(b) =
1

2
cos(a− b)− 1

2
sin(a+ b) . (2.7)

For more details about this conversion see ([Koe06], Chapter 9).

We recall also that the sum f = f1 + f2 + ⋅ ⋅ ⋅ + fn of a finite sequence of periodic functions
{f1, f2, . . . , fn} is periodic if and only if their periods T1, T2, . . ., Tn, respectively are commensu-
rable.
The commensurability of T1, T2, . . . , Tn means that there exist n integers N1, . . . , Nn such that

N1T1 = N2T2 = ⋅ ⋅ ⋅ = NnTN . (2.8)

It follows from (2.8) that a period of f is T = N1T1 = N2T2 = ⋅ ⋅ ⋅ = NnTN .

Example 2.1
a) Consider the three functions g(t) = sin(2�t), ℎ(t) = cos(�

5
t) and r(t) = sin(7�

10
t) of periods

T1 = 1, T2 = 10 and T3 = 20
7

, respectively. Here 20T1 = 2T2 = 7T3 hence T1, T2 and T3
are commensurable. Therefore it can be conclued that the sum f(t) = sin(2�t) + cos(�

5
t) +

sin(7�
10
t) of the functions g(t), ℎ(t) and r(t) is periodic of period T , where T = 20T1 =

2T2 = 7T3 = 20

b) Let g and ℎ be the functions defined by: g(t) = cos(t), ℎ(t) = sin(
√

3t) of period T1 = 2�

and T2 = 2�
√
3

3
, respectively. Since T1

T2
=
√

3 is not a rational number, then T1 and T2 are not
commensurable and therefore the sum f(t) = cos(t) + sin(

√
3t) of the functions g(t) and

ℎ(t) is not periodic.

2.2 Definitions
Definition 2.2 ( Trigonometric holonomic functions)
Let ! ∕= 0 be a given real number: We call !-trigonometric holonomic functions TH(!) the set of
functions satisfying differential equations of the form

P∑
p=0

L∑
l=0

(�pl cos(l!t) + �pl sin(l!t)) f (p)(t) = 0 (2.9)

for appropriate integers P ≥ 1 and L ≥ 0, where �pl and �pl are constants.
A function f is said to be trigonometric holonomic if there exist ! ∈ ℝ★ such that f ∈ TH(!). We
denote by TH the set of those functions, i.e.

∪
TH(!) = TH.

Differential equations of the form (2.9) are called trigonometric holonomic differential equations.

Example 2.3
The following differential equation

DE1 : (sin(2
√

7t) + 2)F (t) + 5F ′(t) + (3 + cos(4
√

7t))F ′′(t) = 0
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is a trigonometric holonomic differential equation, since its non-constant coefficients sin(2
√

7t)+2
and 3 + cos(4

√
7t) are periodic and of commensurable periods. But

DE2 : (sin(8t)) + cos(16t))F (t) + (cos(
√

3t) + 3)F ′(t) + 5F ′′′(t) = 0

is not a trigonometric holonomic differential equation, since the periods of its non-constant coeffi-
cients sin(8t) + cos(16t) and cos(

√
3t) + 3 are not commensurable.

Remark 2.4
If for a given couple of integers (P0, L0), a function f satisfies a differential equation of the form
(2.9), then for all L ≥ L0 and for all P ≥ P0, f satisfies other differential equations of the form
(2.9).
Proof: Deriving equation (2.9) with respect to t, a new differential equation of the same form is obtained,
but of higher order. hence for all P ≥ P0 f satisfies a differential equation of the form (2.9). The proof for
L ≥ L0 is completed in Section 3.5.2. □

Definition 2.5 (Type)
A function f ∈ TH(!) is said to be of type L ∈ ℕ if L is the smallest positive integer for which it
satisfies a differential equation of the form (2.9).

Definition 2.6 (Degree )
Let f be a function of TH(!). The smallest integer P for which f satisfies a differential equation
of the form (2.9) is called the degree of f in TH(!).

Example 2.7
W.l.o.g., set ! = 1 and let f be the function defined by

f(t) =
sin(t)

cos(t) + 2
.

f satisfies infinitely many trigonometric holonomic differential equations. Two of them are given
by

DE1: −2 (1 + 2 cos (t))F (t) + (4 sin (t) + sin (2 t))F ′(t) = 0 and

DE2 : +4F (t) + (2− 2 cos (t)− 4 sin (t))F ′(t)
+ (−3 sin (t) + 4 + 2 cos (t))F ′′(t) + (2 + cos (t))F ′′′(t) = 0.

1. In the above differential equations, the type of f can be read off from DE2. We get L0 = 1.

2. The smallest integer P for which f satisfies a differential equation of the form (2.9) is also
1, and appears in DE1. Hence f is of degree P0 = 1 in TH(1).

Theorem 2.8
If a function f ∈ TH(!), then ∀n ∈ ℕ★, f ∈ TH(!

n
). I.e. TH(n!) ⊆ TH(!).

Proof: The proof is obvious. □
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2.3 Example Types of Trigonometric Holonomic Functions

2.3.1 Polynomials
Theorem 2.9
For all ! ∈ ℝ★, the set K[t] of all polynomials is a subset of TH(!) and each polynomial f of
degree N is of type 0 and of degree N + 1 in TH(!).

Proof: Let f be a polynomial of degree N . Then its derivative of order N is a constant and therefore
f (N+1)(t) = 0. Hence for P = N + 1 and L = 0 , f satisfies a differential equation of the form (2.9).
One may not expect to have a trigonometric holonomic differential equation of lower order, otherwise all its
coefficients �pl and �pl will vanish. Since if we assume that f(t) = tN satisfies a trigonometric holonomic
differential equation of order P ≤ N , then substituting its successive derivatives f (p)(t) = N !

(N−p)! t
N−p

in (2.9), we obtain an equation analogous to (2.14)—in the proof that 1
t ∕∈ TH—which leads to vanishing

coefficients. Hence K[t] ⊂ TH(!) and f is of type 0 and of degree N + 1 in TH(!). □

2.3.2 Exp-like Functions
Exp-like functions are those which satisfy differential equations with constant coefficients, see
[Koe92], i.e. differential equations of the form

anF
(n)(t) + an−1F

(n−1)(t) + ⋅ ⋅ ⋅+ a2F
′′(t) + a1F

′(t) + a0F (t) = 0, (2.10)

an ∕= 0, ai ∈ ℂ ∀i ∈ {0, . . . , n} .

Since such differential equations are obtained with L = 0, we deduce that exp-like functions are
trigonometric holonomic functions ∀! ∈ ℝ★ and of type 0. Searching for solutions of (2.10) of the
form f(t) = e�t, � ∈ ℂ leads to the characteristic equation

an�
n + an−1�

(n−1)(t) + ⋅ ⋅ ⋅+ a2�
2 + a1�+ a0 = 0 . (2.11)

The solutions of (2.10) depend on those of (2.11), whether its roots are all distinct and real, or its
roots are repeated, or some of the roots are complex. Hence the general solution of (2.10) may be
written as linear combination of expressions of the form

e�t, ept sin(qt), ept cos(qt), tje�t, tjept sin(qt), tjept cos(qt), j ∈ {0, . . . ,m− 1} ,

see [SG95] where m ≥ 2 refers to the multiplicity of the roots of (2.11), with �, p and q ∈ ℝ.
Since the hyperbolic cosine and the hyperbolic sine functions may be written in the form

cosh(t) =
et + e−t

2
and sinh(t) =

et − e−t

2
,

we deduce, w.l.o.g. the following theorem
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Theorem 2.10
K[t, e−�t, e�t, cos(�t), sin( t), cosh(�t), sinh(�t)] is a subset of TH , �, �, �,  , � and � ∈ ℝ .
Each of these functions is of type 0.

Example 2.11
Consider the function

f(t) = tcos2(t) sinh(3t)(et)5 ,

f is solution of the differential equation

DE1 : 75759616F (t)− 206110720F ′(t) + 258281472F ′′(t)− 197550080F ′′′(t)

+102421504F (4)(t)− 37716480F (5)(t) + 10052416F (6)(t)− 1940160F (7)(t)

+267504F (8)(t)− 25600F (9)(t) + 1612F (10)(t)− 60F (11)(t) + F (12)(t) = 0 .

Note that f satisfies also a lower order differential equation, namely

DE2 : −32(−692 cos(2t) + 359 sin(4t) + 808 cos(4t)− 3690 + 4522 sin(2t))F (t)

(10544 cos(4t) + 19056 sin(4t)− 36832 cos(2t) + 61536 sin(2t)− 45840)F ′(t)

+(5696 cos(2t)− 52 cos(4t)− 4408 sin(4t) + 5748− 8048 sin(2t))F ′′(t)+(1284 + 16 sin(2t)

+300 cos(4t) + 8 sin(4t) + 1584 cos(2t))F ′′′(t) + (−119 cos(4t) + 32 sin(4t)− 357

−476 cos(2t) + 64 sin(2t))F (4)(t) + (32 cos(2t) + 8 cos(4t) + 24)F (5)(t) = 0 .

But as we will see in the next chapter, for the purpose of the computation of Fourier coefficients
we will prefer DE1 to DE2, because the type of the differential equation is more important than the
order. Hence a trigonometric holonomic differential equation obtained for the smallest possible L
is preferable.

Remark 2.12
Note that K[t, e−�t, e�t, cos(�t), sin( t), cosh(�t), sinh(�t)] ⊆ TH(!) for all ! ∈ ℝ★, �, �, �,  ,
� and � ∈ ℝ.

2.3.3 Trigonometric Polynomials
Although trigonometric polynomials are exp-like functions, we would like to emphasize on them
in this section because we would like to characterize them according to their type and degree. One
can directly deduce a differential equation of the form (2.9) they satisfy.

Theorem 2.13
For all ! ∈ ℝ★, K[cos(!t), sin(!t)] is a subset of TH(!). Each function f of K[cos(!t), sin(!t)]
is of type 0 and of degree 1 in TH(!) and f satisfies the differential equation

f(t)F ′(t)− f ′(t)F (t) = 0 . (2.12)
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Proof: Consider f ∈ K[cos(!t), sin(!t)] defined by f(t) =
N∑
k=0

(ak cos(k!t) + bk sin(k!t)). Then f is

exp-like, hence f is of type 0. Since f ′(t) ∈ K[cos(!t), sin(!t)] and f ′f − ff ′ = 0, we deduce that f is
solution of the first order differential equation

f(t)F ′(t)− f ′(t)F (t) = 0

from which it appears that f is of degree 1 in TH(!). □

Example 2.14
Consider the function f(t) = cos(2t), then (2.12) reads as

2 sin(2t)F (t) + cos(2t)F ′(t) = 0 .

Note that as exp-like function f satisfies also the differential equation

4F (t) + F ′′(t) = 0 .

2.3.4 Rational Trigonometric Functions
Theorem 2.15
For all ! ∈ ℝ★ the set of rational trigonometric functions K(cos(!t), sin(!t)) is a subset of TH(!)
and each function of K(cos(!t), sin(!t)) is of degree 1 in TH(!).

Proof: Consider the function f defined by

f(t) =
g(t)

ℎ(t)
, with ℎ(t) ∕= 0

where g(t) and ℎ(t) ∈ K[cos(!t), sin(!t)]. Then we get:

f ′(t) =
g′(t)ℎ(t)− g(t)ℎ′(t)

ℎ2(t)
⇐⇒ f ′(t)ℎ2(t) = g′(t)ℎ(t)− g(t)ℎ′(t) .

Multiplying the left and the right hand side of the last equation by f(t) = g(t)
ℎ(t) , we deduce that the function

f is solution of the first order differential equation

(g(t)ℎ(t))F ′(t)− (g′(t)ℎ(t)− g(t)ℎ′(t))F (t) = 0 (2.13)

which is of degree 1 in TH(!). □

Note that in contrast to the cases of K[t] and K[cos(!t), sin(!t)] where the type is a priori
known for all functions, in the case of K(cos(!t), sin(!t)) the type depends on each particular
function. In this case an efficient algorithm for the determination of the type for a given rational
trigonometric function will be presented in Section 3.5.2.
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Example 2.16
Let f be the function defined by

f(t) =
sin(t)

2 + cos(2t)
.

Applying relation (2.13) we get that f is solution of the first order differential equation

(3 sin(t) + sin(3t))F ′(t) + (−7 cos(t) + cos(3t))F (t) = 0 .

We may immediately see that the degree of f is 1 in TH(1). Although the type of f cannot be read
off from the previous differential equation, one may compute it via Algorithm (3.4), which will be
presented in the next chapter, and gets two and the corresponding differential equation

(2− 3 cos(2t))F (t)− 4 sin(2t)F ′(t) + (2 + cos(2t))F ′′(t) = 0 .

Theorem 2.17
The set of functions of the form g(t) ⋅ ℎ(t) where g(t) is exp-like and ℎ(t) ∈
K(cos(!t), sin(!t)) is a subset of TH(!).

Proof: Since g(t)⋅ℎ(t) may be read as the product of two !-trigonometric holonomic functions, according
to Theorem 2.37 which will be given in Section 2.6 we deduce that g(t) ⋅ ℎ(t) ∈ TH(!). □

Example 2.18
W.l.o.g. set ! = 1 and consider the function

f(t) =
t cosh(t)et

2 + cos(t)
.

f satisfies the differential equation

−(4 sin(t) + 3 cos(t))F (t) + (12 cos(t)− 4 sin(t))F ′(t) + (8− 2 cos(t) + 12 sin(t))F ′′(t)

+(−8− 4 cos(t)− 4 sin(t))F ′′′(t) + (2 + cos(t))F (4)(t) = 0

from which we deduce that f is of type 1 ∈ TH(1).

2.3.5 Function which is not Trigonometric Holonomic
In this section we give an example of a function which is not trigonometric holonomic. W.l.o.g.
we may assume that ! = 1. We will show that the rational function

f(t) =
1

t

is not a trigonometric holonomic function.
Proof: We use a proof by contradiction. Let us assume that f is a trigonometric holonomic function.
Then there exist integers P ≥ 1 and L ≥ 0 and coefficients �pl and �pl for which f satisfies a differential
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equation of the form (2.9). At least one of �pl and �pl is non-vanishing. The successive derivatives of f are
given by

f (p)(t) =
(−1)pp!
tp+1

.

The substitution of those derivatives in (2.9) leads to

P∑
p=0

L∑
l=0

(�pl cos(lt) + �pl sin(lt))
(−1)pp!
tp+1

= 0⇐⇒

1

t

L∑
l=0

(�0l cos(lt) + �0l sin(lt))−
1

t2

L∑
l=0

(�1l cos(lt) + �1l sin(lt)) + ⋅ ⋅ ⋅

+
(−1)PP !
tP+1

L∑
l=0

(�Pl cos(lt) + �Pl sin(lt)) = 0 .

Multiplying the previous equation by tP+1 we get

tP
L∑
l=0

(�0l cos(lt) + �0l sin(lt))− tP−1
L∑
l=0

(�1l cos(lt) + �1l sin(lt)) + ⋅ ⋅ ⋅ (2.14)

+(−1)PP !
L∑
l=0

(�Pl cos(lt) + �Pl sin(lt)) = 0 .

Collecting the previous equation with respect to the expressions cos(lt), sin(lt), l ∈ {0, . . . , L}, we get:(
�00t

P − �10t
P−1 + ⋅ ⋅ ⋅+ (−1)PP !�P0

)
+
(
�01t

P − �11t
P−1 + ⋅ ⋅ ⋅+ (−1)PP !�P1

)
cos(t)+(

�01t
P −�11tP−1+ ⋅ ⋅ ⋅+(−1)PP !�P1

)
sin(t)+ ⋅ ⋅ ⋅+

(
�0Lt

P −�1Lt
P−1+ ⋅ ⋅ ⋅+(−1)PP !�PL

)
cos(Lt)+(

�0Lt
P − �1LtP−1 + ⋅ ⋅ ⋅+ (−1)PP !�PL

)
sin(Lt) = 0 .

The previous equation is satisfied for every t if and only if all the polynomial coefficients vanish, i.e.

�00 = �10 = ⋅ ⋅ ⋅ = �PL = �00 = �10 = ⋅ ⋅ ⋅ = �PL = 0 ,

which is in contradiction with our initial assumption. □

Up to now we have not seen in a more general setting how to determine a differential equation
satisfied by an !-trigonometric holonomic function. We present in the next section an algorithm
for the determination of a differential equation of the form (2.9).

2.4 Differential Equation for Trigonometric Holonomic Func-
tions

We give in this section an algorithm to determine for each function of the set TH(!) a differential
equation of the form (2.9). We assume that f is defined on the interval [a, b], connected with ! in
the way ! = 2�

b−a .
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Algorithm 2.1: Determination of a trigonometric holonomic differential equation for a
trigonometric holonomic function (THDE)

input : A real number ! = 2�
b−a , a function f ∈ TH(!) such that f ∈ C(N)[a, b] for N

large enough and an initial positive integer value vi.
output: A differential equation satisfied by f in the form (2.9).

begin1

Lmax ← 0, Pmax ← 0.2

repeat3

Lmax ← Lmax + vi, Pmax ← Pmax + vi.4

for L = 0 to Lmax do5

for P = Pmax − vi to Pmax do6

search for coefficients �pl and �pl such that the equation7
P∑
p=0

L∑
l=0

(�pl cos(l!t) + �pl sin(l!t)) f (p)(t) = 0 is valid.
8

if the search is successful then9

return the differential equation of f in the form (2.9).10

end11

end12

end13

until the search is successful;14

end15

Remark 2.19
Note that if the input function is not trigonometric holonomic, then Algorithm 2.1 does not termi-
nate.

Example 2.20
Consider the function defined on the interval [0, 2�

5
] by

f(t) = cos(5t) ln(2 + cos(5t)) .
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Figure 2.1: Composition of logarithm with trigonometric functions

f is periodic of period T = 2�
5

. Setting ! = 2�
T

= 5 and applying the previous algorithm, we get
that for L = 1 and P = 7, f satisfies the trigonometric holonomic differential equation

DE := (−500000+843750 cos(5t))F ′(t)+28125 sin(5t)F ′′(t)+(54375 cos(5t)−45000)F (3)(t)+

+4625 sin(5t)F (4)(t)+(825 cos(5t)−1200)F (5)(t)+120 sin(t)F (6)(t)+(−4 cos(5t)−8)F (7)(t) = 0 .

Remark 2.21
The search for a differential equation for functions of TH(!) using Algorithm 2.1 may be time-
consuming in some cases because we don’t know in advance for which choices of P and L a
differential equation of the form (2.9) exists. In Section 3.5.2, for the case of the functions of
ℝ(cos(!t), sin(!t)), we will present an algorithm for the determination of the best possible choices
of P and L, for which we can get directly a differential equation of the form (2.9). Assuming that
the best choice (P,L) is known, then Algorithm 2.1 will be simplified in the following form:

Algorithm 2.2: Determination of a trigonometric holonomic differential equation for a
trigonometric holonomic function knowing the efficient P and L(THDEPL)

input : A real number ! = 2�
b−a , a function f ∈ TH(!) such that f ∈ C(N)[a, b] for N

large enough and the numbers P and L.
output: A differential equation of the form (2.9) satisfied by f .

begin1

Look for coefficients �pl and �pl such that the equation2
P∑
p=0

L∑
l=0

(�pl cos(l!t) + �pl sin(l!t)) f (p)(t) = 0 is valid.
3

end4
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2.5 Functions Satisfying Differential Equations with Coefficients
in K[ei!t, e−i!t]

For a given ! ∈ ℝ★ one can convert a trigonometric holonomic differential equation (as we have
defined until now) into a differential equation with coefficients in K[e−i!t, ei!t] and conversely. In
this section we will emphasize on differential equations whose coefficients are linear polynomials
of either e−i!t or ei!t exclusively. As we will see in the next chapter, the particular importance of
that type of differential equations is that they lead to first order holonomic recurrence equations for
the Fourier coefficients of the considered function on an interval of length T , where ! is chosen
according the equality ! = 2�

T
. We remark that such recurrence equations (of first order) do not

result once the coefficients of the considered differential equation are not of the foresaid form.

Theorem 2.22
For a given ! ∈ ℝ★, functions satisfying a differential equation of the form

P∑
p=0

L∑
l=0

(
ple

−il!t + �ple
il!t
)
f (p)(t) = 0 (2.15)

for appropriate integers P ≥ 1, L ≥ 0, where pl and �pl ∈ ℂ are !-trigonometric holonomic
functions.

Proof: The proof is obvious. □

2.5.1 Example of Functions Satisfying Differential Equations whose Coeffi-
cients are Linear Polynomials of either e−i!t or ei!t

Definition 2.23
The set of functions satisfying trigonometric holonomic differential equations leading to first order
recurrence equations for their complex Fourier coefficients are called simple trigonometric holo-
nomic functions (sTH). The coefficients of such trigonometric holonomic differential equations
are all linear polynomials of either ei!t or e−i!t, but not of both.

Example 2.24
Set ! = 1 and consider the function defined by

f(t) = eie
it

.

f satisfies the differential equation

DE : eitF (t) + F ′(t) = 0 ,

from which it follows that f is of degree 1 in TH(1). Since both coefficients of DE are linear
polynomials of eit, we deduce that f ∈ sTH. As we will see in the next chapter, choosing an
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interval of length T = 2�
!

= 2�, e.g. I = [0, 2�], DE leads to a first order recurrence equation
satisfied by the complex Fourier coefficients of f on I .
Note that the search for a differential equation of the form (2.9) satisfied by f gives, however

DE2 : −i(i+ i sin(t) + cos(t))F (t) + (−i+ cos(t)− i sin(t))F ′(t) = 0 ,

which converts into a second order recurrence equation for the complex Fourier coefficients of f
according to Algorithm 3.1 (THDEtoRE).
We remark also that if we aim now to convert DE2 into a differential equation of the form (2.15)
via the substitution of cos(t) and sin(t) in terms of e−it and eit, we get

DE3 : (−i+ e−it)F ′(t)− i(i+ eit)F (t) = 0 .

The coefficients of DE3 are not linear polynomials of either e−it or eit, but simultaneously of both
of them. Hence DE3 ∕∈ sTH and will lead to a second order recurrence equation this time accord-
ing to Algorithm 3.8. Due to the non uniqueness of the factorization in K[cos(t), sin(t)]/⟨cos(t)2+
sin(t)2−1⟩, one cannot expect to get a differential equation of the exact form asDE (where the co-
efficients are linear polynomials of either eit, or e−it) by the conversion of DE2 into a differential
equation of the form (2.15).

Example 2.25
Set ! = 5 and consider the function defined by

f(t) =
e−4it

2 + e5it
∈ TH(5) .

f is solution of the first degree differential equation

DE : (8e−5it + 9)F (t)− i(2e−5it + 1)F ′(t) = 0 .

Since the coefficients of DE are linear polynomials of e−5it, then f ∈ sTH.

2.5.2 Some More Example Types of Trigonometric Holonomic Functions
Remark 2.26
Since eit = cos(t)+ i sin t and e−it = cos(t)− i sin t, we can deduce without proof many theorems
and properties which have been shown previously for the functions with arguments cos(t) and
sin(t).

From Theorem 2.10 we may deduce the following theorem.

Theorem 2.27
The set K[t, e−�t, e�t, e−it, ei�t] where �, �, , � ∈ ℝ is a subset of TH(!) for all ! ∈ ℝ★. Each
of its functions is of type 0 in TH(!).
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Example 2.28
Consider the trigonometric holonomic function defined by

f(t) = t sin(t)e3it + 3eit cos(t)

f is solution of the following complex differential equation

−64iF ′(t) + 96F ′′(t) + 52iF ′′′(t)− 12F (4)(t)− iF (5)(t) = 0 .

From Theorem 2.15 we may also deduce the following one:

Theorem 2.29
The set K(e−i!t, ei!t) is a subset of TH(!) and each function of K(e−i!t, ei!t) is of degree 1 in
TH(!).

As we will see in the next chapter, such a trigonometric holonomic differential equation whose co-
efficients have only the argument ei�t for a fixed � ∈ ℝ, leads to a first order holonomic recurrence
equation for the corresponding Fourier coefficients.

Theorem 2.30
K(cos(!t), sin(!t), e−i!t, ei!t) is a subset of TH(!).

We deduce from Theorem 2.17 that

Theorem 2.31
Functions of the form g(t) ⋅ ℎ(t) where g(t) is exp-like and ℎ(t) ∈ K[e−i!t, ei!t] is a subset of
TH(!).

Example 2.32
Set ! = 1 and consider the function

f(t) =
tei
√
3t cos(3

2
t)

2 + eit
.

f may be read as tei
√
3t cos(3

2
t) ⋅ 1

2+eit
where tei

√
3t cos(3

2
t) is exp-like and 1

2+eit
∈ K(e−it, eit).

Hence f satisfies the trigonometric holonomic differential equation

DE : −(−18− 241eit + 112
√

3eit)F (t) + 16i(6
√

3 + 15
√

3eit − 31eit)F ′(t)

+(−312eit + 192
√

3eit − 432)F ′′(t)− 64i(2
√

3 + eit
√

3− eit)F ′′′(t) + (16eit + 32)F (4)(t) = 0 .

Note that the coefficients of DE are linear polynomials of eit, i.e. f ∈ sTH.

Remark 2.33
We cannot give a complete list of families of functions satisfying a differential equation either of
the form (2.9) or (2.15). In the following example we list some functions whose form has not been
mentioned previously.
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Example 2.34
1. Consider the function

f(t) = arctan(2 + eit) ∈ TH(1) .

f is solution of the trigonometric holonomic differential equation

DE : (−eit + 5e−it)F ′(t) + i(4 + 5e−it + eit)F ′′(t) .

We deduce that f of degree 2 in TH(1).

2. Consider now the function

f(t) =

√
eit + 3

eit + 2
∈ TH(1) .

f satisfies the trigonometric holonomic differential equation

i(4 + eit)F (t) + (10 + 12e−it + 2eit)F ′(t) = 0 .

f is of type 1 and of degree 1 in TH(1).

3. Set ! =
√

7 and consider the function

f(t) = cos(
√

7t) ln(2 + sin(
√

7t)) .

f satisfies the trigonometric holonomic differential equation

DE : 98
√

7F (t)(4 + 3 sin(
√

7t)) + 343 cos(
√

7t)F ′(t) + 7
√

7(10 + 3 sin(
√

7t))F ′′(t)

+21 cos(
√

7t)F ′′′(t) +
√

7(2 + sin(
√

7t))F (4)(t) = 0

from which we deduce that f ∈ TH(
√

7).

Analogously to Algorithm 2.1, we present in Algorithm 2.3 the determination of a differential
equation with coefficients in K[ei!t, e−i!t] satisfied by a trigonometric holonomic function. In
contrast to that algorithm, it may return in some cases trigonometric holonomic differential equa-
tions whose coefficients are linear polynomials of either ei!t or e−i!t, which will lead to first order
holonomic recurrence equations for the complex Fourier coefficients of the considered function on
an interval on length T = 2�

!
.
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Algorithm 2.3: Determination of a trigonometric holonomic differential equation for a
trigonometric holonomic function satisfying a differential equation with coefficients in
K[e−i!t, ei!t] (ExpTHDE).

input : A real number ! = 2�
b−a , a function f ∈ TH(!) such that f is continuous in the

interval [a, b] and an initial positive integer value vi.
output: A differential equation satisfies by f in the form (2.15).

begin1

Lmax ← 0, Pmax ← 0.2

repeat3

Lmax ← Lmax + vi, Pmax ← Pmax + vi.4

for L = 0 to Lmax do5

for P = Pmax − vi to Pmax do6

Search for coefficients pl and �pl such that either the equation7
P∑
p=0

L∑
l=0

(pl(cos(l!t)− i sin(l!t)) + �pl(cos(l!t) + i sin(l!t))) f (p)(t) = 0 or
8

P∑
p=0

L∑
l=0

(
ple

−il!t + �ple
il!t
)
f (p)(t) = 0 is valid.

if the search is successful then9

return the differential equation of f in the form (2.9).10

end11

end12

end13

until the search is successful;14

end15

Remark 2.35
Note that if the input function does not satisfy a differential equation of the form (2.9), the previous
algorithm would not terminate.

2.6 Algebraic Properties of Trigonometric Holonomic Functions
Theorem 2.36
If f is a !-trigonometric holonomic function, then its derivative and anti-derivative are also trigono-
metric holonomic functions.

Proof: Anti-derivative
If f ∈ TH(!), then it satisfies a differential equation of the form

P∑
p=0

L∑
l=0

(�pl cos(l!t) + �pl sin(l!t)) f
(p)(t) = 0 .
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Let F be an anti-derivative of f . Then we get:

P∑
p=0

L∑
l=0

(
�pl cos(l!t)+�pl sin(l!t)

)
f (p)(t)=0⇐⇒

P∑
p=0

L∑
l=0

(
�pl cos(l!t)+�pl sin(l!t)

)
(F ′)(p)(t) = 0

⇐⇒
P∑
p=0

L∑
l=0

(
�pl cos(l!t)+�pl sin(l!t)

)
(F )(p+1)(t)=0

⇐⇒
P+1∑
p=1

L∑
l=0

(
�pl cos(l!t)+�pl sin(l!t)

)
(F )(p)(t)=0

which means that the anti-derivative F of f is also a !-trigonometric holonomic function.

Derivative
Since f ∈ TH(!), then f satisfies a differential equation of the form

P∑
p=0

L∑
l=0

(�pl cos(l!t) + �pl sin(l!t)) f
(p)(t) = 0⇐⇒

L∑
l=0

(�0l cos(l!t) + �0l sin(l!t)) f(t) +

P∑
p=1

L∑
l=0

(�pl cos(l!t) + �pl sin(l!t)) f
(p)(t) = 0 . (2.16)

Deriving the previous (2.16) we get

L∑
l=0

(−l�0l sin(l!t) + l�0l cos(l!t)) f(t) +
L∑
l=0

(�0l cos(l!t) + �0l sin(l!t)) f
′(t)+

(2.17)

P∑
p=1

L∑
l=0

(−l�pl sin(l!t) + l�pl cos(l!t)) f
(p)(t) +

P+1∑
p=1

L∑
l=0

(�pl cos(l!t) + �pl sin(l!t)) f
(p)(t).

Computing the linear combination

(2.17) ⋅
L∑
l=0

(�0l cos(l!t) + �0l sin(l!t))− (2.16) ⋅
L∑
l=0

(−l�0l sin(l!t) + l�0l cos(l!t)) ,

the expressions connected with f(t) vanish and it remains a differential equation for the derivative f ′ of f ,
which may be brought into the form (2.9). □

Theorem 2.37
1. TH(!) is closed under addition and multiplication.

2. If f(t) and g(t) are two functions of degree P andQ in TH(!), respectively, then f(t)+g(t)
is of degree ≤ P +Q in TH(!) and f(t) ⋅ g(t) is of degree ≤ P ⋅Q in TH(!).
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Proof:
Addition: We will show in the proof that the sum of two functions of TH(!) is a function of TH(!) ,
compare [Koe06]. W.l.o.g. we set ! = 1. Let f(t) be a function of the set TH(1) and let us consider the
vector space V (f) = ⟨f(t), f ′(t), . . .⟩ over the field of rational trigonometric functions K(cos(t), sin(t)),
generated by the successive derivatives of f(t). The family {f(t), f ′(t), . . . , f (P−1)} is a basis of V (f) of
dimension P , since f satisfies no differential equation of the form (2.9) of order P − 1 and because each
higher derivative of f can be written over the field K(cos(t), sin(t)) as a linear combination of the functions
f(t), f ′(t), . . . , f (P−1). In the same way we construct for g(t), a function of degree Q in TH, the vector
space V (g) = ⟨g(t), g′(t), . . .⟩ of dimensionQ, generated by the successive derivatives of the function g(t).
{g(t), g′(t), . . . , g(Q−1)} is a basis of V (g).

We deduce that V (f)+V (g) is a vector space of dimension≤ P +Q and that the functions ℎ = f + g,
ℎ′ = f ′ + g′, . . . , ℎ(k) = f (k) + g(k), . . . are vectors of V (f) + V (g). I.e. ℎ satisfies a differential equation
of order ≤ P +Q with coefficients in K(cos(t), sin(t)).
Multiplication: The proof consists in showing that the product of two functions of TH(!) is a function of
TH(!). W.l.o.g. we set ! = 1. f and g being two functions of TH(1) of degree P and Q respectively, we
construct analogously to the case of the addition, the vector spaces V (f) and V (g). Let us put ℎ = fg. Using
Leibniz’s product rule, we compute the successive derivatives of ℎ and we get: ℎ′ = f ′g+ fg′, . . . , ℎ(K) =
K∑
j=0

(
K
j

)
f (j)g(K−j). Due to the substitution rules (2.19), the previous successive derivatives of ℎ can be

written using only the successive derivatives of f of maximal order P − 1 and of g of maximal order Q− 1,
respectively. The set generated by the product of elements of V (f) by those of V (g) is also a vector space,

of dimension ≤ PQ. I.e. the successive derivatives ℎ(K) = (fg)(K) =
K∑
j=0

(
K
j

)
f (j)g(K−j) are elements

of that vector space, K running from zero to PQ. Hence there exist Aj ∈ K(cos(t), sin(t)) such that
K∑
j=0

Ajℎ
(j) = 0. We deduce that the product ℎ = fg satisfies a differential equation of type (2.9) of degree

≤ PQ. □

Remark 2.38
The previous proof does not show directly how to compute the differential equations of the sum or
of the product of two functions, starting from the trigonometric holonomic differential equations
they satisfy, respectively. In the two following sections, we will present algorithms to compute
those differential equations.

2.6.1 Algorithm for the Sum
The following algorithm computes the differential equation of the sum of two functions of TH(!),
from the given trigonometric holonomic differential equations they satisfy.
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Algorithm 2.4: Determination of the trigonometric holonomic differential equation sat-
isfied by the sum of the solutions of two trigonometric holonomic differential equations
(SumTHDE).

input : Two trigonometric holonomic differential equations DE1 and DE2 of degree P
and Q respectively, satisfied by the functions f and g of TH(!)

output: The trigonometric holonomic differential equation satisfied by the sum
ℎ = f + g.

begin1

Use DE1 and DE2 to deduce the following equations2

f (P ) =
P−1∑
i=0

aif
(i) and g(Q) =

Q−1∑
j=0

bjg
(j) (2.18)

where ai and bj are rational functions of K(cos(!t), sin(!t)).
N ← max{P,Q}.3

Use (2.18) and recursive substitutions to rewrite the higher derivatives of f and those4

of g as linear combinations of their respective successive derivatives and obtain
trigonometric holonomic differential equations of the form

f (N) =
P−1∑
i=0

aNi f
(i) (N ≥ P ) and g(N) =

Q−1∑
j=0

bNj g
(j) (N ≥ Q) (2.19)

K ← P +Q+ 1.5

for I = N to K do6

Put ℎ = f + g and write the linear combination7

I∑
k=0

Akℎ
(k) = 0 i.e.

I∑
k=0

Ak(f
(k) + g(k)) = 0.

Collect with respect to the successive derivatives of f(t) and g(t) in order to get8

a system of P +Q linear equations (S), where the unknowns are the Ak ′s.
Solve (S) .9

if (S) has non-vanishing solutions then10

return the differential equation11

I∑
k=0

AkH
(k) = 0 (2.20)

satisfied by the sum ℎ = f + g.
end12

end13

end14
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Remark 2.39
The previous algorithm terminates: The system (S) has exactly P + Q equations independently
of K. In the worst case for K = P + Q + 1, the number of the variables K is greater than the
number equations P +Q. Hence the system (S) is under-determinate, i.e. we will get a non-trivial
solution.

Example 2.40
Consider the following trigonometric holonomic differential equations where ! = 1:

DE1 : (cos(t) + 2)F ′(t) + sin(t)F (t) = 0

DE2 : sin(t)G(t)− 2 cos(t)G′(t) + (−3− sin(t))G′′(t) = 0

from which we deduce that

F ′(t) =
− sin(t)F (t)

cos(t) + 2
and

G′′(t) =
sin(t)G(t)− 2 cos(t)G′(t)

3 + sin(t)
.

Using both previous relations and the substitution rules (2.19) with K = 3, we get:

F ′(t) =
− sin(t)F (t)

cos(t) + 2
, F ′′(t) =

− cos(t)F (t)

cos(t) + 2
, F ′′′(t) =

sin(t)F (t)

cos(t) + 2
,

G′′(t) =
sin(t)G(t)− 2 cos(t)G′(t)

3 + sin(t)
,

G′′′(t) =
(− sin(2t)+3 cos(t))G(t)+(3 cos(t)2+3+9 sin(t))G′(t))

sin(t) + 3
.

We set ℎ = f + g and form now the equations

3∑
k=0

Akℎ
(k) = 0 i.e.

3∑
k=0

Ak(f
(k) + g(k)) = 0

where the Ak are unknowns. Collecting with respect to the successive derivatives of f(t) and g(t),
we get:(
A0 −

A1 sin(t)

cos(t) + 2
− A2 cos(t)

cos(t) + 2
+

A3 sin(t)

cos(t) + 2

)
F (t) +

(
A2 sin(t)

sin(t) + 3
+ A0 −

3A3 cos(t) sin(t)

(sin(t) + 3)2
+

A3 cos(t)

(sin(t) + 3)

)
G(t) +

(
3A3 sin(t)

sin(t) + 3
+ A1 −

2A2 cos(t)

sin(t) + 3
+

6A3 cos(t)2

(sin(t) + 3)2

)
G′(t) = 0 .

Equating coefficients leads to a system of 3 linearly independent homogeneous equations with 4
unknowns. Solving the system and substituting its solution in (2.20), we obtain the differential
equation satisfied by the sum of the functions ℎ = f + g:
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2(− sin(3t)+3 sin(t) + 3)H(t)+(14 cos(t) + 2 cos(3t)+10− 2 cos(2t)+3 sin(2t))H ′(t)

+(−4 sin(2t)−2 sin(3t) + 18 cos(2t)− 12− 28 sin(t))H ′′(t)

+(−20 cos(t)− 12 sin(t) + 2 cos(3t)− 15 sin(2t) + 2 cos(2t))H ′′′(t) = 0

which corresponds to P = 3 and L = 3.

Due to the non-uniqueness of the factorization in K(cos t, sin t), the content of that differential
equation (greatest common divisor of its coefficients) is not well defined. Hence one cannot expect
the uniqueness of such a solution, since one cannot divide the coefficients by their content in order
to get the simplest form. We note that the previous differential equation for the sum of the functions
f and g was found without knowing the functions explicitly. One may verify that the functions

f(t) = cos(t) + 2 and g(t) =
t

sin(t) + 3

are solutions of DE1 and DE2, respectively. Knowing in advance that

ℎ = f + g = cos(t) + 2 +
t

sin(t) + 3
∈ TH(1)

and computing a differential equation of the form (2.9) satisfied by ℎ directly via Algorithm 2.1,
we get the following differential equation

−6 cos(t)H ′(t)+(12−11 sin(t))H ′′(t)+(15−10 sin(t))H(4)(t)+6 cos(t)H(5)(t)+(3+sin(t))H(6)(t) = 0

which corresponds this time to P = 6 and L = 1.

Example 2.41
Let us now consider the following trigonometric holonomic differential equations:

DE1 = (4 + 2 cos(t))F ′(t) + sin(t)F (t) and DE2 = (−2− sin(t))G′(t) + cos(t)G(t)

satisfied by two functions f and g of TH(1), respectively. Applying Algorithm 2.4 to DE1 and
DE2 we obtain that the differential equation satisfied by the sum f + g is given by

DE = −(cos(6t)− 430 + 63 cos(2t)− 18 cos(4t))F (t) + (−4 cos(5t) + 12 cos(3t)− 32 cos(4t)

−776 cos(t) + 128 cos(2t) + 36 sin(4t) + 3 sin(6t) + 111 sin(2t)− 96− 120 sin(3t)

+24 sin(5t) + 1776 sin(t))F ′(t) + (−72 sin(3t) + 8 sin(5t)−72 cos(3t) + 1584 cos(t) + 24 cos(5t)

+60 cos(4t) + 944 sin(t) + 126 cos(2t) + 580− 64 sin(2t) + 2 cos(6t) + 32 sin(4t))F ′′(t)

corresponding to P = 2 and L = 6.

2.6.2 Algorithm for the Product
Although for the determination of the trigonometric holonomic differential equation of the product
of two functions of TH(!) we may use a method similar as in Algorithm 2.4, we will use in this
case an approach involving elimination.
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Algorithm 2.5: Determination of the trigonometric holonomic differential equation satis-
fied by the product of the solutions of two trigonometric holonomic differential equations
(ProductTHDE).

input : Two trigonometric holonomic differential equations DE1 and DE2 satisfied by the
functions f and g of degree P and Q in TH(!) , respectively.

output: The trigonometric holonomic differential equation satisfied by the product ℎ = fg.

begin1

Use DE1 and DE2 to deduce the following equations2

f (P ) =
P−1∑
i=0

aif
(i) and g(Q) =

Q−1∑
j=0

bjg
(j)

where ai and bj are rational functions of K(cos(!t), sin(!t)).
N ← max{P,Q}.3

Build the substitution rules4

f (N) =
P−1∑
i=0

aNi f
(i) (K ≥ P ) and g(N) =

Q−1∑
j=0

bNj g
(j) (K ≥ Q) (2.21)

Put ℎ(t) = f(t)g(t) and use Leibniz’s product rule to compute the successive derivatives
(fg)(K) and we get

ℎ = fg

ℎ′ = f ′g + g′f
...

ℎ(K) =
K∑
j=0

(
K

j

)
f (j)g(K−j)

which constitute a system of equations with the PQ variables f (j)g(l)

(j = 0, . . . , P − 1, l = 0, . . . , Q− 1).
K ← PQ+ 1.5

for k = N to K do6

Build the system (S):7

{ℎ− fg = 0, ℎ′ − (f ′g + g′f) = 0, ℎ′′ − (f ′′g + 2f ′g′ + fg′′) =8

0, . . . , ℎ(k) −
k∑
j=0

(
k
j

)
f (j)g(k−j) = 0} and eliminate the previous variables in (S) in

order to get a linear combination of the successive derivatives of ℎ.
if the elimination process is successful then9

return the differential equation satisfied by the product ℎ.10

end11

end12

end13
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Remark 2.42
In the worst case K = PQ, we will have solutions, because in this case we will have PQ + 1
equations in which we want to eliminate PQ variables. Hence the algorithm terminates.

Example 2.43
Consider the following trigonometric holonomic differential equations

DE1 : (3 + cos(2t))F (t)− 2 sin(2t)F ′(t) + (1− cos(2t))F ′′(t) = 0

DE2 : sin(t)G(t) + (−2− cos(t))G(t)′ = 0

from which we deduce that

F ′′(t) =
−(3 + cos(2t))F (t) + 2 sin(2t)F ′(t)

(1− cos(2t))
and

G′(t) =
sin(t)G(t)

(2 + cos(t))
.

For K = 2 we get

G′′(t) =
(cos(t)2 + 2 cos(t) + 2 sin(t)2)G(t)

(cos(t) + 2)2
.

Let us put ℎ = fg and form the system

I =
{
H(t)− F (t)G(t) = 0, H ′(t)− F ′(t)G(t) +

F (t) sin(t)G(t)

cos(t) + 2
= 0,

H ′′(t)−
(
2 sin(2t)F ′(t)− 3F (t)− cos(2t)F (t)

)
G(t)

−1 + cos(2t)

−2 sin(t)F ′(t)G(t)

cos(t) + 2
− (cos(t)2 + 2 cos(t) + 2 sin(t)2)F (t)G(t)

(cos(t) + 2)2
= 0
}

which is composed on the one hand of the 2 products F (j)G(l) (j ∈ {0, 1}, l = 0), considered as
variables and on the other hand of H(k)(k ∈ {0, 1, 2}), taking into consideration the substitution
rules (2.19). The last step is to use linear elimination, to get rid of the previous variables which
leads to the following differential equation

−4(cos(2t) + 3 + 2 cos(t))H(t) + (8 sin(2t) + 8 sin(t))H ′(t)

(−4 + cos(3t)− cos(t) + 4 cos(2t))H ′′(t) = 0

corresponding to P = 2 and L = 3.
One may verify that the product of the following functions

f = t sin(t) and g =
1

cos(t) + 2
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is solution of the previous differential equation, although it has been found without any knowledge
of them. Knowing in advance that

ℎ = fg =
t sin(t)

cos(t) + 2
∈ TH(1) ,

the computation of a trigonometric holonomic differential equation of the form (2.9) satisfied by ℎ
using Algorithm 2.1 gives

2F (t) + (4− 4 cos(t))H ′′(t)− 4 sin(t)H ′′′(t) + (cos(t) + 2)H(4)(t) = 0

which corresponds to P = 4 and L = 1.

Corollary 2.44
If f is an !-trigonometric holonomic function, then ∀n ∈ ℕ, fn is also an !-trigonometric holo-
nomic function.

Remark 2.45
1. The algorithms considered cannot detect a differential equation of smaller order than the

given ones, even if such a differential equation is valid. A trivial example of this type is:
g = −f , and ℎ = f + g = 0.

2. From Theorem 2.37 we may deduce that (TH,+, ⋅) is a commutative unitary ring.
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Chapter 3

Fourier Coefficients of Trigonometric
Holonomic Functions

In the previous chapter we defined the set of trigonometric holonomic functions, and we gave
some of their properties. In this chapter we present a general algorithm for the computation of
the complex Fourier coefficients of trigonometric holonomic functions. Then for the particular
case of rational trigonometric functions, we investigate conditions under which one may get those
coefficients most efficient and we present two algorithms to compute them.

3.1 Hypergeometric Terms and Closed Forms
In the rest of the dissertation we will deal with recurrence equations (for Fourier coefficients), hav-
ing interest in their solutions. The type of solution in which we are interested is the “closed form”.
We will make this notion more precise in a moment. Mark van Hoeij presented in [Hoe98] an algo-
rithm to solve recurrence equations in closed form when such solutions exist. That algorithm is a
reviewed and improved version of Petkovšek’s algorithm [Pet92], see also [CvH06]. Nevertheless
in the cases where a closed form solution does not exist, we may return that solution in another
form, if possible, rather than not to give any output.

Definition 3.1 (Hypergeometric term)
An expression an is called hypergeometric term if the ratio an+1

an
represents a rational function in

n.

Example 3.2
Consider the function

an =

(
n
k−1

)
(n+ k)!

n
(
n+1
k

) .

We get
an+1

an
=

(n+ k + 1)n

n+ 2
∈ K(n) with K = ℚ(k) .
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Definition 3.3 (Closed Form)
A function fn is said to be of closed form if it is equal to a linear combination of a fixed number
of hypergeometric terms, see also [PWZ96].

Example 3.4
Consider the sum

sn =

[n
3
]∑

k=0

(
n− 2k

k

)(
−4

27

)k
,

see Example 9.8 in [Koe98]. Using Zeilberger’s algorithm ([Zei90],[Zei91b],[Zei91a]) it can be
proved that sn satisfies the following recurrence equation

RE : 9(n+ 2)sn+2 − 3(n+ 4)sn+1 − 2(n+ 3)sn = 0 .

Solving it via Petkov̌sek’s algorithm [Pet92], we get the following solution 1
9

(−1
3

)n
+ 2(3n+4)

9

(
2
3

)n,
which is obviously a linear combination of hypergeometric terms. Thus

sn =

[n
3
]∑

k=0

(
n− 2k

k

)(
−4

27

)k
=

1

9

(
−1

3

)n
+

2(3n+ 4)

9

(
2

3

)n
is in closed form, i.e. RE has closed form solutions. Each solution of RE is a linear combination
of the two hypergeometric terms

(−1
3

)n and (3n+ 4)
(
2
3

)n.

Remark 3.5
Since the complex Fourier coefficients cn of a given function f are searched for all n ∈ ℤ, in the
successful cases it will be returned in the following form:

cn =

⎧⎨⎩
Closed form I ∀n > N

Some initial values M ≤ n ≤ N

Closed form II ∀n < M .

whereN andM are some integers related to the order of the recurrence equation satisfied by cn and
also to the zeros of the leading and trailing coefficients of that recurrence equation, see [CvH06].

3.2 Holonomic Recurrence Equation for Trigonometric Holo-
nomic Functions

Definition 3.6 (Holonomic recurrence equation)
A recurrence equation cn is holonomic when it is homogeneous and linear, and has polynomial
coefficients ∈ K[n], see [Koe06].
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Remark 3.7
Since an inhomogeneous recurrence equation with polynomial coefficients whose right-hand side
is a hypergeometric term can be converted into a homogeneous recurrence equation with polyno-
mial coefficients, we include in the setting of this thesis these recurrence equations in the class of
holonomic recurrence equations.

Example 3.8
Consider the inhomogeneous recurrence equation

RE1 : ncn−1 + cn + (n+ 1)cn+1 = n2n .

Substituting n by n+ 1 in RE1, we get

RE2 : (n+ 1)cn + cn+1 + (n+ 2)cn+2 = (n+ 1)2n+1 .

RE2

RE1
⇐⇒ (n+ 1)cn + cn+1 + (n+ 2)cn+2

ncn−1 + cn + (n+ 1)cn+1

=
(n+ 1)2n+1

n2n
=

2(n+ 1)

n
.

Clearing denominators leads to the homogeneous recurrence equation

RE3 : −2n(n+ 1)cn−1 + (n+ 1)(n− 2)cn + (−3n− 2n2 − 2)cn+1 + n(n+ 2)cn+2 = 0 .

3.2.1 Conversion of a Trigonometric Holonomic Differential Equation Into
a Recurrence Equation

We recall that the set of the trigonometric holonomic functions consists of those functions satisfy-
ing relation (2.9), namely

P∑
p=0

L∑
l=0

(�pl cos(l!t) + �pl sin(l!t)) f (p)(t) = 0

for appropriate integers P ≥ 1, L ≥ 0 and ! ∈ ℝ★, where �pl and �pl ∈ K. This may be written in
the form

P∑
p=0

�p0f
(p)(t) +

P∑
p=0

L∑
l=1

(�pl cos(l!t) + �pl sin(l!t)) f (p)(t) = 0 . (3.1)

Theorem 3.9 (DE into RE)
Let f : [a, b] → ℝ satisfy a differential equation of the form (3.1). Then the complex Fourier
coefficients c(p)n of the derivatives f (p)(t) satisfy the recurrence equation

P∑
p=0

2�p0c
(p)
n +

P∑
p=0

L∑
l=1

(
c
(p)
n+l(�pl + i�pl) + c

(p)
n−l(�pl − i�pl)

)
= 0 . (3.2)
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After replacing c(p)n±l for p > 0 according to equation (1.14) in terms of cn±l this yields a holonomic
recurrence equation for the complex Fourier coefficients cn of f(t), given as

P∑
p=0

2�p0(−1)p
(
2n�

i(T )

)p⎛⎝cn − p−1∑
j=0

(−1)j(T )j( i

2n�
)j+1(f (j)(b)− f (j)(a))e−in!a

⎞⎠+

P∑
p=0

L∑
l=1

⎡⎣(�pl + i�pl)

(
2(n+ l)�i

T

)p⎛⎝cn+l − p−1∑
j=0

(−1)j(T )j( i

2(n+ l)�
)j+1(f (j)(b)− f (j)(a))e−i(n+l)!a

⎞⎠+

(�pl − i�pl)
(
2(n− l)�i

T

)p⎛⎝cn−l − p−1∑
j=0

(−1)j(T )j( i

2(n− l)�
)j+1(f (j)(b)− f (j)(a))e−i(n−l)!a

⎞⎠⎤⎦ = 0 .

(3.3)

Proof: Starting from the differential equation (3.1), we will construct two relations which are linear com-
binations of the real Fourier coefficients of the successive derivatives of the function f . Then we will
combine both relations to get a linear combination between the complex Fourier coefficients of the succes-
sive derivatives of f , which will be converted into a recurrence equation for the complex Fourier coefficients
of f itself.
Multiplying (3.1) by 2

T ⋅ cos(n!t) and integrating over the interval [a, b] we get:

2

T

∫ b

a

⎛⎝ P∑
p=0

�p0f
(p)(t) +

P∑
p=0

L∑
l=1

(�pl cos(l!t) + �pl sin(l!t)) f
(p)(t)

⎞⎠ cos(n!t)dt = 0

⇐⇒ 2

T

∫ b

a

⎡⎣ P∑
p=0

�p0f
(p)(t) cos(n!t) +

P∑
p=0

L∑
l=1

(�pl cos(l!t) cos(n!t)+

�pl sin(l!t) cos(n!t)) f
(p)(t)

]
dt = 0 .

Using the trigonometric addition theorems (2.1)–(2.4) the previous equation becomes:

2

T

∫ b

a

⎡⎣ P∑
p=0

�p0f
(p)(t) cos(n!t) +

P∑
p=0

L∑
l=1

(
1

2
�pl (cos((n+ l)!t) + cos((n− l)!t))+

1

2
�pl (sin((n+ l)!t)− sin((n− l)!t))

)
f (p)(t)

]
dt = 0

which leads to the relation
P∑
p=0

�p0
2

T

∫ b

a
f (p)(t) cos(n!t)dt+

P∑
p=0

L∑
l=1

[
1

2
�pl

(
2

T

∫ b

a
f (p)(t) cos((n+ l)!t)dt+

2

T

∫ b

a
f (p)(t) cos((n− l)!t)dt

)
+
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1

2
�pl

(
2

T

∫ b

a
f (p)(t) sin((n+ l)!t)dt− 2

T

∫ b

a
f (p)(t) sin((n− l)!t)dt

)]
= 0

and finally we obtain:

P∑
p=0

�p0a
(p)
n (f) +

P∑
p=0

L∑
l=1

[
1

2
�pl

(
a
(p)
n+l(f) + a

(p)
n−l(f)

)
+

1

2
�pl

(
b
(p)
n+l(f)− b

(p)
n−l(f)

)]
= 0 . (3.4)

Hence we get an identity between the sine Fourier coefficients b(p)n+l(f) and the cosine Fourier coefficients

a
(p)
n+l(f) of the successive derivatives of a function f .

Starting from the same relation (3.1) and using the same process as previously, but multiplying this time by
2
b−a ⋅ sin(n!t) instead of 2

b−a ⋅ cos(n!t) we get:

2

b− a

∫ b

a

⎛⎝ P∑
p=0

�p0f
(p)(t) +

P∑
p=0

L∑
l=1

(�pl cos(l!t) + �pl sin(l!t)) f
(p)(t)

⎞⎠ sin(n!t)dt = 0

which leads to the following second relation which is again a linear combination of the sine Fourier co-
efficients b(p)n+l(f) and the cosine Fourier coefficients a(p)n+l(f) of the successive derivatives of the function
f

P∑
p=0

�p0b
(p)
n (f) +

P∑
p=0

L∑
l=1

[
1

2
�pl

(
b
(p)
n+l(f) + b

(p)
n−l(f)

)
+

1

2
�pl

(
−a(p)n+l(f) + a

(p)
n−l(f)

)]
= 0 . (3.5)

Aiming to find a recurrence equation for the complex Fourier coefficients

cn(f) =
1

2
(an(f)− ibn(f))

of the function f , we put together the relations (3.4)and (3.5) in the way

(3.4)− i(3.5)

which leads after some simplifications to (3.2) and this finishes the first part of the proof.
Let us convert (3.2) into a recurrence equation for the complex Fourier coefficients of f . From (1.14) we
deduce that

c
(p)
n−l =

(
2(n− l)�i

T

)p⎛⎝cn−l − p−1∑
j=0

(−1)j(T )j (
i

2(n− l)�
)j+1(f (j)(b)− f (j)(a))e−i(n−l)!a

)
(3.6)

and that

c
(p)
n+l =

(
2(n+ l)�i

T

)p⎛⎝cn+l − p−1∑
j=0

(−1)j(T )j (
i

2(n+ l)�
)j+1(f (j)(b)− f (j)(a))e−i(n+l)!a

)
(3.7)

The substitution of (3.6) and (3.7) in (3.2) leads to (3.3) which is a holonomic recurrence equation satisfied
by the complex Fourier coefficients of f . □
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Example 3.10
Consider the function defined by

f(t) =
t

2 + sin(t)
∈ TH(1) .

f satisfies the trigonometric holonomic differential equation

sin(t)F (t)− 2 cos(t)F ′(t) + (−2− sin(t))F ′′(t) = 0 . (3.8)

Retrieving the coefficients �pl and �pl for which DE is of the form (2.9) and substituting them in (3.2), we
get the recurrence equation

− icn−1 + icn+1 − 2c′n−1 − 2c′n+1 − 4c′′n + ic′′n−1 − ic′′n+1 = 0 (3.9)

which is a linear combination of the complex Fourier coefficients of the successive derivatives of f . Using
(3.6) and (3.7), we obtain:

c′n−1 = i(n− 1)cn−1 +
1

2
, c′n+1 = i(n− 1)cn+1 +

1

2

c′′n = −n2cn +
2ni− 1

4
, c′′n−1 = −(n− 1)2cn−1 +

2(n− 1)i− 1

4

c′′n+1 = −(n+ 1)2cn−1 +
2(n+ 1)i− 1

4
.

Substituting the previous values in (3.9), we deduce that the complex Fourier coefficients of the function f
satisfy the inhomogeneous second order recurrence equation

−in2cn−1 + 4n2cn + in2cn+1 = 2in .

This is what (3.3) gives in one step.

Remark 3.11
In practice, to convert a differential equation of the form (2.9) into a recurrence equation, we
substitute the coefficients �pl and �pl into (3.3) to get the recurrence equation satisfied by the
Fourier coefficients of the considered function directly. We summarize this process in the following
algorithm.
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Algorithm 3.1: Conversion of a trigonometric holonomic differential equation into a recur-
rence equation (THDEtoRE)

input : An interval [a, b] with ! = 2�
b−a , a linear differential equation DE with coefficients in

K[cos(!t), sin(!t)] and a function f solution of DE.
output: A recurrence equation for the complex Fourier coefficients of the function f on an

interval of period T = 2�
!

.

begin1

Retrieve from DE the coefficients �pl and �pl for which DE is of the form (2.9).2

Substitute those coefficients in (3.3) to get the recurrence equation satisfied by the
complex Fourier coefficients of f .
Return the recurrence equation satisfied by the complex Fourier coefficients of f .3

end4

Example 3.12
Consider the differential equation of Example 3.10 (page 50).

DE := sin(t)F (t)− 2 cos(t)F ′(t) + (−2− sin(t))F ′′(t) = 0 ,

where ! = 1, one of whose solutions is the function defined on the interval [0, 2�] by

f(t) =
t

2 + sin(t)
.

The coefficients �pl and �pl for which DE is of the form (2.9) are

�00 = 0, �01 = 0, �10 = 0, �11 = −2, �20 = −2, �21 = 0

and
�00 = 0, �01 = 1, �10 = 0, �11 = 0, �20 = 0, �21 = −1 .

Substituting the previous coefficients and f in (3.3) we get the following recurrence equation

−in2cn−1 + 4n2cn + in2cn+1 = 2in

again. Unfortunately the previous recurrence equation does not have any solution in closed form
which is proved by the Petkovšek-Van Hoeij algorithm.

Remark 3.13
Depending on the input function and the considered interval, Theorem 3.9 does not always return
a holonomic recurrence equation, namely if the right-hand side is not a hypergeometric term. In
the setting of this thesis we will restrict ourselves to the case of holonomic recurrence equations.
Such recurrence equations are always obtained if the input function is periodic and the length of
the considered interval is one period.
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3.3 Fourier Coefficients of Exp-Like Functions
We devote this section to the computation of the Fourier coefficients of exp-like functions. We have
seen in Section 2.3.2 that those functions satisfy trigonometric holonomic differential equations
with constant coefficients, corresponding to L = 0. The particularity here is that such differential
equations lead to recurrence equations of order zero. These recurrence equations are obtained by
substituting L by zero in the equation (3.3). Of course the Fourier coefficients of those functions
can also be directly computed via definitions (2)–(4), but we present here an algorithmic approach
of that computation.

Example 3.14
Consider the function defined on the interval [0, 2l] by

f(t) = t3 .

f satisfies the trigonometric holonomic differential equation with constant coefficients.

DE : F (4)(t) = 0 .

Using Algorithm 3.1 DE is converted to the following recurrence of order zero

RE : 2n4�4cn − 4i(2�2n2 − 3in� − 3)n�l3 = 0 .

from wich we deduce that the algorithmic computation of the Fourier coefficients of f are

cn =

{
2l3 if n = 0

4il3�2n2+6l3�n−6il3
(�n)3

otherwise .

Example 3.15
Consider now the function defined on the interval [−�

2
, �
2
] by:

f(t) = t2 cos(t)(eit)5

f satisfies the trigonometric holonomic differential equation

DE : 13824F (t) + 17280iF ′(t)− 8928F ′′(t)− 2440iF ′′′(t) + 372F (4)(t) + 30iF (5)(t)− F (6)(t) = 0 .

Converted into a recurrence equation, DE gives

RE : 4(n− 2)3(n− 3)3cn + 30(−1)n+1 + 37(−1)nn+ 15(−1)n+1n2 + 2(−1)nn3 = 0

which is an inhomogeneous holonomic recurrence equation of order zero, from which we deduce
that the complex Fourier coefficients of f on the interval [−�

2
, �
2
] are given as:

cn =

{ −1
4

+ �2

24
if n = 2 ∨ n = 3.

−2(−1)nn+5(−1)n
4n4−40n3+148n2−240n+144

otherwise
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3.4 General Algorithm for the Computation of the Fourier Co-
efficients of Trigonometric Holonomic Functions

Although we will emphasize further on the rational trigonometric functions, we give here an algo-
rithm for the computation in the general case of the complex Fourier coefficients of trigonometric
holonomic functions.

Algorithm 3.2: Computation of the Fourier coefficients of a trigonometric holonomic
function (FouCoeffTH)

input : An !-trigonometric holonomic function and an interval I = [a, b] such that
! = 2�

b−a .
output: Either the complex Fourier coefficients of f on I , or RE and enough initial

values.

begin1

Apply Algorithm 2.1 to f on I to get a trigonometric holonomic differential2

equation DE satisfied by f .
Apply Algorithm 3.1 to DE to convert it into a recurrence equation RE.3

if RE is not holonomic then4

return RE and enough initial values.5

end6

Solve RE with appropriate initial values.7

if solving the previous RE is successful then8

return the complex Fourier coefficients of f on I .9

else10

return RE and enough initial values.11

end12

end13

Remark 3.16
The order N of the recurrence equation (3.3) depends only on L, namely N = 2L. Hence in the
search for a differential equation of the form (2.9), we should keep L as low as possible. In the
next section, we will emphasize on the case of rational trigonometric functions. We will optimize
P and L so that the obtained recurrence equation is of smallest possible order.1

1Because of the non-uniqueness of the factorization in K(cos t, sin t), the method and therefore the best choice of
L and P depends on the representation of f(t).
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3.5 Rational Trigonometric Functions

3.5.1 First Algorithm for Rational Trigonometric Functions
In this section we present an algorithm for the computation of the complex Fourier coefficients in
the particular case of rational trigonometric functions. This algorithm may get directly a recurrence
equation satisfied by the Fourier coefficients of the input function, without involving differential
equations.
W.l.o.g. we set ! = 1 and consider the function

f(t) ∈ K(cos(t), sin(t)) .

We write Z = eit. Then f(t) can be rewritten in the form

F (Z) = f(t) =

M∑
k=0

pkZ
k

N∑
k=0

qkZk

=
p(Z)

q(Z)
(3.10)

assuming gcd(p, q) = 1, via the transformations cos(t) = 1
2
(Z+ 1

Z
) and sin(t) = 1

2i
(Z− 1

Z
). Since

Z = eit, (3.10) may be written in the form

F (Z) = f(t) =

M∑
k=0

pke
ikt

N∑
k=0

qkeikt
.

Clearing denominator leads to

f(t)
N∑
k=0

qke
ikt =

M∑
k=0

pke
ikt .

Multiplying by 1
2�
e−int we get

N∑
k=0

qk
1

2�
e−i(n−k)tf(t) =

M∑
k=0

pk
1

2�
e−i(n−k)t (3.11)

Aiming to get a holonomic recurrence equation for cn = 1
2�

∫ 2�

0
f(t)e−intdt, let us integrate (3.11)

over the interval [0, 2�] and we have

N∑
k=0

qk
1

2�

∫ 2�

0

e−i(n−k)tf(t)dt =
M∑
k=0

1

2�

∫ 2�

0

pke
−i(n−k)tdt
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which leads to the recurrence equation

N∑
k=0

qkcn−k = 0 for n ≤ 0 or n ≥M (3.12)

and
N∑
k=0

qkcn−k =
M∑
k=0

pk for 0 ≤ n ≤M . (3.13)

We summarize the previous computations in the following algorithm.

Algorithm 3.3: First algorithm for the computation of the Fourier coefficients of rational
trigonometric holonomic functions (1FouCoeffRatTH)

input : A function f ∈ K(cos(t), sin(t))
output: Either the complex Fourier coefficients of f on I , or RE and enough initial values.

begin1

Substitute cos(t) = 1
2(Z + 1

Z ) and sin(t) = 1
2i(Z −

1
Z ) in f , bring f into rational normal2

form (3.10), read off M,N , and the coefficients pk, qk.
Deduce the following recurrence equation RE:3

N∑
k=0

qkcn−k = 0 for n ≤ 0 or n ≥M (3.14)

and
N∑
k=0

qkcn−k =

M∑
k=0

pk for 0 ≤ n ≤M (3.15)

Solve RE with N initial values in the positiv direction and with N initial values in the
negativ direction.
if Solving the previous RE is successful then4

return the complex Fourier coefficients of f on I in the form5

cn =

⎧⎨⎩
Closed form I ∀n > M

Some initial values 0 ≤ n ≤M

Closed form II ∀n < 0 .

.
else6

return RE and enough initial values.7

end8

end9

We may deduce from the previous computation the following
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Theorem 3.17
The complex Fourier coefficients of rational trigonometric functions satisfy a linear recurrence
equation with constant coefficients, except for a finite number of initial values 0 ≤ n ≤ M . In
particular these Fourier coefficients are of closed form for all n ≤ 0 and also for all n ≥M .

Proof: Algorithm 3.3 produces recurrence equations with constant coefficients. Such recurrence equa-
tions can be always solved in closed form using enough initial values, see e.g. [Sta00] in the chapter on
rational generating functions. □

Remark 3.18
Recurrence equations (3.14) and (3.15) can be brought into a single holonomic recurrence equation
for all n ∈ ℤ by multiplying (3.14) with n(n− 1) ⋅ ⋅ ⋅ (n−M) and we get

N∑
k=0

M∏
i=0

(n− i)qkcn−k = 0 .

Example 3.19
1. Consider the function defined on the interval [0, 2�] by

f(t) =
1

2 + cos(t)
.

Algorithm 3.3 produces the recurrence equation

RE := cn−2 + 4cn−1 + cn = 0 .

Solving RE we get the closed form

cn =

{ √
3
3

(√
3− 2

)n
if n ≥ 0

√
3
3

(
−
√

3− 2
)n

if n ≤ 0 .

which are the complex Fourier coefficients of f on the interval [0, 2�].

2. Consider now the function
g(t) =

1

(2 + cos(t))20
.

Using the previous Algorithm 3.3, we get the following recurrence equation of order 40

cn−40 + 80cn−39 + 3060cn−38 + 74480cn−37 + 1295230cn−36 + 17130096cn−35

+179072340cn−34 + 1518229200cn−33 + 10629547245cn−32 + 62257759040cn−31

+307948690960cn−30 + 1295267106240cn−29 + 4655673046120cn−28

+14349560273600cn−27 + 14349560273600cn−27 + 38010466639440cn−26
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+86645955115584cn−25 + 170074452183570cn−24 + 287490594872160cn−23

+418426332826200cn−22 + 524194439193120cn−21 + 565107853947444cn−20

+524194439193120cn−19 + 418426332826200cn−18 + 287490594872160cn−17

+170074452183570cn−16 + 86645955115584cn−15 + 38010466639440cn−14+

14349560273600cn−13 + 4655673046120cn−12 + 1295267106240cn−11

+307948690960cn−10 + 62257759040cn−9 + 10629547245cn−8 + 1518229200cn−7

+179072340cn−6 + 17130096cn−5 + 1295230cn−4 + 74480cn−3

+3060cn−2 + 80cn−1 + cn = 0 .

A high order recurrence equation has a direct consequence on the time consumption of the compu-
tation of initial values. In the next section we will present an algorithm which will search for the
best values of P and L for which we may get the recurrence equation of lowest order for the par-
ticular case of rational trigonometric functions. For the previous example instead of a recurrence
equation of order 40 this algorithm will return the following second order recurrence equation

i(n+ 19)cn−1 + 4incn + i(−19 + n)cn+1 = 0 ,

so that only two initial values are needed.

3.5.2 Efficient Computation of P and L

W.l.o.g. we set ! = 1. We deal in this section with functions of K(cos(t), sin(t)), which are
elements of the ring K[cos(t), sin(t)]/⟨cos(t)2 + sin(t)2 − 1⟩ which is not a unique factorization
domain. Jamie Mulholland and Michael Monagan presented in [MM01] algorithms for simplifying
ratios of trigonometric polynomials, and algorithms for dividing, factoring and computing common
divisors of trigonometric polynomials. The output of the algorithm we will present in this section
depends on the form in which the input rational trigonometric function is given in K[cos(t), sin(t)],
which in some case is not in the simplest form according to our purpose. Thus it may happen in
some cases that the output is not the optimal one. We assume in this section that a function f(t) of
K(cos t, sin t) is given in the following form

f(t) =

I∏
i=0

[Ai(cos(t), sin(t))]�i

J∏
j=0

[Bj(cos(t), sin(t))]�j
, Bj(cos(t), sin(t)) ∕= 0, (j = 0, . . . , J).

where Ai(cos(t), sin(t)) and Bj(cos(t), sin(t)) are trigonometric polynomial functions of degrees
ni and mj respectively.
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It is easy to prove that the ptℎ derivative of the function f may be given by the relation

f (p)(t) =

⎛⎜⎜⎜⎝
I∏
i=0

[Ai(cos(t), sin(t))]�i

J∏
j=0

[Bj(cos(t), sin(t))]�j

⎞⎟⎟⎟⎠
(p)

=
Cp(cos(t), sin(t))

J∏
j=0

[Bj(cos(t), sin(t))]�j+p

where Cp(cos(t), sin(t)) ∈ K[cos(t), sin(t)] of degree p
J∑
j=0

mj +
I∑
i=0

�ini.

For simplification reasons, we omit the arguments so that we have

f (p)(t) =

⎛⎜⎜⎜⎝
I∏
i=0

A�ii

J∏
j=0

B
�j
j

⎞⎟⎟⎟⎠
(p)

=
Cp

J∏
j=0

B
�j+p
j

with degree(Cp) = p
J∑
j=0

mj +
I∑
i=0

�ini .

Since f is solution of the differential equation (2.9) then

P∑
p=0

L∑
l=0

(�pl cos(lt) + �pl sin(lt)) f (p)(t) = 0

⇐⇒
P∑
p=0

L∑
l=0

(�pl cos(lt) + �pl sin(lt))

⎛⎜⎜⎜⎝
I∏
i=0

A�ii

J∏
j=0

B
�j
j

⎞⎟⎟⎟⎠
(p)

= 0

⇐⇒
P∑
p=0

L∑
l=0

(�pl cos(lt) + �pl sin(lt))
Cp

J∏
j=0

B
�j+p
j

= 0

⇐⇒

L∑
l=0

(�0l cos(lt) + �0l sin(lt))C0

J∏
j=0

BP
j +

L∑
l=0

(�1l cos(lt) + �pl sin(lt))C1

J∏
j=0

BP−1
j + ⋅ ⋅ ⋅

J∏
j=0

B
�j+P
j

⋅ ⋅ ⋅+
L∑
l=0

(�kl cos(lt) + �kl sin(lt))Ck
J∏
j=0

BP−k
j + ⋅ ⋅ ⋅+

L∑
l=0

(�Pl cos(lt) + �Pl sin(lt))CP

J∏
j=0

B
�j+P
j

= 0

⇐⇒
L∑
l=0

(�0l cos(lt) + �0l sin(lt))C0

J∏
j=0

BP
j +

L∑
l=0

(�1l cos(lt) + �pl sin(lt))C1

J∏
j=0

BP−1
j + ⋅ ⋅ ⋅
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⋅ ⋅ ⋅+
L∑
l=0

(�kl cos(lt) + �kl sin(lt))Ck

J∏
j=0

BP−k
j + ⋅ ⋅ ⋅+

L∑
l=0

(�Pl cos(lt) + �Pl sin(lt))CP .
(3.16)

Let us investigate an arbitrary term of the relation (3.16), namely the expression

L∑
l=0

(�kl cos(lt) + �kl sin(lt))Ck

J∏
j=0

BP−k
j .

We get:
L∑
l=0

(�kl cos(lt) + �kl sin(lt))Ck

J∏
j=0

BP−k
j =

�k0Ck

J∏
j=0

BP−k
j + ⋅ ⋅ ⋅+ (�kL cos(Lt) + �kL sin(Lt))Ck

J∏
j=0

BP−k
j

Since Ck is of degree
I∑
i=0

�ini + k
J∑
j=0

mj and
J∏
j=0

BP−k
j are of degree (P − k)

J∑
j=0

mj , then the

expression cos(Lt)Ck
J∏
j=0

BP−k
j and sin(Lt)Ck

J∏
j=0

BP−k
j can be rewritten in terms of Fourier poly-

nomial functions of degree

L+
I∑
i=0

�ini + k
J∑
j=0

mj + (P − k)
J∑
j=0

mj = L+
I∑
i=0

�ini + k
J∑
j=0

mj + P
J∑
j=0

mj − k
J∑
j=0

mj =

= L+
I∑
i=0

�ini + P
J∑
j=0

mj .

Collecting (3.16) with respect to cos(kt), k running from 0 to L, we obtain a maximum of L+
I∑
i=0

�ini + P
J∑
j=0

mj + 1 expressions, and doing the same thing with respect to sin(kt), k running

from 0 to L, we obtain also a maximum of L+
I∑
i=0

�ini +P
J∑
j=0

mj expressions. We get that (3.16)

gives us a system of maximum

L+
I∑
i=0

�ini + P
J∑
j=0

mj + L+
I∑
i=0

�ini + P
J∑
j=0

mj + 1 = 2L+ 2
I∑
i=0

�ini + 2P
J∑
j=0

mj + 1

equations, while the number of variables remains the same, namely 2(P + 1)(L + 1). To be sure
that the obtained system of equations will get solutions, we should look for conditions on L and P
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such that the number of variables is always greater than the one of equations, assuring by the same
way the non-triviality of the solutions. We get

2(L+ 1)(P + 1) > 2L+ 2
I∑
i=0

�ini + 2P
J∑
j=0

mj + 1

⇐⇒ 2(LP + L+ P + 1) > 2L+ 2
I∑
i=0

�ini + 2P
J∑
j=0

mj + 1

⇐⇒ 2LP > 2
I∑
i=0

�ini + 2P
J∑
j=0

mj − 2P − 1

and finally

L >

2
I∑
i=0

�ini + 2P
J∑
j=0

mj − 2P − 1

2P
. (3.17)

Choosing L and P such that (3.17) is satisfied assures the existence of non-vanishing solutions of
the system of equations obtained from (3.16). But our aim is to optimize that choice such that L is

as small as possible. For simplification reasons, let us put N = 2
I∑
i=0

�ini and M =
J∑
j=0

mj , then

(3.16) becomes

L >
2P (M − 1) +N − 1

2P
.

∙ Efficient Choice of P and L

Since we want to keep L as small as possible while P can be as large as necessary, let us now
consider the function ℎ defined by:

ℎ(P ) =
2P (M − 1) +N − 1

2P
. (3.18)

We have: lim
P→∞

ℎ(P ) = M − 1 =
J∑
j=0

mj − 1. Since L > ℎ(P ) there is no guarantee for (3.16)

to have solutions if L ≤
J∑
j=0

mj − 1. Our optimal choice of L such that we can be sure to get a

solution for P is L = M =
J∑
j=0

mj .
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∙ Optimal Choice of P

We now want to look for the smallest value of P , for which choosing L = M , (3.16) should get a
solution. This is the case when the number of variables is larger than the number of equations in
(3.16), i.e.

2(L+ 1)(P + 1) > 2L+ 2
I∑
i=0

�ini + 2P
J∑
j=0

mj + 1

⇐⇒ 2(M + 1)(P + 1) > 2M +N + 2MP + 1

⇐⇒ P >
N − 1

2
⇐⇒ P ≥ N − 1

2
+ 1 =

N + 1

2

P ≥
2

I∑
i=0

�ini + 1

2
.

Since P is an entire number, the smallest P corresponding to the optimal L = M is the entire part

of
2
I∑
i=0

�ini+1

2
, i.e. P = E

[
1
2

+
I∑
i=0

�ini

]
= 1 +

I∑
i=0

�ini. We can summarize the previous result in

the following theorem.

Theorem 3.20
Let f be the rational trigonometric function given in the form:

f(t) =

I∏
i=0

[Ai(cos(t), sin(t))]�i

J∏
j=0

[Bj(cos(t), sin(t))]�j
, Bj(cos(t), sin(t)) ∕= 0, (j = 0, . . . , J).

where Ai(cos(t), sin(t)) and Bj(cos(t), sin(t)) are trigonometric polynomial functions of degree
ni and mj respectively. The optimal choice of P and L for which the complex Fourier coefficients
of f satisfy a recurrence equation of lowest order (depending on the given representation of f(t)) is

P = 1 +
I∑
i=0

�ini and L =
J∑
j=0

mj , i.e. there is no guarantee to obtain a differential equation of the

form (2.9) if L <
J∑
j=0

mj , and even when L =
J∑
j=0

mj there is also no guarantee if P < 1+
I∑
i=0

�ini.

Let us summarize the previous result in the following algorithm:
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Algorithm 3.4: Determination of the efficient P and L (EfficientPL)
input : A rational trigonometric function in the following form:

f(t) =

I∏
i=0

[Ai(cos(!t), sin(!t))]�i

J∏
j=0

[Bj(cos(!t), sin(!t))]�j
, Bj(cos(!t), sin(!t)) ∕= 0, (j = 0, . . . , J).

where Ai(cos(!t), sin(!t)) and Bj(cos(!t), sin(!t)) are trigonometric
polynomial functions.

output: The pair (P,L).

begin1

Determine I , the degree ni of the numerators Ai(cos(!t), sin(!t)), (i = 0, . . . , I)2

and their multiplicity �i.
Determine J , the degree mj of the denominators3

Bj(cos(!t), sin(!t)), (j = 0, . . . , J)
Apply Algorithm 3.1 to DE to convert it into a recurrence equation RE.4

Deduce the numbers P and L as in the following: L =
J∑
j=0

mj , P = 1 +
I∑
i=0

�ini.
5

Return the pair (P,L).6

end7

Example 3.21
1. Consider the function from Example 3.19 (page 56) defined by:

f(t) =
1

(2 + cos(t))20
.

We have: I = 0, n0 = 0, �0 = 0, J = 0,m0 = 1.

So we deduce that the best choice for L is L =
J∑
j=0

mj = 1 and the best choice of P for this L is

P = 1 +
0∑
i=0

�ini = 1. For those choices we obtain the recurrence equation

i(n+ 19)cn−1 + 4incn + i(−19 + n)cn+1 = 0 .

2. Consider now the function defined by

g(t) =
cos(t)(1 + sin2(t))2

(2 + cos2(t))3(3 + sin2(t))2
.

In this case we have: I = 1, n0 = 1, �0 = 1, n1 = 2, �1 = 2 J = 1,m0 = 2,m1 = 2. So we deduce

that P = 1 +
1∑
i=0

�ini = 1 + 1 + 2 ⋅ 2 = 6 and L =
1∑
j=0

mj = 2 + 2 = 4.
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The corresponding recurrence equation of order 8 is

−(2n4 + 8n3 − 40n2 − 96n+ 27)(n+ 1)2cn−4 + (−232n4 − 6580n2 − 1116n+ 8n6

+72n5 − 3312n3 + 2052)cn−2 + (−11388n4 − 39042 + 276n6 + 59262n2)cn

+(2052 + 3312n3 − 72n5 − 232n4 + 8n6 + 1116n− 6580n2)cn+2

−(2n4 − 8n3 − 40n2 + 96n+ 27)(n− 1)2cn+4 = 0 .

3.5.3 Second Algorithm for the Rational Trigonometric Functions
The computation of the complex Fourier coefficients in the case of rational trigonometric functions
may be summarized in the following algorithm

Algorithm 3.5: Second algorithm for the computation of the Fourier coefficients of a
rational trigonometric holonomic function (2FouCoeffRatTH)

input : A rational trigonometric function in the following form:

f(t) =

I∏
i=0

[Ai(cos(t), sin(t))]�i

J∏
j=0

[Bj(cos(t), sin(t))]�j
, Bj(cos(t), sin(t)) ∕= 0, (j = 0, . . . , J).

output: Either the complex Fourier coefficients of f on I , or RE and enough initial
values.

begin1

Apply Algorithm 3.4 (EfficientPL) to determine the efficient P and L.2

Apply Algorithm 2.2 (THDEPL) to f , on the interval [0, 2�], for P and L obtained3

previously, to get a trigonometric holonomic differential equation DE satisfied by f .
Apply Algorithm 3.1 (THDEtoRE) to DE, and f to convert DE into a recurrence4

equation RE satisfied by the complex Fourier coefficients of f .
if RE is not holonomic then5

return RE and enough initial values.6

end7

Solve RE with appropriate initial values.8

if solving the previous RE is successful then9

return the complex Fourier coefficients of f on I .10

else11

return RE and enough initial values.12

end13

end14
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Example 3.22
Let us aim to compute the complex Fourier coefficients of the function

f(t) =
1

(2 + cos(t))20

on the interval [0, 2�]. We get from Algorithm 3.4 L = 1 and P = 1 and Algorithm 2.2 gives the
differential equation

DE : (2 + cos(t))F ′(t)− 20 sin(t)F (t) = 0 .

Algorithm 3.1 converts DE into the following recurrence equation RE

RE : i(n+ 19)cn−1 + 4incn + i(−19 + n)cn+1 = 0 . (3.19)

Solving RE we get ∀n ≥ 0

cn =
(−2 +

√
3)n

21549064602123362304000

(
2598373260585253340700n+207784608n15+1179246535908242448n7

+678681872501747249208n3 + 3n19 + 68400n17 + 956086266762532871940n2
√
3

+4189258320n14
√
3 + 2587230n16

√
3 + 4686690914390935200n6

√
3 + 115724365700595819470

√
3n4

+2507083241260n12
√
3 + 380n18

√
3 + 658724628579160n10

√
3 + 81271048798518540n8

√
3

+198221547000n13 + 77548709950608n11 + 45298720378942521900n5

+1139118803030468009750
√
3 + 13910290044027000n9

)
.

and ∀n ≤ 0

cn =
(−2 +

√
3)−n

21549064602123362304000

(
−2598373260585253340700n−207784608n15−1179246535908242448n7

−678681872501747249208n3 − 3n19 + 68400n17 + 956086266762532871940n2
√
3

+4189258320n14
√
3 + 2587230n16

√
3 + 4686690914390935200n6

√
3 + 115724365700595819470

√
3n4

+2507083241260n12
√
3 + 380n18

√
3 + 658724628579160n10

√
3 + 81271048798518540n8

√
3

−198221547000n13 − 77548709950608n11 − 45298720378942521900n5

+1139118803030468009750
√
3− 13910290044027000n9

)
.

Note that the recurrence equation (3.19) has its coefficients in ℚ. But the solution contains
√

3,
since the Petkovšek-Van-Hoeij algorithm needed an algebraic field extension to compute this so-
lution.

Conclusion 3.23
For the computation of the complex Fourier coefficients of rational trigonometric functions, if the
degree of the denominator of the input function is 1, then it is preferable to use Algorithm 3.3,
because we get a constant coefficient recurrence equation of second order. However for rational
trigonometric functions whose denominator has degree ≥ 2, Algorithm 3.5 is preferable, because
we may obtain a lower order recurrence equation which needs consequently fewer initial values.
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We summarize the computation of the complex Fourier coefficients of rational trigonometric
holonomic function f in the following algorithm:

Algorithm 3.6: Summarizing algorithm for the computation of the Fourier coefficients
of rational trigonometric functions (FouCoeffRatTH)

input : A given rational trigonometric holonomic function f : I = [a, b]→ ℂ where
! = 2�

b−a .
output: Either the complex Fourier coefficients of f on I , or RE and enough initial

values.

begin1

if f has a denominator of degree 1 then2

Apply Algorithm 3.3 to f on I .3

else4

Apply Algorithm 3.5 to f on I .5

end6

end7

Remark 3.24
For a given ! one can search if a given function is in TH(!). Conversely one can also be interested
in knowing if for a given function f , ratio of trigonometric polynomials, there exist an ! (or how
can ! be chosen ) such that f ∈ TH(!). The following algorithm gives a rational trigonometric
membership test, and how ! can be chosen in such cases.

Algorithm 3.7: Membership test for rational trigonometric function (RatMembTest)
input : A function f , ratio of trigonometric polynomials.
output: Either ! for which f is in K(cos(!t), sin(!t)) or f is not a rational

trigonometric function.

begin1

Num← numerator of f .2

Den← denominator of f .3

if the periods of Num and Den, respective are commensurable then4

return !, the circular frequency associated to the period of the function5

g(t) = (Num,Den).
else6

return: f is not a rational trigonometric function.7

end8

end9

Of course ! is not unique, Theorem 2.8 implies that n! for each integer n is also a good choice.
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Example 3.25
Consider the function defined by

f(t) =
sin(abt

2
) + cos(abt

3
)

a2 + 2 + cos(2abt
3

)
.

Num = sin(abt
2

) + cos(abt
3

) is of period T1 = 12�
ab

, i.e. Num ∈ K[cos(ab
6

), sin(ab
6

)]. Similarly we
deduce thatDen = a2+2+cos(2abt

3
) is of period T2 = 3�

ab
, i.e. Den ∈ K[cos(2ab

3
), sin(2ab

3
)]. Since

T1 = 3T2, then Num and Den are commensurable, i.e. f is a rational trigonometric function.
(Num,Den) is of period 12�

ab
, hence ! = ab

6
. Thus f ∈ K(cos(ab

6
), sin(ab

6
)), i.e. f ∈ TH(ab

6
).

Applying Algorithm 3.4 to f , we get P = 4 and L = 4 as the efficient values for which we
get the lowest order recurrence equation satisfied by the complex Fourier coefficients of f . The
trigonometric holonomic differential equation satisfied by f for ! = ab

6
, P = 4 and L = 4 is

DE : b4a4(6 + 7 cos(
2ab

3
t) + 3a2)F (t) + 76a3b3 sin(

2ab

3
t)F ′(t) + 3b2a2(26− 83 cos(

2ab

3
t)

+13a2)F ′′(t)− 288ab sin(
2ab

3
t)F ′′′(t) + (216 + 108 cos(

2ab

3
t) + 108a2)F (4)

and the complex Fourier coefficients of f satisfies the following holonomic recurrence equation of
order 8

b4a4(n− 2)(n− 3)(n+ 3)(n+ 2)cn−4 + 2b4a4(n− 2)(n− 3)(n+ 3)(n+ 2)(a2 + 2)cn

+b4a4(n− 2)(n− 3)(n+ 3)(n+ 2)cn+4 = 0 .

Remark 3.26
Until now the smallest order of the recurrence equations obtained using the algorithms presented
is 2 and there is no possibility to get a lower order. However this is possible in the case of some
functions satisfying a differential equation of a particular form. In the next section we will present
an algorithm for the computation of the Fourier coefficients in those cases.

3.6 Fourier Coefficients of Functions Satisfying Differential Equa-
tions with Coefficients in K[ei!t, e−i!t]

This section is devoted to the computation of the Fourier coefficients of the trigonometric holo-
nomic functions satisfying differential equations with coefficients in K[e−i!t, ei!t]. As we an-
nounced in Section 2.5, the particularity in such differential equations is that they may lead in
some cases to first order recurrence equations, wich cannot be get neither via Algorithm 3.2 nor
Algorithm 3.6.
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3.6.1 Conversion of Differential Equations with Coefficients in K[ei!t, e−i!t]
into Holonomic Recurrence Equations

Theorem 3.27 (Holonomic Complex Re)
Let f : [a, b]→ ℂ satisfy a differential equation of the form (2.15) with ! = 2�

b−a . Then its complex
Fourier coefficients are given by

P∑
p=0

L∑
l=1

⎡⎣�pl(2(n− l)�i
T

)p⎛⎝cn−l − p−1∑
j=0

(−1)j(T )j( i

2(n− l)�
)j+1(f (j)(b)− f (j)(a))e−i(n−l)!a)

⎞⎠+

pl

(
2(n+ l)�i

T

)p⎛⎝cn+l − p−1∑
j=0

(−1)j(T )j( i

2(n+ l)�
)j+1(f (j)(b)− f (j)(a))e−i(n+l)!�

⎞⎠⎤⎦ = 0 .

(3.20)

Proof: Starting from the differential equation (2.15), namely

P∑
p=0

L∑
l=0

(
ple

−il!t + �ple
il!t
)
f (p)(t) = 0

and putting T = b−a and ! = 2�
b−a , multiplying (2.15) by 1

T ⋅ e
−in!t and integrating over the interval [a, b],

one gets
1

T

∫ b

a

(
ple

−il!t + �ple
il!t
)
f (p)(t)e−in!tdt = 0

⇐⇒
P∑
p=0

L∑
l=0

(
�pl

1

T

∫ b

a
f (p)(t)e−i!(n−l)tdt+ pl

1

T

∫ b

a
f (p)(t)e−i!(n+l)tdt

)
= 0

which leads to the relation

P∑
p=0

L∑
l=0

(
�plc

(p)
n−l + plc

(p)
n+l

)
= 0 (3.21)

where c(p)n−l and c(p)n+l denote the shifted complex Fourier coefficients of the ptℎ derivative of f , given by
(3.6) and (3.7). Substituting them in (3.21), we obtain that the complex Fourier coefficients of the function
f satisfy the recurrence equation (3.20). □

Remark 3.28
In practice for the conversion of a differential equation of the form (2.15) into a recurrence equa-
tion, we will retrieve from the DE the coefficients pl and �pl for which f DE is of the form (2.15)
and substitute them in (3.20). That process may be summarized in the following algorithm:
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Algorithm 3.8: Conversion of a trigonometric holonomic differential equation with coeffi-
cients in K[e−i!t, ei!t] into a holonomic recurrence equation (Exp-THDEtoRE)

input : A number ! ∈ ℝ★, a trigonometric holonomic differential equation DE of the form
(2.15) and a function f solution of DE.

output: A recurrence equation for the complex Fourier coefficients of the function f on an
interval of period T = 2�

!
.

begin1

Retrieve from DE the coefficients pl and �pl for which DE is of the form (2.15).2

Substitute those coefficients in (3.20) to get the recurrence equation satisfied by the3

complex Fourier coefficients of f .
Return the recurrence equation satisfied by the complex Fourier coefficients of f .4

end5

Example 3.29
Consider the function f : [0, 2�]→ ℂ defined by

f(t) = eie
it

.

f satisfies the differential equation

f ′(t) + eitf(t) = 0 . (3.22)

The retrieval of the coefficients pl and �pl from the previous differential equation gives

00 = 0, 01 = 0, 10 = 0, 11 = 0

and
�00 = 0, �01 = 1, �10 = 1, �11 = 0 .

Substituting the previous pl and �pl in (3.20) we obtain the following recurrence equation

cn−1 + incn = 0 .

Solving with one initial value we get that the Fourier coefficients of f are given as

cn =

{
in

n!
∀n ≥ 0

0 otherwise .

Note that if we use Algorithm 3.2 to compute the Fourier coefficients of the previous function, of
course we get the same result, but this time via a second order recurrence equation.
Let us compute it via Algorithm 3.2. f satisfies the differential equation

DE : −i(i+ i sin(t) + cos(t))F (t) + (−i+ cos(t)− i sin(t))F ′(t) = 0
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which, converted into a recurrence equation via Algorithm 3.1, gives the second order holonomic
recurrence equation

RE : −2icn−1 + (2n+ 2)cn + 2i(n+ 1)cn+1 = 0 .

Solving RE with two initial values leads again to

cn =

{
in

n!
∀n ≥ 0

0 otherwise2 .

Note that in this case an application of the Petkovšek-Van-Hoeij algorithm is necessary.

3.6.2 Algorithm for the Computation of the Fourier Coefficients of Func-
tions Satisfying a Differential Equation with Coefficients in K[ei!t, e−i!t]

Algorithm 3.9: Computation of the complex Fourier coefficients of functions satisfying
a differential equation with coefficienrs in K[e−i!t, ei!t] (Exp-FouCoeffTH)

input : A function f ∈ C(N)[a, b]→ ℂ for N large enough satisfying a differential
equation with coefficients in K[ei!t, e−i!t].

output: Either the complex Fourier coefficients of f on I , or RE and enough initial
values.

begin1

Apply Algorithm 2.3 to f on the interval I to determine a differential equation DE of2

the form (2.15) satisfied by f .
Apply Algorithm 3.8 to DE and f to convert DE into a recurrence equation RE3

satisfied by the complex Fourier coefficients of f .
if RE is not holonomic then4

return RE and enough initial values.5

end6

Solve RE and deduce the complex Fourier coefficients of f .7

if the solution of the previous RE is successful then8

return the complex Fourier coefficients of f on I .9

else10

return RE and enough initial values.11

end12

end13

Remark 3.30
One may easily remark that a differential equation of the form (2.15) may be converted into a dif-
ferential equation of the form (2.9) and conversely, using Euler’s formula eit = cos(t) + i sin(t)
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and Moivre’s formula (cos(t) + i sin(t))n = cos(nt) + i sin(nt). Doing so, the conversion of the
obtained differential equation into the corresponding recurrence equation for the Fourier coeffi-
cients of f may be done using appropriate conversion algorithms which may be either Algorithm
3.8 or Algorithm 3.1.

3.6.3 Fourier Coefficients of Simple Trigonometric Holonomic Functions
Example 3.31
Let f be the function defined on the interval [0, 2�

√
7

7
] by:

f(t) = ei
√
7t
√

2 + ei
√
7t .

f satisfies the trigonometric holonomic differential equation

−2i
√

7(4 + 3ei
√
7t)F (t) + (8 + 4ei

√
7t)F ′(t) = 0 ,

where ! =
√

7 and its complex Fourier coefficients satisfy the first order holonomic recurrence
equation

RE := 2i
√

7(−5 + 2n)cn−1 + 8i
√

7(n− 1)cn = 0 .

Solving RE we get the closed form

cn =

{
(−1)n2−n

√
2(n− 5

2
)!√

�(n−1)! ∀n ≥ 1

0 otherwise .

Example 3.32
Consider the following function defined on the interval [0, 2�] by:

f(t) =
e−4it

2 + eit
.

f is solution of the trigonometric holonomic differential equation

DE := (8 + 5eit)F (t)− i(2 + eit)F ′(t) = 0 .

The conversion of DE into a holonomic recurrence equation gives

(8 + 2n)cn + (n+ 4)cn−1 = 0

which is of first order and whose solution in closed form is

cn =

{
1
32

(−1
2

)n ∀n ≥ −4

0 otherwise .
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Remark 3.33
Note that for some trigonometric holonomic functions in general, we may combine Algorithm
1.1 of the first chapter and Algorithm 3.2 or Algorithm 3.9 to get a closed form of the Fourier
coefficients. For example if for a given trigonometric holonomic function we may not get a closed
form of its Fourier coefficients only because of the lack of the computation of enough initial values,
or the difficulty to solve the obtained recurrence equation, if we may overcome this gap with one
of its successive derivatives, then we use Algorithm 1.1 to achieve the Fourier coefficients of the
foresaid function. Example 1.11 ist also an illustration of this method.

Example 3.34
Consider the function defined by

f(t) = arctan(ie−it + (1− i)eit) .

f is a trigonometric holonomic function, satisfying the differential equation

−i(−2 + 3i+ 3ie−2it− 6e2it))F ′(t) + (4ie−2it + 8e2it)F ′′(t) + i(ie−2it− 2e2it + 2− 3i)F ′′′(t) = 0

and whose Fourier coefficients are solution of the fourth order recurrence equation

−2(n− 1)(n− 2)(n+ 1)cn−2 + (2− 3i)(n− 1)(n+ 1)ncn + i(n− 1)(n+ 2)(n+ 1)cn+2 = 0 .

Unfortunately Maple cannot compute any of its initial values. We remark that the derivative g = f ′

of f has an easier form than f , namely

g =
e−it + (i+ 1)eit

1 + (ie−it + (1− i)eit)2
.

Applying Algorithm 3.9 to g we get:

c′n =

{ −1+(−1)n
2

(
1
2
− 1

2

√
5 + 4i

)n ∀n ≥ 0

1−(−1)n
2

(
1
2

+ 1
2

√
5 + 4i

)n ∀n ≤ 0 .

Combining now Algorithm 1.1 and Algorithm 3.9 we deduce that the Fourier coefficients of f on
the interval [0, 2�] are given by

cn =

⎧⎨⎩
i(1−(−1)n)

2n

(
1
2
− 1

2

√
5 + 4i

)n ∀n ≥ 1

0 if n = 0

i(−1+(−1)n)
2n

(
1
2

+ 1
2

√
5 + 4i

)n ∀n ≤ 1 .

3.7 Recapitulation of the Algorithms for the Computation of
Fourier Coefficients

In this section we put together all the algorithms we designed to compute the complex Fourier
coefficients for trigonometric holonomic functions.
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Algorithm 3.10: Fourier coefficients in the general case
input : A function f ∈ C(N)[a, b] for N large enough, which may be w.l.o.g. I = [0, T ].
output: Either the complex Fourier coefficients of f on I , or the recurrence equation

satisfied by the complex Fourier coefficients of f and enough initial values, or
”This algorithm is not appropriate for the computation of the Fourier
coefficients of f”.

begin1

Compute the complex Fourier coefficients of f with existing method.2

if the computation is successful then3

return The complex Fourier coefficients of f on the interval I .4

end5

Compute the complex Fourier coefficients of one of the successive derivatives of6

anti-derivatives of f on I .
if the computation is successful then7

Apply Algorithm 1.1 to f on the interval I .8

end9

if f is a trigonometric holonomic function then10

if f is a rational trigonometric function then11

apply Algorithm 3.6 to f on I .12

else13

if f is a simple trigonometric holonomic function then14

apply Algorithm 3.9 to f on I .15

else16

Apply Algorithm 3.2 to f on I .17

end18

end19

if a closed form of the Fourier coefficients of f may not be get then20

Apply a combination of Algorithm 1.1 and Algorithm 3.2 or Algorithm 3.921

to f on I .
end22

end23

return this algorithm is not appropriate for the computation of the complex Fourier24

coefficients of f .
end25
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Chapter 4

Factorization of Holonomic Recurrence
Operators

This chapter deals with the factorization of holonomic recurrence operators. An algorithm for
computing a first order right factor of such operators was first given by Petkovšek in [Pet92]. Its
application is limited to the cases in which the product of the leading and trailing coefficients
of the considered operators do not have too many factors, because the algorithm computes more
combinations than necessary. Mark Van Hoeij addressed those problems in [Hoe98] by introducing
the concept of finite singularities. Peter Horn in [Hor08] presented an adapted version of the
Petkovšek algorithm and computes fewer combinations than in [Pet92], particularly for the cases
involving q shift operators. We present in the second section a different method, involving Fourier
series, to compute a right factor of holonomic recurrence operators, which in some cases returns
the smallest order right factor. In the first section we give some resources to achieve that goal.

4.1 Conversion of a Holonomic Recurrence Equation Into a
Trigonometric Holonomic Differential Equation

Chapter three described the conversion of trigonometric holonomic differential equations into re-
currence equations for the Fourier coefficients, which may be homogeneous or not. In this section
we do the reverse of that conversion, focussing on homogeneous recurrence equations. To do so
we look if for a given homogeneous holonomic recurrence equation RE one may find coefficients
�pl and �pl (resp. pl and �pl) such that RE is the conversion of a differential equation of the form
(2.9) (resp. (2.15)) with some initial values. In this case the searched trigonometric holonomic
differential equation will be the one satisfied by a function defined on an interval [a, b] such that
F (i)(a) = F (i)(b), (i = 0, . . . , P − 1), see Example 4.2.

Theorem 4.1
For a given real number ! = 2�

b−a with a < b, each holonomic recurrence equation can be converted



74 Chapter 4. Factorization of Holonomic Recurrence Operators

into a differential equation with side conditions either of the form⎧⎨⎩
P∑
p=0

L∑
l=0

(�pl cos(l!t) + �pl sin(l!t)) f (p)(t) = 0

f (j)(a) = f (j)(b) (j = 0, . . . , P − 1)

(4.1)

for appropriate integers P ≥ 1 and L ≥ 0, where �pl and �pl are constants, or of the form⎧⎨⎩
P∑
p=0

L∑
l=0

(
ple

−il!t + �ple
il!t
)
f (p)(t) = 0

f (j)(a) = f (j)(b) (j = 0, . . . , P − 1)

(4.2)

for appropriate integers P ≥ 1, L ≥ 0, where pl and �pl are constant.

Proof: We prove only the case of relation (4.2) since the case of relation (4.1) can be shown analogously.

Let RE =
I∑
i=0

aicn+i = 0 with ai ∈ K[n] denote the holonomic recurrence equation to be converted.

According to Theorem 3.27, subtracting RE from the relation (3.20) gives

P∑
p=0

L∑
l=1

⎡⎣�pl(2(n− l)�i
T

)p⎛⎝cn−l − p−1∑
j=0

(−1)j(T )j( i

2(n− l)�
)j+1(f (j)(b)− f (j)(a))e−i(n−l)!a

⎞⎠+

pl

(
2(n+ l)�i

T

)p⎛⎝cn+l − p−1∑
j=0

(−1)j(T )j( i

2(n+ l)�
)j+1(f (j)(b)− f (j)(a))e−i(n+l)!�

⎞⎠⎤⎦
−

I∑
i=0

aicn+i = 0 .

First case: I is even.
Choosing L = I

2 and applying an appropriate shift if necessary to the relation (3.20), we can collect the
previous equation in a maximum of L+ 1 + L+ 1 = 2L+ 2 terms with respect to cn+j , (j = −L, . . . , L)
or (j = 0, . . . , 2L). Setting Pm as the maximum of the degree of the coefficients ai of RE, we can collect
each coefficient of cn+j of the previous equation in a maximum of Pm + 1 terms, this time with respect to
n. Hence we can build from that equation a system of maximum (2L + 2)(Pm + 1) equations where the
unknowns are the pls and the �pls. On the other hand, the number of unknowns is 2(L + 1)(P + 1). We
get surely a non-vanishing solution when the number of unknowns is greater than the number of equations,
i.e. if

2(L+ 1)(P + 1) > (2L+ 2)(Pm + 1)⇐⇒ P > Pm .

Thus taking L = I
2 and P > Pm, the problem is solved. We do similarly for the case where I is odd, taking

L = I and setting the pls to zero. □

We summarize this search in the following algorithm:
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Algorithm 4.1: Conversion of a holonomic recurrence equation into differential equation
with side conditions (ReverseTHDEtoRE).

input : A holonomic recurrence equation RE and an interval [a, b].
output: A differential equation with side conditions of the form (4.1) (resp. (4.2)).

begin1

! ← 2�
b−a .2

Search for coefficients �pl and �pl (resp. pl and �pl) such that an equation of the3

form (3.3)−RE = 0 (resp. (3.20)−RE = 0) is valid.
Return a differential equation with side conditions of the form (4.1) (resp. (4.2)).4

end5

Example 4.2
Consider the holonomic recurrence equation

RE := (2n− 3)cn−1 + 8ncn + (3 + 2n)cn+1 = 0

1. On the interval [0, 2�] RE is the conversion into a recurrence equation of the differential
equation with side conditions

DE :

{
sin(t)F (t) + (4 + 2 cos(t))F ′(t) = 0

F (0) = F (2�) .

one of whose solutions is f(t) =
√

2 + cos(t)

2. Taking now in consideration the symbolic interval [a, b] the previous algorithm returns

DE1 :

{
sin( 2�

b−at)F (t) + b−a
�

(2 + cos( 2�
b−at))F

′(t) = 0

F (a) = F (b) .

One of the solutions of DE1 is f(t) =
√

2 + cos( 2�
b−at).

Consider now the recurrence equation

RE2 : 10(n− 1)(n+ 1)cn + (n− 1)(n+ 1)cn+2 + (n− 1)(n+ 1)cn−2 = 0 .

On the symbolic interval [a, b] Algorithm 4.1 returns the differential equation with side conditions

DE2 :

{
(−5 + 3 cos( 4�

b−at))F (t) + 2(b−a)
�

sin( 4�
b−at)F

′(t)− (b−a)2
4�2 (5 + cos( 4�

b−at)F
′′(t) = 0

F (j)(a) = F (j)(b) (j = 0, 1) .
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4.2 Holonomic Recurrence Operators
Let K be a field of characteristic zero. We denote by Kℕ the set of all sequences (an)∞n=0 whose
terms belong to K.

Definition 4.3
The function N : Kℕ −→ Kℕ which acts on each an in the following way: N(an) = an+1, is
defined as the shift operator.

Note that N is linear, and that the set of all linear operators with addition defined pointwise and
with the functional composition as multiplication is a (non-commutative) ring. N satisfies the
commutation relation Nn = (n+ 1)N .

Definition 4.4
Operators of the form

L =
r∑

k=0

akN
k ,

where ak ∈ Kℕ and N is the shift operator are called recurrence operators on Kℕ, see [PWZ96].
If ar ∕= 0 and a0 ∕= 0, then the order of L is r. Equations of the form

L(un) = 0, i.e. arun+r + ar−1un+r−1 + ⋅ ⋅ ⋅+ a0un = 0

are called recurrence equations. A recurrence equation is holonomic if ak ∈ K[n] (0 ≤ k ≤ r).

4.2.1 A New Factorization Method
The idea behind the method described in this study is to consider the holonomic recurrence equa-
tionRE corresponding to a given holonomic recurrence operator as the one satisfied by the Fourier
coefficients of a trigonometric holonomic function on an interval [a, b], which may be w.l.o.g. the
interval [0, 2�]. To do so, we compute the differential equation with side conditions correspond-
ing to RE either of the form (4.1) or of the form (4.2). Then we solve it to get possible choices
of the corresponding trigonometric holonomic functions. Applying Algorithm 2.1 or 2.3, a new
trigonometric holonomic differential equation satisfied by f is found, which may lead to a recur-
rence equation of lower order. In the last step, the corresponding holonomic recurrence operator
is deduced from the above obtained lower order recurrence equation. This holonomic recurrence
operator is taken as a right factor of the input holonomic recurrence operator. Algorithm 4.2 below
provides an overview of this.



4.2. Holonomic Recurrence Operators 77

Algorithm 4.2: Search for a right factor of a holonomic recurrence operator.
input : A holonomic recurrence operator L.
output: A right factor of L or ”a right factor of L cannot be found using this algorithm,

since DE cannot be solved”.

begin1

Convert L into a recurrence equation RE.2

Use Algorithm 4.1 to convert RE into a differential equation with side conditions3

DE.
Solve that differential equation with side conditions.4

if DE cannot be solved then5

return a right factor of the given operator cannot be found using this algorithm,6

since DE cannot be solved
else7

Set f the solution DE.8

Apply Algorithm 2.1 or Algorithm 2.3 to f to search for a new holonomic9

differential equation DE satisfied by f which leads this time to the lowest order
holonomic recurrence equation that can be obtained via Algorithm 3.1 or
Algorithm 3.8.
Convert this holonomic recurrence equation into a holonomic recurrence10

operator.
Return the right factor of the given holonomic recurrence operator.11

end12

end13

4.2.2 Some Examples of Factorization of Holonomic Recurrence Operators
Example 4.5
Consider the following holonomic recurrence operator, as given in [PWZ96].

L = (n− 1)N2 − (n2 + 3n− 2)N + 2n(n+ 1) .

The corresponding holonomic recurrence equation with respect to cn is

(n− 1)cn+2 − (n2 + 3n− 2)cn+1 + 2n(n+ 1)cn = 0 .

Applying Algorithm 4.1 returns the differential equation with side conditions

DE :

{
(−4e−it + 3e−2it)F (t) + i(−e−it + e−2it + 2)F ′(t)− (e−it − 2)F ′′(t) = 0

f (j)(0) = f (j)(2�) (j = 0, 1) .

Solving this DE we get one of the solutions

f(t) = e−it−e
−it ∈ sTH .
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Applying Algorithm 2.3 to f with ! = 2�
2�−0 = 1 leads to

DE : (−1 + eit)F (t)− ieitF ′(t) = 0 .

Now converting DE, considering the interval [0, 2�], into a holonomic recurrence equation we get

RE : cn+1 − (n+ 1)cn = 0 .

The above RE shows that a first order right factor of the holonomic recurrence operator L is given
by N − n− 1, which exactly corresponds to one of the right factors found in [PWZ96].

Example 4.6
Consider the following holonomic recurrence operator L of order 6

L = N6 − 5N4 + (14− n)N3 + (−n2 − n+ 2)N2 + (n2 + 11n− 14)N + (24− 12n) .

Its lowest order right factor, which is of order 3, was found by Peter Horn in [Hor08]. The following
shows the computation of the same factor with the method of this study. The conversion of L into
a recurrence equation with respect to c(n) is

RE : cn+6 − 5cn+4 + (14− n)cn+3 + (−n2 − n+ 2)cn+2

+(n2 + 11n− 14)cn+1 + (24− 12n)cn = 0 .

The differential equation with side conditions corresponding to RE is

DE :

⎧⎨⎩
−(−24 + 24e−it − 17e−3it + 5e−4it − e−6it)F (t)
−i(3e−2it − 12 + 9e−it − e−3it)F ′(t) + (−e−it + e−2it)F ′′(t) = 0

f (j)(0) = f (j)(2�) (j = 0, 1) .

One of the solutions of this DE is
f = e12e

it− 1
2
e−2it

.

Applying Algorithm 2.3 to f , we get that f satisfies the trigonometric holonomic differential equa-
tion

(1 + 12e3it)F (t) + ie2itF ′(t) = 0

which leads to the third order holonomic recurrence equation

RE : cn+3 + (−n− 1)cn+1 + 12cn = 0 .

Converting the above RE in terms of operators leads to

N3 + (−n− 1)N + 12

which corresponds exactly to the one found in [Hor08].



4.2. Holonomic Recurrence Operators 79

Remark 4.7
The method presented in this chapter is time efficient. For the particular case described in Example
4.6 the computation time of the right factor is less than 5 seconds and needs much less memory
capacity in comparison to the computation method described in [Hor08], which needs more than
21 hours and utilizes 32 GB memory capacity to get the same result. The timing in [Hor08] is high
because the algorithm first needs to compute a left factor of a recurrence operator of order 20.

Additionally an analogous method via power series can be used to get the previous right factors,
see [Koe09]. This method does not require to solve a differential equation, which in some instances
turns out to be complicated. Unfortunately this method does not always find a right factor even
when one exists. For the following example, a right factor cannot be found using the method
involving power series which shows that this method is quite rigid whereas our approach is more
flexible.

Example 4.8
Consider the following holonomic recurrence operator

L = (−5− n)N4 + (−20− 4n)N3 − 4N2 + (4n+ 4)N + (n+ 1) .

The corresponding holonomic recurrence equation is

RE := (n+ 1)cn + (4n+ 4)cn+1 − 4cn+2 + (−20− 4n)cn+3 + (−5− n)cn+4

which converted into a differential equation with side conditions returns

DE :

{
−(−1 + 4e−2it + 8e−3it + e−4it)F (t) + i(−1− 4e−it + 4e−3it + e−4itF ′(t) = 0 .

F (0) = F (2�) .

One of the solutions of the above DE is

f(t) =
eit − e−it

e2it + 4eit + 1

whose Fourier coefficients on the interval [0, 2�] satisfy the second order holonomic recurrence
equation

RE1 = (n+ 1)(n+ 3)cn+2 + 4(n+ 1)(n+ 3)cn+1 + (n+ 1)(n+ 3)cn

from which we deduce the second order right factor

L1 = (n+ 1)(n+ 3)N2 + 4(n+ 1)(n+ 3)N + (n+ 3)(n+ 1) .
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Chapter 5

Some Applications of Fourier Series

The classical way of computing the exact value of definite integrals is via the search for an anti-
derivative. However in some cases where integer parameters are involved, one may get those exact
values by solving a recurrence equation satisfied by those integrals. In the first section of this chap-
ter we combine Parseval’s identity and the algorithms developed in chapter 3 for the computation
of the Fourier coefficients, to present an algorithm for the computation of some definite integrals of
trigonometric holonomic functions on an interval [a, b]. Its direct consequence is the computation
of some integrals which are out of reach of existing computer algebra systems. Section 5.2 shows
some examples using those algorithms of how boundary value problems may be solved when the
initial values satisfy certain conditions.

5.1 Applications of Fourier Series in Integral Computation

5.1.1 Recall of Parseval’s Identity
Let f be a continuous function on the interval [0, T ]. As also mentioned in the introduction of this
thesis, the Fourier coefficients of f are given as

an =
2

T

∫ T

0

f(t) cos(n
2�

T
t)dt, bn =

2

T

∫ T

0

f(t) sin(n
2�

T
t)dt, ∀n ≥ 0

and

cn =
1

T

∫ T

0

f(t)e−in
2�
T
tdt ∀n ∈ ℤ .

Then Parseval’s identity tells that
∞∑

n=−∞

∣cn∣2 =
1

T

∫ T

0

∣f(t)∣2dt = ∥f(t)∥2 (5.1)

or

∥f(t)∥2 =
a20
4

+
1

2

∞∑
n=1

(a2n + b2n) . (5.2)
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We would like to mention that the previous identity is also valid for the interval [a, a+ T ], a ∈ ℝ.

5.1.2 Algorithm for Computing Integrals via Fourier Series
Let g be the function defined by

g(t) = f(t)2

where f is continuous on I = [0, T ].
The following algorithm deals with the question of how to compute the definite integral∫ T

0

g(t)dt

via a combination of the algorithms described in the third chapter and the Parseval’s identity.

Algorithm 5.1: Computation of a definite integral using Parseval’s identity.
input : A function g(t) = f(t)2 and an interval I = [0, T ], such that the Fourier

coefficients of f can be explicitly computed via Algorithm 3.2 or Algorithm 3.9
on I .

output: The exact value of the definite integral∫ T

0

g(t)dt.

begin1

Apply Algorithm 3.2 or Algorithm 3.9 to f on I to get the explicit expression of the2

Fourier coefficients of f on I .
Use Parseval’s identity (5.1) or (5.2) to deduce via summation1the searched integral,3

namely either as∫ T

0

g(t)dt = T
∞∑

k=−∞

∣cn∣2, or
∫ T

0

g(t)dt = T

(
a20
4

+
1

2

∞∑
n=1

(a2n + b2n)

)
.

(IntCompPars)4

end5

1Summation algorithms can be found e.g. in [Koe98] and [PWZ96].
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Remark 5.1
Algorithm 5.1 is a way of computing integrals without involving the notion of anti-derivative.
Moreover this algorithm is capable of computing, via some special functions, integrals which are
out of reach of current computer algebra systems.

5.1.3 Some Examples of the Computation of Integrals via Fourier Series

Integral Computation in Simple Cases

This section describes the computation of some definite integrals. Although these integrals may be
computed using existing computer algebra systems, we compute them using Algorithm 5.1.

Example 5.2
Let us to compute the integral

∫ 2�
3

0

(
cos(3t)

(2 + sin(3t))2

)2

dt =

∫ 2�
3

0

f(t)2dt with f(t) =
cos(3t)

(2 + sin(3t))2
.

Figure 5.1: Graph of f on I = [0, 2�]

Applying Algorithm 3.2 to f on the interval [0, 2�
3

], we get that the complex Fourier coefficients
of f are given by

cn =

{
−1

3
i(2i− i

√
3)nn
√

3 n ≥ 0

−1
3
i
√

3(2i+ i
√

3)nn n ≤ 0.
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Using Parseval’s identity (5.1) we deduce that∫ 2�
3

0

f(t)2dt =
2�

3

∞∑
n=−∞

∣cn∣2

=
2�

3

⎛⎝ −1∑
n=−∞

∣∣∣∣∣−in
√

3

3
(2i+ i

√
3)n

∣∣∣∣∣
2

+
∞∑
n=0

∣∣∣∣−in3 (2i− i
√

3)n
∣∣∣∣2
⎞⎠

=
2�
√

3

81

Hence ∫ 2�
3

0

(
cos(t)

(2 + sin(t))2

)2

dt =
2�
√

3

81
.

We remark that the previous integral may be computed by existing CAS, since the anti-derivative
of the considered function can be computed.

Example 5.3
Consider the function defined by

f(t) =
ei
√
2t

2 + ei
√
2t
.

Our purpose is to compute∫ √2�
0

g(t)dt =

∫ √2�
0

∣∣∣∣∣ ei
√
2t

2 + ei
√
2t

∣∣∣∣∣
2

dt =

∫ √2�
0

∣f(t)∣2 dt

The computation of the complex Fourier coefficients of f via Algorithm 3.2 on the interval [0,
√

2�]
gives

cn =

⎧⎨⎩
−(−1)n

2n
n ≥ 1

0 otherwise

Parseval’s identity (5.1) applied to f leads to the following integration∫ √2�
0

g(t) =

∫ √2�
0

∣f(t)∣2dt =
√

2�
∞∑

n=−∞

∣cn∣2

=
√

2�

(
∞∑
n=1

∣∣∣∣−(−1)n

2n

∣∣∣∣2
)

=

√
2�

3

Hence, we deduce that ∫ √2�
0

∣∣∣∣∣ ei
√
2t

2 + ei
√
2t

∣∣∣∣∣
2

dt =

√
2�

3
.
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Integral Computation in Non-Trivial Cases

In this section we deal with definite integrals which cannot be computed by current computer al-
gebra systems. By applying Algorithm 5.1 we compute these integrals explicitly, via some special
functions.

Example 5.4
Our aim in this example is to compute the integral

A =

∫ 2�

0

(sin(t) ln(2 + cos(t)))2 dt

We get

A =

∫ 2�

0

f(t)2dt with f(t) = sin(t) ln(2 + cos(t)) .

Figure 5.2: Graph of f on I = [0, 6�]

The Fourier coefficients of f via Algorithm 3.2 are given by:

cn =

⎧⎨⎩

i
√
3(−2+

√
3)n(2

√
3+3n)

3(n2−1) ∀n ≥ 2

i
4
(−7 + 4

√
3 + ln(7− 4

√
3) + 2 ln(2)) if n = 1

0 if n = 0

−i
4

(−7 + 4
√

3 + ln(7− 4
√

3) + 2 ln(2)) if n = −1

i
√
3(−2+

√
3)−n(2

√
3−3n)

3(n2−1) ∀n ≤ −2 .
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Since f is odd, the real and the complex Fourier coefficients of f are connected in the following
way: an = 0 and bn = 2icn for n ≥ 0. Parseval’s identity (5.2) leads to∫ 2�

0

f(t)2dt = �

(
∞∑
n=1

b2n

)
and we get: ∫ 2�

0

(sin(t) ln(2 + cos(t)))2 =

�

16

∣∣∣4√3− 2 ln(2 +
√

3)− 7 + 2 ln(2)
∣∣∣2 + �

∞∑
n=2

∣∣∣∣∣−2
√

3(−2 +
√

3)n(2
√

3 + 3n)

3(n2 − 1)

∣∣∣∣∣
2

=
−�

4(7−
√

3)
(1961−1132

√
3+(−384+224

√
3) ln(4

√
3−6)+(−56+32 polylog(2, 7−4

√
3))

�

16

∣∣∣4√3− 2 ln(2 +
√

3)− 7 + 2 ln(2)
∣∣∣2 .

Hence

A =
−�

4(7−
√

3)
(1961−1132

√
3+(−384+224

√
3) ln(4

√
3−6)+(−56+32 polylog(2, 7−4

√
3))

�

16

∣∣∣4√3− 2 ln(2 +
√

3)− 7 + 2 ln(2)
∣∣∣2 ,

where the polylogarithm (also known as de Jonquire’s function) is a special function denoted
Lis(z) or polylog(s, z) and is defined by

polylog(s, z) = Lis(z) =
∞∑
k=1

zk

ks
.

Example 5.5
Consider the complex function

f(t) = ln(2 + eit) .

Our goal is to compute

A =

∫ 2�

0

∣ ln(2 + eit)∣2dt =

∫ 2�

0

∣f(t)∣2dt ,

The Fourier coefficients of f are given by

cn =

⎧⎨⎩
(−1)n+1

n2n
∀n ≥ 1

ln(2) if if n = 0

0 otherwise .
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According to Parseval’s identity (5.1), we get

A =

∫ 2�

0

∣ ln(2 + eit)∣2dt =

∫ 2�

0

∣f(t)∣2dt = 2�
∞∑

n=−∞

∣cn∣2

= 2�

(
∣c0∣2 +

∞∑
n=1

∣cn∣2
)

= 2�

(
ln(2)2 +

∞∑
n=2

(
(−1)n

(n− 1)2n−1

)2
)

= 2�

(
ln(2)2 + polylog(2,

1

4
)

)
.

Hence

A = 2�

(
(ln(2))2 + polylog(2,

1

4
)

)
.

5.2 Application in the Solution of Boundary Value Problems

5.2.1 Solving the Heat Equation

Joseph Fourier has developed in [Fou22] a method to solve the heat equation. This method has
been extended in a more general setting to solve boundary value problems, see [GD04], [CB78],
[Spi74]. One can obtain symbolic solutions to these problems only when the initial values may be
developed in Fourier series.
Consider the rod to be the segment [0, 2�] of the real axis x, and denote by u(x, t) the temperature
of an element of abscise x at the time t. Then u satisfies the partial differential equation

∂u

∂t
= a2

∂2u

∂x2
. (5.3)

where a is a non-zero constant and we impose the following initial condition

u(x, 0) = f(x) = sin(2x) ln(2 + cos(2x)) (5.4)

and the following boundary conditions

u(0, t) = u(�, t) = 0 . (5.5)

A family of non-trivial solutions of the system of equation constituted by (5.3)–(5.5) are given by

un(x, t) = sin(nx)e−a
2n2t and therefore un(x, t) =

∞∑
n=0

bn sin(nx)e−a
2n2t .
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The last step is to determine bn and this gives a representation of the solution. For t = 0, we have:

u(x, 0) =
∞∑
n=0

bn sin(nx) = f(x) .

Therefore bn can be considered as the sine Fourier coefficients of the function f , i.e.

bn =
2

�

∫ �

0

f(x) sin(nx)dx =
2

�

∫ �

0

sin(2t) ln(2 + cos(2t)) sin(nx)dx .

Since the initial function f is a holonomic trigonometric function, applying Algorithm 3.2 to f we
get the following complex Fourier coefficients:

cn =

⎧⎨⎩

−i
√
3(−2+

√
3)n(2

√
3+3n)

3(n2−1) ∀n ≥ 2

i
4
(−7 + 4

√
3 + ln(7− 4

√
3) + 2 ln(2)) if n = 1

0 if n = 0

−i
4

(−7 + 4
√

3 + ln(7− 4
√

3) + 2 ln(2)) if n = −1

i
√
3(−2+

√
3)−n(2

√
3−3n)

3(n2−1) ∀n ≤ −2 .

Since f is odd, only the sine Fourier coefficients are needed here. Therefore we get

an = 0, bn = 2icn ⇐⇒

b1 =
−1

2
(−7 + 4

√
3 + ln(7− 4

√
3) + 2 ln(2)), bn=

2
√

3(−2 +
√

3)n(2
√

3 + 3n)

3(n2 − 1)
(n ≥ 2).

We can now deduce the solution of the system (5.3)-(5.4)-(5.5) and we get:

un(x, t) =
(−1

2
(−7+4

√
3+ln(7−4

√
3)+2 ln(2))+

2
√

3(−2 +
√

3)n(2
√

3 + 3n)

3(n2 − 1)

)
sin(nx)e−a

2n2t .

5.2.2 Solving Ordinary Differential Equations in Terms of Fourier Series
Analogous to holonomic differential equations whose solutions may be searched in terms of power
series, we give in this section a generalization for solving a trigonometric holonomic differential
equation, this time in terms of Fourier series. A direct consequence of that algorithmic generaliza-
tion is the solution of differential equations of higher order, which cannot be solved explicitly via
current CAS. Example 5.8 is an illustration of this.
Let us aim to solve the differential equation⎧⎨⎩

P∑
p=0

L∑
l=0

(�pl cos(l!t) + �pl sin(l!t)) f (p)(t) = 0

f (i)(a) = ai (i = 0, . . . , P − 1)

f (i)(b) = bi (i = 0, . . . , P − 1)

(5.6)
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or ⎧⎨⎩
P∑
p=0

L∑
l=0

(
ple

−il!t + �ple
il!t
)
f (p)(t) = 0

f (i)(a) = ai (i = 0, . . . , P − 1)

f (i)(b) = bi (i = 0, . . . , P − 1) .

(5.7)

We may use Algorithm 3.1(resp. Algorithm 3.8) to convert (5.6) (resp. (5.7)) into a recurrence
equation. In the last step we solve the obtained recurrence equation to deduce the solution of the
given differential equation in terms of a Fourier series. That process can be summarized in the
following algorithm:

Algorithm 5.2: Solving a trigonometric holonomic differential equation in terms of a
Fourier Series (SolTHDEFou)

input : A differential equation DE of the form (5.6) or (5.7).
output: The solution of the considered differential equation in term of Fourier series or a

recurrence equation satisfied by the Fourier coefficients of the solution of the
considered DE

begin1

Apply Algorithm 3.1 or Algorithm 3.8 to the considered differential equation to2

convert it into a recurrence equation.
Solve the obtained recurrence equation RE and deduce the solution of the3

considered differential equation in terms of a Fourier series.
end4

Example 5.6
Let us search for a solution in terms of a Fourier series of the differential equation

DE :

⎧⎨⎩
(−44 cos(4t)− 28)F ′(t)− 12F ′′(t)) sin(4t) + (cos(4t)− 7)(F ′′′(t) + 48F (t) sin(4t) = 0

f(0) = f(�)

f ′(0) = f ′(�)

The conversion of the previousDE using Algorithm 3.8 leads to the following recurrence equation

RE : −16i(2n+ 1)n(2n− 1)cn+1 + 224i(2n+ 1)n(2n− 1)cn − 16i(2n+ 1)n(2n− 1)cn−1 .

Solving the previous RE considering the initial values c0 = a and c1 = b, we get

cn =
1

24
(7a+ 4a

√
3− b)

√
3(7− 4

√
3)n +

1

24
(−7a+ 4a

√
3 + b)

√
3(7 + 4

√
3)n

and we deduce that the solution of the previous trigonometric holonomic differential equation in
terms of a Fourier series is given as

f(t) =
∞∑
n=0

( 1

12
(7a+ 4a

√
3− b)

√
3(7− 4

√
3)n +

1

12
(−7a+ 4a

√
3 + b)

√
3(7 + 4

√
3)n
)

cos(2nt)
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Note that solving the previous differential equation with existing methods leads to

f(t) =
C1(1 + cos(2t)) + C2 sin(2t)

cos(4t)− 7
, C1, C2 ∈ K .

Example 5.7
Consider the differential equation with side conditions{

eitF (t) + F (99)(t) = 0

F (j)(0) = F (j)(2�), (j = 0, . . . , 98) .
(5.8)

Note that an explicit solution of (5.8) may not be found. Algorithm 3.8 converts the previous
differential equation into the following recurrence equation

cn−1 − in99cn = 0

which can be solved using the initial value c0 = a, to get the closed form

cn =
a(−i)n

n!99
.

We deduce that the solution of (5.8) in terms of a Fourier series is given as

f(t) =
∞∑
n=0

(a(−i)n

n!99
)
eint .
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Chapter 6

General Conclusion and Perspectives

We presented in this thesis algorithms for the computation of the Fourier series for a family of
functions satisfying a differential equation of a particular type. These algorithms can be applied to
many functions whose Fourier coefficients cannot be computed via the classical way. In some cases
symbolic expressions of those series could not be obtained because the resulting recurrence equa-
tions could not be solved. However these cases nevertheless provide important informations on the
Fourier coefficients of the considered functions. From these algorithms we deduced an algorithm
for the computation of definite integrals, without involving the knowledge of the anti-derivatives.
This other possibility of computing definite integrals via Fourier series enables the computation
of many definite integrals whose computations were out of reach of current CAS. Another conse-
quence of that algorithm for Fourier series is that it offers the possibility to get an explicit solution
of certain boundary value problems. An algorithm for the factorization of holonomic recurrence
operators via Fourier series is deduced.

We restricted ourselves in this thesis on univariate functions. Multivariate Fourier series (see e.g.
[KK71], [DM72], [Spi74]) have also many applications, for example in solving partial differen-
tial equations. In particular one notable application of Fourier series on the square is in image
compression. One may be interested to know if similar algorithms can be found for multivariate
Fourier series, just as well as the issue to know if connections exist between the computation of
multiple integrals and multivariate Fourier series.



92 Chapter 6. General Conclusion and Perspectives



93

Appendix A

A.1 Fourier Series of Some Trigonometric Holonomic Func-
tions

Example A.1
Consider the function defined on the interval I = [0, 2�] by:

f(t) =

(
cos t

2 + cos2 t

)3

.

Then ! = 2�
2�−0 = 1 and f satisfies the differential equation

Figure A.1: Case of a rational trigonometric function

DE : (11 cos t+ cos(3 t))F ′(t) + 3 (7 sin(t)− sin(3t))F (t) = 0 .

Therefore, its complex Fourier coefficients on I are solution of the recurrence equation

RE : n cn+3 + (32 + 11n) cn+1 + (−32 + 11n) cn−1 + n cn−3 = 0 .
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Using 6 initial values, for n ≧ 0 and 6 initial values, for n ≤ 0, we get finally that those coefficients
are given by1

cn =

⎧⎨⎩
−1
144

(
√

3−
√

2)n(2
√

3n2 − 4
√

3− 3n
√

2)
(
1−(−1)n

2

)
(−1)

n−1
2 ∀n ≥ 1

0 if n = 0

−1
144

(
√

3−
√

2)−n(2
√

3n2 − 4
√

3 + 3n
√

2)
(
1−(−1)−n

2

)
(−1)

−n−1
2 ∀n ≤ −1 .

Since f is even, an = 2cn, bn = 0 (n ≧ 0). We deduce that the Fourier series of f on I can be
written as

f(t) =

(
cos t

2 + cos2 t

)3

=
∞∑
n=1

−1

72
(
√

3−
√

2)n (2
√

3n2 − 4
√

3− 3n
√

2)

(
1− (−1)n

2

)
(−1)

n−1
2 cos(nt) .

Example A.2
Consider now the function defined on I = [0, 2�

5
] by

f(t) = cos(5t) ln(2 + cos(5t)) .

! = 2�
2�
5
−0 = 5. f satisfies the following differential equation DE

Figure A.2: Composition of logarithm with trigonometric functions

DE := (−500000 + 843750 cos(5t))F ′(t) + 28125 sin(5t)F ′′(t)

1which is a linear combination of hypergeometric terms.
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+(54375 cos(5t)− 45000)F (3)(t) + 4625 sin(5t)F (4)(t) + (825 cos(5t)− 1200)F (5)(t)

+120 sin(t)F (6)(t) + (−4 cos(5t)− 8)F (7)(t) = 0 .

The conversion of DE into a recurrence equation satisfied by the complex Fourier coefficients cn
of f gives

RE := i(n− 1)(n+ 2)(n+ 1)(n− 2)2(2n+ 1)2cn−1 + 16i(n− 2)(n+ 2)n(n+ 1)2(n− 1)2cn

+i(n− 1)(n− 2)(n+ 1)(n+ 2)2(2n− 1)2cn+1 = 0 .

Solving RE using 2 initial values, we get:

cn =

⎧⎨⎩

(−2+
√
3)n(
√
3+2n)

(n+1)(n−1) ∀n ≥ 2
√

3− 7
4

+ 1
2

ln(2 +
√

3)− 1
2

ln(2) if n = 1

2−
√

3 if n = 0
√

3− 7
4

+ 1
2

ln(2 +
√

3)− 1
2

ln(2) if n = −1

(−2+
√
3)−n(

√
3−2n)

(−n+1)(−n−1) ∀n ≤ −2 .

Since f is even, bn = 0 and an = 2cn. Hence the Fourier series of f on I is given as

f(t)=2(2−
√

3)+(2
√

3−7

2
+ln(2+

√
3)−ln(2)) cos(5t)+

∞∑
n=2

2(−2 +
√

3)n(
√

3 + 2n)

(n+ 1)(n− 1)
cos(5nt) .

Example A.3
We investigate in this example the case of a trigonometric holonomic function satisfying a differ-
ential equation with coefficients in K[e−i!t, ei!t]. Consider the complex function defined on the
interval [0, 2�] by

f(t) = ln(4 + e−it + eit) ∈ TH(1)

satisfying the differential equation

DE : 4F ′(t) + 2i(eit − e−it)F ′′(t) + (eit + 4 + e−it)F ′′′(t) .

The conversion of DE into a recurrence equation for the Fourier coefficients of f using Algorithm
3.8 gives:

RE : −i(n+ 1)(n− 1)2cn−1 − 4i(n+ 1)n(n− 1)cn − i(n− 1)(n+ 1)2cn+1 = 0 .

Solving RE with enough initial values leads to the solution

cn =

⎧⎨⎩
−(−2+

√
3)n

n
∀n > 0

ln(1 +
√
3
2

) if n = 0

(−2−
√
3)n

n
∀n < 0

and we deduce that the Fourier series of f is given by

f(t) =
∞∑
n=1

(
−(−2 +

√
3)n

n

)
e−int + ln(1 +

√
3

2
) +

∞∑
n=1

(
−(−2 +

√
3)n

n

)
eint .
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A.2 Some Particular Cases

A.2.1 First Case
In the following examples, for the given function we obtain a recurrence equation with appropriate
initial values, but its solution is rather complicated and involves special functions.

Example A.4
Consider the function defined on [0, 2�] by

f(t) =
t2

2 + cos(t)
.

Figure A.3: Case of product of polynomial and rational trigonometric function

With ! = 1 f satisfies the following differential equation:

DE := sin(t)F (t)− 3 cos(t)F ′(t)− 3 sin(t)F ′′(t) + (2 + cos(t))F ′′′(t) ,

and its corresponding inhomogeneous recurrence equation of second order is

RE : −in3cn−1 − 4in3cn − in3cn+1 = 4n(−i+ �n) .

The initial values are given by

c0 =
4(�2 + 3 polylog(2,−2 +

√
3)

3

√
3� ,

c1 =
1

9

(
(12− 8

√
3)�2 + 6i�((3 + 2

√
3) ln(3−

√
3)

+ (−3 + 2
√

3) ln(
3 +
√

3

6
))− 24

√
3 polylog(2,−2 +

√
3)
)
.
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The previous recurrence equation does not have any closed form solution, see [Hoe98] and [Pet92].
However Maple finds a huge representation of the solution, constituted of a linear combination of
special functions such as hypergeometric2F1, LerchPhi, and polylog.

Example A.5
Consider now the function

f(t) =
t2eit

2 + eit
.

f satisfies with ! = 1 the following differential equation:

DE := −2iF (t) + 6F ′(t) + 6iF ′′(t) + (−2− eitF ′′′(t) = 0

which leads to the first order inhomogeneous recurrence equation

RE := i(n− 1)3cn−1 + 2i(n− 1)3cn = −2(n− 1)(−� + n� − i)

and initial values

c0 = −2i� ln(3) + 2i� ln(2)− 2 polylog(2,−1

2
) ,

c1 =
2

3
�2 + i� ln(3)− i� ln(2) + polylog(2,−1

2
) ,

c2 =
−1

3
�2 − 1

2
i� ln(3) +

1

2
i� ln(2)− 1

2
polylog(2,−1

2
) + i� + 1 .

As in the previous example, a closed form solution does not exist.

A.2.2 Second case
In this case we deal with functions whose Fourier coefficients cannot be brought in an explicit
form, because the obtained recurrence equation and the appropriate initial values cannot be solved.

Example A.6
Consider the function defined on I = [0, 2�] by

f(t) = e−2 cos(t) .

f satisfies the first order differential equation

DE := −2 sin(t)F (t) + F ′(t) = 0 .

for ! = 1. The conversion of DE into a recurrence equation for the complex Fourier coefficients
of f gives

−cn−1 − ncn + cn+1 = 0 .

Therefore the Fourier coefficients are given by{
−cn−1 − ncn + cn+1 = 0

c0 = BesselI(0, 2), c1 = −BesselI(1, 2) .

An explicit solution is not accessible.
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Figure A.4: Composition of exponential with trigonometric functions

A.2.3 Third case

Although an explicit form of the Fourier coefficients in Example A.6 was not accessible, we could
at least compute sufficiently many initial values. In the following examples for the considered
functions, we get a recurrence equation for their complex Fourier coefficients, but because of lack
of sufficiently many symbolic initial values, the Fourier coefficients cn can not be computed.

Example A.7
Consider the function defined on the interval [0, 2�] by

f(t) = cos(t)
√

2 + cos(t) .

A differential equation of the form (2.9) with ! = 1 satisfied by f is

DE : (−62 cos(t)− 52)F ′(t) + 48 sin(t)F ′′(t) + (−64− 32 cos(t))F ′′′(t) + 123 sin(t)F (t) = 0 .

The corresponding recurrence for the complex Fourier coefficients of f is

RE : i(2n− 5)(16n2 + 16n+ 9)�cn−1 + 8i�n(16n2 − 13)cn

+i(16n2 − 16n+ 9)(2n+ 5)�cn+1 = 0 .

c0 =
2
√

3

3�
(−EllipticK(

1

3

√
6) + 2 EllipticE(

1

3

√
6)) .

The symbolic computation of c1 is not successful. The same remark occurs with analogous func-
tions such as ln(2 + cos(t))

√
2 + cos(t).
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Figure A.5: Composition of square root with trigonometric functions

Example A.8
Consider the function

f(t) = ln(2 + eit)
√

2 + eit .

f satisfies the differential equation

DE := −2ieitF (t) + (8eit + 32 + 32e−it)F ′(t) + 8i(eit + 4 + 4e−it)F ′′(t) = 0 .

We deduce from DE that the complex Fourier coefficients of f satisfies the recurrence relation

−2i(−3 + 2n)2cn−1 − 32in(n− 1)cn − 32in(n+ 1)cn+1 = 0 .

However there is not possibility to compute the initial values of cn symbolically.
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