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Abstract
The aim of this work is to find simple formulas for the moments µn for all families of

classical orthogonal polynomials listed in the book by Koekoek, Lesky and Swarttouw [30].
The generating functions or exponential generating functions for those moments are given.
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Chapter 1

Introduction

The xyz-axes of three-dimensional space are pairwise orthogonal with each other. This is
very convenient since for that reason many formulas are extremely simple. Every point of
three-dimensional space is written as linear combination of such orthogonal coordinates.
In a similar fashion, many functions can be written as linear combinations of orthogonal
polynomials which play the role of the coordinates. For this reason orthogonal polynomials
play a very prominent role in applications.

Monic polynomial families orthogonal with respect to the measure dα(x)∫ b

a
Pn(x)Pm(x)dα(x) = kn δn,m, kn 6= 0, n ≥ 0,

are given explicitly in terms of the moments µn =
∫ b

a
xn dα(x), n ≥ 0, by [49]

Pn(x) =
1

dn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn

µ1 µ2 · · · µn+1
...

...
...

...

µn−1 µn+1 · · · µ2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where

dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn

µ1 µ2 · · · µn+1
...

...
...

...

µn−1 µn · · · µ2n−1

µn µn+1 · · · µ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0, n ≥ 0.

The previous representation shows that the moments characterize fully the orthogonal fam-
ily (Pn)n.

Also, the moments are involved in the representation of the Stieltjes series

S(x) =
∞

∑
n=0

µn

xn+1 ,

which is useful for the characterization of families of orthogonal polynomials via the Riccati
equation and also for the determination of the measure dα(x) by means of the Stieltjes
inverse formula [48]

α(t)− α(s) = − 1
π

lim
y→0+

∫ t

s
Im(S(x + i y) dx.
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For the moments (µn)n∈N of an orthogonal family, the generating function is defined by

G0(z) =
∞

∑
n=0

µnzn,

while the exponential generating function is defined by

G1(z) =
∞

∑
n=0

µn
zn

n!
,

and the q-exponential generating functions are defined by

G2(z) =
∞

∑
n=0

µn
zn

(q; q)n
,

G3(z) =
∞

∑
n=0

µn
zn

[n]q!
.

Generating functions, exponential generating functions and q-exponential generating func-
tions contain the information of all moments of the orthogonal polynomial family at the
same time.

Despite the important role that the moments play in various topics of orthogonal poly-
nomials and applications to other domains such as statistics and probability theory, no ex-
haustive repository of moments for the well-known classical orthogonal polynomials can
be found in the literature. The book by Koekoek, Lesky and Swarttouw [30] which is one of
the best and most famous documents containing almost all kinds of formulas and relations
for various classical orthogonal polynomials does not provide information about the mo-
ments. It becomes therefore imperative to investigate this topic in order to complete such
missing important information.

Classical orthogonal polynomials of a continuous, discrete and q-discrete variable are
known to be orthogonal with respect to a weight function ρ satisfying respectively the
Pearson, the discrete Pearson and the q-discrete Pearson equation

(σ(x)ρ(x))′ = τ(x)ρ(x), (1.1)
∆ (σ(x)ρ(x)) = τ(x)ρ(x), (1.2)

Dq (σ(x)ρ(x)) = τ(x)ρ(x), (1.3)

where σ(x) = ax2 + bx + c is a non-zero polynomial of degree at most two, τ(x) = dx + e
is a first degree polynomial, Dq is the Hahn operator Dq f (x) = f (qx)− f (x)

(q−1)x , q 6= 1, and ∆ is
the forward difference operator ∆ f (x) = f (x + 1)− f (x).

In addition, classical orthogonal polynomials of a continuous, discrete and q-discrete
variable satisfy the following second-order hypergeometric differential, difference or q-
difference equations, respectively,

σ(x)y′′(x) + τ(x)y′(x) + λny(x) = 0, (1.4)
σ(x)∆∇y(x) + τ(x)∆y(x) + λny(x) = 0, (1.5)
σ(x)DqD 1

q
y(x) + τ(x)Dqy(x) + λn,qy(x) = 0, (1.6)

where λn and λn,q are constants given by

λn = −n((n− 1)a + d), λn,q = −a[n]1/q[n− 1]q − d[n]q,

with [n]q = 1−qn

1−q , and ∇ is the backward difference operator

∇ f (x) = f (x)− f (x− 1).

The corresponding moments of these three classical families (called here “very classical
orthogonal polynomials”) satisfy a second-order recurrence relation of the form

µn+1 = a(n)µn + b(n)µn−1,
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where a(n) and b(n) are rational functions of n or qn.
There are other classes of classical orthogonal polynomials whose variable x(s) is a

quadratic or q-quadratic lattice of the form

x(s) = c1 q−s + c2 qs + c3, (1.7)

or
x(s) = c4 s2 + c5 s + c6 (1.8)

These polynomials are known to satisfy a second-order divided-difference equation [8,
17]

φ(x(s))D2
xPn(x(s)) + ψ(x(s)) SxDxPn(x(s)) + λn Pn(x(s)) = 0, (1.9)

where λn is a constant term, φ and ψ are polynomials of degree at most two and of degree
one, respectively, and the divided-difference operators Dx and Sx are defined by [17]

Dx f (x(s)) =
f (x(s + 1

2 ))− f (x(s− 1
2 ))

x(s + 1
2 )− x(s− 1

2 )
, Sx f (x(s)) =

f (x(s + 1
2 )) + f (x(s− 1

2 ))

2
.

(1.10)
Combining all the previous orthogonal families leads to the families of the so-called Askey-
Wilson scheme, defined explicitly in [30].

The work is presented in five chapters.
Chapter 1 is the introduction.

In Chapter 2, we give many definitions and recall known and useful results concern-
ing special functions and orthogonal polynomials. Some useful difference operators are
introduced and some of their properties are proved.

In Chapter 3, using some classical well known formulas, we compute canonical mo-
ments of some orthogonal polynomials, next, interesting generating functions for some of
these moments are provided. It is seen for example that the function

√
πez2/4 =

∞

∑
n=0

µn
zn

n!

generates the Hermite moments that are

µn =
1 + (−1)n

2
Γ(

n + 1
2

),

or the function
Γ(α + 1)
(1− z)α+1 =

∞

∑
n=0

µn
zn

n!

generates the canonical Laguerre moments that are

µn = Γ(n + α + 1).

It is not always easy to get those canonical moments by direct computations.

In Chapter 4, we provide results for the inversion problem for all the polynomials in the
Askey scheme. These inversion formulas will enable in Chapter 5 to get explicit represen-
tations of generalized moments.

In Chapter 5, we compute explicitly canonical moments for all the fifty one polynomials
listed in [30]. The fundamental idea here is to use Theorem 50, which gives a link between
the inversion coefficients and the generalized moments combined with the obvious links
(see pages 13 and 13) between canonical and generalized moments to get the canonical
moments.
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In order to get those links, we have proved Taylor formulas with respect to particular
bases, for example:

f (x) =
n

∑
k=0

(Dk
ε f )(0)
k!

ξk(x, ε), see page 52,

f (x) =
n

∑
k=0

(−1)k

k!
Dk f

(
i
(

a +
k
2

))
ηk(a, x), see page 53,

where

Dε f (x) =
∆ f (u(x))

∆u(x)
, u(x) = −x(x + ε),

and

D f (x) = f
(

x +
i
2

)
−
(

x− i
2

)
, with i2 = −1.

Combining these results we get for example the following explicit formulas for the
canonical moments:

• canonical Wilson moments (see page 76)

µn = 2π
Γ(a + b)Γ(a + c)Γ(b + c)Γ(b + d)Γ(c + d)

Γ(a + b + c + d)

×
n

∑
k=0

k

∑
l=0

(−k)l
k!l!

(a + b)k(a + c)k(a + d)k
(a + b + c + d)k

(−2a− 2k + 2l)
(−2a− 2k + l)k+1

(a + k− l)2n .

• canonical Racah moments (see page 76)

µn = µ0

n

∑
k=0

Dk
ε [x(x + ε)]n|x=0

k!
(α + 1)k(β + δ + 1)k(γ + 1)k

(α + β + 2)k
,

where

µ0 =



(−β)N(γ + δ + 2)N
(−β + γ + 1)N(δ + 1)N

if α + 1 = −N

(−α + δ)N(γ + δ + 2)N
(−α + γ + δ + 1)N(δ + 1)N

if β + δ + 1 = −N

(α + β + 2)N(−δ)N
(α− δ + 1)N(β + 1)N

if γ + 1 = −N.

The contribution of this work can be seen at three levels:

• the work is a good database for the inversion formula of all the orthogonal families
listed in [30]; the inversion formulas

– for the quadratic case (the Wilson polynomials, the Continuous Dual Hahn poly-
nomials, the Racah polynomials, the Continuous Hahn polynomials, the Dual
Hahn polynomials and the Meixner Pollaczek polynomials),

– for the q-quadratic case (the Continuous q-Hahn polynomials, the Dual q-Hahn
polynomials, the Al-Salam-Chihara polynomials, the q-Meixner-Pollaczek poly-
nomials, the Continuous q-Jacobi polynomials, the continuous q-Ultraspherical
polynomials, the Continuous q-Legendre polynomials, the Dual q-Krawtchouk
polynomials, the Continuous big q-Hermite polynomials and the Continuous
q-Laguerre polynomials)

are new;

• the work is a good database for all the moments of all the orthogonal families listed
in [30]; as far as we know, all the generalized moments given in Chapter 5 are new.
Concerning the canonical moments
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– for the classical continuous orthogonal polynomials, two new representations
for the Jacobi canonical moments are given;

– for the classical discrete orthogonal polynomials, the representations of the
canonical Hahn moments and the canonical Krawtchouk moments we have given
are new;

– for the classical q-discrete orthogonal polynomials, the representations of the
canonical Big q-Jacobi moments, the canonical q-Hahn moments, the canoni-
cal Big q-Laguerre moments, the canonical q-Meixner moments, the canonical
Quantum q-Krawtchouk moments, the canonical q-Krawtchouk moments and
the canonical Affine q-Krawtchouk moments we have given are new.

– for the classical quadratic orthogonal polynomials, the representations of the
canonical Wilson moments, the canonical Racah moments, the canonical Con-
tinuous Dual Hahn moments, the canonical Continuous Hahn moments, the
canonical Dual Hahn moments, the canonical Meixner-Pollaczek moments are
new.

– for the classical q-quadratic orthogonal polynomials, as far as we know, we
have encountered only the canonical Askey-Wilson moments in the literature,
the rest seems to be new;

• important generating functions for those moments are provided.



Chapter 2

Definitions and Miscellaneous
Relations

2.1 Special functions

2.1.1 Gamma and Beta functions

Definition 1. [30, P. 3] The Gamma function is defined by

Γ(z) =
∫ ∞

0
tz−1e−tdt, z ∈ C, Re(z) > 0. (2.1)

Note that for a complex number z such that Re(z) > 0,

Γ(z + 1) = zΓ(z) (2.2)

and particularly, for a nonnegative integer n, the following relation is valid

Γ(n + 1) = n!.

Note that formula (2.2) is used to extend progressively the validity of the Gamma function
to any complex number which is not a negative integer by writing

Γ(z) =
Γ(z + 1)

z
, · · · .

Definition 2. [30, P. 3] The Beta function is defined by

B(z, w) =
∫ 1

0
tz−1(1− t)w−1dt z, w ∈ C, Re(z) > 0, Re(w) > 0.

The connection between the Beta function and the Gamma function is given by the relation

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

, Re(x) > 0, Re(y) > 0.

2.1.2 Hypergeometric functions

Definition 3. [30, P. 4] The Pochhammer symbol or shifted factorial is defined by

(a)0 := 1 and (a)n = a(a + 1)(a + 2) · · · (a + n− 1), a 6= 0 n = 1, 2, 3, . . . .

The following notation (falling factorial) will also be used:

a0 := 1 and an = a(a− 1)(a− 2) · · · (a− n + 1), n = 1, 2, 3, . . . .

It should be noted that the Pochhammer symbol and the falling factorial are linked as fol-
lows:

(−a)n = (−1)nan.
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Definition 4. [30, P. 5] The hypergeometric series rFs is defined by

rFs

 a1, · · · , ar

b1, · · · , bs

∣∣∣∣∣∣ z

 :=
∞

∑
n=0

(a1, · · · , ar)n

(b1, · · · , bs)n

zn

n!
,

where
(a1, . . . , ar)n = (a1)n · · · (ar)n.

An example of a summation formula for the hypergeometric series is given by the binomial
theorem ([30, P. 7])

1F0

 a

−

∣∣∣∣∣∣−z

 =
∞

∑
n=0

(
a
n

)
zn = (1 + z)a, |z| < 1, (2.3)

where (
a
n

)
=

(−1)n

n!
(−a)n.

2.1.3 Basic hypergeometric functions

An important extension of the hypergeometric function is the q-hypergeometric function
(general references for q-hypergeometric functions are [19], [3] or [50], [46]).

Definition 5. [30, P. 11] The q-variant of the shifted factorial is defined by

(a; q)0 = 1,

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1), n = 1, 2, . . . .

When n = ∞, we set

(a; q)∞ =
∞

∏
n=0

(1− aqn), |q| < 1.

Definition 6. [30, P. 15] The q-hypergeometric function denoted by rφs is defined by

rφs

 a1, a2, · · · , ar

b1, b2, · · · , bs

∣∣∣∣∣∣ q; z

=
∞

∑
n=0

(a1, · · · , ar; q)n

(b1, · · · , bs; q)n

[
(−1)nq(

n
2)
]1+s−r zn

(q, q)n
,

where
(a1, a2, · · · , am; q)n = (a1; q)n(a2, q)n · · · (am; q)n.

We will also use the following common notations

[a]q =
1− qa

1− q
, a ∈ C, q 6= 1, (2.4)

[ n

m

]
q
=

(q; q)n

(q; q)m(q; q)n−m
, 0 ≤ m ≤ n. (2.5)

called the q-bracket and the q-binomial coefficient, respectively.
A q-analogue of the binomial theorem (2.3) is called the q-binomial theorem [30, P. 16]:

∞

∑
n=0

(a; q)n

(q; q)n
xn =

(ax; q)∞

(x; q)∞
, |x| < 1, 0 < |q| < 1. (2.6)
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Some consequences of the q-binomial theorem are the Euler formulas:

∞

∑
n=0

xn

(q; q)n
=

1
(x; q)∞

, |x| < 1, |q| < 1, (2.7)

∞

∑
n=0

(−1)nq(
n
2)xn

(q; q)n
= (x; q)∞, |q| < 1. (2.8)

The Ramanujan summation formula [3, P. 502] is also valid for |q| < 1 and |ba−1| < |x| < 1,

∞

∑
n=−∞

(a; q)n

(b; q)n
xn =

(ax; q)∞(q/ax; q)∞(q; q)∞(b/a; q)∞

(x; q)∞(b/ax; q)∞(b; q)∞(q/a; q)∞
. (2.9)

Another important formula is the Jacobi triple product identity [3, P. 497]

∞

∑
k=−∞

(−1)kq(
k
2)xk = (x; q)∞(q/x; q)∞(q; q)∞, |q| < 1, x ∈ C− {0}. (2.10)

In order to deal with some families of orthogonal polynomials and other basic hyper-
geometric functions, the following notation (see [28])

(x	 y)n
q = (x− y)(x− qy) · · · (x− qn−1y), (2.11)

which is the so-called q-power basis, will be used.

2.1.4 q-Exponential functions

For the exponential function, we have two different natural q-extensions, denoted by eq(z)
and Eq(z) which can be defined by [30, P. 22]

eq(z) := 1φ0

 0

−

∣∣∣∣∣∣ q, q

 =
∞

∑
n=0

zn

(q; q)n
, 0 < |q| < 1, |z| < 1, (2.12)

and

Eq(z) := 0φ0

−
−

∣∣∣∣∣∣ q,−z

 =
∞

∑
n=0

q(
n
2)

(q; q)n
zn, 0 < |q| < 1. (2.13)

Note that by Euler’s formulas (2.7) and (2.8), we have

eq(x) =
1

(z; q)∞
, and Eq(x) = (−z; q)∞.

These q-analogues of the exponential function are therefore related by

eq(z)Eq(−z) = 1.

2.2 Difference operators

2.2.1 The operators ∆ and ∇
Definition 7. Let f be a function of the variable x. The forward and the backward operators ∆ and
∇ are, respectively, defined by:

∆ f (x) = f (x + 1)− f (x), ∇ f (x) = f (x)− f (x− 1).

For m ∈N? = {1, 2, 3, . . .}, one sets

∆m+1 f (x) = ∆(∆m f (x)).
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It should be noted that ∆ and ∇ transform a polynomial of degree n (n ≥ 1) in x into a
polynomial of degree n− 1 in x and a polynomial of degree 0 into the zero polynomial.

The operator ∆ fulfils the following properties

Proposition 8. Let f and g be two functions in the variable x, a and b be two complex numbers.
The following properties are valid.

1. ∆(a f (x) + bg(x)) = a∆ f (x) + b∆g(x) (linearity);

2. ∆[ f (x)g(x)] = f (x + 1)∆g(x) + g(x)∆ f (x)= f (x)∆g(x) + g(x + 1)∆ f (x), (product
rule);

3. ∆
[ f (x)

g(x)

]
=

g(x)∆ f (x)− f (x)∆g(x)
g(x)g(x + 1)

(quotient rule).

Note that these operators play an essential role for orthogonal polynomials of a discrete
variable.

2.2.2 The operator Dq

Definition 9. Let f be a function of the variable x. The q-difference operator Dq is defined as:

Dq f (x) :=
f (x)− f (qx)
(1− q)x

if x 6= 0,

and Dq f (0) = f ′(0) provided that f is differentiable at x = 0.
If m is a nonnegative integer, we have

Dm+1
q f = Dq

(
Dm

q f
)

; D0
q f = f .

The operator Dq fulfils the following properties

Proposition 10. Let f and g be two functions in x, a and b be two complex numbers. The q-
difference operator Dq fulfil the following rules.

1. Dq(a f (x) + bg(x)) = aDq f (x) + bDqg(x) (linearity);

2. Dq( f (x)g(x)) = f (qx)Dqg(x) + g(x)Dq f (x) = g(qx)Dq f (x) + g(x)Dq f (x) (product
rule);

3. Dq

(
f (x)
g(x)

)
=

g(x)Dq f (x)− f (x)Dqg(x)
g(x)g(qx)

=
g(qx)Dq f (x)− f (qx)Dqg(x)

g(x)g(qx)
(quotient

rule).

One should note that the operator Dq plays an important role for the polynomials of a
q-discrete variable.

2.2.3 The operators D and S
Definition 11. Let f be a function of the variable x. The difference operator D and its companion
operator S are defined as follows:

D f (x) = f
(

x +
i
2

)
− f

(
x− i

2

)
S f (x) =

f (x + i
2 ) + f (x− i

2 )

2
,

where i2 = −1.

The operator D transforms a polynomial of degree n (n ≥ 1) in x into a polynomial of
degree n− 1 in x, and a polynomial of degree 0 into the zero polynomial. The operator S
transforms a polynomial of degree n in x into a polynomial of degree n in x.
Note that the operators D and S play an important role for the Continuous Hahn and the
Meixner-Pollaczek polynomials.
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2.2.4 The operators D and S

Definition 12. Let f be a function of the variable x. The difference operator D and its companion
operator S are defined as follows:

D f (x2) =
f ((x + i

2 )
2)− f ((x− i

2 )
2)

2ix
S f (x2) =

f ((x + i
2 )

2) + f ((x− i
2 )

2)

2
,

where i2 = −1.

The operator D transforms a polynomial of degree n (n ≥ 1) in x2 into a polynomial of
degree n− 1 in x2, and a polynomial of degree 0 into the zero polynomial. The operator S
transforms a polynomial of degree n in x2 into a polynomial of degree n in x2.
Note that the operators D and S play an important role for the Wilson polynomials and the
Continuous Dual Hahn polynomials.

2.2.5 The operator Dε.

Definition 13. Let ε be a complex number, u be the polynomial of the variable x defined by u(x) =
−x(x + ε). Let f be a function of the variable x. We define the difference operator Dε as follows:

Dε f (u(x)) =
∆ f (u(x))

∆u(x)
=

f (u(x))− f (u(x + 1))
2x + 1 + ε

.

The operator Dε transforms a polynomial of degree n (n ≥ 1) in−x(x+ ε) into a polynomial
of degree n− 1 in −x(x + ε) and a polynomial of degree 0 into the zero polynomial.
Note that the operators Dε plays an important role for the Racah and the Dual Hahn poly-
nomials.

2.2.6 The operators Dx and Sx

Definition 14. Let f be a function of the variable x(s). The difference operator Dx and its com-
panion operator Sx are defined as follows:

Dx f (x(s)) =
f (x(s + 1

2 ))− f (x(s− 1
2 ))

x(s + 1
2 )− x(s− 1

2 )
, Sx f (x(s)) =

f (x(s + 1
2 )) + f (x(s− 1

2 ))

2
,

where x(s) is a lattice defined by (1.7) or (1.8).

The operators Dx and Sx play an important role for the polynomials of quadratic and q-
quadratic lattices.

2.3 q-integration

In this section, we recall the definition of the concept of the q-integration with the assump-
tion 0 < q < 1 and give some properties. More details can be found in [27], [19], [28] and
[43].

2.3.1 The q-integration in the interval (0; a), a > 0

Let f be a real function defined in the interval (0; a) and Pq((0; a)) the q-partition of the
interval (0; a) defined by

Pq((0; a)) = {· · · < aqn+1 < aqn < · · · < aq < a}.

For any integer N, consider the Riemann type sum

AN( f ) =
N

∑
n=0

(aqn − aqn+1) f (aqn) = a(1− q)
N

∑
n=0

qn f (aqn).
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If the limit of AN( f ) when N → ∞ is finite, then f is said to be q-integrable and the q-

integral of f in the interval (0; a), denoted
∫ a

0
f (s)dqs, is given by

∫ a

0
f (s)dqs = lim

N→∞
AN( f ) = a(1− q)

∞

∑
n=0

qn f (aqn). (2.14)

2.3.2 The q-integration in the interval (a; 0), a < 0

Let f be a real function defined in the interval (a; 0) and Pq((a; 0)) the q-partition of the
interval (0; a) defined by

Pq((a; 0)) = {a < aq < · · · < aqn < aqn+1 < . . .} = {aqn, n ∈N}.

For any integer N, consider the Riemann type sum

AN( f ) =
N

∑
n=0

(aqn+1 − aqn) f (aqn) = −a(1− q)
N

∑
n=0

qn f (aqn).

If the limit of AN( f ) when N → ∞ is finite, then f is said to be q-integrable and the q-

integral of f in the interval (a; 0), denoted
∫ 0

a
f (s)dqs, is given by

∫ 0

a
f (s)dqs = lim

N→∞
AN( f ) = −a(1− q)

∞

∑
n=0

qn f (aqn). (2.15)

2.3.3 The q-integration in the interval (a; ∞), a > 0

Let f be a real function defined in the interval (a; ∞) and Pq((a; ∞)) the q-partition of the
interval (a; ∞) defined by

Pq((a; ∞)) = {a < aq−1 < · · · < aq−n−1 < . . .} = {aq−n, n ∈N}.

For any integer N, consider the Riemann type sum

AN( f ) =
N

∑
n=0

(aq−n−1 − aq−n) f (aq−n−1) = a(q−1 − 1)
N

∑
n=0

q−n f (aq−n−1).

If the limit of AN( f ) when N → ∞ is finite, then f is said to be q-integrable and the q-

integral of f in the interval (a; ∞), denoted
∫ ∞

a
f (s)dqs, is given by

∫ ∞

a
f (s)dqs = lim

N→∞
AN( f ) = a(q−1 − 1)

∞

∑
n=0

q−n f (aq−n−1). (2.16)

2.3.4 The q-integration in the interval (−∞; a), a < 0

Let f be a real function defined in the interval (−∞; a) and Pq((−∞; a)) the q-partition of
the interval (−∞; a) defined by

Pq((−∞; a)) = {a > aq−1 > · · · > aq−n−1 > . . .} = {aq−n, n ∈N}.

For any integer N, consider the Riemann type sum

AN( f ) =
N

∑
n=0

(aq−n − aq−n−1) f (aq−n−1) = −a(q−1 − 1)
N

∑
n=0

q−n f (aq−n−1).
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If the limit of AN( f ) when N → ∞ is finite, then f is said to be q-integrable and the q-

integral of f in the interval (−∞; a), denoted
∫ a

−∞
f (s)dqs, is given by

∫ a

−∞
f (s)dqs = lim

N→∞
AN( f ) = −a(q−1 − 1)

∞

∑
n=0

q−n f (aq−n−1). (2.17)

Remark 15. The q-integration is extended to the whole real line by using relations (2.14)-(2.17)
and the following rules∫ b

a
f (s)dqs =

∫ 0

a
f (s)dqs +

∫ b

0
f (s)dqs ∀a, b ∈ R∫ ∞

a
f (s)dqs =

∫ b

a
f (s)dqs +

∫ ∞

b
f (s)dqs ∀a, b ∈ R, a < 0, b > 0∫ b

−∞
f (s)dqs =

∫ a

−∞
f (s)dqs +

∫ b

a
f (s)dqs ∀a, b ∈ R, a < 0, b > 0∫ ∞

−∞
f (s)dqs =

∫ a

−∞
f (s)dqs +

∫ b

a
f (s)dqs +

∫ ∞

b
f (s)dqs ∀a, b ∈ R.

Like the usual integration, the q-integration enjoys several important properties. We
give some of them in the following proposition.

Proposition 16. [28]

1. If f is a real function continuous at 0, then we have∫ x

0
Dq f (s)dqs = f (x)− f (0).

2. For any function f q-integrable in (0; x), we have

Dq

∫ x

0
f (s)dqs = f (x),

assuming that the operator Dq acts on the variable x.

3. If f is a real function continuous in the interval (0; a), then f is q-integrable on (0; a) and
obeys

lim
q→1

∫ a

0
f (s)dqs =

∫ a

0
f (s)ds.

4. If f and g are two real functions, q-integrable in the interval (0; a), then we have∫ a

0
f (s)Dqg(s)dqs = f g

∣∣∣a
0
−
∫ a

0
Dq f (s)g(qs)dqs = f (s/q)g(s)

∣∣∣a
0
− 1

q

∫ a

0
g(s)D 1

q
f (s)dqs,

with f g
∣∣∣a
0
= f (a)g(a)− f (0)g(0).

2.4 Orthogonal polynomials

Let P be the linear space of polynomials with complex coefficients. A polynomial sequence
{Pn}n≥0 inP is called a polynomial set if and only if deg Pn = n for all nonnegative integers
n.
Let α denote a nondecreasing function with a finite or an infinite number of points of in-
crease in the interval (a; b). The latter interval may be infinite. We assume that the numbers
µn defined by

µn =
∫ b

a
xndα(x) (2.18)



2.4 Orthogonal polynomials 13

exist for n = 0, 1, 2, . . . . These numbers are called canonical moments of the measure dα(x).
The integral (2.18) can be considered as a Riemann-Stieltjes integral (with nondecreasing
α(x)) or equivalently as measure integral with measure dα(x). In the continuous case,
dα(x) = α′(x) dx. In the discrete case, the measure dα(x) is a weighted sum of Dirac mea-
sures (point measures) εx at the points of increase xk of α(x),

dα(x) =
N

∑
k=0

αkεxk

where αk denotes the increment of α(x) at xk, N ∈ N or N = ∞. In this case, the integral
can be computed as the sum ∫ b

a
xndα(x) =

N

∑
k=0

αk xn
k .

Note that the Dirac measure εx at the point y is defined by

εx(y) =

1 if y = x

0 if y 6= x.

Definition 17. [3, P. 244, Def. 5.2.1] We say that a polynomial set {pn(x)}∞
0 is orthogonal with

respect to the measure dα(x) if ∀n, m ∈N∫ b

a
pn(x)pm(x)dα(x) = hnδnm, hn 6= 0. (2.19)

Definition 18. Let θn(x) be a polynomial set. The numbers

µn(θk(x)) =
∫ b

a
θn(x)dα(x), n = 0, 1, 2, . . . (2.20)

are the moments with respect to θn(x) of the family {pn(x)}∞
0 , they are called generalized moments.

Note that it is possible to obtain the canonical moments from the generalized moments if
one can find explicit representations for Cm(n) and Dm(n) in the expansions

xn =
n

∑
m=0

Cm(n)θm(x), (2.21)

and

θn(x) =
n

∑
m=0

Dm(n)xn. (2.22)

In these cases, we have the obvious relations

µn =
n

∑
m=0

Cm(n)µm(θk(x)), (2.23)

and

µn(θk(x)) =
n

∑
m=0

Dm(n)µm. (2.24)

2.4.1 Classical continuous orthogonal polynomials

A polynomial set

y(x) = pn(x) = knxn + . . . (n ∈N0 = {0, 1, 2, . . .}, kn 6= 0) (2.25)
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is a family of classical continuous orthogonal polynomials if it is the solution of a differen-
tial equation of the type

σ(x)y′′(x) + τ(x)y′(x) + λny(x) = 0, (2.26)

where σ(x) = ax2 + bx + c is a polynomial of at most second order and τ(x) = dx + e is a
polynomial of first order. Here, the measure dα(x) takes the form

dα(x) = ρ(x)dx,

where ρ is the non-negative solution on (a, b) of the Pearson equation

d
dx

(σ(x)ρ(x)) = τ(x)ρ(x).

The function ρ(x) is called weight function. Up to a linear change of variable, these poly-
nomials can be classified as (see e.g. [30], [33]):

(a) The Jacobi polynomials [30, P. 216]

P(α,β)
n (x) =

(α + 1)n

n! 2F1

−n, n + α + β + 1

α + 1

∣∣∣∣∣∣ 1− x
2

.

Special cases are:

(a-1) The Gegenbauer / Ultraspherical polynomials [30, P. 222]
They are Jacobi polynomials for α = β = λ− 1

2 .

C(λ)
n =

(2λ)n(
λ + 1

2

)
n

P(
λ− 1

2 ,λ− 1
2 )

n (x)

=
(2λ)n

n! 2F1

−n, n + 2λ

λ + 1
2

∣∣∣∣∣∣ 1− x
2

, λ 6= 0.

(a-2) The Chebyshev polynomials [30, P. 225]
The Chebyshev polynomials of the first kind can be obtained from the Jacobi
polynomials by taking α = β = − 1

2 :

Tn(x) =
P(
− 1

2 ,− 1
2 )

n (x)

P(
− 1

2 ,− 1
2 )

n (1)
= 2F1

−n, n

1
2

∣∣∣∣∣∣ 1− x
2

,

and the Chebyshev polynomials of the second kind can be obtained from the
Jacobi polynomials by taking α = β = 1

2 :

Un(x) = (n + 1)
P(

1
2 , 1

2 )
n (x)

P(
1
2 , 1

2 )
n (1)

= (n + 1)2F1

−n, n + 2

3
2

∣∣∣∣∣∣ 1− x
2

.

(a-3) The Legendre polynomials
They are Jacobi polynomials with α = β = 0:

Pn(x) = P(0,0)
n (x) = 2F1

−n, n + 1

1

∣∣∣∣∣∣ 1− x
2

.
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(b) The Laguerre polynomials [30, P. 241]

L(α)
n (x) =

(α + 1)n

n! 1F1

 −n

α + 1

∣∣∣∣∣∣ x

.

(c) The Hermite polynomials [30, P. 250]

Hn(x) = (2x)n
2F0

− n
2 ,− n−1

2

−

∣∣∣∣∣∣− 1
x2

.

(d) The Bessel polynomials [30, P. 244]

B(α)
n (x) = 2F0

−n, n + α + 1

−

∣∣∣∣∣∣− x
2

.

Usually, Bessel polynomials fulfil an orthogonality relation on a unit circle. However, it
should be mentioned that they also fulfil a real orthogonality. In this case, the family ob-
tained is finite. In this work, we consider the real orthogonality provided by Lesky and
Masjed-Jamei [39, 40, 41, 42].

2.4.2 Classical discrete orthogonal polynomials

A polynomial set pn(x), given by (5.27), is a family of discrete classical orthogonal poly-
nomials (also known as the Hahn class) if it is the solution of a difference equation of the
type

σ(x)∆∇y(x) + τ(x)∆y(x) + λny(x) = 0, (2.27)

Here the measure dα(x) takes the form

dα(x) =
N

∑
k=0

ρ(k)εk, N ∈N or N = ∞.

where ρ is the non-negative solution of the Pearson type equation

∆(σ(x)ρ(x)) = τ(x)ρ(x).

The function ρ(x) is again called weight function.
These polynomials can be classified as (see e.g. [30], [33]):

(a) The Hahn polynomials [30, P. 204]

Qn(x; α, β, N) = 3F2

−n, n + α + β + 1,−x

α + 1,−N

∣∣∣∣∣∣ 1

.

(b) The Krawtchouk polynomials [30, P. 237]

Kn(x; p, N) = 2F1

−n,−x

−N

∣∣∣∣∣∣ 1
p

.

(c) The Meixner polynomials [30, P. 234]

Mn(x; β, c) = 2F1

−n,−x

β

∣∣∣∣∣∣ 1− 1
c

.
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(d) The Charlier polynomials [30, P. 247]

Cn(x; a) = 2F0

−n,−x

−

∣∣∣∣∣∣−1
a

.

2.4.3 Classical q-discrete orthogonal polynomials

A polynomial set pn(x) given by (5.27), is a family of classical q-discrete orthogonal poly-
nomials (also known as the polynomials of the q-Hahn tableau) if it is the solution of a
q-difference equation of the type

σ(x)DqDq−1 y(x) + τ(x)Dqy(x) + λny(x) = 0. (2.28)

Here the polynomials σ(x) and τ(x) are known to satisfy a Pearson type equation

Dq(σ(x)ρ(x)) = τ(x)ρ(x),

where the function ρ(x) is the q-discrete weight function associated to the family. Here,
once more, the measure dα(x) takes the form

dα(x) = ∑
k∈Z

(
ρ(qk)εqk + ρ(−qk)ε−qk

)
.

These polynomials can be classified as (see e.g. [18], [30]):

(a) The Big q-Jacobi polynomials [30, P. 438]

pn(x; a, b, c; q) = 3φ2

 q−n, abqn+1, x

aq, cq

∣∣∣∣∣∣ q; q


A special case when a = b = 1 are the Big q-Legendre polynomials

Pn(x; c; q) = 3φ2

 q−n, qn+1, x

q, cq

∣∣∣∣∣∣ q; q

.

(b) The q-Hahn polynomials [30, P. 445]

Qn(q−x; α, β, N; q) = 3φ2

 q−n, αβqn+1, q−x

αq, q−N

∣∣∣∣∣∣ q; q


(c) The Big q-Laguerre polynomials [30, P. 478]

Pn(x, a, b; q) = 3φ2

 q−n, 0, x

aq, bq

∣∣∣∣∣∣ q; q

 =
1

(b−1q−n; q)n
2φ1

 q−n, aqx−1

aq

∣∣∣∣∣∣ q;
x
b

.

(d) The Little q-Jacobi polynomials [30, P. 482]

pn(x; a, b|q) = 2φ1

 q−n, abqn+1

aq

∣∣∣∣∣∣ q; qx

.

A special case when a = b = 1 are the little q-Legendre polynomials given by

pn(x; q) = 2φ1

 q−n, qn+1

q

∣∣∣∣∣∣ q; qx

.
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(e) The q-Meixner polynomials [30, P. 488]

Mn(q−x; b, c; q) = 2φ1

 q−n, q−x

bq

∣∣∣∣∣∣ q;− qn+1

c

.

(f) The Quantum q-Krawtchouk polynomials [30, P. 493]

Kqtm
n (q−x; p, N; q) = 2φ1

 q−n, q−x

q−N

∣∣∣∣∣∣ q; pqn+1

.

(h) The q-Krawtchouk polynomials [30, P. 496]

Kn(q−x; p, N; q) = 3φ2

 q−n, q−x,−pqn

q−N , 0

∣∣∣∣∣∣ q; q


=

(qx−N ; q)n

(q−N ; q)nqnx 2φ1

 q−n, q−x

qN−x−n+1

∣∣∣∣∣∣ q;−pqn+N+1

, n = 0, 1, 2, . . . , N.

(g) The Affine q-Krawtchouk polynomials [30, P. 501]

K Aff
n (q−x; p, N; q) = 3φ2

 q−n, 0, q−x

pq, q−N

∣∣∣∣∣∣ q; q


=

(−pq)nq(
n
2)

(pq; q)n
2φ1

 q−n, qx−N

q−N

∣∣∣∣∣∣ q;
q−x

p

, n = 0, 1, 2, . . . , N.

(i) The Little q-Laguerre polynomials [30, P. 518]

pn(x, a|q) = 2φ1

 q−n, 0

aq

∣∣∣∣∣∣ q; qx

 =
1

(a−1q−n; q)n
2φ0

 q−n, x−1

0

∣∣∣∣∣∣ q;
x
a

.

(j) The q-Laguerre polynomials [30, P. 522]

L(α)
n (x) =

(qα+1; q)n

(q; q)n
1φ1

 q−n

qα+1

∣∣∣∣∣∣ q;−qn+α+1x

 =
1

(q; q)n
2φ1

 q−n,−x

0

∣∣∣∣∣∣ q; qn+α+1

.

(k) The Alternative q-Charlier (also called q-Bessel) polynomials [30, P. 526]

Kn(x; a; q) = 2φ1

 q−n,−aq−n

0

∣∣∣∣∣∣ q; qx


= (q−n+1x; q)n1φ1

 q−n

q−n+1x

∣∣∣∣∣∣ q;−aqn+1x


= (−aqx)n

2φ1

 q−n, x−1

0

∣∣∣∣∣∣ q;− q−n+1

a
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(l) The q-Charlier polynomials [30, P. 530]

Cn(q−x; a; q) = 2φ1

 q−n, q−x

0

∣∣∣∣∣∣ q;− qn+1

a

 = (−a−1q; q)n1φ1

 q−n

−a−1q

∣∣∣∣∣∣ q;− qn+1−x

a

.

(m) The Al Salam-Carlitz I polynomials [30, P. 534]

U(a)
n (x; q) = (−a)nq(

n
2)2φ1

 q−n, x−1

0

∣∣∣∣∣∣ q;
qx
a

.

(n) The Al Salam-Carlitz II polynomials [30, P. 537]

V(a)
n (x; q) = (−a)nq−(

n
2)2φ0

 q−n, x

0

∣∣∣∣∣∣ q;
qn

a

.

(o) The Stieltjes-Wigert polynomials [30, P. 544]

Sn(x; q) =
1

(q; q)n
1φ1

 q−n

0

∣∣∣∣∣∣ q;−qn+1x

.

(p) The Discrete q-Hermite I polynomials [30, P. 547]

hn(x; q) = q(
n
2) 2φ1

q−n; x−1

0

∣∣∣q;−qx

 = xn
2φ0

q−n; q−n+1

−

∣∣∣q2;
q2n−1

x2

 .

(q) The Discrete q-Hermite II polynomials [30, P. 550]

h̃n(x; q) = i−nq−(
n
2) 2φ0

q−n; ix

−

∣∣∣q;−qn

 = xn
2φ1

q−n; q−n+1

0

∣∣∣q2;− q2

x2

 .

2.4.4 Classical orthogonal polynomials on a quadratic lattice

A family pn(x) of polynomials of degree n, given by (5.27), is a family of classical quadratic
orthogonal polynomials (also known as orthogonal polynomials on non-uniform lattices)
if it is the solution of a divided difference equation of the type ([36])

φ(x2)D2y(x2) + ψ(x2)SDy(x2) + λny(x2) = 0. (2.29)

These polynomials can be classified as:

(a) The Wilson polynomials [30, P. 185]

Wn(x2; a, b, c, d)
(a + b)n(a + c)n(a + d)n

= 4F3

−n, n + a + b + c + d− 1, a + ix, a− ix

a + b, a + c, a + d

∣∣∣∣∣∣ 1

.

(b) The Racah polynomials [30, P. 190]

Rn(λ(x); α, β, γ, δ) = 4F3

−n, n + α + β + 1,−x, x + γ + δ + 1

α + 1, β + δ + 1, γ + 1

∣∣∣∣∣∣ 1

, n = 0, 1, 2, . . . , N,

(2.30)
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where
λ(x) = x(x + γ + δ + 1)

and
α + 1 = −N, or β + δ + 1 = −N or γ + 1 = −N

with N a non-negative integer.

(c) The Continuous Dual Hahn polynomials [30, P. 196]

Sn(x2; a, b, c)
(a + b)n(a + c)n

= 3F2

−n, a− ix, a + ix

a + b, a + c

∣∣∣∣∣∣ 1

.

(d) The Continuous Hahn polynomials [30, P. 200]

pn(x; a, b, c, d) = in (a + c)n(a + d)n

n! 3F2

−n, n + a + b + c + d− 1, a + ix

a + c, a + d

∣∣∣∣∣∣ 1

.

(2.31)

(e) The Dual Hahn polynomials [30, P. 208]

Rn(λ(x); γ, δ, N) = 3F2

−n,−x, x + γ + δ + 1

γ + 1,−N

∣∣∣∣∣∣ 1

, n = 0, 1, 2, . . . , N, (2.32)

where
λ(x) = x(x + γ + δ + 1).

(f) The Meixner-Pollaczek polynomials [30, P. 209]

P(λ)
n (x; φ) =

(2λ)n

n!
einφ

2F1

−n, λ + ix

2λ

∣∣∣∣∣∣ 1− e−2iφ

. (2.33)

2.4.5 Classical orthogonal polynomials on a q-quadratic lattice

A family pn(x) of polynomials of degree n, given by (5.27), is a family of classical q-
quadratic orthogonal polynomials (also known as orthogonal polynomials on non uniform
lattices) if it is the solution of a divided difference equation of the type

φ(x(s))D2
xy(x(s)) + ψ(x(s))SxDxy(x(s)) + λny(x(s)) = 0, (2.34)

where φ is a polynomial of maximal degree two and ψ is a polynomial of exact degree one,
λn is a constant depending on the integer n and the leading coefficients φ2 and ψ1 of φ and
ψ:

λn = −γn(γn−1φ2 + αnφ1)

and x(s) is a non uniform lattice defined by

x(s) =

 c1qs + c2q−s + c3

c4s2 + c5s + c6 .
(2.35)

These polynomials can be classified as:

(a) The Askey-Wilson polynomials [30, P. 415]

an pn(x; a, b, c, d|q)
(ab, ac, ad; q)n

= 4φ3

 q−n, abcdqn−1, aeiθ , ae−iθ

ab, ac, ad

∣∣∣∣∣∣ q; q

, x = cos θ.
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(b) The q-Racah polynomials [30, P. 422]

Rn(µ(x); α, β, γ, δ|q) = 4φ3

 q−n, αβqn+1, q−x, δγqx+1

αq, βδq, γq

∣∣∣∣∣∣ q; q

, n = 0, 1, 2, . . . , N

where
µ(x) := q−x + δγqx+1

and
αq = q−N or βδq = q−N or γq = q−N ,

with N a non-negative integer.

(c) The Continuous Dual q-Hahn polynomials [30, P. 429]

an pn(x; a, b, c|q)
(ab, ac; q)n

= 3φ2

 q−n, aeiθ , ae−iθ

ab, ac

∣∣∣∣∣∣ q, q

, x = cos θ.

(d) The Continuous q-Hahn polynomials [30, P. 434]

(aeiφ)n pn(x; a, b, c, d|q)
(abe2iθ , ac, ad; q)n

= 4φ3

 q−n, abcdqn−1, aei(θ+2φ), ae−iθ

abe2iφ, ac, ad

∣∣∣∣∣∣ q, q

, x = cos(θ +φ).

(e) The dual q-Hahn polynomials [30, P. 450]

Rn(µ(x), γ, δ, N|q) = 3φ2

 q−n, q−x, γδqx+1

γq, q−N

∣∣∣∣∣∣ q, q

, n = 0, 1, 2, . . . , N

where
µ(x) = q−x + γδqx+1

(f) The Al-Salam-Chihara polynomials [30, P. 455]

Qn(x; a, b|q) = (ab; q)n

an 3φ2

 q−n, aeiθ , ae−iθ

ab, 0

∣∣∣∣∣∣ q, q

, x = cos θ.

(h) The q-Meixner-Pollaczek polynomials [30, P. 460]

Pn(x; a|q) = a−ne−inφ (a2; q)n

(q; q)n
3φ2

 q−n, aei(θ+2φ), ae−iθ

a2, 0

∣∣∣∣∣∣ q, q

, x = cos(θ + φ).

(g) The continuous q-Jacobi polynomials [30, P. 463]

P(α,β)
n (x|q) = (qα+1; q)n

(q; q)n
4φ3

 q−n, qn+α+β+1, q
1
2 α+ 1

4 eiθ , q
1
2 α+ 1

4 e−iθ

qα+1,−q
1
2 (α+β+1),−q

1
2 (α+β+2)

∣∣∣∣∣∣ q; q

, x = cos θ.

As special cases there are:
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(g-1) The Continuous q-Ultraspherical (Rogers) polynomials [30, P. 469]

Cn(x; β|q) = (β2; q)n

(q; q)n
β−

1
2 n

4φ3

 q−n, β2qn, β
1
2 eiθ , β

1
2 e−iθ

βq
1
2 ,−β,−βq

1
2

∣∣∣∣∣∣ q; q

, x = cos θ.

(g-2) The Continuous q-Legendre polynomials α = β = 0 [30, P. 475]

Pn(x|q) = 4φ3

 q−n, qn+1, q
1
4 eiθ , q

1
4 e−iθ

q,−q−
1
2 ,−q

∣∣∣∣∣∣ q; q

, x = cos θ.

(h) The dual q-Krawtchouk polynomials [30, P. 505]

Kn(λ(x); c, N|q) = 3φ2

 q−n, q−x, cqx−N

q−N , 0

∣∣∣∣∣∣ q, q

, n = 0, 1, 2, . . . , N,

where
λ(x) = q−x + cqx−N .

(i) The continuous big q-Hermite polynomials [30, P. 509]

Hn(x; a, |q) = a−n
3φ2

 q−n, aeiθ , ae−iθ

0, 0

∣∣∣∣∣∣ q, q

, x = cos θ.

(j) The continuous q-Laguerre polynomials [30, P. 514]

P(α)
n (x|q) = (qα+1; q)n

(q; q)n
3φ2

 q−n, q
1
2 α+ 1

4 eiθ , q
1
2 α+ 1

4 e−iθ

qα+1, 0

∣∣∣∣∣∣ q, q

, x = cos θ.

(k) The continuous q-Hermite polynomials [30, P. 540]

Hn(x|q) = einθ
2φ0

 q−n, 0

−

∣∣∣∣∣∣ q, qne−2iθ

, x = cos θ.

2.5 Generating functions

Let (an)n∈N be a sequence of complex numbers.

1. The generating function of the sequence (an)n is the function

F(z) =
∞

∑
n=0

anzn.

2. The exponential generating function of the sequence (an)n is the function

G(z) =
∞

∑
n=0

an

n!
zn.

3. The q-exponential generating function (of first kind) of the sequence (an)n is the func-
tion

H1(z) =
∞

∑
n=0

an

(q; q)n
zn.
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4. The q-exponential generating function (of second kind) of the sequence (an)n is the
function

H2(z) =
∞

∑
n=0

an
q(

n
2)

(q; q)n
zn.

Note that the convergence of the right-hand sides of the above sums is required. Through-
out this text, both q-exponential generating functions of first kind and of second kind will
be called for short q-exponential generating function.
More details on generating functions are available in [52].



Chapter 3

Moments of Orthogonal
Polynomials: Easy Cases

In this chapter, using various computational methods, and various well-known summation
formulas, we give the canonical moments of some orthogonal polynomial families.

3.1 Classical continuous orthogonal polynomials

3.1.1 Jacobi polynomials

For α > −1 and β > −1, the Jacobi polynomials P(α,β)
n (x) are orthogonal in the interval

(−1; 1) and fulfil the orthogonality relation [30, P. 217]

∫ 1

−1
(1− x)α(1 + x)βP(α,β)

n (x)P(α,β)
m (x)dx =

2α+β+1

2n + α + β + 1
Γ(n + α + 1)Γ(n + β + 1)

Γ(n + α + β + 1)n!
.

(3.1)
The canonical Jacobi moments are therefore defined by

µn =
∫ 1

−1
xn(1− x)α(1 + x)βdx.

Proposition 19. The canonical Jacobi moments have the representation

µn =
Γ(α + 1)n!

Γ(α + n + 2) 2F1

−β, n + 1

α + n + 2

∣∣∣∣∣∣−1

+(−1)n Γ(β + 1)n!
Γ(β + n + 2) 2F1

−α, n + 1

β + n + 2

∣∣∣∣∣∣−1

, n = 0, 1, 2, . . .

(3.2)

Proof. We first write

µn =
∫ 1

0
xn(1− x)α(1 + x)βdx + (−1)n

∫ 1

0
xn(1 + x)α(1− x)βdx.

Next, the use of the integral representation for the Gauss hypergeometric function [30, P. 8]

2F1

 a, b

c

∣∣∣∣∣∣ z

 =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
xb−1(1− x)c−b−1(1− zx)−adx

with z = −1 gives the desired result. In fact, for the first integral
∫ 1

0
xn(1− x)α(1 + x)βdx,

using the integral representation of the Gauss hypergeometric function with b = n + 1,
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c = α + n + 2 and a = −β, it follows that

∫ 1

0
xn(1− x)α(1 + x)βdx =

Γ(α + 1)Γ(n + 1)
Γ(α + n + 2) 2F1

−β, n + 1

α + β + 2

∣∣∣∣∣∣−1

.

The second integral is computed in the same manner.

Another form of these moments will be given in Chapter 5 (5.48)-(5.49).
For special cases of Jacobi polynomials, those moments can be further simplified.

(a) Gegenbauer polynomials

Proposition 20. The canonical Gegenbauer moments have the representation

µn =


√

π
Γ(λ+ 1

2 )
Γ(λ+1)

(2p)!
22p p!(λ+1)p

, if n = 2p.

0 if n = 2p + 1.
(3.3)

Proof. By definition one has

µn =
∫ 1

−1
xn(1− x2)λ− 1

2 dx.

It is straightforward to see that if n is odd, then µn = 0. We assume that n is even and write
n = 2p. µn can be rewritten as

µ2p =
∫ 1

−1
(x2)p(1− x2)λ− 1

2 dx.

Now, we make the change of variable X = x2 and it follows that:

µ2p =
∫ 1

0
Xp− 1

2 (1− X)λ− 1
2 dx

= B
(

p +
1
2

, λ +
1
2

)

=
Γ
(

p + 1
2

)
Γ
(

λ + 1
2

)
Γ(p + λ + 1)

.

The desired results follows by simplification.

Proposition 21. The canonical Gegenbauer moments have the following exponential generating
function

√
πΓ
(

λ +
1
2

)(
2
z

)λ

Iλ(z) =
∞

∑
n=0

µn

n!
zn. (3.4)

where Iλ(z) is the Bessel function of first kind (see [1], Chapter 9).

Proof. Using Algorithm 2.2 from [32, P. 20] for the conversion of sums into hypergeometric
notation (command Sumtohyper of the hsum package), we get the result. This result can
also be obtained by direct computation.

(b) Chebyshev polynomials of first kind

Proposition 22. The canonical moments of the Chebyshev polynomials of the first kind have the
representation:

µn =


π(2p)!
22p p!2

if n = 2p,

0 if n = 2p + 1.
. (3.5)
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Proof. If we take λ = 0 in the Gegenbauer polynomials, we get the Chebyshev polynomials
of the first kind. Therefore, the canonical moments of the Chebyshev polynomials of the
first kind are

µn =


Γ(p+ 1

2 )Γ( 1
2 )

Γ(p+1) , if n = 2p,

0 if n = 2p + 1.

Now, using the Legendre duplication formula [3, P. 22]

Γ(2a)Γ
(

1
2

)
= 22a−1Γ(a)Γ

(
a +

1
2

)
,

and the relations

Γ(p + 1) = p!, Γ
(

1
2

)
=
√

π,

the desired result follows.

Proposition 23. The canonical moments of the Chebyshev polynomials of the first kind have the
following generating function:

π√
1− z2

=
∞

∑
n=0

µnzn, |z| < 1. (3.6)

Proof. Using Algorithm 2.2 from [32, P. 20] for the conversion of sums into hypergeometric
notation (command Sumtohyper of the hsum package), we get

∞

∑
n=0

µnxn = π1F0

 1
2

−

∣∣∣∣∣∣ z2

.

Taking a = 1
2 and z = −z2 in the binomial theorem (2.3), we get:

π1F0

 1
2

−

∣∣∣∣∣∣ z2

 =
π√

1− z2
.

(c) Chebyshev polynomials of second kind

Proposition 24. The canonical moments of the Chebyshev polynomials of the second kind have the
representation:

µn =


π(2p)!

22p p!(p+1)!
if n = 2p,

0 if n = 2p + 1.
(3.7)

Proof. Take λ = 1 in the canonical Gegenbauer moments.

Proposition 25. The canonical moments of the Chebyshev polynomials of the second kind have the
following generating function:

2π

1 +
√

1− z2
=

∞

∑
n=0

µnzn, |z| < 1. (3.8)

Proof. We set

F(z) =
1

µ0

∞

∑
n=0

µnzn =
1
π

∞

∑
p=0

µ2pz2p =
∞

∑
p=0

(
1
2

)
p

(p + 1)!
z2p.
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Then it follows that
d
dz

(z2F(z)) =
2z√

1− z2
,

hence
z2F(z) = −2

√
1− z2 + C,

where C is the integration constant. Taking z = 0 on both sides, it happens that C = 2 and
therefore

F(z) =
2(1−

√
1− z2)

z2 =
2

1 +
√

1− z2
.

(d) Legendre polynomials

Proposition 26. The canonical Legendre moments have the representation:

µn =

 2
2p+1 if n = 2p

0 if n = 2p + 1.
(3.9)

Proof. By definition, we have

µn =
∫ 1

−1
xndx =

1 + (−1)n

n + 1
=

 2
2p+1 if n = 2p

0 if n = 2p + 1.

An immediate consequence is

Proposition 27. The canonical Legendre moments have the following generating function:

1
z

ln
(

1 + z
1− z

)
=

∞

∑
n=0

µnzn, |z| < 1. (3.10)

3.1.2 Laguerre polynomials

The Laguerre polynomials L(α)
n (x) are orthogonal on the interval (0, ∞) with respect to the

weight function ρ(x) = xαe−x and fulfil the following orthogonality relation [30, P. 241]∫ ∞

0
xαe−xL(α)

n (x)L(α)
m (x)dx =

Γ(n + α + 1)
n!

δnm, α > −1. (3.11)

The canonical moments are

µn =
∫ ∞

0
ρ(x)xndx =

∫ ∞

0
xn+αe−xdx.

Proposition 28. The canonical Laguerre moments have the representation

µn = Γ (n + α + 1) , n = 0, 1, 2, . . . (3.12)

Proof. By the definition of the canonical moments, and the use of the Gamma function (2.1),
we have

µn =
∫ ∞

0
xn+αe−xdx =

∫ ∞

0
x(n+α+1)−1e−xdx = Γ (n + α + 1) .

Note that the canonical Laguerre moments appeared in [13] and [26].
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Proposition 29 (Exponential generating function). The canonical Laguerre moments have the
following exponential generating function

Γ(α + 1)
(1− z)α+1 =

∞

∑
n=0

µn
zn

n!
. (3.13)

Proof. We have, by the use of the binomial theorem (2.3):

∞

∑
n=0

Γ (n + α + 1)
n!

zn = Γ(α + 1)
∞

∑
n=0

(α + 1)n

n!
zn = Γ(α + 1)1F0

 α + 1

−

∣∣∣∣∣∣ z

 =
Γ(α + 1)
(1− z)α+1 .

Another generating function for the canonical Laguerre moments appears in [13] in the
form:

φ(x) =
∞

∑
n=0

(−1)n

2α+2n+1Γ(n + α + 1)Γ(α + 1)n!
µnxn =

1
2α+1Γ(α + 1)

e−x/4.

3.1.3 Bessel polynomials

Let N > 0 be an integer. The Bessel polynomials B(α)
n (x), 0 ≤ n ≤ N, fulfil the following

orthogonality relation [30, P. 245]∫ ∞

0
xαe−

2
x B(α)

n (x)B(α)
m (x)dx = − 2α+1

2n + α + 1
Γ(−n− α)n!δmn, α < −2N− 1, 0 ≤ m, n ≤ N.

(3.14)
Note that, since B(α)

n (x)B(α)
m (x) is a polynomial of degree n+m, it is enough that the integral∫ ∞

0
xα+m+ne−

2
x dx

converges.
A problem could appear in the neighbourhood of 0. For this integral to converge, it is

necessary that lim
x→0+

xα+m+ne−
2
x = 0, this implies that m + n + α < −1 for all 0 ≤ m, n ≤ N.

The last inequality will be satisfied if 2N + α < −1, that is α < −2N − 1.

Proposition 30. The canonical moments of the Bessel polynomials have the representation:

µn = 2n+α+1Γ (−n− α− 1) ; n = 0, 1, 2, . . . , N, α < −2N − 1. (3.15)

Proof. By taking n = m = 0 in the orthogonality relation, we get∫ ∞

0
xαe−

2
x dx = − 2α+1

α + 1
Γ(−α) = 2α+1Γ(−α− 1),

and this makes sense since α < −2N − 1 reads −α− 1 > 2N.
Now replacing α by α + n it follows that

µn =
∫ ∞

0
xα+ne−

2
x dx = 2n+α+1Γ(−n− α− 1),

and this makes sense since

(α < −2N − 1 and 0 ≤ n ≤ N)⇒ −n− α− 1 > N.

Proposition 31. The canonical Bessel moments have the following generating function

π

sin (π (α + 2))
2α+1

(−2 z)
α+1

2
Iα+1

(
2
√
−2 z

)
=

∞

∑
n=0

µn
zn

n!
. (3.16)
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Proof. Using Algorithm 2.2 from [32, P. 20] for the conversion of sums into hypergeometric
notation (command Sumtohyper of the hsum package), we get

∞

∑
n=0

µn
zn

n!
= 2α+1Γ(−α− 1)1F1

 −

α + 2

∣∣∣∣∣∣−2z

.

Next, using the relations (see [32, Eq (1.5),(1.9)])

(z)k =
Γ(z + k)

Γ(z)
, Γ(z)Γ(1− z) =

π

sin(πz)
,

we write

2α+1Γ(−α− 1)1F1

 −

α + 2

∣∣∣∣∣∣−2z

= 2α+1Γ(−α− 1)
∞

∑
k=0

(−2z)k

k!(α + 2)k

= 2α+1Γ(−α− 1)Γ(α + 2)
∞

∑
k=0

(−2z)k

k!Γ(α + k + 2)

=
2α+1π

sin(π(α + 2))

∞

∑
k=0

[ 1
4 (2
√
−2z)2]k

k!Γ((α + 1) + k + 1)

=
π

sin (π(α + 2))
2α+1(

1
2 (2
√
−2z)

)α+1

×
(

1
2
(2
√
−2z)

)α+1 ∞

∑
k=0

[ 1
4 (2
√
−2z)2]k

k!Γ((α + 1) + k + 1)

=
π

sin (π(α + 2))
2α+1

(−2 z)
α+1

2
Iα+1

(
2
√
−2 z

)
.

3.1.4 Hermite polynomials

The Hermite polynomials Hn(x) are orthogonal in the interval (−∞,+∞) with respect to
the weight function ρ(x) = e−x2

and fulfil the following orthogonality relation [30, P. 250]∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx =
√

π2nn!δmn. (3.17)

Proposition 32. The canonical moments of the Hermite polynomials have the representation:

µn =
1 + (−1)n

2
Γ
(

n + 1
2

)
=


√

π
(2p)!
22p p!

if n = 2p

0 if n = 2p + 1
, n = 0, 1, 2, . . . (3.18)

Proof. By the definition of the moments, we have µn =
∫ ∞

−∞
xne−x2

dx. By the change of

variable t = x2, and the use of the Gamma function (2.1), µn reads:

µn =
∫ ∞

0
xne−x2

dx +
∫ 0

−∞
xne−x2

dx

=
∫ ∞

0
xne−x2

dx + (−1)n
∫ ∞

0
xne−x2

dx

=
1 + (−1)n

2

∫ ∞

0
t

n+1
2 −1e−tdt

=
1 + (−1)n

2
Γ
(

n + 1
2

)
.
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The canonical moments of the Hermite polynomials were given in [13] (see also [26]).

Proposition 33 (Exponential generating function). The canonical Hermite moments have the
following exponential generating function

√
πez2/4 =

∞

∑
n=0

µn
zn

n!
. (3.19)

Proof.

∞

∑
n=0

µn

n!
zn =

∞

∑
n=0

1+(−1)n

2 Γ
(

n+1
2

)
n!

zn

=
∞

∑
n=0

Γ
(

2n+1
2

)
(2n)!

z2n

= Γ
(

1
2

) ∞

∑
n=0

(
1
2

)
n

(2n)!
z2n.

Since (
1
2

)
n
=

(2n)!
22nn!

,

we finally have
∞

∑
n=0

µn

n!
zn =

√
π

∞

∑
n=0

1
n!

(
z2

4

)n

=
√

πez2/4.

3.2 Classical q-discrete orthogonal polynomials

3.2.1 Little q-Jacobi polynomials

For 0 < aq < 1 and bq < 1, the Little q-Jacobi polynomials pn(x, a, b|q) fulfil the following
orthogonality relation [30, P. 482]

∞

∑
k=0

(bq; q)k
(q; q)k

(aq)k pm(qk; a, b|q)pn(qk; a, b|q)

=
(abq2; q)∞

(aq; q)∞

(1− abq)(aq)n

(1− abq2n+1)

(q, bq; q)n

(aq, abq; q)n
δmn.

Therefore, the canonical Little q-Jacobi moments are:

µn =
∞

∑
k=0

(bq; q)k
(q; q)k

(aq)kqnk.

Proposition 34. The canonical Little q-Jacobi moments have the representation

µn =
(abqn+2; q)∞

(aqn+1; q)∞
=

(abq2; q)∞

(aq; q)∞

(aq; q)n

(abq2; q)n
. (3.20)

Proof. The proof follows by taking a = bq and z = aqn+1 in the q-binomial theorem (2.6).

Proposition 35. The canonical moments of the Little q-Jacobi polynomials have the following gen-
erating function:

(ab2, aqz; q)∞

(aq, z; q)∞
=

∞

∑
n=0

µn(abq2; q)n
zn

(q; q)n
.
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Proof. We have
∞

∑
n=0

µn(abq2; q)n
zn

(q; q)n
=

(abq2; q)∞

(aq; q)∞

∞

∑
n=0

(aq; q)n

(q; q)n
zn.

By the q-binomial theorem (2.6), the results follows.

3.2.2 Little q-Legendre polynomials

The Little q-Legendre polynomials pn(x|q) are special cases of the Little q-Jacobi polynomi-
als with a = b = 1. They fulfil the orthogonality relation [30, P. 487]∫ 1

0
pm(x|q)pn(x|q)dqx = (1− q)

∞

∑
k=0

qk pm(qk|q)pn(qk|q) = (1− q)qn

(1− q2n+1)
δmn.

Therefore, the canonical q-Legendre moments are

µn =
∞

∑
k=0

qkqnk.

Proposition 36. The canonical Little q-Legendre moments have the representation:

µn =
1

1− qn+1 , n = 0, 1, 2, . . . (3.21)

Proof. Since |q| < 1, we have

µn =
∞

∑
k=0

qkqnk = lim
k→∞

1− (qn+1)k

1− qn+1 =
1

1− qn+1 .

Note that these moments could be deduced from the canonical Little q-Jacobi moments by
setting a = b = 1.

Proposition 37. The canonical Little q-Legendre moments have the following q-exponential gener-
ating function

eq(z)− 1
z

=
∞

∑
n=0

µn
zn

(q; q)n
. (3.22)

where eq is the q-exponential function defined by (2.12).

Proof.
∞

∑
n=0

µn
zn

(q; q)n
=

∞

∑
n=0

zn

(q; q)n+1

=
1
z

[
∞

∑
n=0

zn

(q; q)n
− 1

]

=
eq(z)− 1

z
.

3.2.3 q-Krawtchouk polynomials

The q-Krawtchouk polynomials Kn(q−x; p, N; q) fulfil the following orthogonality relation
[30, P. 497]

N

∑
x=0

(q−N ; q)x

(q; q)x
(−p)−xKm(q−x; p, N; q)Kn(q−x; p, N; q)

=
(q,−pqN+1; q)n

(−p, q−N ; q)n

1 + p
1 + pq2n

×(−pq; q)N p−Nq−(
N+1

2 )qn2
δmn, p > 0. (3.23)
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Therefore, the canonical q-Krawtchouk moments are

µn =
N

∑
k=0

(q−N ; q)k
(q; q)k

(−p)−kq−kn.

Proposition 38. The canonical q-Krawtchouk moments have the representation

µn =
(−pq; q)N

pNq(
N+1

2 )

(−pqN+1; q)n

(−pq; q)n

1
qnN , n = 0, 1, 2, . . . , N. (3.24)

Proof. By the q-binomial theorem (2.6), it follows that

µn =
(−p−1q−n−N ; q)∞

(−p−1q−n; q)∞
.

In order to simplify this expression, we compute the ratio

µn+1

µn
=

1 + pqN+1qn

(1 + pqqn)qN .

It follows that

µn = µ0
(−pqN+1; q)n

(−pq; q)nqnN .

µ0 is obtained by taking m = n = 0 in the orthogonality relation (3.23).

The q-Krawtchouk moments with respect to the basis (q−x; q)n are given in Chapter 5 and
another proof of (3.24) is provided.

Proposition 39. The canonical q-Krawtchouk moments have the following q-exponential generat-
ing function

(−pq; q)N

pNq(
N+1

2 )

(−pqz; q)∞

(zq−N ; q)∞
=

∞

∑
n=0

µn(−pq; q)n
zn

(q; q)n
. (3.25)

Proof. We have

∞

∑
n=0

µn(−pq; q)n
zn

(q; q)n
=

(−pq; q)N

pNq(
N+1

2 )

∞

∑
n=0

(−pqN+1; q)n

(q; q)n

(
z

qN

)n
.

Then, using the q-binomial theorem (2.6), we have

∞

∑
n=0

(−pqN+1; q)n

(q; q)n

(
z

qN

)n
=

(−pqz; q)∞

(zq−N ; q)∞
.

This completes the proof.

3.2.4 Little q-Laguerre (Wall) polynomials

The Little q-Laguerre polynomials pn(x; a; q) fulfil the orthogonality relation [30, P. 519]

∞

∑
k=0

(aq)k

(q; q)k
pm(qk; a|q)pn(qk; a|q) = (aq)n

(aq; q)∞

(q; q)n

(aq; q)n
δmn, 0 < aq < 1. (3.26)

Therefore, the canonical Little q-Laguerre moments are:

µn =
∞

∑
k=0

(aq)k

(q; q)k
qnk.
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Proposition 40. The canonical Little q-Laguerre moments have the representation:

µn =
1

(aqn+1; q)∞
=

(aq; q)n

(aq; q)∞
, n = 0, 1, 2, . . . (3.27)

Proof. The use of the q-binomial formula (2.6) with z = aqn+1 gives the result.

Proposition 41. The canonical Little q-Laguerre moments have the following q-exponential gener-
ating function

(azq; q)∞

(aq, z; q)∞
=

∞

∑
n=0

µn
zn

(q; q)n
. (3.28)

Proof. By the q-binomial theorem (2.6), we have

∞

∑
n=0

µn
zn

(q; q)n
=

1
(aq; q)∞

∞

∑
n=0

(aq; q)n

(q; q)n
zn =

(azq; q)∞

(aq, z; q)∞
.

3.2.5 q-Laguerre polynomials

The q-Laguerre polynomials L(α)
n (x; q) fulfil the following orthogonality relation [30, P. 522]

∞

∑
k=−∞

q(α+1)k

(−cqk; q)∞
L(α)

m (cqk; q)L(α)
n (cqk; q)

=
(q,−cqα+1,−c−1q−α; q)∞

(qα+1,−c,−c−1q; q)∞

(qα+1; q)n

(q; q)nqn δmn. α > −1, c > 0. (3.29)

Therefore, the canonical q-Laguerre moments are

µn =
∞

∑
k=−∞

q(α+1)k

(−cqk; q)∞
(cqk)n.

Proposition 42. The canonical q-Laguerre moments have the representation:

µn = cn (q,−cqn+α+1,−c−1q−n−α; q)∞

(qn+α+1,−c,−c−1q; q)∞
(3.30)

=
(q,−cqα+1,−c−1q−α; q)∞

(qα+1,−c,−c−1q; q)∞

(qα+1; q)n

q(α+1)n
q−(

n
2). (3.31)

Proof. By definition, we have

µn =
∞

∑
k=−∞

q(n+α+1)kcn

(−cqk; q)∞
=

cn

(−c; q)∞

∞

∑
k=−∞

(−c; q)kq(n+α+1)k.

Next using the Ramanujan identity for the bilateral sum (2.9) where we take the lower
parameter equal to 0, we obtain the desired formula. Another way to get the result is to
take in the orthogonality relation m = n = 0, and then replace α by α + n.

Note that the canonical q-Laguerre moments with the normalization µ0 = 1 were given in
[10, P. 49].

Proposition 43. The canonical q-Laguerre moments have the following q-exponential generating
function

(q,−cqα+1,−c−1q−α; q)∞

(qα+1,−c,−c−1q; q)∞

(z; q)∞

(zq−(α+1); q)∞
=

∞

∑
n=0

µn
q(

n
2)

(q; q)n
zn. (3.32)
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Proof. By using the q-binomial theorem (2.6), we have

∞

∑
n=0

µn
q(

n
2)

(q; q)n
zn =

(q,−cqα+1,−c−1q−α; q)∞

(qα+1,−c,−c−1q; q)∞

∞

∑
n=0

(qα+1; q)n

(q; q)n

(
z

q(α+1)

)n

=
(q,−cqα+1,−c−1q−α; q)∞

(qα+1,−c,−c−1q; q)∞

(z; q)∞

(zq−(α+1); q)∞
.

3.2.6 q-Bessel polynomials

The q-Bessel polynomials yn(x; a; q) fulfil the following orthogonality relation [30, P. 527]

∞

∑
k=0

ak

(q; q)k
q(

k+1
2 )ym(qk; a; q)yn(qk; a; q) = (q; q)n(−aqn; q)∞

anq(
n+1

2 )

(1 + aq2n)
δmn, a > 0.

Therefore the canonical q-Bessel moments are

µn =
∞

∑
k=0

ak

(q; q)k
q(

k+1
2 )qnk.

Proposition 44. The canonical q-Bessel moments have the representation:

µn =
(−aq; q)∞

(−aq; q)n
. (3.33)

Proof. Using the Euler summation formula (2.8), and the relation (k+1
2 ) = (k

2) + k, we get:

µn =
∞

∑
k=0

ak

(q; q)k
q(

k+1
2 )qnk =

∞

∑
k=0

(−1)kq(
k
2)

(q; q)k
(−aqn+1)k = (−aqn+1; q)∞ =

(−aq; q)∞

(−aq; q)n
.

Proposition 45. The canonical q-Bessel moments have the following generating function

(−aq; q)∞2φ1

 q, 0

−aq

∣∣∣∣∣∣ z

=
∞

∑
n=0

µnzn. (3.34)

Proof. Using the q-version of Algorithm 2.2 from [32] for the conversion of sums into q-
hypergeometric notation (sum2qhyper) we get the result.

Proposition 46. The canonical q-Bessel moments have the following generating function

(−aq; q)∞

1− z
=

∞

∑
n=0

µn(−aq; q)nzn, |z| < 1.

Proof. The proof follows by simple computation using the geometric series.

3.2.7 q-Charlier polynomials

The q-Charlier polynomials Cn(x; a; q) fulfil the following orthogonality relation [30, P. 530]

∞

∑
k=0

ak

(q; q)k
q(

k
2)Cm(q−k; a; q)Cn(q−k; a; q)

= q−n(−a; q)∞(−a−1q, q; q)nδmn, a > 0. (3.35)

Therefore, the canonical q-Charlier moments are

µn =
∞

∑
k=0

ak

(q; q)k
q(

k
2)q−nk.
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Proposition 47. The canonical q-Charlier moments have the representation

µn = (−a; q)∞

(
−a−1q; q

)
n

(
a
q

)n
q−(

n
2). (3.36)

Proof. We have

µn =
∞

∑
k=0

ak

(q; q)k
q(

k
2)q−nk =

∞

∑
k=0

q(
k
2)

(q; q)k

(
aq−n)k

=
∞

∑
k=0

(−1)kq(
k
2)

(q; q)k

(
−aq−n)k .

Now applying the Euler formula (2.8), with x := −aq−n, we get

µn = (−aq−n; q)∞.

Next combining the relations

(aqλ; q)∞ =
(a; q)∞

(a; q)λ
and (a; q)−n =

(−a−1q)n

(a−1q; q)n
q(

n
2),

it follows that

µn =
(−a; q)∞

(−a; q)−n
=

(−a; q)∞
(a−1q)n

(−a−1q;q)n
q(

n
2)

= (−a; q)∞

(
−a−1q; q

)
n

(
a
q

)n
q−(

n
2).

The q-Charlier moments with respect to the basis (x; q)n are given in Chapter 5. Note that
the canonical q-Charlier moments with the normalization µ0 = 1 were given in [10, P. 50].

Proposition 48. The canonical q-Charlier moments have the following q-exponential generating
function

(−a,−z; q)∞

(aq−1z; q)∞
=

∞

∑
n=0

µn
q(

n
2)zn

(q; q)n
, |az| < |q|. (3.37)

Proof. We have
∞

∑
n=0

µn
q(

n
2)zn

(q; q)n
= (−a; q)∞

∞

∑
n=0

(−a−1q; q)n

(q; q)n

(
az
q

)n
.

The result follows by using the q-binomial theorem (2.6).



Chapter 4

Inversion Formulas

Let (θn(x))n and (Pn(x))n be two polynomial sets such that for each n, we have the expan-
sion

Pn(x) =
n

∑
m=0

Dm(n)θm(x).

The inversion problem is the problem of finding the coefficients Im(n) in the expansion

θn(x) =
n

∑
m=0

Im(n)Pm(x). (4.1)

Note that when the coefficients Dm(n) and Im(n) are known, one can determine the
coefficients Cm(n) of the connection problem between two polynomial sets

Pn(x) =
n

∑
m=0

Cm(n)Qm(x),

and the coefficients of the linearization problem

Pn(x)Qm(x) =
n+m

∑
k=0

Lk(m, n)Rk(x).

Many methods have been used to determine the inversion coefficients in the literature,
see for example [5], [6] and the references therein. In [33], Koepf and Schmersau used
an algorithmic approach to determine those coefficients for the classical continuous and
the classical discrete orthogonal polynomials. In [18], following this method, we solved the
inversion problem for the orthogonal polynomials of the q-Hahn class, therefore recovering
the results given by Area et al. in [5].

In this chapter, we present two methods for the determination of the inversion coef-
ficients for all the classical orthogonal polynomial sets. The importance of the inversion
coefficients appears in Theorem 50 on page 45. In what follows, the inversion coefficients
are provided.

4.1 The methods

4.1.1 The algorithmic method

We assume that the polynomial Pn(x) has in the basis (θn(x))n the expansion

Pn(x) =
n

∑
m=0

Dm(n)θm(x).

It is well-known that every orthogonal polynomial set (Pn)n fulfils a three-term recurrence
relation of the form (see [34],[40])

xPn(x) = anPn+1(x) + bnPn(x) + cnPn−1(x), n ≥ 1. (4.2)
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Classical orthogonal polynomials satisfy further structure equations. One of those is given
by the differential / difference / q-difference rule (see e.g [34],[33],[35])

σ(x)P′n(x) = αnPn+1(x) + βnPn(x) + γnPn−1(x) (n ≥ 1), (4.3)

σ(x)∇Pn(x) = αnPn+1(x) + βnPn(x) + γnPn−1(x) (n ≥ 1), (4.4)

or
σ(x)D 1

q
Pn(x) = αnPn+1(x) + βnPn(x) + γnPn−1(x) (n ≥ 1), (4.5)

respectively.
Another useful structure relation used here is the three-term recurrence relation for the first
derivative, that is

xP′n(x) = α?nP′n+1(x) + β?
nP′n(x) + γ?

nP′n−1(x) (n ≥ 1), (4.6)

x∆Pn(x) = α?n∆Pn+1(x) + β?
n∆Pn(x) + γ?

n∆Pn−1(x) (n ≥ 1), (4.7)

or
xDqPn(x) = α?nDqPn+1(x) + β?

nDqPn(x) + γ?
nDqPn−1(x) (n ≥ 1), (4.8)

respectively.
When similar structure relations can be established for the basis θn(x), one can then use
them to get two or three cross rules for the coefficients Im(n) which can be determined by
linear algebra. More details on this method can be found in [18] and [33].

4.1.2 Inversion results from Verma’s bibasic formula

In [6], Area et al. used Verma’s q-extension [51] of Fields and Wimp [14] expansion of

r+tφs+u

 (ar), (ct)

(bs), (du)

∣∣∣∣∣∣ q; yω

=
∞

∑
j=0

((ct), (ek); q)j

(q, (du), γqj; q)j
yj
[
(−1)jq(

j
2)
]u+3−t−k

.t+kφu+1

 (ctqj), (ekqj)

γq2j+1, (duqj)

∣∣∣∣∣∣ q, yqj(u+2−t−k)


.r+2φs+k

 q−j, γqj, (ar)

(bs), (ek)

∣∣∣∣∣∣ q, ωq

 (4.9)

in powers of yω as given in [19, (3.7.9)] to find the solution of the inversion problem (4.1)
for polynomials of the Askey scheme and its q-analogue. Here, the notation (ar) means r
parameters of the type a1, a2,· · · , ar and the notation (arqj) means r parameters of the form
a1qj, a2qj,· · · , arqj. The method is the following.

We choose u = t = 0, and k = 1 in (4.9). Then for ω = x and γ = 0, we obtain

rφs

 (ar)

(bs)

∣∣∣∣∣∣ q; yx

 =
∞

∑
j=0

[(−1)jq(
j
2)]2

(q; q)j
yj

1φ1

 0

0

∣∣∣∣∣∣ q; qjy

r+1φs

 q−j, (ar)

(bs)

∣∣∣∣∣∣ q; qx

.

Expanding the left-hand side, the coefficient of yn is

(aR; q)n

(q; q)n(bS; q)n

[
(−1)nq(

n
2)
]s−r+1

xn. (4.10)
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Moreover, the right-hand side can be rewritten as

∞

∑
j=0

∞

∑
h=0

 qjh

(q; q)j

[
(−1)jq(

j
2)
]2

[
(−1)hq(

h
2)
]

(q; q)h
yh+j

 r+1φs

 q−j, (ar)

(bs)

∣∣∣∣∣∣ q; qx

,

so that the coefficient of yn in this expression is now

n

∑
`=0

(−1)n−`q2(`2)q(
n−`

2 )q(n−`)`

(q; q)`(q; q)n−`
r+1φs

 q−`, aR

bS

∣∣∣∣∣∣ q; qx

. (4.11)

From (4.10) and (4.11) we get

(−1)nqn(n−1)/2)s−r(a2, . . . , ar+1; q)n

(b1, b2, . . . , bs; q)n
xn =

n

∑
k=0

(−1)k
[n

k

]
q
q(

k
2)r+1φs

 q−k, a2, . . . , ar+1

b1, b2, . . . , bs

∣∣∣∣∣∣ q; qx

.

(4.12)
Application of appropriate limit relations (q ↑ 1) between basic hypergeometric and hyper-
geometric series to (4.12) leads to the formula

∏
p+1
j=2 (aj)n

∏s
j=1(bj)n

xn =
n

∑
k=0

(−1)k
(

n
k

)
r+1Fs

−k, a2, . . . , ap, ap+1

b1, b2, . . . , bs

∣∣∣∣∣∣ x

 (4.13)

It should be mentioned that until now, the coefficients aR and bS appearing in (4.13) are
independent of the summation index k. However, in some families belonging to the Askey
scheme and its q-analogue, one of the numerator parameters depends on k in the form
a2 + k (Askey scheme) or a2qk (q-analogue). In these situations and in case of polynomials
belonging to the q-analogue of the Askey scheme, the following formula (see [6]) should be
used:

((−1)nqn(n−1)/2)s−r(a3, . . . , ar+1)n

(b1, b2, . . . , bs; q)n
xn

=
n

∑
k=0

[n

k

]
q

(−1)kq(
k
2)

(a2qk, a2q2k+1; q)k
r+1φs

 q−k, a2qk, a3, . . . , ar+1

b1, b2, . . . , bs

∣∣∣∣∣∣ q; qx

. (4.14)

Once again, application of appropriate limit relations but now to (4.14) leads to the formula

∏
p+1
j=3 (aj)n

∏s
j=1(bj)n

xn =
n

∑
k=0

(
n
k

)
(−1)k

(a2 + k)k(a2 + 2k + 1)n−k
p+1Fs

−k, a2 + k, a3, . . . , ap, ap+1

b1, b2, . . . , bs

∣∣∣∣∣∣ x


(4.15)

4.2 Explicit representations of the inversion coefficients for
the classical orthogonal polynomials

4.2.1 The classical continuous case

The following results are from [33].
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The Jacobi polynomials

(1− x)n = 2nΓ(α + n + 1)

×
n

∑
m=0

(α + β + 2m + 1)Γ(α + β + m + 1)
Γ(α + m + 1)Γ(α + β + n + m + 2)

(−n)mP(α,β)
m (x), (4.16)

(1 + x)n = 2nΓ(β + n + 1)

×
n

∑
m=0

(−1)m (α + β + 2m + 1)Γ(α + β + m + 1)
Γ(β + m + 1)Γ(α + β + n + m + 2)

(−n)mP(α,β)
m (x). (4.17)

The Laguerre polynomials

xn = (1 + α)n

n

∑
m=0

(−n)m

(1 + α)m
L(α)

m (x). (4.18)

The Hermite polynomials

xn =
n!
2n

bn/2c

∑
k=0

1
k!(n− 2k)!

Hn−2k(x) (4.19)

The Bessel polynomials

xn = (−2)n
n

∑
m=0

(2m + α + 1)
(−n)mΓ(α + m + 1)
m!Γ(n + m + α + 2)

B(α)
m (x). (4.20)

4.2.2 The classical discrete case

The following results are from [33].

The Hahn polynomials

xn = (−1)n (1 + α)n(−N)n

(α + β + 2)n

n

∑
m=0

(α + β + 1 + 2m)

(α + β + 1)
(−n)m(1 + α + β)m

(n + 2 + α + β)mm!
Qm(x; α, β, N).

(4.21)

The Krawtchouk polynomials

xn = (−1)n(−N)n

n

∑
m=0

pn−m(−n)m

(−N)m
k(p)

m (x, N). (4.22)

The Meixner polynomials

xn = (−1)n(γ)n

(
µ

µ− 1

)n n

∑
m=0

(−n)m

(γ)nm!
m(γ,µ)

m (x). (4.23)

The Charlier polynomials

xn = µn
n

∑
m=0

(−n)m

m!
c(µ)m (x). (4.24)

4.2.3 The classical q-discrete case

Part of the following results are from [5] and [18] and have been converted following the
standardization of this work. The results for the Quantum q-Krawtchouk, the q-Krawtchouk
and the Affine q-Krawtchouk polynomials are obtained using (4.12) and (4.14).
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The Big q-Jacobi polynomials

(x; q)n =
n

∑
m=0

(−1)m
[ n

m

]
q

q(
m
2 )(aq, cq; q)n

(abqm+1, abq2m+2; q)n−m
Pm(x; a, b, c; q). (4.25)

The q-Hahn polynomials

(q−x; q)n =
n

∑
m=0

[ n

m

]
q

(−1)mq(
m
2 )(αq, q−N ; q)n

(αβqm+1; q)m(αβq2m+2; q)n−m
Qm(q−x; α, β, N|q). (4.26)

The Big q-Laguerre polynomials

(x; q)n =
n

∑
m=0

(−1)m
[ n

m

]
q
q(

m
2 )(aq, bq; q)nPm(x; a, b; q). (4.27)

The Little q-Jacobi polynomials

xn =
n

∑
m=0

[ n

m

]
q

(−1)mq(
m
2 )(aq; q)n

(abqm+1; q)m(abq2m+2; q)n−m
pm(x; a, b|q). (4.28)

The Little q-Legendre polynomials

xn =
n

∑
m=0

(−1)m
[ n

m

]
q

(−1)mq(
m
2 )(q; q)n

(qm+1; q)m(q2m+2; q)n−m
Pm(x|q). (4.29)

The q-Meixner polynomials

(q−x; q)n =
n

∑
m=0

(−1)n−mq
m(5m+1)

2 −n(m+1)cn
[ n

m

]
q
(bq; q)n Mm(q−x; b, c; q). (4.30)

The Quantum q-Krawtchouk polynomials

(q−x; q)n =
n

∑
m=0

(−1)m
[ n

m

]
q

q(
m
2 )

pm(n+1)
(q−N ; q)n(pq)−nKqtm

m (q−x; p, N|q). (4.31)

The q-Krawtchouk polynomials

(q−x; q)n =
n

∑
m=0

[ n

m

]
q

(−1)mq(
m
2 )(q−N ; q)n

(−pqm; q)m(−pq2m+1; q)n−m
Km(q−x; p, N; q). (4.32)

The Affine q-Krawtchouk polynomials

(q−x; q)n =
n

∑
m=0

(−1)m
[ n

m

]
q
q(

m
2 )(pq, q−N ; q)nKAff

m (q−x; p, N; q). (4.33)

(q−x)n(qx−N ; q)n =
n

∑
m=0

[ n

m

]
q
(pq)n−m(q−N ; q)n(pq; q)mKAff

m (q−x; p, N; q). (4.34)
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The Little q-Laguerre polynomials

xn =
n

∑
m=0

(−1)m
[ n

m

]
q
q(

m
2 )(aq; q)n pm(x; a|q), (4.35)

(x	 1)n
q =

n

∑
m=0

(−1)n−m
[ n

m

]
q
q(

n
2)−(

m
2 )(aq)n(a−1q−m; q)m pm(x; a|q). (4.36)

The q-Laguerre polynomials

xn =
n

∑
m=0

(−1)m
[ n

m

]
q
q
(m−n)(2α+3m+n+1)

2 −m(m+α)(q; q)m(qm+α+1; q)n−mL(α)
m (x; q), (4.37)

The Alternative q-Charlier/q-Bessel polynomials

xn =
n

∑
m=0

[ n

m

]
q

(−1)mq(
m
2 )

(−aqm; q)m(−aq2m+1; q)n−m
ym(x; a|q). (4.38)

The q-Charlier polynomials

(q−x; q)n =
n

∑
m=0

(−1)n−man
[ n

m

]
q
q

m(m+1)
2 −n(m+1)Cm(q−x; a; q). (4.39)

The Al Salam-Carlitz I polynomials

xn =
n

∑
m=0

[ n

m

]
q

n−m

∑
i=0

[n−m

i

]
q
ai

U(a)
m (x; q) (4.40)

(x	 1)n
q =

n

∑
m=0

an−m
[ n

m

]
q
U(a)

m (x; q). (4.41)

The Al Salam-Carlitz II polynomials

(x; q)n =
n

∑
m=0

(−1)n
[ n

m

]
q
an−mqm(m−n)+(n

2)V(a)
m (x; q). (4.42)

The Stieltjes-Wigert polynomials

xn =
n

∑
m=0

(−1)m
[ n

m

]
q
q
(m−n)(3m+n+1)

2 −m2
(q; q)mSm(x; q). (4.43)

The Discrete q-Hermite I polynomials

xn =
n

∑
m=0

1 + (−1)n−m

2

[ n

m

]
q
(q; q2)(n−m)/2hm(x; q) (4.44)

(x	 1)n
q =

n

∑
m=0

(−1)n−m
[ n

m

]
q
hm(x; q). (4.45)
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The Discrete q-Hermite II polynomials

(x; q)n =
n

∑
m=0

(−1)m
[ n

m

]
q
qm(m−n)+(n

2) h̃m(x; q). (4.46)

4.2.4 The classical quadratic case

The following results are obtained using the formulas (4.13) and (4.15). We provide the
proof for the Wilson case, the other cases being similar.

The Wilson polynomials

θn(x) =
n

∑
m=0

(
n
m

)
(−1)m(a + b + m)n−m(a + c + m)n−m(a + d + m)n−m

(a + b + c + d + m− 1)m(a + b + c + d + 2m)n−m
Wm(x2; a, b, c, d),

(4.47)
where

θn(x) = (a− ix)n(a + ix)n.

Proof. In order to derive this result, we recall that the Wilson polynomials [30, P. 185] have
the hypergeometric representation

Wn(x2; a, b, c, d)
(a + b)n(a + c)n(a + d)n

= 4F3

−n, n + a + b + c + d− 1, a + ix, a− ix

a + b, a + c, a + d

∣∣∣∣∣∣ 1

.

Therefore, by (4.15) with a2 = a + b + c + d− 1, it follows that

θn(x)
(a + b)n(a + c)n(a + d)n

=
n

∑
m=0

(
n
m

)
(−1)m

(a + b + c + d− 1 + m)m(a + b + c + d + 2m)n−m

×4F3

−m, m + a + b + c + d− 1, a + ix, a− ix

a + b, a + c, a + d

∣∣∣∣∣∣ 1

.

This leads to

θn(x) =
n

∑
m=0

(
n
m

)
(−1)m(a + b)n(a + c)n(a + d)n

(a + b + c + d− 1 + m)m(a + b + c + d + 2m)n−m

× (a + b)m(a + c)m(a + d)m

(a + b)m(a + c)m(a + d)m
4F3

−m, m + a + b + c + d− 1, a + ix, a− ix

a + b, a + c, a + d

∣∣∣∣∣∣ 1

,

and this last relation reads

θn(x) =
n

∑
m=0

(
n
m

)
(−1)m(a + b + m)n−m(a + c + m)n−m(a + d + m)n−m

(a + b + c + d− 1 + m)m(a + b + c + d + 2m)n−m
Wm(x2; a, b, c, d).

Remark 49. It should be noted that we recover this result in [36] using the algorithm method
described in section 4.1.1.

The Racah polynomials

θn(λ(x)) =
n

∑
m=0

(
n
m

)
(−1)m(α + 1)n(β + δ + 1)n(γ + 1)n

(α + β + m + 1)m(α + β + 2m + 2)n−m
Rm(λ(x); α, β, γ, δ), (4.48)

where
θn(x) = (−x)n(x + γ + δ + 1)n.
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The Continuous Dual Hahn polynomials

θn(x) =
n

∑
m=0

(−1)m
(

n
m

)
(a + b + m)n−m(a + c + m)n−mSm(x2; a, b, c). (4.49)

where
θn(x) = (a− ix)n(a + ix)n.

The Continuous Hahn polynomials

θn(x) =
n

∑
m=0

(
n
m

)
(−1)mm!(a + c + m)n−m(a + d + m)n−m

(a + b + c + d + 1 + m)m(a + b + c + d + 2m)n−m
pm(x; a, b, c, d). (4.50)

where
θn(x) = (a + ix)n

The Dual Hahn polynomials

θn(x) =
n

∑
m=0

(
n
m

)
(−1)m(γ + 1)n(−N)n

(δ + γ + m + 1)m(δ + γ + 2m + 2)n−m
Rm(λ(x); γ, δ, N). (4.51)

where
θn(x) = (−x)n(x + γ + δ + 1)n.

The Meixner-Pollaczek polynomials

θn(x) =
n

∑
m=0

(
n
m

)
(−1)mm!(2λ + m)n−m

(1− e−2iφ)neimφ
P(λ)

m (x; φ). (4.52)

where
θn(x) = (λ + ix)n.

4.2.5 The classical q-quadratic case

In this part, since θ will denote an angle, we will denote the basis involved in the inversion
formula (4.1) by Bn instead of θn.
The following results are obtained using the formulas (4.12) and (4.14).

The Askey-Wilson polynomials

Bn(x) =
n

∑
m=0

[ n

m

]
q
q(

m
2 )
(−a)m(abqm, acqm, adqm; q)n−m

(abcdqm−1; q)m(abcdq2m; q)n−m
pm(x; a, b, c, d), (4.53)

where
Bn(x) = (aeiθ , ae−iθ ; q)n, x = cos θ.

The q-Racah polynomials

Bn(µ(x)) =
n

∑
m=0

[ n

m

]
q

(−1)m(αq, βδq, γq; q)n

(αβqm+1; q)m(αβq2m+2; q)n−m
Rm(µ(x); α, β, δ, γ|q), (4.54)

where
Bn(µ(x)) = (q−x, γδqx+1; q)n, µ(x) = q−x + δγqx+1.
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The Continuous Dual q-Hahn polynomials

Bn(x) =
n

∑
m=0

(−a)m
[ n

m

]
q
q(

n
m)(abqm, acqm; q)n−m pm(x; a, b, c|q), (4.55)

where
Bn(x) = (aeiθ , ae−iθ ; q)n, x = cos θ.

The Continuous q-Hahn polynomials

Bn(x) =
n

∑
m=0

(−aeiφ)mq(
m
2 )(abqme2iφ, acqm, adqm; q)n−m

(abcdqm; q)m(abcdq2m; q)n−m
Pm(x; a, b, c, d|q), (4.56)

where
Bn(x) = (aei(θ+2φ), ae−iθ ; q)n, x = cos(θ + φ).

The Dual q-Hahn polynomials

Bn(µ(x)) =
n

∑
m=0

(−1)m
[ n

m

]
q
q(

m
2 )(γq, q−N ; q)nRm(µ(x); γ, δ, N|q), (4.57)

where
Bn(µ(x)) = (q−x, γδqx+1; q)n, µ(x) = q−x + δγqx+1.

The Al-Salam-Chihara polynomials

Bn(x) =
n

∑
m=0

(−a)m
[ n

m

]
q
q(

m
2 )(abqm; q)n−mQm(x; a, b|q), (4.58)

where
Bn(x) = (aeiθ , ae−iθ ; q)n, x = cos θ.

The q-Meixner-Pollaczek polynomials

Bn(x) =
n

∑
m=0

(−aeiφ)m
[ n

m

]
q
q(

n
m)(q; q)n(a2qm; q)n−mPm(x; a|q), (4.59)

where
Bn(x) = (aei(θ+2φ), ae−iθ ; q)n, x = cos(θ + φ).

The Continuous q-Jacobi polynomials

Bn(x) =
n

∑
m=0

[ n

m

]
q

(−1)m(q; q)m(qα+1+m; q)n−m(−q
1
2 (α+β+1),−q

1
2 (α+β+2); q)n

(qm+α+β+1; q)m(q2m+α+β+1; q)n−m
P(α,β)

m (x|q),

(4.60)
where

Bn(x) = (q
1
2 α+ 1

4 eiθ , q
1
2 α+ 1

4 e−iθ ; q)n, x = cos θ.

The Continuous q-Ultraspherical (Rogers) polynomials

Bn(x) =
n

∑
m=0

[ n

m

]
q

(−β
1
2 )m(q; q)m(βq

1
2 ,−β,−βq

1
2 ; q)n

(β2qm; q)m(β2q2m+1; q)n−m(β2; q)m
Cm(x; β|q) (4.61)

where
Bn(x) = (β

1
2 eiθ , β

1
2 e−iθ ; q)n, x = cos θ.
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The Continuous q-Legendre polynomials

Bn(x) =
n

∑
m=0

[ n

m

]
q

(−1)m(q,−q
1
2 ,−q; q)n

(qm+1; q)m(q2m+2; q)n−m
Pm(x|q), (4.62)

where
Bn(x) = (q

1
4 eiθ , q

1
4 e−iθ ; q)n, x = cos θ.

The Dual q-Krawtchouk polynomials

Bn(λ(x)) =
n

∑
m=0

(−1)n
[ n

m

]
q
q(

m
2 )(q−N ; q)nKm(λ(x); c, N|q), (4.63)

where
Bn(λ(x)) = (q−x, cqx−N ; q)n, λ(x) = q−x + cqx−N .

The Continuous big q-Hermite polynomials

Bn(x) =
n

∑
m=0

(−1)m
[ n

m

]
q
q(

m
2 )Hm(x; a|q), (4.64)

where
Bn(x) = (aeiθ , ae−iθ ; q)n, x = cos θ.

The Continuous q-Laguerre polynomials

Bn(x) =
n

∑
m=0

(−1)m
[ n

m

]
q
q(

n
m)(qα+1+m; q)n−mP(α)

m (x|q), (4.65)

where
Bn(x) = (q

1
2 α+ 1

4 eiθ , q
1
2 α+ 1

4 e−iθ ; q)n, x = cos θ.



Chapter 5

Moments of Orthogonal
Polynomials: Complicated Cases

5.1 Introduction

In Chapter 3, we have computed some moments. The computations were easy and we
could do them directly by using some well-known results in the literature. But, we were
not able to get the moments of all the classical families listed in Chapter 2. In this chapter,
we establish a powerful link between the inversion formula for a family (see Chapter 4)
and the moments of this family. This enables us to deduce the moments of the families
mentioned earlier.

5.2 Inversion formula and moments of orthogonal polyno-
mials

In Chapter 4, using previous works by Koepf and Schmersau (see [33]), Area, Godoy, Ron-
veaux and Zarzo (see [5],[6]), Foupouagnigni, Koepf, Tcheutia, Njionou (see [18]), we have
given explicit expressions of Im(n) (for a suitable choice of θn(x)) in the expansion

θn(x) =
n

∑
m=0

Im(n)Pm(x). (5.1)

The following theorem establishes a link between the inversion problem for a family and
the generalized moments of this family.

Theorem 50. For all n ∈N, the generalized moments of the family (Pn)n with respect to the basis
θn(x) can be computed by the formula

µn(θk(x)) = I0(n)P0µ0. (5.2)

Proof. Using the expansion (5.1), we have

µn(θk(x)) =
1
P0

(θn(x), P0) =
1
P0

n

∑
k=0

Ik(n)(Pn, P0) =
1
P0

I0(n)(P0, P0) = I0(n)P0µ0,

where ( f , g) is the inner product defined by

( f , g) =
∫ ∞

−∞
f (x)g(x)dα(x).

It should be mentioned that the term µ0 is easily obtained by taking m = n = 0 in the
orthogonality relation for each family and therefore does not depend on the chosen basis.
Note also that this result was announced in [22].
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5.3 Some connection formulas between some bases

In order to obtain canonical moments from generalized moments, we need some connec-
tion formulas as pointed out in Section 2.4. First, we introduce some famous numbers.

5.3.1 Elementary symmetric polynomials

Definition 51. (see [37, P. 159]) The elementary symmetric polynomials ek(a1, . . . , an) in n vari-
ables a1, . . . , an for k = 0, 1, . . . , n can be defined as

e0(a1, a2, . . . , an) = 1,

and
ek(a1, a2, . . . , an) = ∑

1≤j1<j2<···<jk≤n
aj1 aj2 · · · ajk , 1 ≤ k ≤ n. (5.3)

For example, we have

e1(a1, a2, . . . , an) = a1 + a2 + · · ·+ an,
e2(a1, a2, . . . , an) = ∑

1≤i<j≤n
aiaj,

en(a1, a2, . . . , an) = a1a2 · · · an.

Proposition 52. Let a1, a2, . . . , an be n complex numbers. Then, the following expansion is valid.

n

∏
k=1

(λ− ak) = λn +
n

∑
k=1

(−1)kek(a1, a2, . . . , an)λ
n−k. (5.4)

Definition 53. Let a1, a2, . . . , an be n complex numbers. We define the elementary symmetric
polynomials of second kind as the coefficients Ek(a1, a2, . . . , an) in the expansion

λn =
n

∑
k=0

Ek(a1, a2, . . . , an)Pk(λ), (5.5)

where the polynomials Pk(λ) are defined as

P0(λ) = 1

Pk(λ) = (λ− ak)Pk−1(λ) =
k

∏
j=1

(λ− aj), k = 1, . . . , n.

Proposition 54. If ai 6= aj for i 6= j, then the elementary symmetric polynomials of the second
kind in the variables a1, . . . , an can be computed by induction using the following algorithm

E0(a1, . . . , an) = an
1 , (5.6)

Ej(a1, . . . , an) =
1

Pj(aj+1)

[
an

j+1 −
j−1

∑
k=0

Ek(a1, . . . , an)Pk(aj+1)

]
, j = 1, . . . , n− 1. (5.7)

En(a1, . . . , an) = 1.

Proof. We have

λn =
n

∑
k=0

Ek(a1, . . . , an)Pk(λ) = E0(a1, . . . , an) +
n

∑
k=1

Ek(a1, . . . , an)Pk(λ).

Taking λ = a1 on both sides of the previous equation gives

E0(a1, . . . , an) = an
1 .
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Next, taking λ = a2 provides the relation

an
2 = E0(a1, . . . , an) + E1(a1, . . . , an)P1(a2),

and therefore we get

E1(a1, . . . , an) =
1

P1(a2)
[an

2 − E0(a1, . . . , an)] .

Now let us assume that we have found E0(a1, . . . , an),. . . ,Ej−1(a1, . . . , an), then, taking
λ = aj+1, it follows that

an
j+1 =

j−1

∑
k=0

Ek(a1, . . . , an)Pk(λ) + Ej(a1, . . . , an)Pj(aj+1).

Thus, the relation (5.7) follows by a simple computation.

We have for example

E1(a1, . . . , an) =
an

2 − an
1

a2 − a1
=

n

∑
k=1

an−kbk−1,

En−1(a1, . . . , an) = a1 + a2 + · · ·+ an.

5.3.2 Connection between xn and xn

Definition 55. [1, P. 824]

1. The Stirling numbers of first kind are the coefficients Sm(n) in the expansion

xn = x(x− 1)(x− 2) · · · (x− n + 1) =
n

∑
m=0

Sm(n)xm. (5.8)

2. The Stirling numbers of second kind are the coefficients Sm(n) in the expansion

xn =
n

∑
m=0
Sm(n)xn. (5.9)

Those numbers fulfil several interesting properties. Here we recall some of them.

Proposition 56. [1, P. 824] The Stirling numbers of first kind fulfil the following recurrence

Sm(n + 1) = Sm−1(n)− nSm(n) n ≥ m ≥ 1.

Some special values are

S0(n) = δ0n, S1(n) = (−1)n−1(n− 1)!, Sn−1(n) = −
(

n
2

)
, Sn(n) = 1.

Proposition 57. The Stirling numbers of first kind can be expressed in terms of the elementary
symmetric polynomials as follows

Sk(n) = (−1)kek(0, 1, 2, . . . , n− 1), 0 ≤ k ≤ n. (5.10)

Proposition 58. [1, P. 824] The Stirling numbers of second kind fulfil the following recurrence

Sm(n + 1) = mSm(n) + Sm−1(n), n ≥ m ≥ 1,

and have the following representation

Sm(n) =
1

m!

m

∑
k=0

(−1)m−k
(

m
k

)
kn.
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5.3.3 Connection between xn and (x; q)n

Lemma 59. [5, 30] The following q-derivative formulas are valid.

Dq(x; q)n =−[n]q(xq; q)n−1; (5.11)
Dq−1(x; q)n = [n]q(x; q)n−1. (5.12)

Proof. The proof of these relations follows by direct computations.

Lemma 60. Let k and n be two non-negative integers such that 0 ≤ k ≤ n. Then, the following
derivative rules are valid.

Dk
q(x; q)n = (−1)k [n]q!

[n− k]q!
q(

k
2)(xqk; q)n−k; (5.13)

Dk
qxn =

[n]q!
[n− k]q!

xn−k. (5.14)

Proof. The proof is obtained by induction with respect to n.

Proposition 61. The following connection formulas are valid.

(x; q)n =
n

∑
m=0

(−1)m
[ n

m

]
q
q(

m
2 )xm; (5.15)

xn =
n

∑
m=0

(−1)m
[ n

m

]
q
q−mn+(m+1

2 )(x; q)m. (5.16)

Proof. Many proofs of these two relations can be found in the literature. We give here a
proof, which is based on Lemma 60.
For the relation (5.15), we first write

(x; q)n =
n

∑
m=0

Dm(n)xm.

Taking k times the q-derivative in this equation and using Lemma 60, it follows that

(−1)k [n]q!
[n− k]q!

q(
k
2)(xqk; q)n−k =

n

∑
m=k

Dm(n)
[m]q!

[m− k]q!
xm−k.

Now we substitute x = 0 and obtain

(−1)k [n]q!
[n− k]q!

q(
k
2) = Dk(n)[k]q!.

This reads

Dk(n) = (−1)k [n]q!
[k]q![n− k]q!

q(
k
2) = (−1)k

[n

k

]
q
q(

k
2).

For the relation (5.16), we write

xn =
n

∑
m=0

Gm(n)(x; q)m.

As previously, taking k times the q-derivative in this equation and using once more Lemma
(60), it follows that

[n]q!
[n− k]q!

xn−k =
n

∑
m=k

(−1)kGm(n)
[m]q!

[m− k]q!
q(

k
2)(xqk; q)m−k.
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Next, for x = q−k, this equation reduces to

[n]q!
[n− k]q!

q−k(n−k) = (−1)k[k]q!q(
k
2)Gk(n).

The desired representation follows by simplification.

Remark 62. Once equations (5.15) and (5.16) are known, they can easily be established automat-
ically applying q-Zeilberger’s algorithm (see [32]) to the right-hand sides. These computations are
contained in the Maple file attached to this work.

5.3.4 Connection formula between xn and (x	 1)n
q

Lemma 63. [47, Table 2] The following derivative rule is valid.

Dq(x	 y)n
q = [n]q(x	 y)n−1

q , n ≥ 1, (5.17)

where Dq acts on the variable x.

Proof. The proof follows by direct computation.

Lemma 64. The following derivative rule is valid.

Dk
q(x	 y)n

q =
[n]q!

[n− k]q!
(x	 y)n−k

q , 0 ≤ k ≤ n. (5.18)

Proof. The proof is obtained by induction with respect to n using (5.17).

Proposition 65. The bases (x	 y)n
q and xn fulfil the following connection formulas

(x	 y)n
q =

n

∑
m=0

(−y)n−mq(
n−m

2 )

[ n

m

]
q
xm; (5.19)

xn =
n

∑
m=0

yn−m
[ n

m

]
q
(x	 y)m

q . (5.20)

Proof. For relation (5.19) we write

(x	 y)n
q =

n

∑
m=0

Cm(n)xn.

Next, we apply Dk
q to both sides of this relation and use (5.18) to get

[n]q!
[n− k]q!

(x	 y)n−k
q =

n

∑
m=k

Cm(n)
[m]q!

[m− k]q!
xm−k = Ck(n)[k]q +

n

∑
m=k+1

Cm(n)
[m]q!

[m− k]q!
xm−k.

Now, substituting x = 0, it follows that

[n]q!
[n− k]q!

(−a)n−kq(
n−k

2 ) = Ck(n)[k]q!.

Simplification gives the desired result. Relation (5.20) follows in the same manner.

Remark 66. Once equations (5.19) and (5.20) are known, they can easily be established automat-
ically applying q-Zeilberger’s algorithm (see [32]) to the right-hand sides. These computations are
contained in the Maple file attached to this work.
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5.3.5 Connections between (x	 y)n
q and (x; q)n

Proposition 67. The bases (x	 y)n
q and (x; q)n fulfil the following connection formulas

(x	 y)q =
n

∑
m=0

(−1)mq−(
m
2 )

[ n

m

]
q
(q−m 	 y)n−m

q (x; q)m; (5.21)

(x; q)n =
n

∑
m
(−1)mq(

m
2 )

[ n

m

]
q
(yqm; q)n−m(x	 y)m

q . (5.22)

Proof. The proof is done as the proof of (5.19) using the relation

Dk
q(x; q)n =

[n]q!
[n− k]q!

(xqk; q)n−k.

Remark 68. Once equations (5.21) and (5.22) are known, they can easily be established automat-
ically applying q-Zeilberger’s algorithm (see [32]) to the right-hand sides. These computations are
contained in the Maple file attached to this work.

5.3.6 Connection between (x2)n and (a− ix)n(a + ix)n

Note that

ϑn(a, x) = (a− ix)n(a + ix)n =
n−1

∏
k=0

(x2 + (a + k)2), θ0(a, x) = 1.

The following proposition holds.

Proposition 69. The following connections are valid.

(a− ix)n(a + ix)n =
n

∑
k=0

(−1)kek

(
−a2,−(a + 1)2, · · · ,−(a + n− 1)2

)
(x2)n−k, (5.23)

(x2)n =
n

∑
k=0

Ek

(
−a2,−(a + 1)2, · · · ,−(a + n− 1)2

)
(a− ix)k(a + ix)k. (5.24)

Proof. The proof follows from the definition of the elementary symmetric polynomials and
the elementary symmetric polynomials of the second kind.

In order to get explicit formula for Ek
(
−a2,−(a + 1)2, · · · ,−(a + n− 1)2), we state the

following results.

Proposition 70 (see [36]). The basis ϑn(a, x) fulfills the following relations

Dϑn(a, x) = nϑn−1

(
a +

1
2

, x
)

, (5.25)

D`ϑn(a, x) =
n!

(n− l)!
ϑn−`

(
a +

`

2
, x
)

, 0 ≤ ` ≤ n. (5.26)

Theorem 71. If f is a polynomial of degree n in x2, then

f (x) =
n

∑
k=0

fkϑk(a, x),

where

fk =
Dk f (i(a + k

2 ))

k!
.
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Proof. First remark that ϑk(a, ai) = 0 for all k > 0. Hence

Dj f (x) =
n

∑
k=j

fk
k!

(k− j)!
ϑk−j(a +

j
2

, x) = f j j! +
n

∑
k=j+1

fk
k!

(k− j)!
ϑk−j(a +

j
2

, x)

and for x = i
(

a + j
2

)
, we get

Dj f
(

i
(

a +
j
2

))
= f j j!.

This proves the proposition.

Theorem 72 (see [11]). Let k be a nonnegative integer. Then

Dk f (x) =
k

∑
l=0

(−k)l
l!

(2ix− k− 2l)
(2ix− k + l)k+1

f
(

x +
k− 2l

2
i
)

. (5.27)

Corollary 73. The following result is valid.

Dkx2n =
k

∑
l=0

(−k)l
l!

(2ix− k + 2l)
(2ix− k + l)k+1

(
x +

k− 2l
2

i
)2n

. (5.28)

Proof. Take f (x) = x2n in (5.27) to get the result.

Corollary 74. The following connection formula is valid.

x2n = (−1)n
n

∑
k=0

1
k!

k

∑
l=0

(−k)l
l!

(−2a− 2k + 2l)
(−2a− 2k + l)k+1

(a + k− l)2n ϑk(a, x). (5.29)

Proof. The proof follows from Theorem 71 and Theorem 72 with f (x) = x2n.

5.3.7 Connection between (x(x + ε))n and (−x)n(x + ε)n.

We recall the definition of the difference operator Dε

Dε f (u(x)) =
∆ f (u(x))

∆u(x)
=

f (u(x))− f (u(x + 1))
2x + 1 + ε

,

and define the polynomial basis (for the Racah and the Dual Hahn polynomials) ξn(x, ε)
by

ξn(x, ε) = (−x)n(x + ε)n

which are the appropriate basis to consider for the operators Dε.

Proposition 75. The basis ξn(x, ε) fulfils the following relations.

Dεξn(x, ε) = nξn−1(x, ε + 1) (5.30)

Dk
ε ξn(x, ε) =

n!
(n− k)!

ξn−k(x, ε + k). (5.31)

Proof. We prove the first relation. The second one is obtained by induction. First remark
that

ξn(x + 1, ε) = (−x− 1)n(x + 1 + ε)n = −(x + 1)(x + ε + n)ξn−1(x, ε + 1)

ξn(x, ε) = (−x + n− 1)(x + ε + n− 1)ξn−1(x, ε + 1).

Thus
ξn(x + 1, ε)− ξn(x, ε) = −n(2x + 1 + ε)ξn−1(x, ε + 1).

The result follows by dividing by −(2x + 1 + ε).
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Theorem 76. If f is a polynomial of degree 2n in x, then

f (x) =
n

∑
k=0

(Dk
ε f )(0)
k!

ξk(x, ε).

Proof. Since f is a polynomial of degree 2n, we can write

f (x) =
n

∑
k=0

ckξk(x, ε).

Clearly,

D
j
ε f (x) =

n

∑
k=j

cj
k!

(k− j)!
ξk−j(x, ε + j) = cj j! +

n

∑
k=j+1

cj
k!

(k− j)!
ξk−j(x, ε + j).

Taking x = 0, it happens that
(D

j
ε f )(0) = cj j!.

This proves the theorem.

Corollary 77. The following connection formula is valid.

(x(x + ε))n =
n

∑
k=0

Dk
ε [x(x + ε)]n|x=0

k!
ξk(x, ε). (5.32)

5.3.8 Connection between xn and (a + ix)n

We recall the difference operator D defined as follows:

D f (x) = f
(

x +
i
2

)
− f

(
x− i

2

)
,

and define the polynomial basis

ηn(a, x) = (a + ix)n

which is the appropriate basis to consider for the operators D.

Proposition 78. The basis ηn(a, x) fulfils the following relations.

Dηn(a, x) =−nηn−1

(
a +

1
2

, x
)

(5.33)

Dkηn(a, x) = (−1)k n!
(n− k)!

ηn−k

(
a +

k
2

, x
)

. (5.34)

Proof. We prove the first relation. The second one is obtained by induction.
By definition, we have

Dηn(a, x) = ηn

(
a, x +

i
2

)
− ηn

(
a, x− i

2

)
=

(
a + i

(
x +

i
2

))
n
−
(

a + i
(

x− i
2

))
n

=

(
a− 1

2
+ ix

)
n
−
(

a +
1
2
+ ix

)
n

=

(
a− 1

2
+ ix

)(
a +

1
2
+ ix

)
n−1
−
(

a +
1
2
+ ix + n− 1

)(
a +

1
2
+ ix

)
n−1

=−n
(

a +
1
2
+ ix

)
n−1

=−nηn−1

(
a +

1
2

, x
)

.
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Proposition 79 (Power of D). Let k be a nonnegative integer, then the following relation holds.

Dk f (x) =
k

∑
l=0

(−1)l
(

k
l

)
f
(

x +
k− 2l

2
i
)

. (5.35)

Proof. The proof is done by induction. The relation is obvious for k = 1. Assume it is true
for a fix integer k > 0. Then, we have

Dk+1 f (x) =D(Dk f (x))

=
k

∑
l=0

(−1)l
(

k
l

)
D f

(
x +

k− 2l
2

i
)

=
k

∑
l=0

(−1)l
(

k
l

)(
f
(

x +
k− 2l + 1

2
i
)
− f

(
x +

k− 2l − 1
2

i
))

=
k

∑
l=0

(−1)l
(

k
l

)
f
(

x +
k− 2l + 1

2
i
)
+

k+1

∑
l=1

(−1)l
(

k
l − 1

)
f
(

x +
k− 2l + 1

2
i
)

=
k+1

∑
l=0

(−1)l
(

k + 1
l

)
f
(

x +
k− 2l + 1

2
i
)

.

Theorem 80. If f is a polynomial of degree n in x, then

f (x) =
n

∑
k=0

fkηk(a, x),

where

fk =
(−1)k

k!
Dk f

(
i
(

a +
k
2

))
.

Proof. First remark that ηk(a, ai) = 0 for all k > 0. Hence

D j f (x) =
n

∑
k=j

(−1)k fk
k!

(k− j)!
ηk−j(a +

j
2

, x) = (−1)j f j j! +
n

∑
k=j+1

fk
k!

(k− j)!
ηk−j(a +

j
2

, x)

and for x = i
(

a + j
2

)
, we get

D j f
(

i
(

a +
j
2

))
= (−1)j j! f j.

This proves the proposition.

Corollary 81. The following connection formula is valid.

xn =
n

∑
k=0

1
k!

k

∑
l=0

(−1)l
(

k
l

)
((a + l)i)nηk(a, x). (5.36)

Proof. First, we apply theorem 80 with f (x) = xn to get

xn =
n

∑
k=0

(
(−1)k

k!
Dkxn∣∣x=i(a+ k

2 )

)
ηk(a, x).

Next, using proposition 79, we have

Dkxn =
k

∑
l=0

(−1)l
(

k
l

)(
x +

k− 2l
2

i
)n

.
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Then, we have

Dkxn∣∣i(a+ k
2 )

=
k

∑
l=0

(−1)l
(

k
l

)
((a + k− l)i)n

= (−1)k
k

∑
l=0

(−1)l
(

k
l

)
((a + l)i)n .

This completes the proof.

5.3.9 Connection between cosn θ and (aeiθ, ae−iθ; q)n.

We first make the following remark

(aeiθ , ae−iθ ; q)n = (−2a)nq(
n
2)

n−1

∏
k=0

(cos θ − xk) ,

where

xk =
1 + a2q2k

2aqk .

The following proposition follows.

Proposition 82. The following connection formulas are valid.

(aeiθ , ae−iθ ; q)n = (−2a)nq(
n
2)

n

∑
k=0

(−1)kek(x0, x1, · · · , xn−1) cosn−k θ, (5.37)

cosn θ =
n

∑
k=0

(−2a)−kq−(
k
2)Ek(x0, x1, · · · , xn−1)(aeiθ , ae−iθ ; q)k (5.38)

with

xk =
1 + a2q2k

2aqk , k = 0, 1, . . . , n− 1. (5.39)

In what follows, we give explicit formula for Ek(x0, x1, · · · , xn−1).

Proposition 83 (see [11]). The following q-derivative rule is valid.

(Dn
q f )(x) =

2nq
n(1−n)

4

(q1/2 − q−1/2)n

n

∑
k=0

[n

k

]
q

qk(n−k)z2k−n f̌ (q(n−2k)/2z2)

(q1+n−2kz2; q)k(q2k−n+1z−2; q)n−k
, (5.40)

where f̌ (z) = f ((z + 1/z)/2), z = eiθ , x = cos θ.

Proposition 84 (see [23]). If f (x) is a polynomial in x = cos θ of degree n, then

f (x) =
n

∑
k=0

fk(aeiθ , ae−iθ ; q)k; (5.41)

where

fk =
(q− 1)k

(2a)k(q; q)k
q−

k(k−1)
4 (Dk

q f )(xk),

with
xk =

1
2
(aqk/2 + q−k/2/a).
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Corollary 85. If f (x) is a polynomial of degree n in x = cos θ, then

f (x) =
n

∑
k=0

fk(aeiθ , ae−iθ ; q)k,

with

fk = qk
k

∑
j=0

q−(k−j)2
a2(j−k) f̌ (aqk−j)

(q, q1+2(k−j)a2; q)j(q, q−1−2(k−j)a−2; q)k−j
. (5.42)

Remark 86. Note that, by a change of variable j := k− j, the pk’s in corollary 85 can be written as

fk = qk
k

∑
j=0

q−j2 a−2j f̌ (aqj)

(q, q1+2ja2; q)k−j(q, q−1−2ja−2; q)j
.

Corollary 87. The following connection formula is valid.

xn =
n

∑
k=0

qk
k

∑
j=0

q−j2 a−2j(aqj + a−1q−j)k

(q, q1+2ja2; q)k−j(q, q−1−2ja−2; q)j
(aeiθ , ae−iθ ; q)k, x = cos θ. (5.43)

5.4 Moments and generating functions

As previously announced, we now use the inversion formula to compute the moments of
orthogonal polynomials (see Theorem 50). Connections between the bases enable us to get
the canonical moments from the generalized ones.

5.4.1 The continuous case

The Jacobi polynomials

From the orthogonality relation (3.1), it follows that

µ0 = 2α+β+1 Γ(α + 1)Γ(β + 1)
Γ(α + β + 2)

.

• For θn(x) = (1− x)n, we have from (4.16)

I0(n) = 2n Γ(α + 1 + n)Γ(α + β + 2)
Γ(α + β + n + 2)Γ(α + 1)

= 2n (α + 1)n

(α + β + 2)n
.

• For θn(x) = (1 + x)n, we have from (4.17)

I0(n) = 2n Γ(β + 1 + n)Γ(α + β + 2)
Γ(α + β + n + 2)Γ(β + 1)

= 2n (β + 1)n

(α + β + 2)n
.

Therefore, the following proposition is valid.

Proposition 88. .

1. The generalized Jacobi moments with respect to the basis (1− x)n have the representation

µn((1− x)k) = 2n+α+β+1 Γ(α + 1)Γ(β + 1)
Γ(α + β + 2)

(α + 1)n

(α + β + 2)n
. (5.44)

2. The generalized Jacobi moments with respect to the basis (1 + x)n have the representation

µn((1 + x)k) = 2n+α+β+1 Γ(α + 1)Γ(β + 1)
Γ(α + β + 2)

(β + 1)n

(α + β + 2)n
. (5.45)
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Remark 89. Note that these moments could be computed directly as follows. For (5.44), we start
by remarking that ∫ 1

−1
(1− x)α(1 + x)βdx = µ0 = 2α+β+1 Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
.

Next, we replace α by α + n to get

µn((1− x)k) =
∫ 1

−1
(1− x)α+n(1 + x)βdx = 2α+β+n+1 Γ(α + n + 1)Γ(β + 1)

Γ(α + β + n + 2)

= 2α+β+n+1 Γ(α + 1)Γ(β + 1)
Γ(α + β + 2)

(α + 1)n

(α + β + 2)n
.

For the relation (5.45), just replace β by β + n and proceed as previously.

Proposition 90. The generalized Jacobi moments have the following exponential generating func-
tions:

Γ(α + 1)Γ(β + 1)
Γ(α + β + 2)

2α+β+1

(1− z)α+1 =
∞

∑
n=0

µn((1− x)k)
(α + β + 2)n

n!
(2z)n,

Γ(α + 1)Γ(β + 1)
Γ(α + β + 2)

2α+β+1

(1− z)β+1 =
∞

∑
n=0

µn((1 + x)k)
(α + β + 2)n

n!
(2z)n.

Proof. Using the binomial theorem (2.3), we get the results.

In Chapter 3, we gave a representation of the canonical Jacobi moments involving the sum
of two hypergeometric functions. Here, using the inversion formula, we derive another
representation of those moments. We first recall the following relations which are another
ways to write the binomial theorem.

xn =
n

∑
m=0

(−1)m
(

n
m

)
(1− x)m (5.46)

xn =
n

∑
m=0

(−1)n−m
(

n
m

)
(1 + x)m. (5.47)

From (5.44), (5.45), (5.46) and (5.47), we have the following proposition.

Proposition 91. The canonical Jacobi moments have the following representations

µn = 2α+β+1 Γ(α + 1)Γ(β + 1)
Γ(α + β + 2) 2F1

−n, α + 1

α + β + 2

∣∣∣∣∣∣ 2

 (compare [13]), (5.48)

= (−1)n2α+β+1 Γ(α + 1)Γ(β + 1)
Γ(α + β + 2) 2F1

−n, β + 1

α + β + 2

∣∣∣∣∣∣ 2

 (5.49)

Note that these two representations are simpler than the one we obtained in Chapter 3.

Remark 92. In [13], the formula (5.48) is written as

µn =
n

∑
m=0

(
n
m

)
(−1)m2m Γ(b + m)Γ(a + b)

Γ(a)Γ(a + b + m)
= 2F1

−n, b

a + b

∣∣∣∣∣∣ 2

, n ≥ 0 a, b > 0.

Duran seems to set a = α + 1, b = β + 1 and he uses a different standardization.

Remark 93. It should be mentioned that the Laguerre moments, the Hermite moments and the
Bessel moments computed in Chapter 3 can be recovered by this method.
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5.4.2 The discrete case

For the classical discrete orthogonal polynomials, the measure dα(x) in the definition 17 is
a discrete measure. Therefore the moments with respect to the basis xn are given by

µn

(
xk
)
=

∞

∑
k=0

ρ(k)kn, (5.50)

and the canonical moments are given by

µn =
∞

∑
k=0

ρ(k)kn, (5.51)

where ρ(x) is the discrete weight function associated to the family. These sums can be finite
(as in the Hahn and the Krawtchouk cases) or infinite (as in the Meixner and the Charlier
cases).

The Hahn polynomials

The Hahn polynomials Qn(x; α, β, N) fulfil the following orthogonality relation [30, P. 204]

N

∑
x=0

(
α + x

x

)(
β + N − x

N − x

)
Qn(x; α, β, N)Qm(x; α, β, N)

=
(−1)n(n + α + β + 1)N+1(β + 1)nn!
(2n + α + β + 1)(α + 1)n(−N)nN!

δmn, (5.52)

for α > −1 and β > −1 or α < −N and β < −N.

With m = n = 0, it follows that

µ0 =
(α + β + 1)N+1

(α + β + 1)N!
.

From the inversion formula (4.21), for θn(x) = xn, we have

I0(n) = (−1)n (α + 1)n(−N)n

(α + β + 2)n
.

Therefore, the following proposition is valid.

Proposition 94. The generalized Hahn moments with respect to the basis xn have the representa-
tion

µn

(
xk
)
= (−1)n (α + β + 1)N+1

(α + β + 1)N!
(α + 1)n(−N)n

(α + β + 2)n
. (5.53)

Proposition 95. The generalized Hahn moments with respect to xn have the following generating
function:

(α + β + 1)N+1

(α + β + 1)N!
(1 + z)N =

∞

∑
n=0

µn

(
xk
) (α + β + 2)n

(α + 1)n

zn

n!
. (5.54)

Proof. We have
∞

∑
n=0

µn

(
xk
) (α + β + 2)n

(α + 1)n

zn

n!
=

∞

∑
n=0

(−N)n

n!
(−z)n.

Using the binomial theorem (2.3), the result follows.

Proposition 96. The canonical Hahn moments have the following representation

µn =
(α + β + 1)N+1

(α + β + 1)N!

n

∑
m=0

(−1)mSm(n)
(α + 1)m(−N)m

(α + β + 2)m
(5.55)

=
(α + β + 1)N+1

(α + β + 1)N!

n

∑
m=0

m

∑
k=0

(−1)2m−kkn

k!(m− k)!
(α + 1)m(−N)m

(α + β + 2)m
(5.56)

Proof. The proof follows from (2.21), (2.23), (5.9) and (5.53).
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The Krawtchouk polynomials

The Krawtchouk polynomials Kn(x; p, N) fulfil the following orthogonality relation [30, P.
237]

N

∑
k=0

(
N
k

)
pk(1− p)N−kKn(k; p, N)Km(k; p, N) =

(−1)nn!
(−N)n

(
1− p

p

)n
δnm, 0 < p < 1.

(5.57)
With m = n = 0, it follows that

µ0 = 1.

From the inversion formula (4.22), for θn(x) = xn, we have

I0(n) = (−N)n(−p)n.

Therefore, the following proposition is valid.

Proposition 97. The generalized Krawtchouk moments with respect to the basis xn have the repre-
sentation

µn

(
xk
)
= (−N)n(−p)n. (5.58)

Proposition 98. The generalized Krawtchouk moments with respect to the basis xn have the fol-
lowing exponential generating function:

(1 + pz)N =
∞

∑
n=0

µn

(
xk
)

n!
zn, |pz| < 1. (5.59)

Proof. Using the binomial theorem (2.3), we have

∞

∑
n=0

µn

n!
zn =

∞

∑
n=0

(−N)n

n!
(−pz)n = 1F0

−N

0

∣∣∣∣∣∣−pz

 = (1 + pz)N .

Proposition 99. The canonical Krawtchouk moments have the representation

µn =
n

∑
m=0
Sm(n)(−N)m(−p)m. (5.60)

Proof. The proof follows from (2.21), (2.23), (5.9) and (5.58).

Proposition 100. The canonical Krawtchouk moments have the following exponential generating
function:

(pez + 1− p)N =
∞

∑
n=0

µn
zn

n!
. (5.61)

Proof. By definition, the canonical Krawtchouk moments are given by

µn =
N

∑
k=0

kn
(

N
k

)
pk(1− p)N−k.

Therefore, it follows that
∞

∑
n=0

µn
zn

n!
=

∞

∑
n=0

(
N

∑
k=0

kn
(

N
k

)
pk(1− p)N−k

)
zn

n!

=
N

∑
k=0

((
N
k

)
pk(1− p)N−k

∞

∑
n=0

(kz)n

n!

)

=
N

∑
k=0

(
N
k

)
(pez)k(1− p)N−k

= (pez + 1− p)N .
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Proposition 101. The canonical Krawtchouk moments µn can be computed by the formula µn =
fn(1) where ( fn)n is the sequence of functions defined by

f0(t) = (tp + 1− p)N , fn+1(t) = t f ′n(t) n ≥ 0.

Proof. We prove by induction that fn(t) =
N
∑

k=0
kn(N

k )pk(1− p)N−ktk. Finally, we have the

proposition by computing fn(1) = µn.

The Meixner polynomials

The Meixner polynomials Mn(x; β, c) fulfil the following orthogonality relation [30, P. 234]

∞

∑
x=0

(β)x

x!
cx Mn(x; β, c)Mm(x; β, c) =

n!
cn(β)n(1− c)β

δnm, β > 0, 0 < c < 1. (5.62)

For m = n = 0, it follows that

µ0 =
1

(1− c)β
.

From the inversion formula (4.23), we have

I0(n) = (−1)n(β)n

(
c

c− 1

)n
.

Therefore, the following proposition is valid.

Proposition 102. The generalized Meixner moments with respect to the basis xn have the repre-
sentation

µn

(
xk
)
=

(−1)n(β)n

(1− c)β

(
c

c− 1

)n
. (5.63)

Proposition 103. The generalized Meixner moments with respect to the basis xn have the following
exponential generating function:

1
(1− c− cz)β

=
∞

∑
n=0

µn

(
xk
)

n!
zn,

∣∣∣∣ cz
1− c

∣∣∣∣ < 1. (5.64)

Proof. The proof follows from the binomial theorem (2.3).

Proposition 104. The canonical Meixner moments have the representation

µn =
1

(1− c)β

n

∑
m=0

(−1)mSm(n)(β)m

(
c

c− 1

)m
. (5.65)

Proof. The proof follows from (2.21), (2.23), (5.9) and (5.63).

Note that the canonical Meixner moments appear in [26].

Proposition 105. The canonical Meixner moments have the following exponential generating func-
tion:

1
(1− cez)β

=
∞

∑
n=0

µn
zn

n!
, |cez| < 1. (5.66)

Proof. By definition, the canonical Meixner moments are given by

µn =
∞

∑
k=0

(β)kck

k!
kn
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It therefore follows that

∞

∑
n=0

µn

n!
zn =

∞

∑
n=0

(
∞

∑
k=0

(β)kck

k!
kn

)
zn

n!

=
∞

∑
k=0

(
(β)kck

k!

∞

∑
n=0

(kz)n

n!

)

=
∞

∑
k=0

(β)k
k!

(cez)k =
1

(1− cez)β
.

Remark 106. From the definition of the canonical Meixner moments

µn = µn(β, c) =
∞

∑
k=0

(β)kck

k!
kn,

it follows that
∂

∂c
µn(β, c) =

1
c

µn+1(β, c). (5.67)

Therefore, the moments µn(β, c) have can be represented by

µn(β, c) =
Pn(β, c)

(1− c)β+n ,

where Pn is a polynomial in two variables c and β and can be computed recursively by the recurrence

Pn+1(β, c) = c
[
(1− c)

∂

∂c
Pn(β, c) + (β + n)Pn(β, c)

]
, P0(β, c) = 1. (5.68)

The Charlier polynomials

The Charlier polynomials Cn(x; a) fulfil the following orthogonality relation [30, P. 247]

∞

∑
x=0

ax

x!
Cn(x; a)Cm(x; a) = a−nean!δmn, a > 0. (5.69)

With m = n = 0, it follows that
µ0 = ea.

From the inversion formula (4.24), we have

I0(n) = an.

Therefore, the following proposition is valid.

Proposition 107. The generalized Charlier moments with respect to the basis xn have the repre-
sentation

µn

(
xk
)
= eaan. (5.70)

Proposition 108. The generalized Charlier moments with respect to the basis xn have the following
generating functions:

ea

1− az
=

∞

∑
n=0

µn

(
xk
)

zn, |az| < 1. (5.71)

eaz+a =
∞

∑
n=0

µn

(
xk
)

n!
zn. (5.72)
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Proposition 109. The canonical Charlier moments have the representation

µn = ea
n

∑
m=0
Sm(n)am. (5.73)

Proof. The proof follows from (2.21), (2.23), (5.9) and (5.70).

Note that (5.73) appears in [44] and [26] without the constant µ0 = ea.

Proposition 110. The canonical Charlier moments have the following exponential generating func-
tion

eaez
=

∞

∑
n=0

µn
zn

n!
. (5.74)

Proof. By definition, the canonical Charlier moments are given by

µn =
∞

∑
k=0

ak

k!
kn.

Therefore, we have:

∞

∑
n=0

µn

n!
zn =

∞

∑
n=0

(
∞

∑
k=0

ak

k!
kn

)
zn

n!

=
∞

∑
k=0

(
ak

k!

∞

∑
n=0

(kz)n

n!

)

=
∞

∑
k=0

akekz

k!
=

∞

∑
k=0

(aez)k

k!

= eaez
.

5.4.3 The q-discrete case

The Big q-Jacobi polynomials

The Big q-Jacobi polynomials Pn(x; a, b, c; q) fulfil the following orthogonality relation [30,
P. 438] ∫ aq

cq

(a−1x, c−1x; q)∞

(x, bc−1x; q)∞
Pm(x; a, b, c; q)Pn(x; a, b, c; q)dqx

= aq(1− q)
(abq2, a−1c, ac−1q; q)∞

(aq, bq, cq, abc−1q; q)∞

× 1− abq
1− abq2n+1

(q, bq, abc−1q; q)n

(aq, abq, cq; q)n
(−caq2)nq(

n
2)δmn. (5.75)

Let us write

ρ(x; q) =
(a−1x, c−1x; q)∞

(x, bc−1x; q)∞
.

The q-integral in (5.75) can be written as∫ aq

cq
ρ(x; q)Pm(x; a, b, c; q)Pn(x; a, b, c; q)dqx

= aq(1− q)
∞

∑
k=0

ρ(aqqk; q)Pm(aqqk; a, b, c; q)Pn(aqqk; a, b, c; q)

− cq(1− q)
∞

∑
k=0

ρ(cqqk; q)Pm(cqqk; a, b, c; q)Pn(cqqk; a, b, c; q)
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We have:∫ aq

cq
ρ(x; q)(x; q)ndqx = aq(1− q)

∞

∑
k=0

ρ(aqk+1; q)(aqk+1; q)n − cq(1− q)
∞

∑
k=0

ρ(cqk+1; q)(cqk+1; q)n.

Define the discrete measures µa and µc as

µa = aq(1− q)
∞

∑
k=0

ρ(aqk+1; q)qkεaqk+1

µc = cq(q− 1)
∞

∑
k=0

ρ(cqk+1; q)qkεcqk+1 ,

and put
µ = µa + µc.

We then have ∫ aq

cq
ρ(x; q)(x; q)ndqx =

∫ ∞

−∞
(x; q)ndµ(x).

It follows by taking m = n = 0 in the orthogonality relation that

µ0 = aq(1− q)
(abq2, a−1cac−1q; q)∞

(aq, bq, cq, abc−1q; q)∞
.

From the inversion formula (4.25), for θn(x) = (x; q)n, we have

I0(n) =
(aq, cq; q)n

(abq2; q)n
.

Therefore, the following proposition is valid.

Proposition 111. The generalized Big q-Jacobi moments with respect to the basis (x; q)n are given
by

µn((x; q)k) = aq(1− q)
(abq2, a−1c, ac−1q; q)∞

(aq, bq, cq, abc−1q; q)∞

(aq, cq; q)n

(abq2; q)n
. (5.76)

Note that the Big q-Jacobi moments with respect to (x; q)n were given in [4, P. 91] with the
normalization µ0 = 1.

Proposition 112. The generalized Big q-Jacobi moments with respect to (x; q)n have the following
generating functions

aq
(abq2, a−1cac−1q; q)∞

(aq, bq, cq, abc−1q; q)∞

(cqz; q)∞

(z; q)∞
=

∞

∑
n=0

µn((x; q)k)
(abq2; q)n

(aq; q)n

zn

(q; q)n
, |z| < 1 (5.77)

aq
(abq2, a−1cac−1q; q)∞

(aq, bq, cq, abc−1q; q)∞

(aqz; q)∞

(z; q)∞
=

∞

∑
n=0

µn((x; q)k)
(abq2; q)n

(cq; q)n

zn

(q; q)n
, |z| < 1. (5.78)

Proof. The proof follows by the use of the q-binomial theorem (2.6).

Proposition 113. The canonical Big q-Jacobi moments have the representation

µn = aq
(abq2, a−1cac−1q; q)∞

(aq, bq, cq, abc−1q; q)∞

n

∑
m=0

(−1)m
[ n

m

]
q
q−nm+(m+1

2 ) (aq, cq; q)m

(abq2; q)m
. (5.79)

Proof. Using (2.21), (2.23), (5.16) and (5.76), we get the result.
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The q-Hahn polynomials

For 0 < αq < 1 and 0 < βq, or for α > q−N and β > q−N the q-Hahn polynomials
Qn(q−x; α, β, N|q) fulfil the following orthogonality relation [30, P. 445]

N

∑
x=0

(αq, q−N ; q)x

(q, β−1q−N ; q)x
(αβq)−xQm(q−x; α, β, N|q)Qn(q−x; α, β, N|q)

=
(αβq2; q)N

(βq; q)N(αq)N
(q, αβqN+2, βq; q)n

(αq, αβq, q−N ; q)n

(1− αβq)(−αq)n

1− αβq2n+1 q(
n
2)−Nnδmn. (5.80)

From the relation (5.80), with m = n = 0, it follows that

µ0 =
(αβq2; q)N

(βq; q)N(αq)N .

From the inversion formula (4.26), for θn(x) = (q−x; q)n, we have

I0(n) =
(αq, q−N ; q)n

(αβq2; q)n
.

Therefore, the following proposition is valid.

Proposition 114. The generalized q-Hahn moments with respect to the basis (q−x; q)n have the
representation

µn((q−x; q)k) =
(αβq2; q)N

(βq; q)N(αq)N
(αq, q−N ; q)n

(αβq2; q)n
, n = 0, 1, . . . , N. (5.81)

Proposition 115. The generalized q-Hahn moments with respect to (q−x; q)n have the following
generating function

(αβq2; q)N

(βq; q)N(αq)N
(zq−N ; q)∞

(z; q)∞
=

∞

∑
n=0

µn((q−x; q)k)
(αβq2; q)n

(αq; q)n

zn

(q; q)n
. (5.82)

Proof. We have

∞

∑
n=0

µn((q−x; q)k)
(αβq2; q)n

(αq; q)n

zn

(q; q)n
=

(αβq2; q)N

(βq; q)N(αq)N

∞

∑
n=0

(q−N ; q)n

(q; q)n
zn.

By the q-binomial theorem (2.6), the result follows.

Proposition 116. The canonical q-Hahn moments have the following representation

µn =
(αβq2; q)N

(βq; q)N(αq)N

n

∑
m=0

(−1)m
[ n

m

]
q
q−mn+(m+1

2 ) (αq, q−N ; q)m

(αβq2; q)m
. (5.83)

Proof. The proof follows by using (2.21), (2.23), (5.16) and (5.81).

The Big q-Laguerre polynomials

For 0 < aq < 1 and b < 0, the Big q-Laguerre polynomials Pn(x; a, b; q) fulfil the following
orthogonality relation [30, P. 479]

∫ aq

bq

(a−1x, b−1x; q)∞

(x; q)∞
Pm(x; a, b; q)Pn(x; a, b; q)dqx

= aq
(q, a−1b, ab−1q; q)∞

(aq, bq; q)∞

(q; q)n

(aq, bq; q)n
(−abq2)nq(

n
2)δmn. (5.84)
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Let us write

ρ(x; q) =
(a−1x, b−1x; q)∞

(x; q)∞
.

The q-integral in (5.84) can be written as∫ aq

bq
ρ(x; q)Pm(x; a, b; q)Pn(x; a, b; q)dqx

= aq(1− q)
∞

∑
k=0

ρ(aqqk; q)Pm(aqqk; a, b; q)Pn(aqqk; a, b; q)

− bq(1− q)
∞

∑
k=0

ρ(bqqk; q)Pm(bqqk; a, b; q)Pn(bqqk; a, b; q).

We have:∫ aq

bq
ρ(x; q)(x; q)ndqx = aq(1− q)

∞

∑
k=0

ρ(aqk+1; q)(aqk+1; q)n − bq(1− q)
∞

∑
k=0

ρ(bqk+1; q)(bqk+1; q)n.

Define the discrete measures µa and µb as

µa = aq(1− q)
∞

∑
k=0

ρ(aqk+1; q)qkεaqk+1 ,

µb = cq(q− 1)
∞

∑
k=0

ρ(bqk+1; q)qkεbqk+1 ,

and put
µ = µa + µb.

We then have ∫ aq

bq
ρ(x; q)(x; q)ndqx =

∫ ∞

−∞
(x; q)ndµ(x).

With m = n = 0, it follows that

µ0 = aq
(q, a−1b, ab−1q; q)∞

(aq, bq; q)∞
.

From the inversion formula (4.27), we have

I0(n) = (aq, bq; q)n.

Therefore, the following proposition is valid.

Proposition 117. The generalized Big q-Laguerre moments with respect to the basis (x; q)n have
the representation

µn((x; q)k) = aq
(q, a−1b, ab−1q; q)∞

(aq, bq; q)∞
(aq, bq; q)n. (5.85)

Note that the generalized Big q-Laguerre moments with respect to (x; q)n were given in [4,
P. 91] with the normalization µ0 = 1.

Proposition 118. The generalized Big q-Laguerre moments with respect to (x; q)n have the follow-
ing q-exponential generating function

aq
(q, a−1b, ab−1q; q)∞

(aq, bq; q)∞

(aqz; q)∞

(z; q)∞
=

∞

∑
n=0

µn((x; q)k)
zn

(bq, q; q)n
, |z| < 1, (5.86)

aq
(q, a−1b, ab−1q; q)∞

(aq, bq; q)∞

(bqz; q)∞

(z; q)∞
=

∞

∑
n=0

µn((x; q)k)
zn

(aq, q; q)n
, |z| < 1. (5.87)
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Proof. The proof follows by the use of the q-binomial theorem (2.6).

Proposition 119. The canonical Big q-Laguerre moments have the representation

µn = aq
(abq2, a−1cac−1q; q)∞

(aq, bq, cq, abc−1q; q)∞

n

∑
m=0

(−1)m
[ n

m

]
q
q−nm+(m+1

2 )(aq, bq; q)m. (5.88)

Proof. Using (2.21), (2.23), (5.16) and (5.85), we get the desired result.

The q-Meixner polynomials

For 0 ≤ bq < 1 and c > 0, the q-Meixner polynomials Mn(x; b, c; q) fulfil the following
orthogonality relation [30, P. 489]

∞

∑
k=0

(bq; q)k
(q,−bcq; q)k

ckq(
k
2)Mm(q−k; b, c; q)Mn(q−k; b, c; q)

=
(−c; q)∞

(−bcq; q)∞

(q,−c−1q; q)n

(bq; q)n
q−nδmn. (5.89)

From (5.89), with m = n = 0 it follows that

µ0 =
(−c; q)∞

(−bcq; q)∞
.

From the inversion formula (4.30), we have

I0(n) =
(
− c

q

)n
(bq; q)n.

Therefore, the following proposition is valid.

Proposition 120. The generalized q-Meixner moments with respect to the basis (q−x; q)n have the
representation

µn((q−x; q)k) =
(−c; q)∞

(−bcq; q)∞

(
− c

q

)n
(bq; q)n. (5.90)

Note that the q-Meixner moments with respect to (q−x; q)n were given in [4, P. 91] with the
normalization µ0 = 1.

Proposition 121. The generalized q-Meixner moments with respect to (q−x; q)n have the following
q-exponential generating function

(−c,−bcz; q)∞

(−bcq,−cq−1z; q)∞
=

∞

∑
m=0

µn((q−x; q)k)
zn

(q; q)n
. (5.91)

Proof. First we write

∞

∑
m=0

µn((q−x; q)k)
zn

(q; q)n
=

(−c; q)∞

(−bcq; q)∞

∞

∑
n=0

(bq; q)n

(q; q)n
(−cq−1z)n

=
(−c; q)∞

(−bcq; q)∞
1φ0

 bq

−

∣∣∣∣∣∣−cq−1z

.

Then, we use the q-binomial theorem (2.6) to get

(−c; q)∞

(−bcq; q)∞
1φ0

 bq

−

∣∣∣∣∣∣−cq−1z

 =
(−c,−bcz; q)∞

(−bcq,−cq−1z; q)∞
.
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Proposition 122. The canonical q-Meixner moments have the representation

µn =
(−c; q)∞

(−bcq; q)∞

n

∑
m=0

[ n

m

]
q
q−nm+(m

2 )cm(bq; q)m. (5.92)

Proof. The proof follows by using (2.21), (2.23), (5.16) and (5.90).

The Quantum q-Krawtchouk polynomials

The Quantum q-Krawtchouk polynomials Kqtm
n (q−x; p, N; q) fulfil the following orthogo-

nality relation [30, P. 493]

N

∑
k=0

(pq; q)N−k
(q; q)k(q; q)N−k

(−1)N−kq(
k
2)Kqtm

m (q−k; p, N; q)Kqtm
n (q−k; p, N; q)

=
(−1)n pN(q; q)N−n(q, pq; q)n

(q, q; q)N
q(

N+1
2 )−(n+1

2 )+Nnδmn, p > q−N . (5.93)

From (5.93), with m = n = 0 it follows that

µ0 =
pN(q; q)N
(q, q; q)N

q(
N+1

2 ).

From the inversion formula (4.31), we have

I0(n) =
(q−N ; q)n

(pq)n .

Therefore, the following proposition is valid.

Proposition 123. The generalized Quantum q-Krawtchouk moments with respect to the basis
(q−x; q)n have the representation

µn((q−x; q)k) =
pN(q; q)N
(q, q; q)N

q(
N+1

2 ) (q
−N ; q)n

(pq)n . (5.94)

Proposition 124. The generalized Quantum q-Krawtchouk moments with respect to (q−x; q)n
have the following q-exponential generating function

q(
N+1

2 ) pN(q; q)N
(q, q; q)N

(p−1q−N−1z; q)∞

((pq)−1z; q)∞
=

∞

∑
m=0

µn((q−x; q)k)
zn

(q; q)n
. (5.95)

Proof. First we write
∞

∑
m=0

µn((q−x; q)k)
zn

(q; q)n
= q(

N+1
2 ) pN(q; q)N

(q, q; q)N

∞

∑
n=0

(q−N ; q)n

(q; q)n

(
z
pq

)n

= q(
N+1

2 ) pN(q; q)N
(q, q; q)N

1φ0

 q−N

−

∣∣∣∣∣∣ z
pq

.

Then, we use the q-binomial theorem (2.6) to get

q(
N+1

2 ) pN(q; q)N
(q, q; q)N

1φ0

 q−N

−

∣∣∣∣∣∣ z
pq

 = q(
N+1

2 ) pN(q; q)N
(q, q; q)N

(p−1q−N−1z; q)∞

((pq)−1z; q)∞
.

Proposition 125. The canonical Quantum q-Krawtchouk moments have the following representa-
tion

µn =
pN(q; q)N
(q, q; q)N

q(
N+1

2 )
n

∑
m=0

(−1)m
[ n

m

]
q
q−nm+(m+1

2 ) (q
−N ; q)m

(pq)m (5.96)

Proof. The proof follows from (2.21), (2.23), (5.16) and (5.94).
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The q-Krawtchouk polynomials

From the q-Krawtchouk orthogonality relation (3.23), with m = n = 0, it follows that

µ0 = (−pq; q)N p−Nq−(
N+1

2 ).

From the inversion formula (4.32), we have

I0(n) =
(q−N ; q)n

(−pq; q)n
.

Therefore, the following proposition is valid.

Proposition 126. The generalized q-Krawtchouk moments with respect to the basis (q−x; q)n have
the representation

µn((q−x; q)k) = p−Nq−(
N+1

2 )(−pq; q)N
(q−N ; q)n

(−pq; q)n
. (5.97)

Remark 127. The canonical q-Krawtchouk moments are already given by (3.24). These moments
can be recovered by using (2.21), (2.23), (5.16) and (5.97), combined with q-Zeilberger’s algorithm
[32] implemented the qsum package.

Proposition 128. The q-Krawtchouk moments with respect to (q−x; q)n have the following q-
exponential generating function

(−pq; q)N p−Nq−(
N+1

2 ) (zq−N ; q)∞

(z; q)∞
=

∞

∑
n=0

µn((q−x; q)k)(−pq; q)n
zn

(q; q)n
. (5.98)

Proof. We have

∞

∑
m=0

(−pq; q)nµn((q−x; q)k)
zn

(q; q)n
= p−Nq−(

N+1
2 )(−pq; q)N

∞

∑
n=0

(q−N ; q)n

(q; q)n
zn.

By the q-binomial theorem (2.6), it follows that

∞

∑
n=0

(q−N ; q)n

(q; q)n
zn =

(zq−N ; q)∞

(z; q)∞
.

This completes the proof.

The Affine q-Krawtchouk polynomials

The Affine q-Krawtchouk polynomials KAff
n (q−x; p, N; q) fulfil the following orthogonality

relation [30, P. 501]

N

∑
k=0

(pq; q)k(q; q)N
(q; q)k(q; q)N−k

(pq)−kKAff
m (q−k; p, N; q)KAff

n (q−k; p, N; q)

= (pq)n−N (q; q)n(q; q)N−n
(pq; q)n(q; q)N

δmn, 0 < pq < 1. (5.99)

From (5.99), with m = n = 0 it follows that

µ0 = (pq)−N .

From the inversion formulas (4.33) and (4.34), we have:

• for θn(x) = (q−x; q)n,
I0(n) = (pq, q−N ; q)n.
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• for θn(x) = (q−x)n(qx−N ; q)n = (q−x 	 q−N)n
q ,

I0(n) = (pq)n(q−N ; q)n.

Therefore, the following proposition is valid.

Proposition 129. The generalized Affine q-Krawtchouk moments

1. with respect to the basis (q−x; q)n have the representation

µn((q−x; q)k) = (pq)−N(pq, q−N ; q)n, (5.100)

2. with respect to the basis θn(x) = (q−x 	 q−N)n
q have the representation

µn

(
(q−x 	 q−N)k

q

)
= (pq)n−N(q−N ; q)n. (5.101)

Proposition 130. The generalized Affine q-Krawtchouk moments have the following q-exponential
generating functions

(pq)−N (zq−N ; q)∞

(z; q)∞
=

∞

∑
m=0

µn((q−x; q)k)

(pq; q)n

zn

(q; q)n
, (5.102)

(pq)−N (pq1−Nz; q)∞

(pqz; q)∞
=

∞

∑
n=0

µn

(
(q−x 	 q−N)k

q

) zn

(q; q)n
. (5.103)

Proof. The proof of (5.103) follows from the q-binomial theorem (2.6).

Proposition 131. The canonical Affine q-Krawtchouk moments have the following representation

µn = (pq)−N
n

∑
m=0

(−1)m
[ n

m

]
q
q−nm+(m+1

2 )(pq, q−N ; q)m. (5.104)

Proof. The proof follows from (2.21), (2.23), (5.16) and (5.100).

The Little q-Laguerre polynomials

The Little q-Laguerre polynomials fulfil the orthogonality relation (3.26). With m = n = 0,
it follows that

µ0 =
1

(aq; q)∞
.

From the inversion formulas (4.35) and (4.36), we have

• for θn(x) = xn,
I0(n) = (aq; q)n

• for θn(x) = (x	 1)n
q ,

I0(n) = (−aq)nq(
n
2).

Therefore, the following proposition is valid.

Proposition 132. The Little q-Laguerre moments

1. with respect to the basis xn have the representation (compare to (3.27)),

µn =
(aq; q)n

(aq; q)∞
, compare with [4, P. 91] (5.105)
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2. with respect to the basis (x	 1)n
q have the representation

µn((x	 1)k
q) =

(−aq)nq(
n
2)

(aq; q)∞
. (5.106)

The canonical moment µn is given in [4, P. 91] with the normalization µ0 = 1.

Proposition 133. The generalized Little q-Laguerre moments with respect to the basis (x 	 1)n
q

have the following generating function

(aqz; q)∞ =
∞

∑
n=0

µn((x	 1)k
q)

(q; q)n
zn. (5.107)

Proof. The result is obtained by the use of the Euler formula (2.8).

The q-Laguerre polynomials

The q-Laguerre polynomials L(α)
n (x; q) fulfil the following orthogonality relations

Discrete orthogonality For the discrete orthogonality, see Equation (3.29).

Continuous orthogonality [30, P. 522]∫ ∞

0

xα

(−x; q)∞
L(α)

m (x; q)L(α)
n (x; q)dx

=
(q−α; q)∞

(q; q)∞

(qα+1; q)n

(q; q)nqn Γ(−α)Γ(α + 1)δmn, α > −1. (5.108)

With m = n = 0, it follows that

• For the discrete orthogonality

µ
(d)
0 =

(q,−cqα+1,−c−1q−α; q)∞

(qα+1,−c,−c−1q; q)∞

• For the continuous orthogonality

µ
(c)
0 =

(q−α; q)∞

(q; q)∞
Γ(−α)Γ(α + 1).

From the inversion formulas (4.37), for θn(x) = xn, we have:

I0(n) = q−(
n
2)−n(α+1)(qα+1; q)n.

The following proposition is therefore valid.

Proposition 134. The canonical q-Laguerre moments have the representation

µ
(d)
n =

(q,−cqα+1,−c−1q−α; q)∞

(qα+1,−c,−c−1q; q)∞
q−(

n
2)−n(α+1)(qα+1; q)n, (5.109)

for the discrete orthogonality (compare to (3.30)), and

µ
(c)
n =

(q−α; q)∞

(q; q)∞
Γ(−α)Γ(α + 1)q−(

n
2)−n(α+1)(qα+1; q)n, (5.110)

for the continuous orthogonality.

Remark 135. The moments (5.109) obtained using the inversion formula for the discrete orthogo-
nality are of course the same as the ones obtained by direct computations in Chapter 3. The generat-
ing function is already given.
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The q-Charlier polynomials

The q-Charlier polynomials fulfil the orthogonality relation (3.35). With m = n = 0, it
follows that

µ0 = (−a; q)∞.

From the inversion formula (4.39), for θn(x) = (q−x; q)n, we have

I0(n) =
(
− a

q

)n
.

Therefore, the following proposition is valid.

Proposition 136. The generalized q-Charlier moments with respect to the basis (q−x; q)n have the
representation

µn((q−x; q)k) = (−a; q)∞

(
− a

q

)n
. (5.111)

Remark 137. The canonical q-Charlier moments are already given by (3.36). These moments can
be recovered by using (2.21), (2.23), (5.16) and (5.111), combined with the q-Zeilberger’s algorithm
[32] implemented in the qsum package.

Proposition 138. The generalized q-Charlier moments with respect to (q−x; q)n have the following
q-exponential generating function:

(−a; q)∞

(−aq−1z; q)∞
=

∞

∑
n=0

µn((q−x; q)k)
zn

(q; q)n
. (5.112)

Proof. The proof follows from Euler’s formula (2.7).

The Al Salam-Carlitz I polynomials

The Al-Salam-Carlitz I polynomials U(a)
n (x; q) fulfil the following orthogonality relation

[30, P. 534] ∫ 1

a
(qx, a−1qx; q)∞U(a)

m (x; q)U(a)
n (x; q)dqx

= (−a)n(1− q)(q; q)n(q, a, a−1q; q)∞q(
n
2)δmn, a < 0. (5.113)

Let us write
ρ(x; q) = (qx, a−1qx; q)∞.

The q-integral in (5.113) can be written as∫ 1

a
ρ(x; q)U(a)

m (x; q)U(a)
n (x; q)dqx

= (1− q)
∞

∑
k=0

qkρ(qk; q)U(a)
m (qk; q)U(a)

n (qk; q)

− a(1− q)
∞

∑
k=0

qkρ(aqk; q)U(a)
m (aqk; q)U(a)

n (aqk; q).

Define the discrete measures µ1 and µa as

µ1 = (1− q)
∞

∑
k=0

ρ(qk; q)qkεqk ,

µa = aq(q− 1)
∞

∑
k=0

ρ(qk; q)qkεaqk ,

and put
µ = µ1 + µa.
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We then have ∫ 1

a
ρ(x; q)(x	 1)n

q dqx =
∫ ∞

−∞
(x	 1)n

q dµ(x).

With m = n = 0, it follows that

µ0 = (1− q)(q, a, a−1q; q)∞.

From the inversion formulas (4.41) and (4.40),

• for θn(x) = (x	 1)n
q , we have

I0(n) = an;

• for θn(x) = xn, we have

I0(n) =
n

∑
i=0

[n

i

]
q
ai.

Therefore, the following proposition is valid.

Proposition 139. The Al-Salam-Carlitz I moments

1. with respect to the basis (x	 1)n
q (generalized moments) have the representation

µn((x	 1)k
q) = (1− q)(q, a, a−1q; q)∞an (5.114)

2. with respect to the basis xn (canonical moments) have the representation

µn = (1− q)(q, a, a−1q; q)∞

n

∑
i=0

[n

i

]
q
ai. (5.115)

Note that these canonical moments appear in [9, Eq. (10.8), P. 197]

Proposition 140. The generalized Al-Salam-Carlitz I moments with respect to (x	 1)n
q have the

following q-exponential generating function

(q, a, a−1q; q)∞
1− q
1− az

=
∞

∑
n=0

µn((x	 1)k
q)z

n, |az| < 1. (5.116)

The Al-Salam-Carlitz II polynomials

The Al-Salam-Carlitz II polynomials V(a)
n (q−x; q) fulfil the following orthogonality relation

[30, P. 537]

∞

∑
k=0

qk2
ak

(q; q)k(aq; q)k
V(a)

m (q−k; q)V(a)
n (q−k; q)

=
(q; q)nan

(aq; q)∞qn2 δmn, 0 < aq < 1. (5.117)

Therefore, the canonical Al-Salam-Carlitz II moments are

µn =
∞

∑
k=0

qk2
ak

(q; q)k(aq; q)k
q−kn.

From (5.117), with m = n = 0, it follows that

µ0 =
1

(aq; q)∞
.

From the inversion formula (4.42), for θn(x) = (q−x; q)n, we have

I0(n) = (−a)nq(
n
2).

Therefore, the following proposition is valid.
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Proposition 141. The generalized Al-Salam-Carlitz II moments with respect to the basis (q−x; q)n
have the representation

µn((q−x; q)k) =
(−a)nq(

n
2)

(aq; q)∞
. (5.118)

Note that the Al-Salam-Carlitz II moments with respect to (q−x; q)n are given in [4, P. 91]
without the term µ0.

Proposition 142. The generalized Al-Salam-Carlitz II moments with respect to (q−x; q)n have the
following q-exponential generating function

(az; q)∞

(aq; q)∞
=

∞

∑
n=0

µn((x; q)k)
zn

(q; q)n
. (5.119)

Proof. The proof follows from Euler’s formula (2.8).

Proposition 143. The canonical Al-Salam-Carlitz II moments have the representation

µn =
1

(aq; q)∞

n

∑
m=0

[ n

m

]
q
amqm(m−n). (5.120)

Proof. The proof follows from (2.21), (2.23), (5.16) and (5.118).

Note that these moments appear in [9, Eq. (10.10), P. 197]

The Stieltjes-Wigert polynomials

The Stieltjes-Wigert polynomials Sn(x; q) fulfil the following orthogonality relation [30, P.
544] ∫ ∞

0

Sm(x; q)Sn(x; q)
(−x,−qx−1; q)∞

dx = − ln q
qn

(q; q)∞

(q; q)n
δmn. (5.121)

With m = n = 0, it follows that
µ0 = − ln q(q; q)∞.

From the inversion formula (4.43), for θn(x) = xn, we have

I0(n) = q−(
n+1

2 ).

Therefore, the following proposition is valid.

Proposition 144. The canonical Stieltjes-Wigert moments have the representation

µn = − ln q(q; q)∞q−(
n+1

2 ). (5.122)

Note that these moments appeared in [4, P. 91] and [10, P. 223].

Proposition 145. The canonical Stieltjes-Wigert moments have the following q-exponential gener-
ating function:

ln q−1(q; q)∞

(q−1z; q)∞
=

∞

∑
n=0

µn
q(

n
2)zn

(q; q)n
. (5.123)

Proof. First we remark that (n+1
2 ) = (n

2) + n and then we apply Euler’s formula (2.7).
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The Discrete q-Hermite I polynomials

The Discrete q-Hermite I polynomials hn(x; q) fulfil the following orthogonality relation
[30, P. 547] ∫ 1

−1
(qx,−qx; q)∞hm(x; q)hn(x; q)dqx

= (1− q)(q; q)n(q,−1,−q; q)∞q(
n
2)δmn. (5.124)

Let us write
ρ(x; q) = (qx,−qx; q)∞.

The q-integral in (5.124) can be written as∫ 1

−1
ρ(x; q)hm(x; q)hn(x; q)dqx

= (1− q)
∞

∑
k=0

qkρ(qk; q)hm(qk; q)hn(qk; q)

+ (1− q)
∞

∑
k=0

qkρ(−qk; q)hm(−qk; q)hn(−qk; q).

Define the discrete measures µ1 and µ−1 as

µ1 = (1− q)
∞

∑
k=0

ρ(qk; q)qkεqk

µ−1 = (1− q)
∞

∑
k=0

ρ(−qk; q)qkε−qk ,

and put
µ = µ1 + µ−1.

We then have ∫ 1

−1
ρ(x; q)(x	 1)n

q dqx =
∫ ∞

−∞
(x	 1)n

q dµ(x).

With m = n = 0, it follows that

µ0 = (1− q)(q, a, a−1q; q)∞.

From the inversion formulas (4.44) and (4.45),

• for θn(x) = (x	 1)n
q , we have

I0(n) = (−1)n;

• for θn(x) = xn, we have

I0(n) =
1 + (−1)n

2
(q; q2)n/2.

Therefore, the following proposition is valid.

Proposition 146. The Discrete q-Hermite I moments

1. with respect to the basis (x	 1)n
q (generalized moments) have the representation

µn((x	 1)k
q) = (1− q)(q,−1,−q; q)∞(−1)n (5.125)

2. with respect to the basis xn (canonical moments) have the representation

µn = (1− q)(q,−1,−q; q)∞
1 + (−1)n

2
(q; q2)n/2, compare with [4, P. 91]. (5.126)

Proposition 147. The generalized Discrete q-Hermite I moments with respect to (x	 1)n
q have the

following generating function

(q,−1,−q; q)∞
1− q
1 + z

=
∞

∑
n=0

µn((x	 1)k
q)z

n, |z| < 1. (5.127)
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The Discrete q-Hermite II polynomials

The Discrete q-Hermite II polynomials h̃n(x; q) fulfil the following orthogonality relation
[30, P. 550] ∫ ∞

−∞

h̃m(x; q)h̃n(x; q)
(−x2; q2)∞

dqx =
(q2,−q,−q; q2)∞

(q3,−q2,−q2; q2)∞

(q; q)n

qn2 δmn. (5.128)

Let us write
ρ(x; q) =

1
(−x2; q2)∞

.

The q-integral in (5.128) can be written as∫ ∞

−∞
ρ(x; q)h̃m(x; q)h̃n(x; q)dqx =

= (1− q)
∞

∑
k=−∞

qkρ(qk; q)hm(qk; q)hn(qk; q)

+ (1− q)
∞

∑
k=−∞

qkρ(−qk; q)hm(−qk; q)hn(−qk; q).

Define the discrete measures µ1 and µ2 as

µ1 = (1− q)
∞

∑
k=−∞

ρ(qk; q)qkεqk

µ2 = (1− q)
∞

∑
k=−∞

ρ(−qk; q)qkε−qk ,

and put
µ = µ1 + µ2.

We then have ∫ ∞

−∞
ρ(x; q)(x; q)ndqx =

∫ ∞

−∞
(x; q)ndµ(x).

It follows that

µ0 =
(q2,−q,−q; q2)∞

(q3,−q2,−q2; q2)∞
.

From the inversion formula (4.46), for θn(x) = (x; q)n, we have

I0(n) = q(
n
2).

Therefore, the following proposition is valid.

Proposition 148. The generalized Discrete q-Hermite II moments with respect to the basis (x; q)n
have the representation

µn((x; q)k) =
(q2,−q,−q; q2)∞

(q3,−q2,−q2; q2)∞
q(

n
2). (5.129)

Note that these moments appeared in [4, P. 91] with the normalization µ0 = 1.

Proposition 149. The generalized Discrete q-Hermite II moments with respect to (x; q)n have the
following q-exponential generating function:

(−z, q2,−q,−q; q2)∞

(q3,−q2,−q2; q2)∞
=

∞

∑
n=0

µn((x; q)k)
zn

(q; q)n
. (5.130)

Proof. The proof follows from the Euler formula (2.8).

Proposition 150. The canonical Discrete q-Hermite II moments have the representation

µn =
(q2,−q,−q; q2)∞

(q3,−q2,−q2; q2)∞

n

∑
m=0

(−1)m
[ n

m

]
q
qm(m−n). (5.131)

Proof. The proof follows from (2.21), (2.23), (5.16) and (5.129).
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5.4.4 The quadratic case

The Wilson polynomials

The Wilson polynomials Wn(x2; a, b, c, d) fulfil the following orthogonality relation [30, P.
186] ∫ ∞

0

∣∣∣∣Γ(a + ix)Γ(b + ix)Γ(c + ix)Γ(d + ix)
Γ(2ix)

∣∣∣∣2 Wm(x2; a, b, c, d)Wn(x2; a, b, c, d)dx

=
2πΓ(n + a + b)Γ(n + a + c)Γ(n + b + c)Γ(n + b + d)Γ(n + c + d)n!

Γ(2n + a + b + c + d)(n + a + b + c + d− 1)−1
n

δmn, (5.132)

With m = n = 0, it follows that

µ0 = 2π
Γ(a + b)Γ(a + c)Γ(b + c)Γ(b + d)Γ(c + d)

Γ(a + b + c + d)
.

From the inversion formula (4.47), for θn(x) = (a + ix)n(a− ix)n, we have

I0(n) =
(a + b)n(a + c)n(a + d)n

(a + b + c + d)n
.

The following proposition is therefore valid.

Proposition 151. The generalized Wilson moments with respect to the basis ϑn(a, x) have the
representation

µn(ϑn(a, x)) = 2π
Γ(a + b)Γ(a + c)Γ(b + c)Γ(b + d)Γ(c + d)

Γ(a + b + c + d)
(a + b)n(a + c)n(a + d)n

(a + b + c + d)n
.

(5.133)

Proposition 152. The generalized Wilson moments with respect to ϑn(a, x) have the following
generating function

µ0(1− z)a+b =
∞

∑
n=0

µn(ϑn(a, x))
(a + b + c + d)n

(a + c)n(a + d)n

zn

n!
, (5.134)

µ0(1− z)a+c =
∞

∑
n=0

µn(ϑn(a, x))
(a + b + c + d)n

(a + b)n(a + d)n

zn

n!
, (5.135)

µ0(1− z)a+d =
∞

∑
n=0

µn(ϑn(a, x))
(a + b + c + d)n

(a + b)n(a + c)n

zn

n!
. (5.136)

with

µ0 = 2π
Γ(a + b)Γ(a + c)Γ(b + c)Γ(b + d)Γ(c + d)

Γ(a + b + c + d)
.

Proof. Using the binomial formula (2.3) we get the result.

Proposition 153. The canonical Wilson moments have the representation

µn = 2π
Γ(a + b)Γ(a + c)Γ(b + c)Γ(b + d)Γ(c + d)

Γ(a + b + c + d)

×
n

∑
m=0

Em(−a2,−(a + 1)2, · · · ,−(a + n− 1)2)
(a + b)m(a + c)m(a + d)m

(a + b + c + d)m
.

Proof. Combining

µn(ϑn(a, x)) = 2π
Γ(a + b)Γ(a + c)Γ(b + c)Γ(b + d)Γ(c + d)

Γ(a + b + c + d)
(a + b)n(a + c)n(a + d)n

(a + b + c + d)n

with

(x2)n =
n

∑
m=0

Em(−a2,−(a + 1)2, · · · ,−(a + n− 1)2)ϑm(a, x),

we get the result.
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Proposition 154. The canonical Wilson moments have the following representation

µn = µ0

n

∑
k=0

k

∑
l=0

(−k)l
k!l!

(a + b)k(a + c)k(a + d)k
(a + b + c + d)k

(−2a− 2k + 2l)
(−2a− 2k + l)k+1

(a + k− l)2n . (5.137)

Proof. The result is obtained using relations (2.21), (2.23), (5.29) and (5.133).

The Racah polynomials

The Racah polynomials Rn(λ(x); α, β, γ, δ) fulfil the following orthogonality relation [30, P.
191]

N

∑
x=0

(α + 1)x(β + δ + 1)x(γ + 1)x(γ + δ + 1)x((γ + δ + 3)/2)x

(−α + γ + δ + 1)x(−β + γ + 1)x((γ + δ + 1)/2)x(δ + 1)xx!
Rm(λ(x))Rn(λ(x))

= M
(n + α + β + 1)n(α + β− γ + 1)n(α− δ + 1)n(β + 1)nn!

(α + β + 1)2n(α + 1)n(β + δ + 1)n(γ + 1)n
δmn, (5.138)

where
Rn(λ(x)) = Rn(λ(x); α, β, γ, δ)

and

M =



(−β)N(γ + δ + 2)N
(−β + γ + 1)N(δ + 1)N

if α + 1 = −N

(−α + δ)N(γ + δ + 2)N
(−α + γ + δ + 1)N(δ + 1)N

if β + δ + 1 = −N

(α + β + 2)N(−δ)N
(α− δ + 1)N(β + 1)N

if γ + 1 = −N.

It follows that

µ0 =



(−β)N(γ + δ + 2)N
(−β + γ + 1)N(δ + 1)N

if α + 1 = −N

(−α + δ)N(γ + δ + 2)N
(−α + γ + δ + 1)N(δ + 1)N

if β + δ + 1 = −N

(α + β + 2)N(−δ)N
(α− δ + 1)N(β + 1)N

if γ + 1 = −N.

From the inversion formula (4.48), for θn(x) = (−x)n(x + γ + δ + 1)n, we have

I0(n) =
(α + 1)n(β + δ + 1)n(γ + 1)n

(α + β + 2)n
.

Therefore, the following proposition is valid.

Proposition 155. The generalized Racah moments with respect to the basis
θn(x) = (−x)n(x + γ + δ + 1)n have the representation

µn(θn(x)) =



(−β)N(γ + δ + 2)N
(−β + γ + 1)N(δ + 1)N

(α + 1)n(β + δ + 1)n(γ + 1)n

(α + β + 2)n
if α + 1 = −N

(−α + δ)N(γ + δ + 2)N
(−α + γ + δ + 1)N(δ + 1)N

(α + 1)n(β + δ + 1)n(γ + 1)n

(α + β + 2)n
if β + δ + 1 = −N

(α + β + 2)N(−δ)N
(α− δ + 1)N(β + 1)N

(α + 1)n(β + δ + 1)n(γ + 1)n

(α + β + 2)n
if γ + 1 = −N.

(5.139)

Proposition 156. The canonical Racah moments have the following representation

µn = µ0

n

∑
k=0

Dk
ε [x(x + ε)]n|x=0

k!
(α + 1)k(β + δ + 1)k(γ + 1)k

(α + β + 2)k
(5.140)

where ε = γ + δ + 1.

Proof. The result is obtained using relations (2.21), (2.23), (5.32) and (5.139).
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The Continuous Dual Hahn polynomials

The Continuous Dual Hahn polynomials Sn(x2; a, b, c) fulfil the following orthogonality
relation [30, P. 196]∫ ∞

0

∣∣∣∣Γ(a + ix)Γ(b + ix)Γ(c + ix)
Γ(2ix)

∣∣∣∣2 Sm(x2; a, b, c)Sn(x2; a, b, c)dx

= Γ(n + a + b)Γ(n + a + c)Γ(n + b + c)n!δmn. (5.141)

With m = n = 0, it follows that

µ0 = Γ(a + b)Γ(a + c)Γ(b + c).

From the inversion formula (4.49), for ϑn(a, x) = (a− ix)n(a + ix)n, we have

I0(n) = (a + c)n(a + d)n.

Therefore, the following proposition is valid.

Proposition 157. The generalized Continuous Dual Hahn moments with respect to the basis
ϑn(a, x) = (a− ix)n(a + ix)n have the following representation

µn(ϑk(a, x)) = Γ(a + b)Γ(a + c)Γ(b + c)(a + c)n(a + d)n. (5.142)

Proposition 158. The generalized Continuous Dual Hahn moments with respect to ϑn(a, x) have
the following generating functions:

µ0(1− z)a+c =
∞

∑
n=0

µn(ϑk(a, x))
zn

(a + d)nn!
, (5.143)

µ0(1− z)a+d =
∞

∑
n=0

µn(ϑk(a, x))
zn

(a + c)nn!
. (5.144)

with
µ0 = Γ(a + b)Γ(a + c)Γ(b + c).

Proof. Using the binomial theorem (2.3) we get the result.

Proposition 159. The canonical Continuous Dual Hahn moments have the following representa-
tion

µn = µ0

n

∑
m=0

Em(−a2,−(a + 1)2, . . . ,−(a + n− 1)2)(a + c)m(a + d)m. (5.145)

with
µ0 = Γ(a + b)Γ(a + c)Γ(b + c).

Proof. Since
µn(ϑk(a, x)) = Γ(a + b)Γ(a + c)Γ(b + c)(a + c)n(a + d)n

and

(x2)n =
n

∑
m=0

Em(−a2,−(a + 1)2, . . . ,−(a + n− 1)2)ϑm(a, x),

the result follows.

Proposition 160. The canonical Continuous Dual Hahn moments have the following representa-
tion

µn = µ0

n

∑
k=0

k

∑
l=0

(−k)l
k!l!

(−2a− 2k + 2l)(a + c)k(a + d)k
(−2a− 2k + l)k+1

(a + k− l)2n . (5.146)

Proof. The result is obtained using relations (2.21), (2.23), (5.29) and (5.142).
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The Continuous Hahn polynomials

The Continuous Hahn polynomials pn(x; a, b, c, d) fulfil the following orthogonality rela-
tion [30, P. 200]∫ ∞

−∞
Γ(a + ix)Γ(b + ix)Γ(c− ix)Γ(d− ix)pm(x; a, b, c, d)pn(x; a, b, c, d)dx

=
Γ(n + a + c)Γ(n + a + d)Γ(n + b + c)Γ(n + b + d)
(2n + a + b + c + d− 1)Γ(n + a + b + c + d− 1)n!

δmn. (5.147)

With m = n = 0, it follows that

µ0 =
Γ(a + c)Γ(a + d)Γ(b + c)Γ(b + d)

Γ(a + b + c + d)
.

From the inversion formula (4.49), with ηn(x) = (a + ix)n, we have:

I0(n) =
(a + c)n(a + d)n

(a + b + c + d)n
.

Therefore, the following proposition is valid.

Proposition 161. The generalized Continuous Hahn moments with respect to the basis (a + ix)n
have the representation

µn((a + ix)k) =
Γ(a + c)Γ(a + d)Γ(b + c)Γ(b + d)

Γ(a + b + c + d)
(a + c)n(a + d)n

(a + b + c + d)n
. (5.148)

Proposition 162. The generalized moments of the Continuous Hahn polynomials with respect to
(a + ix)n have the following exponential generating function:

µ0(1− x)a+c =
∞

∑
n=0

µn((a + ix)k)
(a + b + c + d)n

(a + d)n

zn

n!
, (5.149)

µ0(1− x)a+d =
∞

∑
n=0

µn((a + ix)k)
(a + b + c + d)n

(a + d)n

zn

n!
. (5.150)

with

µ0 =
Γ(a + c)Γ(a + d)Γ(b + c)Γ(b + d)

Γ(a + b + c + d)
.

Proof. The proof uses the binomial theorem (2.3).

Proposition 163. The canonical Continuous Hahn moments have the following representation

µn = µ0

n

∑
m=0

(−i)mEm(ai, (a + 1)i, . . . , (a + n− 1)i)
(a + c)n(a + d)m

(a + b + c + d)m
. (5.151)

with

µ0 =
Γ(a + c)Γ(a + d)Γ(b + c)Γ(b + d)

Γ(a + b + c + d)
.

Proof. Using

(a + ix)n = in
n−1

∏
k=0

(x− (a + k)i),

we get

xn =
n

∑
m=0

(−i)mEm(ai, (a + 1)i, . . . , (a + n− 1)i)(a + ix)m.

The proposition is proved using the fact that

µn((a + ix)k) =
Γ(a + c)Γ(a + d)Γ(b + c)Γ(b + d)

Γ(a + b + c + d)
(a + c)n(a + d)n

(a + b + c + d)n
.
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Proposition 164. The canonical Continuous Hahn moments have the following representation

µn = µ0

n

∑
k=0

k

∑
l=0

(−1)l

k!

(
k
l

)
(a + c)k(a + d)k
(a + b + c + d)k

((a + l)i)n, (5.152)

with

µ0 =
Γ(a + c)Γ(a + d)Γ(b + c)Γ(b + d)

Γ(a + b + c + d)
.

Proof. The result is obtained using relations (2.21), (2.23), (5.36) and (5.148).

The Dual Hahn polynomials

For γ > −1 and δ > −1, or for γ < −N and δ < −N, the Dual Hahn polynomials
Rn(λ(x); γ, δ, N) fulfil the following orthogonality relation [30, P. 209]

N

∑
x=0

(2x + γ + δ + 1)(γ + 1)x(−N)x N!
(−1)x(x + γ + δ + 1)N+1(δ + 1)x

Rm(λ(x); γ, δ, N)Rn(λ(x); γ, δ, N)

=
δmn

(γ+n
n )(δ+N−n

N−n )
. (5.153)

With m = n = 0, it follows that

µ0 =
1

(δ+N
N )

.

From the inversion formula (4.51), we have

I0(n) =
(γ + 1)n(−N)n

(γ + δ + 2)n
.

Therefore, the following proposition is valid.

Proposition 165. The generalized Dual Hahn moments with respect to the basis θn(x) = (−x)n(x+
γ + δ + 1)n have the representation

µn(θk(x)) =
1

(δ+N
N )

(γ + 1)n(−N)n

(γ + δ + 2)n
. (5.154)

Proposition 166. The generalized Dual Hahn moments with respect to θn(x) = (−x)n(x + γ +
δ + 1)n have the following exponential generating function:

1

(δ+N
N )

2F1

−N, α + 1

γ + δ + 2

∣∣∣∣∣∣ z

 =
∞

∑
n=0

µn
zn

n!
. (5.155)

Proposition 167. The canonical Dual Hahn moments have the following representation

µn =
1

(δ+N
N )

n

∑
k=0

Dk
ε [x(x + ε)]n|x=0

k!
(γ + 1)k(−N)k
(γ + δ + 2)k

. (5.156)

where ε = γ + δ + 1.

Proof. The result is obtained using relations (2.21), (2.23), (5.32) and (5.154).
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The Meixner-Pollaczek polynomials

The Meixner-Pollaczek polynomials P(λ)
n (x; φ) fulfil the following orthogonality relation

[30, P. 213] ∫ ∞

−∞
e(2φ−π)x|Γ(λ + ix)|2P(λ)

m (x; φ)P(λ)
n (x; φ)dx

= 2π
Γ(n + 2λ)

(2 sin φ)2λn!
δmn, λ > 0 and 0 < φ < π. (5.157)

With m = n = 0, it follows that

µ0 = 2π
Γ(2λ)

(2 sin φ)2λ
.

From the inversion formula (4.52), for θn(x) = (λ + ix)n, we have

I0(n) =
(2λ)n

(1− e−2iφ)n .

Therefore, the following proposition is valid.

Proposition 168. The generalized Meixner-Pollaczek moments with respect to the basis (λ + ix)n
have the representation

µn((λ + ix)k) = 2π
Γ(2λ)

(2 sin φ)2λ

(2λ)n

(1− e−2iφ)n . (5.158)

Proposition 169. The generalized Meixner-Pollaczek moments with respect to the basis (λ + ix)n
have the following exponential generating function

2π
Γ(2λ)

(2 sin φ)2λ

(
1− z

1− e−2iφ

)−2λ

=
∞

∑
n=0

µn((λ + ix)k)
zn

n!
,
∣∣∣∣ z
1− e−2iφ

∣∣∣∣ < 1. (5.159)

Proof. We have

∞

∑
n=0

µn
zn

n!
= 2π

Γ(2λ)

(2 sin φ)2λ

∞

∑
n=0

(2λ)n

n!

(
z

1− e−2iθ

)n
= 2π

Γ(2λ)

(2 sin φ)2λ 1F0

 2λ

−

∣∣∣∣∣∣ z
1− e−2iφ

.

Using the binomial theorem (2.3), we get the result.

Proposition 170. The canonical Meixner-Pollaczek moments have the following representation

µn = 2π
Γ(2λ)

(2 sin φ)2λ

n

∑
m=0

(−i)mEm(ai, (a + 1)i, . . . , (a + n− 1)i)
(2λ)m

(1− e−2iφ)m . (5.160)

Proof. The proof is similar to the proof of Proposition 163.

Proposition 171. The canonical Meixner-Pollaczek moments have the following representation

µn =
2πΓ(2λ)

(2 sin φ)2λ

n

∑
k=0

k

∑
l=0

(−1)l

k!

(
k
l

)
(2λ)k((a + l)i)n

(1− e−2iφ)k . (5.161)

Proof. The result is obtained using relations (2.21), (2.23), (5.36) and (5.161).

5.4.5 The q-quadratic case

In this part, since θ will denote an angle, we will denote the basis involved in the inversion
formula (5.1) by Bn instead of θn.
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The Askey-Wilson polynomials

If a, b, c, d are real, or occur in complex conjugate pairs if complex, and max(|a|, |b|, |c|, |d|) <
1, then the Askey-Wilson polynomials pn(x; a, b, c, d|q) fulfil the following orthogonality re-
lation

1
2π

∫ 1

−1

w(x)√
1− x2

pn(x; a, b, c, d|q)pm(x; a, b, c, d|q)dx = hnδmn, x = cos θ, (5.162)

where

w(x) = w(x; a, b, c, d|q) =
∣∣∣∣∣

(
e2iθ ; q

)
∞(

aeiθ , beiθ , ceiθ , deiθ ; q
)

∞

∣∣∣∣∣
2

=
h(x, 1)h(x, q1/2)h(x,−1)h(x,−q1/2)

h(x, a)h(x, b)h(x, c)h(x, d)
.

with

h(x, a) =
∞

∏
k=0

(
1− 2axqk + a2q2k

)
=
(

aeiθ , ae−iθ ; q
)

∞
;

and

hn =
(abcdq2n; q)∞(abcdqn−1; q)n

(qn+1, abqn, acqn, adqn, bcqn, bdqn, cdqn; q)∞
.

With m = n = 0, it follows that

µ0 =
2π(abcd; q)∞

(q; ab, ac, ad, bc, bd, cd; q)∞
.

From the inversion formula (4.53), for Bn(x) = (aeiθ , ae−iθ ; q)n, we have

I0(n) =
(ab, ac, ad; q)n

(abcd; q)n
.

Therefore, the following proposition is valid.

Proposition 172. The generalized Askey-Wilson moments with respect toBn(x) = (aeiθ , ae−iθ ; q)n
have the representation

µn(Bn(x)) =
2π(abcd; q)∞

(q; ab, ac, ad, bc, bd, cd; q)∞

(ab, ac, ad; q)n

(abcd; q)n
. (5.163)

Proposition 173. The generalized Askey-Wilson moments with respect toBn(x) = (aeiθ , ae−iθ ; q)n
have the following generating functions

2π(abcd, abz; q)∞

(q; ab, ac, ad, bc, bd, cd, z; q)∞
=

∞

∑
m=0

µn(Bn(x))
(abcd; q)n

(ac, ad; q)n

zn

(q; q)n
, |z| < 1, (5.164)

2π(abcd, acz; q)∞

(q; ab, ac, ad, bc, bd, cd, z; q)∞
=

∞

∑
m=0

µn(Bn(x))
(abcd; q)n

(ab, ad; q)n

zn

(q; q)n
, |z| < 1, (5.165)

2π(abcd, adz; q)∞

(q; ab, ac, ad, bc, bd, cd, z; q)∞
=

∞

∑
m=0

µn(Bn(x))
(abcd; q)n

(ab, ac; q)n

zn

(q; q)n
, |z| < 1. (5.166)

Proof. The results are obtained using the q-binomial theorem (2.6).

Proposition 174. The canonical Askey-Wilson moments have the following representation

µn =
2π(abcd; q)∞

(q; ab, ac, ad, bc, bd, cd; q)∞

n

∑
m=0

(−2a)−mq−(
m
2 )Em(x0, . . . , xn−1)

(ab, ac, ad; q)m

(abcd; q)m
,

(5.167)
where the numbers xk, k = 0, . . . , n− 1 are defined by (5.39).
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Proposition 175. The canonical Askey-Wilson moments have the following representation

µn =
2π(abcd; q)∞

(q; ab, ac, ad, bc, bd, cd; q)∞

n

∑
k=0

k

∑
j=0

(ab, ac, ad; q)k
(abcd; q)k

qkq−j2 a−2j(aqj + a−1q−j)k

(q, q1+2ja2; q)k−j(q, q−1−2ja−2; q)j
.

(5.168)

Proof. The result is obtained using relations (2.21), (2.23), (5.43) and (5.163).

Note that formula (5.168) appears in [12] and the proof is done using a direct computation.

The q-Racah polynomials

The q-Racah polynomials Rn(µ(x); α, β, γ, δ|q) fulfil the following orthogonality relation

N

∑
x=0

(αq, βδq, γq, γδq; q)x

(q, α−1γδq, β−1γq, δq; q)x

(1− γδq2x+1)

(αβq)x(1− γδq)
Rm(µ(x))Rn(µ(x)) = hnδmn, (5.169)

where
Rn(µ(x)) = Rn(µ(x); α, β, γ, δ|q)

and

hn =

(
α−1β−1γ, α−1δ, β−1, γδq2; q

)
∞

(α−1β−1q−1, α−1γδq, β−1γq, δq; q)∞

(1− αβq)(γδq)n

(1− αβq2n+1)

(
q, αβγ−1q, αδ−1q, βq; q

)
n

(αq, αβq, βδq, γq; q)n
.

With m = n = 0, it follows that

µ0 =

(
α−1β−1γ, α−1δ, β−1, γδq2; q

)
∞

(α−1β−1q−1, α−1γδq, β−1γq, δq; q)∞
.

From the inversion formula (4.54), for Bn(µ(x)) = (q−x, γδqx+1; q)n, we have

I0(n) =
(αq, βδq, γq)n

(αβq2; q)n
.

Therefore, the following proposition is valid.

Proposition 176. The generalized q-Racah moments with respect to the basis
Bn(µ(x)) = (q−x, γδqx+1; q)n have the representation

µn(Bk(µ(x))) =

(
α−1β−1γ, α−1δ, β−1, γδq2; q

)
∞

(α−1β−1q−1, α−1γδq, β−1γq, δq; q)∞

(αq, βδq, γq)n

(αβq2; q)n
. (5.170)

Proposition 177. The generalized q-Racah moments with respect toBn(µ(x)) = (q−x, γδqx+1; q)n
have the following generating function:(

α−1β−1γ, α−1δ, β−1, γδq2, γqz; q
)

∞
(α−1β−1q−1, α−1γδq, β−1γq, δq, z; q)∞

=
∞

∑
n=0

µn(Bk(µ(x)))(αβq2; q)n

(αq, βδq; q)n

zn

(q; q)n
(5.171)

(5.172)

Now, we give the canonical q-Racah moments in terms of the elementary symmetric
polynomials of second kind.

Proposition 178. The canonical q-Racah moments have the following representation

µn =

(
α−1β−1γ, α−1δ, β−1, γδq2; q

)
∞

(α−1β−1q−1, α−1γδq, β−1γq, δq; q)∞

n

∑
m=0

(−1)mq−(
m
2 )Em(g0, . . . , gn−1)

(αq, βδq, γq)m

(αβq2; q)m
,

(5.173)
with

gm = q−m + γδqm+1, m = 0, . . . , n− 1. (5.174)
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Proof. We first observe that

Bn(µ(x)) = (q−x, γδqx+1; q)n = (−1)nq(
n
2)

n−1

∏
k=0

(
µ(x)− (q−k + γδqk+1)

)
,

where µ(x) = q−x + γδqx+1 (see [30, P. 422]). It follows that

(µ(x))n =
n

∑
m=0

(−1)mq−(
m
2 )Em(x0, . . . , xn−1)Bm(µ(x)).

The proof of the proposition follows using (5.170).

The Continuous Dual q-Hahn polynomials

If a, b, c are real or one is real and the other two are complex conjugates, and max(|a|, |b|, |c|) <
1, the Continuous Dual Hahn polynomials pn(x; a, b, c|q) fulfil the following orthogonality
relation [30, P. 429]

1
2π

∫ 1

−1

w(x)√
1− x2

pn(x; a, b, c|q)pm(x; a, b, c|q)dx = hnδmn, x = cos θ, (5.175)

where

w(x) = w(x; a, b, c|q) =
∣∣∣∣∣

(
e2iθ ; q

)
∞(

aeiθ , beiθ , ceiθ ; q
)

∞

∣∣∣∣∣
2

=
h(x, 1)h(x, q1/2)h(x,−1)h(x,−q1/2)

h(x, a)h(x, b)h(x, c)
.

with

h(x, a) =
∞

∏
k=0

(
1− 2axqk + a2q2k

)
=
(

aeiθ , ae−iθ ; q
)

∞
;

and
hn =

1
(qn+1, abqn, acqn, bcqn; q)∞

.

With m = n = 0, it follows that

µ0 =
2π

(q, ab, ac, bc; q)∞
.

From the inversion formula (4.55), for Bn(x) = (aeiθ , ae−iθ ; q)n, we have

I0(n) = (ab, ac; q)n.

Therefore, the following proposition is valid.

Proposition 179. The generalized Continuous Dual q-Hahn moments with respect to the basis
Bn(x) = (aeiθ , ae−iθ ; q)n is given by

µn(Bk(x)) =
2π(ab, ac; q)n

(q, ab, ac, bc; q)∞
. (5.176)

Proposition 180. The generalized Continuous Dual q-Hahn moments with respect to Bn(x) =
(aeiθ , ae−iθ ; q)n have the following generating functions

2π(abz; q)∞

(z, q, ab, ac, bc; q)∞
=

∞

∑
n=0

µn(Bk(x))
zn

(ac, q; q)n
(5.177)

2π(acz; q)∞

(z, q, ab, ac, bc; q)∞
=

∞

∑
n=0

µn(Bk(x))
zn

(ab, q; q)n
. (5.178)

Proof. The results are obtained using the q-binomial theorem (2.6).



5.4 Moments and generating functions 84

Proposition 181. The canonical Continuous Dual q-Hahn moments have the following represen-
tation

µn =
2π

(q, ab, ac, bc; q)∞

n

∑
m=0

(−1)mq−(
m
2 )Em(x0, . . . , xn−1)(ab, ac; q)m, (5.179)

where the numbers xk are defined by (5.39).

Proof. The proof is similar to the proof of (5.167).

Proposition 182. The canonical Continuous Dual q-Hahn moments have the following represen-
tation

µn =
2π

(q, ab, ac, bc; q)∞

n

∑
k=0

k

∑
j=0

qkq−j2 a−2j(aqj + a−1q−j)k

(q, q1+2ja2; q)k−j(q, q−1−2ja−2; q)j
(ab, ac; q)k. (5.180)

Proof. The result is obtained using relations (2.21), (2.23), (5.43) and (5.176).

The Continuous q-Hahn polynomials

If c = a and d = b, if a and b are real and max(|a|, |b|) < 1, or if b = ā and |a| < 1, then the
Continuous q-Hahn polynomials pn(cos(θ + φ); a, b, c, d|q) fulfil the following orthogonal-
ity relation

1
4π

∫ π

−π
w(cos(θ + φ))pn(cos(θ + φ); a, b, c, d|q)pm(cos(θ + φ); a, b, c, d|q)dx = hnδmn,

(5.181)
where

w(x) = w(x; a, b, c, d|q) =

∣∣∣∣∣∣
(

e2i(θ+φ)); q
)

∞(
aei(θ+2φ), bei(θ+2φ), ceiθ , deiθ ; q

)
∞

∣∣∣∣∣∣
2

=
h(x, 1)h(x, q1/2)h(x,−1)h(x,−q1/2)

h(x, aeiφ)h(x, beiφ)h(x, ce−iφ)h(x, de−iφ)
.

with x = cos(θ + φ),

h(x, a) =
∞

∏
k=0

(
1− 2axqk + a2q2k

)
=
(

aei(θ+φ), ae−i(θ+φ); q
)

∞
;

and

hn =
(abcdq2n; q)∞(abcdqn−1; q)n

(qn+1, abqne2iφ, acqn, adqn, bcqn, bdqn, cdqne−2iφ; q)∞
.

With m = n = 0, It follows that

µ0 =
4π(abcd; q)∞

(q, abe2iφ, ac, ad, bc, bd, cde−2iφ; q)∞
.

From the inversion formula (4.56), with Bn(x) = (aei(θ+2φ), ae−iθ ; q)n, we have

I0(n) =
(abe2iφ, ac, ad; q)n

(abcd; q)n
.

Therefore, the following proposition is valid.

Proposition 183. The generalized Continuous q-Hahn moments with respect to the basis
Bn(x) = (aei(θ+2φ), ae−iθ ; q)n have the representation

µn(Bk(x)) =
4π(abcd; q)∞

(q, abe2iφ, ac, ad, bc, bd, cde−2iφ; q)∞

(abe2iφ, ac, ad; q)n

(abcd; q)n
. (5.182)
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Proposition 184. The canonical Continuous q-Hahn moments have the representation

µn = µ0

n

∑
k=0

k

∑
j=0

(abe2iφ, ac, ad; q)k
(abcd; q)k

qkq−j2 a−2je2iφ(ae−iφqj + a−1eiφq−j)k

(q, q1+2ja2e−2iφ; q)k−j(q, q−1−2ja−2e2iφ; q)j
, (5.183)

where

µ0 =
4π(abcd; q)∞

(q, abe2iφ, ac, ad, bc, bd, cde−2iφ; q)∞
.

Proof. From (5.43), we have

xn =
n

∑
k=0

qk
k

∑
j=0

q−j2 a−2j(aqj + a−1q−j)k

(q, q1+2ja2; q)k−j(q, q−1−2ja−2; q)j
(aeiθ , ae−iθ ; q)k.

Replacing θ by θ + φ, it follows that

xn =
n

∑
k=0

qk
k

∑
j=0

q−j2 a−2j(aqj + a−1q−j)k

(q, q1+2ja2; q)k−j(q, q−1−2ja−2; q)j
(aei(θ+φ), ae−i(θ+φ); q)k.

Next taking a = ae−iφ we get

xn =
n

∑
k=0

qk
k

∑
j=0

q−j2 a−2je2iφ(ae−iφqj + a−1eiφq−j)k

(q, q1+2ja2e−2iφ; q)k−j(q, q−1−2ja−2e2iφ; q)j
(aei(θ+2φ), ae−iθ ; q)k. (5.184)

(5.183) is obtained using relations (2.21), (2.23), (5.182) and (5.184).

The Dual q-Hahn polynomials

For 0 < γq < 1 and 0 < δq < 1, or for γ > q − N and δ > q − N, the Dual q-Hahn
polynomials Rn(µ(x); γ, δ, N|q) fulfil the following orthogonality relation [30, P. 451]

N

∑
x=0

(γq, γδq, q−N ; q)x

(q, γδqN+2, δq; q)x

(1− γδq2x+1)

(1− γδq)(−γq)x qNx−(x
2)Rn(µ(x); γ, δ, N|q)Rm(µ(x); γ, δ, N|q) = hnδmn,

(5.185)
with

hn =
(γδq2; q)N
(γq; q)N

(γq)−N (q, δ−1q−N ; q)n

(γq, q−N ; q)n
(γδq)n.

For m = n = 0, it follows that

µ0 =
(γδq2; q)N
(γq; q)N

(γq)−N .

From the inversion formula (4.57), for Bn(µ(x)) = (q−x, γδqx+1; q)n, we have

I0(n) = (γq, q−N ; q)n.

Therefore, the following proposition is valid

Proposition 185. The generalized Dual q-Hahn moments with respect to the basis
Bn(µ(x)) = (q−x, γδqx+1; q)n have the representation

µn(Bk(µ(x))) = (γq)−N (γδq2; q)N
(γq; q)N

(γq, q−N ; q)n. (5.186)

Proposition 186. The generalized Dual q-Hahn moments with respect toBn(µ(x)) = (q−x, γδqx+1; q)n
have the following generating function:

(γq)−N (γδq2; q)N
(γq; q)N

(zq−N ; q)∞

(z; q)∞
=

∞

∑
n=0

µn(Bk(µ(x)))
zn

(γq, q; q)n
. (5.187)
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Proof. Using the q-binomial theorem (2.6) we get the result.

Proposition 187. The canonical Dual q-Hahn moments have the following representation

µn = (γq)−N (γδq2; q)N
(γq; q)N

n

∑
m=0

(−1)mq−(
m
2 )Em(g0, . . . , gn−1)(γq, q−N ; q)m, (5.188)

with the numbers gk defined by (5.174).

Proof. The proof is similar to the proof of (5.173).

The Al-Salam-Chihara polynomials

If a and b are real or complex conjugates and max(|a|, |b|) < 1, then the Al-Salam-Chihara
polynomials fulfil the following orthogonality relation [30, P. 455]

1
2π

∫ 1

−1

w(x)√
1− x2

Qn(x; a, b|q)Qm(x; a, b|q)dx =
δmn

(qn+1, abqn; q)n
, x = cos θ, (5.189)

where

w(x) := w(x; a, b|q) =
∣∣∣∣ (e2iθ ; q)∞

(aeiθ , ae−iθ ; q)∞

∣∣∣∣2 =
h(x, 1)h(x, q1/2)h(x,−1)h(x,−q1/2)

h(x, a)h(x, b)
,

with

h(x, a) =
∞

∏
k=0

(
1− 2axqk + a2q2k

)
=
(

aeiθ , ae−iθ ; q
)

∞
.

For m = n = 0, it follows that

µ0 =
2π

(q, ab; q)∞
.

From the inversion formula (4.58), for Bn(x) = (aeiθ , ae−iθ ; q)n, we have

I0(n) = (ab; q)n.

Therefore, the following proposition is valid.

Proposition 188. The generalized Al-Salam-Chihara moments with respect to the basis
Bn(x) = (aeiθ , ae−iθ ; q)n are given by

µn(Bk(x)) =
2π(ab; q)n

(q, ab; q)∞
. (5.190)

Proposition 189. The generalized Al-Salam-Chihara moments with respect to
Bn(x) = (aeiθ , ae−iθ ; q)n have the following q-exponential generating function:

2π(abz; q)∞

(z, ab, q; q)∞
=

∞

∑
n=0

µn(Bk(x))
zn

(q; q)n
. (5.191)

Proof. Using the relation (5.190), we have

∞

∑
n=0

µn
zn

(q; q)n
=

2π

(q, qb; q)∞

∞

∑
n=0

(ab; q)n

(q; q)n
zn.

By the q-binomial theorem (2.6), we get the result.

Proposition 190. The canonical Al-Salam-Chihara moments have the following representation

µn =
2π

(q, ab; q)∞

n

∑
m=0

(−2a)−mq−(
m
2 )Em(x0, . . . , xn−1)(ab; q)m, (5.192)

with xk defined by

xk =
1 + a2q2k

2aqk , k = 0, 1, . . . , n− 1.

.
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Proof. The proof is similar to the proof of (5.167).

Proposition 191. The canonical Al-Salam-Chihara moments have the following representation

µn =
2π

(q, ab; q)∞

n

∑
k=0

k

∑
j=0

qkq−j2 a−2j(aqj + a−1q−j)k

(q, q1+2ja2; q)k−j(q, q−1−2ja−2; q)j
(ab; q)k. (5.193)

Proof. The result is obtained using relations (2.21), (2.23), (5.43) and (5.190).

The q-Meixner-Pollaczek polynomials

The q-Meixner-Pollaczek polynomials Pn(cos(θ + φ); a|q) fulfil the following orthogonality
relation [30, P. 460]

1
2π

∫ π

−π
w(cos(θ +φ))Pn(cos(θ +φ); a|q)Pm(cos(θ +φ); a|q)dx =

δmn

(q; q)n(q, a2qn; q)∞
, 0 < a < 1,

(5.194)
where

w(x; a|q) =
∣∣∣∣∣ (e2i(θ+φ); q)∞

(aei(θ+2φ), aeiθ ; q)∞

∣∣∣∣∣
2

=
h(x, 1)h(x, q1/2)h(x,−1)h(x,−q1/2)

h(x, aeiφ)h(x, ae−iφ)
,

with

h(x, a) =
∞

∏
k=0

(
1− 2axqk + a2q2k

)
=
(

aei(θ+φ), ae−i(θ+φ); q
)

∞
, x = cos(θ + φ).

With m = n = 0, it follows that

µ0 =
2π

(a2, q; q)∞
.

From the inversion formula (4.59), for Bn(x) = (aei(θ+2φ), ae−iθ ; q)n we have

I0(n) = (a2, q; q)n.

Therefore, the following proposition is valid.

Proposition 192. The generalized q-Meixner-Pollaczek moments with respect to the basis
Bn(x) = (aei(θ+2φ), ae−iθ ; q)n have the representation

µn(Bk(x)) = 2π
(a2, q; q)n

(a2, q; q)∞
. (5.195)

Proposition 193. The generalized q-Meixner-Pollaczek moments with respect to (aei(ϑ+2φ), ae−iϑ; q)n
have the following generating function

2π(a2z; q)∞

(z, a2, q; q)∞
=

∞

∑
n=0

µn(Bk(x))
zn

(q, q; q)n
(5.196)

Proof. The proof of (5.196) uses the q-binomial theorem (2.6).

Proposition 194. The canonical q-Meixner-Pollaczek moments have the following representation

µn =
2π

(a2, q; q)∞

n

∑
k=0

k

∑
j=0

qkq−j2 a−2je2iφ(ae−iφqj + a−1eiφq−j)k

(q, q1+2ja2e−2iφ; q)k−j(q, q−1−2ja−2e2iφ; q)j
(a2, q; q)k. (5.197)

Proof. The result is obtained using relations (2.21), (2.23), (5.184) and (5.195).
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The Continuous q-Jacobi polynomials

For α > − 1
2 and β > − 1

2 the Continuous q-Jacobi polynomials P(α,β)
n (x|q) fulfil the orthog-

onality relation [30, P. 464]

1
2π

∫ 1

−1

w(x)√
1− x2

P(α,β)
n (x|q)P(α,β)

m (x|q)dx = hnδmn,

where

hn =
(q

1
2 (α+β+2), q

1
2 (α+β+3); q)∞

(q, qα+1, qβ+1,−q
1
2 (α+β+1),−q

1
2 (α+β+2); q)∞

1− qα+β+1

1− q2n+α+β+1
(qα+1, qβ+1,−q

1
2 (α+β+3;q)n)

(q, qα+β+1,−q
1
2 (α+β+1); q)n

q(α+
1
2 )n,

w(x) = w(x; qα, qβ|q) = h(x, 1)h(x, q1/2)h(x,−1)h(x,−q1/2)

h(x, q
1
2 α+ 1

4 )h(x, q
1
2 α+ 3

4 )h(x,−q
1
2 β+ 1

4 )h(x,−q
1
2 β+ 3

4 )
,

with

h(x, a) =
∞

∏
k=0

(
1− 2axqk + a2q2k

)
=
(

aeiθ , ae−iθ ; q
)

∞
, x = cos θ.

With m = n = 0, it follows that

µ0 = 2π
(q

1
2 (α+β+2), q

1
2 (α+β+3); q)∞

(q, qα+1, qβ+1,−q
1
2 (α+β+1),−q

1
2 (α+β+2); q)∞

.

From the inversion formula (4.60), for Bn(x) = (q
1
2 α+ 1

4 eiθ , q
1
2 α+ 1

4 e−iθ ; q)n, we have

I0(n) =
(qα+1,−q

1
2 (α+β+1),−q

1
2 (α+β+2); q)n

(qα+β+1; q)n
.

Therefore, the following proposition is valid.

Proposition 195. The generalized Continuous q-Jacobi moments with respect to the basis
Bn(x) = (q

1
2 α+ 1

4 eiθ , q
1
2 α+ 1

4 e−iθ ; q)n have the representation

µn(Bk(x)) =
2π(q

1
2 (α+β+2), q

1
2 (α+β+3); q)∞

(q, qα+1, qβ+1,−q
1
2 (α+β+1),−q

1
2 (α+β+2); q)∞

(qα+1,−q
1
2 (α+β+1),−q

1
2 (α+β+2); q)n

(qα+β+1; q)n
.

(5.198)

Proposition 196. The canonical Continuous q-Jacobi moments have the following representation

µn =
2π(q

1
2 (α+β+2), q

1
2 (α+β+3); q)∞

(q, qα+1, qβ+1,−q
1
2 (α+β+1),−q

1
2 (α+β+2); q)∞

n

∑
m=0

(
−2q

1
2 α+ 1

4

)−m
Em(x0, . . . , xn−1)

(qα+1,−q
1
2 (α+β+1),−q

1
2 (α+β+2); q)m

(qα+β+1; q)m
,(5.199)

where the numbers xk are given by (5.39).

Proof. The proof is similar to the proof of (5.167) where we take a = q
1
2 α+ 1

4 .

Proposition 197. The canonical Continuous q-Jacobi moments have the following representation

µn =
2π(q

1
2 (α+β+2), q

1
2 (α+β+3); q)∞

(q, qα+1, qβ+1,−q
1
2 (α+β+1),−q

1
2 (α+β+2); q)∞

n

∑
k=0

k

∑
j=0

qk−j2−(α+ 1
2 )j(qj+ α

2 +
1
4 + q−j− α

2−
1
4 )k

(q, q2j+α+ 3
2 ; q)k−j(q, q−2j−α− 3

2 ; q)j

(qα+1,−q
1
2 (α+β+1),−q

1
2 (α+β+2); q)k

(qα+β+1; q)k
.(5.200)

Proof. The result is obtained using relations (2.21), (2.23), (5.43) with a = q
1
2 α+ 1

4 and (5.198).
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The Continuous q-Ultraspherical (Rogers) polynomials

The generalized Continuous q-Ultraspherical polynomials Cn(x; β|q) fulfil the following
orthogonality relation [30, P. 469]

1
2π

∫ 1

−1

w(x)√
1− x2

Cn(x; β|q)Cm(x; β|q)dx =
(β, βq, q)∞

(β2, q; q)∞

(β2; q)n

(q; q)n

1− β

1− βqn δmn, |β| < 1,

where

w(x) =
∣∣∣∣ (e2iθ ; q)∞

(βe2iθq)∞

∣∣∣∣2 =
h(x, 1)h(x, q1/2)h(x,−1)h(x,−q1/2)

h(x, β
1
2 )h(x, β

1
2 q

1
2 )h(x,−β

1
2 )h(x,−β

1
2 q

1
2 )

with

h(x, a) =
∞

∏
k=0

(
1− 2axqk + a2q2k

)
=
(

aeiθ , ae−iθ ; q
)

∞
, x = cos θ.

For m = n = 0, it follows that

µ0 = 2π
(β, βq; q)∞

(β2, q; q)∞
.

From the inversion formula (4.61), for Bn(x) = (β
1
2 eiθ , β

1
2 e−iθ ; q)n, we have

I0(n) =
(βq

1
2 ,−β,−βq

1
2 ; q)n

(β2q; q)n
.

Therefore, the following proposition is valid.

Proposition 198. The generalized Continuous q-Ultraspherical moments with respect to the basis
Bn(x) = (β

1
2 eiθ , β

1
2 e−iθ ; q)n have the representation

µn(Bk(x)) = 2π
(β, βq; q)∞

(β2, q; q)∞

(βq
1
2 ,−β,−βq

1
2 ; q)n

(β2q; q)n
. (5.201)

Proposition 199. The canonical Continuous q-Ultraspherical moments have the representation

µn = 2π
(β, βq; q)∞

(β2, q; q)∞

n

∑
m=0

(
−2q

1
2

)−m
q−(

m
2 )Em(x0, . . . , xn−1)

(βq
1
2 ,−β,−βq

1
2 ; q)m

(β2q; q)m
, (5.202)

where the numbers xk are given by (5.39).

Proof. The proof is similar to the proof of (5.167) where we take a = βq
1
2 .

Proposition 200. The canonical Continuous q-Ultraspherical moments have the representation

µn = 2π
(β, βq; q)∞

(β2, q; q)∞

n

∑
k=0

k

∑
j=0

(βq
1
2 ,−β,−βq

1
2 ; q)k

(β2q; q)k

qkβ−jq−j2(β
1
2 qj + β−

1
2 q−j)k

(q, βq1+2j; q)k−j(q, β−1q−1−2j; q)j
(5.203)

Proof. The result is obtained using relations (2.21), (2.23), (5.43) with a = βq
1
2 and (5.201).

The Continuous q-Legendre polynomials

The continuous q-Legendre polynomials Pn(x|q) fulfil the following orthogonality relation
[30, P. 475]

1
2π

∫ 1

−1

w(x; 1|q)√
1− x2

Pn(x|q)Pm(x|q)dx =
(q

1
2 ; q)∞

(q, q,−q
1
2 ,−q; q)∞

q
1
2 n

1− qn+ 1
2

δmn
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where

w(x; a|q) =
∣∣∣∣∣ (e2iθ ; q)∞

(a2q
1
2 e2iθ ; q)∞

∣∣∣∣∣
2

=
h(x, 1)h(x, q1/2)h(x,−1)h(x,−q1/2)

h(x, aq 1
4 )h(x, aq

3
4 q

1
2 )h(x,−β

1
2 )h(x,−β

1
2 q

1
2 )

with

h(x, a) =
∞

∏
k=0

(
1− 2axqk + a2q2k

)
=
(

aeiθ , ae−iθ ; q
)

∞
, x = cos θ.

With m = n = 0, it follows that

µ0 =
2π

1− q
1
2

(q
1
2 ; q)∞

(q, q,−q
1
2 ,−q; q)∞

From the inversion formula (4.62), for Bn(x) = (q
1
4 eiθ , q

1
4 e−iθ ; q)n, we have

I0(n) =
(−q

1
2 ,−q; q)n

(q2; q)n
.

Therefore, the following proposition is valid.

Proposition 201. The generalized Continuous q-Legendre moments with respect to the basis
Bn(x) = (q

1
4 eiθ , q

1
4 e−iθ ; q)n have the representation

µn(Bk(x)) =
2π

1− q
1
2

(q
1
2 ; q)∞

(q, q,−q
1
2 ,−q; q)∞

(−q
1
2 ,−q; q)n

(q2; q)n
. (5.204)

Proposition 202. The canonical Continuous q-Legendre moments have the representation

µn =
2π

1− q
1
2

(q
1
2 ; q)∞

(q, q,−q
1
2 ,−q; q)∞

n

∑
m=0

(
−2q

1
4

)−m
q−(

m
2 )Em(x0, . . . , xn−1)

(−q
1
2 ,−q; q)m

(q2; q)m
,

(5.205)
where the numbers xk are given by (5.39).

Proof. The proof is similar to the proof of (5.167) where we take a = q
1
4 .

Proposition 203. The canonical Continuous q-Legendre moments have the representation

µn =
2π

1− q
1
2

(q
1
2 ; q)∞

(q, q,−q
1
2 ,−q; q)∞

n

∑
k=0

k

∑
j=0

(−q
1
2 ,−q; q)k
(q2; q)k

qkq−j2 q−
j
2 (qj+ 1

4 + q−j− 1
4 )k

(q, q2j+ 3
2 ; q)k−j(q, q−2j− 3

2 ; q)j
. (5.206)

Proof. The result is obtained using relations (2.21), (2.23), (5.43) with a = q
1
2 and (5.204).

The Dual q-Krawtchouk polynomials

The Dual q-Krawtchouk polynomials Km(λ(x); c, N|q) fulfil the following orthogonality
relation [30, P. 505]

N

∑
x=0

(cq−N , q−N ; q)x

(q, cq; q)x

(1− cq2x−N)

(1− cq−N)
c−xqx(2N−x)Km(λ(x))Kn(λ(x))

= (c−1; q)N
(q; q)n

(q−N ; q)n
(cq−N)nδmn, c < 0, (5.207)

where
Km(λ(x)) := Km(λ(x); c, N|q), λ(x) = q−x + cqx−N .

For m = n = 0, it follows that
µ0 = (c−1; q)N .
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From the inversion formula (4.63), with Bn(λ(x)) = (q−x, cqx−N ; q)n, we have

I0(n) = (q−N ; q)n.

Therefore, the following proposition is valid.

Proposition 204. The generalized Dual q-Krawtchouk moments with respect to the basis
Bn(λ(x)) = (q−x, cqx−N ; q)n have the representation

µn(Bk(λ(x))) = (c−1; q)N(q−N ; q)n. (5.208)

Proposition 205. The generalized Dual q-Krawtchouk moments with respect to
Bn(λ(x)) = (q−x, cqx−N ; q)n have the following q-exponential generating function.

(c−1; q)N
(zq−N ; q)∞

(z; q)∞
=

∞

∑
n=0

µn(Bk(λ(x)))
zn

(q; q)n
. (5.209)

Proof. We have, by the q-binomial theorem (2.6):

∞

∑
n=0

µn
zn

(q; q)n
= (c−1; q)N

∞

∑
n=0

(q−N ; q)n

(q; q)n
zn = (c−1; q)N

(zq−N ; q)∞

(z; q)∞
.

Proposition 206. The canonical Dual q-Krawtchouk moments have the representation

µn = (c−1; q)N

n

∑
m=0

(−1)mq−(
m
2 )Em(`0, . . . , `n−1)(q−N ; q)m, (5.210)

where
`k = q−k + cq−Nqk, k = 0, . . . , n− 1. (5.211)

Proof. First, we remark that

Bn(λ(x)) = (q−x, cqx−N ; q)n = (−1)nq(
n
2)

n−1

∏
k=0

(
λ(x)− (q−k + cq−Nqk)

)
.

This implies

λ(x)n =
n

∑
m=0

(−1)mq−(
m
2 )Em(`0, . . . , `n−1)Bm(λ(x)).

Therefore, the proposition follows.

The Continuous Big q-Hermite polynomials

The Continuous big q-Hermite polynomials Hn(x; a|q) fulfil the following orthogonality
relation [30, P. 510]

1
2π

∫ 1

−1

w(x)√
1− x2

Hm(x; a|q)Hn(x; a|q)dx =
δmn

(qn+1; q)∞
, (5.212)

where

w(x) := w(x; a|q) =
∣∣∣∣ (e2iθ ; q)∞

(aeiθ ; q)∞

∣∣∣∣2 =
h(x, 1)h(x,−1)h(x, q

1
2 )h(x,−q

1
2 )

h(x, a)
,

with

h(x, α) :=
∞

∏
k=0

(
1− 2αxqk + α2q2k

)
=
(

αeiθ , αe−iθ ; q
)

∞
, x = cos θ.
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With m = n = 0, it follows that

µ0 =
2π

(q; q)∞
.

From the inversion formula (4.64), for Bn(x) = (aeiθ , ae−iθ ; q)n, we have

I0(n) = 1.

Therefore, the following proposition is valid.

Proposition 207. The generalized Continuous Big q-Hermite moments with respect to the basis
Bn(x) = (aeiθ , ae−iθ ; q)n have the representation

µn(Bk(x)) =
2π

(q; q)∞
. (5.213)

Proposition 208. The generalized Continuous Big q-Hermite moments have the following gener-
ating function:

2π

(q; q)∞

1
1− z

=
∞

∑
n=0

µn(Bk(x))zn, |z| < 1, (5.214)

2π

(z, q; q)∞
=

∞

∑
n=0

µn(Bk(x))
zn

(q; q)n
. (5.215)

Proof. The proof of (5.214) follows from the binomial theorem (2.3) and the proof of (5.215)
follows from the q-binomial theorem (2.6).

Proposition 209. The canonical Continuous q-Hermite moments have the representation

µn =
2π

(q; q)∞

n

∑
m=0

(−2a)−mq−(
m
2 )Em(x0, . . . , xn−1), (5.216)

where the numbers xk are given by (5.39).

Proof. The proof is similar to the proof of (5.167).

Proposition 210. The canonical Continuous q-Hermite moments have the representation

µn =
2π

(q; q)∞

n

∑
k=0

k

∑
j=0

qkq−j2 a−2j(aqj + a−1q−j)k

(q, q1+2ja2; q)k−j(q, q−1−2ja−2; q)j
. (5.217)

Proof. The result is obtained using relations (2.21), (2.23), (5.43) and (5.213).

The Continuous q-Laguerre polynomials

The Continuous q-Laguerre polynomials P(α)
n (x|q) fulfil the following orthogonality rela-

tion [30, P. 514]

1
2π

∫ 1

−1

w(x)√
1− x2

P(α)
m (x|q)P(α)

n (x|q)dx

=
1

(q, qα+1; q)∞

(q(α+1); q)n

(q; q)n
q(α+

1
2 )nδmn. (5.218)

where

w(x) := w(x; qα|q) =
∣∣∣∣∣ (e2iθ ; q)∞

(q
1
2 α+ 1

4 eiθ , q
1
2 α+ 3

4 eiθ ; q)∞

∣∣∣∣∣
2

=

∣∣∣∣∣ (eiθ ,−eiθ ; q
1
2 )∞

(q
1
2 α+ 1

4 eiθ ; q
1
2 )∞

∣∣∣∣∣
2

=
h(x, 1)h(x,−1)h(x, q

1
2 )h(x,−q

1
2 )

h(x, q
1
2 α+ 1

4 )h(x, q
1
2 α+ 4

4 )
,
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where

h(x, α) :=
∞

∏
k=0

(
1− 2αxqk + α2q2k

)
=
(

αeiθ , αe−iθ ; q
)

∞
, x = cos θ.

With m = n = 0, it follows that

µ0 =
2π

(q, qα+1; q)∞
.

From the inversion formula (4.65), for Bn(x) = (q
1
2 α+ 1

4 eiθ , q
1
2 α+ 1

4 e−iθ ; q)n, we have

I0(n) = (qα+1; q)n.

Therefore, the following proposition is valid.

Proposition 211. The generalized Continuous q-Laguerre moments with respect to the basis
Bn(x) = (q

1
2 α+ 1

4 eiθ , q
1
2 α+ 1

4 e−iθ ; q)n have the representation

µn(Bk(x)) =
2π(qα+1; q)n

(q, qα+1; q)∞
. (5.219)

Proposition 212. The generalized Continuous q-Laguerre moments with respect to
Bn(x) = (q

1
2 α+ 1

4 eiθ , q
1
2 α+ 1

4 e−iθ ; q)n have the following q-exponential generating function:

2π(qα+1z; q)∞

(z, q, qα+1; q)∞
=

∞

∑
n=0

µn(Bk(x))
zn

(q; q)n
. (5.220)

Proof. The proof follows from the q-binomial theorem (2.6).

Proposition 213. The canonical Continuous q-Laguerre moments have the representation

µn =
2π

(q, qα+1; q)∞

n

∑
m=0

(
−2q

1
2 α+ 1

4

)−m
q−(

m
2 )Em(x0, . . . , xn−1)(qα+1; q)m, (5.221)

where the numbers xk are given by (5.39).

Proof. The proof is similar to the proof of (5.167) where we take a = q
1
2 α+ 1

4 .

Proposition 214. The canonical Continuous q-Laguerre moments have the representation

µn =
2π

(q, qα+1; q)∞

n

∑
k=0

k

∑
j=0

qkq−j2 q−(α+
1
2 )j(qj+ α

2 +
1
4 + q−j− α

2−
1
4 )k(qα+1; q)k

(q, q2j+α+ 3
2 ; q)k−j(q, q−2j−α− 3

2 ; q)j
. (5.222)

Proof. The result is obtained using relations (2.21), (2.23), (5.43) with a = q
1
2 α+ 1

2 and (5.219).

The Continuous q-Hermite polynomials

The continuous q-Hermite polynomials Hn(x|q) fulfil the following orthogonality relation
[30, P. 541]

1
2π

∫ 1

−1

w(x|q)√
1− x2

Hm(x|q)Hn(x|q)dx =
δmn

(qn+1; q)∞
, (5.223)

where
w(x|q) =

∣∣∣(e2iθ ; q
)

∞

∣∣∣2 = h(x, 1)h(x,−1)h(x, q
1
2 )h(x,−q

1
2 ),

with

h(x, a) =
∞

∏
k=0

(
1− 2axqk + a2q2k

)
=
(

aeiθ , ae−iθ ; q
)

∞
, x = cos θ.

The canonical moments of the Continuous q-Hermite polynomials are given for every non-
negative integer n by

µn =
∫ 1

−1

xnw(x|q)√
1− x2

dx =
∫ π

0
(cos θ)n(e2iθ , e−2iθ ; q)∞dθ. (5.224)
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Proposition 215 (See Lemma 13.1.4 in [25]). The following relation is valid

∫ π

0
e2ijθ(e2iθ , e−2iθ ; q)∞dθ =

π(−1)j

(q; q)∞
(1 + qj)qj(j−1)/2. (5.225)

Proof. Let

Ij =
∫ π

0
e2ijθ(e2iθ , e−2iθ ; q)∞dθ.

The Jacobi triple product identity (2.10) gives

Ij =
∫ π

0
e2ijθ(1− e2iθ)(qe2iθ , e−2iθ ; q)∞dθ

=
∫ π

0

e2ijθ(1− e2iθ)

(q; q)∞

∞

∑
n=−∞

(−1)nqn(n+1)/2e2inθdθ

=
∞

∑
n=−∞

(−1)nqn(n+1)/2

2(q; q)∞

∫ π

−π
(1− eiθ)ei(j+n)θdθ.

The result follows from the orthogonality of the trigonometric functions on [−π; π].

Proposition 216. The canonical Continuous q-Hermite moments have the following representation

µ2n+1 = 0, µ2n =
π(−1)n

(q; q)∞

n

∑
k=0

(−1)k
(

2n
k

)
(1 + qn−k)q

(n−k)(n−k−1)
2 , n = 0, 1, 2, · · · (5.226)

Proof. Note that µn = 0 when n is odd. We start by writing

cosn θ =

(
eiθ + e−iθ

2

)n

=
1
2n

n

∑
k=0

(
n
k

)
eikθe−i(n−k)θ

=
1
2n

n

∑
k=0

(
n
k

)
ei(2k−n)

=
1
2n

n

∑
k=0

(
n
k

)
ei(n−2k).

Next, we use the the relation (5.225) to get:

µ2n =
∫ π

0
(cos θ)2n(e2iθ , e−2iθ ; q)∞dθ

=
1

22n

2n

∑
k=0

(
2n
k

) ∫ π

0
e2i(n−k)(e2iθ , e−2iθ ; q)∞dθ

=
π(−1)n

(q; q)∞

n

∑
k=0

(−1)k
(

2n
k

)
(1 + qn−k)q

(n−k)(n−k−1)
2 .



Conclusion and Perspectives

We have provided in this thesis representations for the moments (canonical and general-
ized) of all classical orthogonal polynomials listed in [30]. Next, interesting generating
functions for those moments are given. In order to obtain those moments, we have stated
the inversion formulas (see Chapter 4) for all those families, also, we have developed many
connection formulas between specific polynomial bases.

Some of those moments (canonical and generalized) were already known, however as men-
tioned in the introduction, many of them appear for the first time.

Note that only the classical orthogonal polynomials listed in [30] have been studied. There
are other classes of orthogonal polynomials that are obtained by a modification of the three
term recurrence relations of the classical orthogonal polynomials listed in [30], we have for
example [16]: the associated orthogonal polynomials, the co-recursive and the generalized
co-recursive orthogonal polynomials, the co-recursive associated and the generalized co-
recursive associated orthogonal polynomials, the co-dilated and the generalized co-dilated
orthogonal polynomials, the generalized co-modified orthogonal polynomials. The next
step of this work could consist to find the corresponding moments for these orthogonal
polynomials.
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