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Chapter 1

Introduction

1.1 Historical introduction

1.1.1 The fourth-order differential and difference equation

Consider the family of monic polynomials { P, },ecar, orthogonal with respect to a linear func-
tional £ (see (2.5)). It satisfies a three-term recurrence relation (which we denote TTRR)
[Chihara, 1978]

- Bn)Pn('r) - ’ann—l(x)7 n 2 ]-7

= (
17P1(x):$_607

Poyi(z)
Py(z) =

where 3, and ~, are complex numbers with v, #0 Vn € N.
The rth associated of {P,}nen is the family of monic polynomials {Pr(f)}ne ~, defined by
the previous relation in which 3,, v, and P, are replaced by Bp4r, Yn+r and PT(LT), respectively,

{ Pézr)l(m) = (v — Bntr) P,(lr)(:c) - 'yn+TP,§T;)1(:C), n>1,
P ) =1,P"(z) =z — B,

The rth associated of the regular linear functional £ is, by Favard Theorem [Favard, 1935],

the unique linear functional £(") with respect to which {Pff)}ne A 18 orthogonal and satisfices
<‘C(T)’ 1> = Yr-

Let {P,,}nen be a family of polynomials, orthogonal with respect to the linear functional £
and S(L), the Stieltjes function of £ given by

S(E)(w) = S0) =~ 0

n>0

where M,, is the moment of order n of £: M,, = (L, z").
When S satisfies a Riccati differential equation

¢(2)S(z)" = B(z) S(z)* + A(z) S(z) + D(x),

where ¢, A, B and D are polynomials, then {P,},cn are called Laguerre-Hahn orthogonal
polynomials [Magnus, 1984|, [Dzoumba, 1985]. It is well-known [Magnus, 1984] that these
polynomials satisfy a fourth-order linear differential equation.
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Classical and semi-classical (continuous) orthogonal polynnomials are particular cases of
Laguerre-Hahn orthogonal polynomials, and they satisfy a second-order linear differential equa-
tion.

The rth associated Laguerre-Hahn orthogonal polynomials are Laguerre-Hahn orthogonal
polynomials, therefore they satisfy a fourth-order linear differential equation.

The search for these differential equations has been very intensive during the past few years.
For r = 1, Grosjean (1985, 1986) found them for Legendre and Jacobi families, and Ronveaux
(1988), has given a single equation valid for the first associated classical (continuous) orthogonal
polynomials.

For an arbitrary r, computer algebra packages have been very useful due to the heavy
computations involved. In this context we mention that Wimp (1987) has used the MACSYMA
[ref] package to construct the fourth-order differential equations satisfied by the rth associated
Jacobi polynomials (r in this case is integer or not). Belmehdi and Ronveaux (1989) devised
a REDUCE program in order to obtain these differential equations for the associated classical
orthogonal polynomials of integer (and fixed) order r.

Differential equations valid for the rth associated Laguerre-Hahn orthogonal polynomials
and for any integer r were given by Belmehdi et al. (1991) using the properties of the Stieltjes
function of the associated functional (see [Magnus, 1984], [Dzoumba, 1985]). Then, followed some
papers giving, in a simple way, the single fourth-order differential equation for the associated
classical orthogonal polynomials of any integer order r (see for instance [Ronveaux, 1991], [Zarzo
et al., 1993], [Lewanowicz, 1995]).

As it was the case for the associated orthogonal polynomial of a continuous variable, many
works have been done to give the fourth-order difference equation satisfied by the associated
classical orthogonal polynomials of a discrete variable.

Atakishiyev et al. (1996) have derived the relation (already known for classical continuous
orthogonal polynomials [Ronveaux, 1988]) giving the link between the first associated classical
discrete orthogonal polynomials and the starting polynomials, and used this relation to prove
that the first associated of the classical discrete orthogonal polynomials are solutions of a fourth-
order linear difference equation which can be factored as product of two second-order linear
difference equations.

Using the explicit representation of the associated Meixner polynomials (with the real as-
sociation parameter r > 0) in terms of hypergeometric functions, Letessier et al.(1996) gave
the fourth-order difference equation satisfied by the rth associated Meixner polynomials and
deduced by an appropriate limit process the difference equation for the rth associated Charlier,
Laguerre and Hermite polynomials.

This equation, thanks to the computer algebra system MATHEMATICA [Wolfram, 1993|
and the relation proved in [Atakishiyev et al., 1996] is given explicitly for the first associated of
Charlier, Meixner, Krawtchouk and Hahn polynomials [Ronveaux et al., 1998a].

The question one can ask is whether it is possible to give one fourth-order difference equa-
tion valid for the rth associated Laguerre-Hahn orthogonal polynomials including orthogonal
polynomials of continuous, discrete variable and also ¢-polynomials? The answer is yes and the
first part of this dissertation aimed at answering this question.

1.1.2 The non-linear difference equations

Here, we consider that the polynomials {P,},cnr, orthogonal with respect the semi-classical
linear functional £ is orthonormal ((£, P,P,) =1 Vn € N), thus, satisfying

Py, =ani1 Poy1 +by P+ anPyq, n >0, ag P-1 =0,
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where a, and b, are complex numbers with a,, # 0.

The coefficients a,, and b,, can be given explicitly for classical (continuous) orthogonal poly-
nomials in terms of the polynomials ¢ and 1 appearing in the Pearson differential equation,
%((ﬁﬁ) = L, satisfied by the linear functional £ with respect to which { P, },ear is orthogonal
(see for instance [Nikiforov et al., 1983] [Chihara, 1978, [Szego, 1939], [Lesky, 1985], [Koepf et
al., 1996]...).

These coefficients are also known for classical orthogonal polynomials of a discrete variable
and for g-classical orthogonal polynomials ([Nikiforov et al., 1991], [Szegt, 1939], [Lesky, 1985],
[Koepf et al., 1996], [Medem, 1996]...).

When the polynomials are semi-classical (instead of classical), except for some particular
cases, it is difficult to give, in general situation, the coefficients a,, and b,,.

The properties of the coefficients a,, and b,, as well as those of the polynomials P,, have been
investigated by many authors.

e Firstly, we cite for example Laguerre, who, in 1885, explored the properties of the orthog-
onal polynomials related to the weight function p satisfying

where R(z) is a rational function of z. He also studied Padé approximations and continued
fraction expansions of functions satisfying a differential equation of the form

W (a)f'(x) =2V (2)f(z) + Ulz),

where U, V and W are polynomials; and recovered orthogonal polynomials P,, as denomi-
nators of the approximants of f. He succeeded in showing that the orthogonal polynomials
P, satisfy the remarkable differential equation,

Wo,y" +[2V+W)e, -Welly + K,y=0,

where O,, and K,, are polynomials with bounded degrees, whose coeflicients are solutions
of certain (usually) non-linear equations which provide non-linear equations for a,, and b,
(see [Magnus, 1991] for more details about Laguerre equations).

e Secondly, we cite the works by Freud (see [Freud, 1976, 1977, 1986]) who investigated
the asymptotic behaviour of the recurrence coefficients for special families of measures by
a technique producing an infinite system of (usually non-linear) equations (called Freud
equations) for these coefficients (see [Magnus, 1991] for more details about Freud equa-
tions). For example, if the polynomials P, are related to the weight p(z) = exp(—xz*) on
the whole real line, then the Freud equations are reduced to [Nevai, 1983]

4“%(“314—1 —l—a%—l—a%_l) =n,n>2 ay=0, a} = (/)
b, =0, n >0.

It should be noted that other people found similar non-linear equations and identities (see for
instance [Laguerre, 1885], [Perron, 1929], [Shohat, 1939], see also [Nevai et al., 1986], [Magnus,
1991] for more details), but these authors did not study their solutions when no simple form
could be found.
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Using the Freud equations, Freud (1976) gave a conjecture about the asymptotic behaviour
of recurrence coefficients when the polynomials P, are related to the weight function
p(x) = |z|° exp(—|z|*) stating that :

Let a, and b, be the coefficients of the following recurrence relation

TPy =ani1 Poy1 +bp Py +anPy1, n >0, ag P-1 =0,

satisfied by the polynomials { P, },,cxr, orthogonal with respect to the weight p(z) = |x|* exp(—|z|%),
£ > —1, a > 0, on the whole real line. Then a,, and b, obey:

1y - 2

lim Tla/2)"

n
=0 [n/C(a)]t/e
Important investigations have been devoted to the proof of Freud conjecture as well as to the
study of the asymptotics for {P,},cn, the distribution of zeros, the sharp estimates of the
extreme zeros ... ([Chihara, 1978], [Freud, 1976, 1977, 1986|, [Lubinsky, 1984, 1985a, 1985b],
[Lubinsky et al. 1986, 1988] , [Magnus, 1984, 1985a, 1985b, 1986], [Bonan, 1984], [M&té et al.,
1985], [Mhaskar et al., 1984a, 1984b], [Nevai, 1973, 1983, 1984a, 1984b, 1985, 1986], [Sheen,
1984] ..., for more details see [Magnus, 1984, 1985a, 1985b, 1986]).

Later, Belmehdi and Ronveaux (1994) gave a systematic way to obtain non-linear equations
for the recurrence coefficients, valid for any semi-classical orthogonal polynomial of a continuous
variable. In fact, given a semi-classical linear functional £ satisfying %(gbﬁ) = L, where ¢
and v are polynomials, they were able to provide two non-linear equations for the coefficients
ap, by of the recurrence relation satisfied by the polynomials { P, },en associated to L, called
Laguerre-Freud equations (denomination borrowed from Magnus [Magnus 1985b, 1986]).

In the second part of this dissertation, we give a generalisation of the previous results [Belme-
hdi et al., 1994] by giving the system of two non-linear difference equations satisfied by the
recurrence coefficients; equations which are valid for semi-classical orthogonal polynomials of a
continuous and discrete variable, and also for g-semi-classical orthogonal polynomials (both of
class 1).

1.2 Summary of the main results

1.2.1 The fourth-order difference equation

1. Using the result in [Suslov, 1989], we prove the following:

Consider £ a regular linear functional satisfying Dy(¢L) = ¥ L, where 1 is a first degree
polynomial and ¢ a polynomial of degree at most two. D, is the Hahn operator defined by

flgz) — f(=)

D fl=) = (¢—Da

) x;é()’ Q7£07 Q#laqu(o) :f/(O)

Then, if { P, }nen is the monic family of polynomials, orthogonal with respect to £, then,
the first associated PY(LU of P, satisfies the fourth-order difference equation

k% Q;,n—l (1)
201 30— 1)2 42 [&-1(%@)} =0.
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Operators Q3%,_; and Q3,,_, are given by:

D1 = 020 — (L+a)da) + Yyt — Mo t))Gg + (¢ + v t) Iy,
s = (0@ + e ts)ld® AL+ (14 q) ) + Y t2lG)
—[4° A1 (d(2) + V(2 t2) + A3 (d(2) + ¢ A1)] G,
+q o) [0 Az + (14 q) dz) + ¥ t3)] Za,

Ao = —[nl Y +n— 1]% iq}, ]y = qq"_—11’ q#1, n>0, GP(x)=P(qx) VP eP,
biy = o(q'x), Yo =v(d'x), ti=t(dx), tx)=(¢— 1,

(14 q)dy) + Yy ti — Anpo tjz-

&
[

This result [Foupouagnigni et al., 1998d], is used to deduce the factored form of the differ-
ence equations satisfied by the first associated classical orthogonal polynomials of a discrete
variable [Ronveaux et al., 1998a] and also the factored form of the differential equation sat-
isfied by the first associated classical continuous orthogonal polynomials [Ronveaux, 1988].
We have used, also, this result to prove that under certain conditions on the parameters,
the first associated of little and big g-Jacobi polynomials are still classical. Moreover, we
deduce that if p,(z;a,b|q) (respectively P, (z;a,b,c;q)) denotes the monic little g-Jacobi
polynomials (respectively monic big ¢g-Jacobi polynomials), then they are related with their
respective first associated by:

1 z 1

p%”(w;a,q—GIQ) = d"¢"pul i ghaqla),
1 x 1
Pr(zl)(fv;a,qa’,aq) = a”Pn(E;a,aq,cq;q)'

2. We prove that the rth associated D,-Laguerre-Hahn orthogonal polynomials satisfy the
single fourth-order difference equation [Foupouagnigni et al., 1998e]

4
Z Ii(n,rq, iU)DZ P,Sr) =0,
§=0
where Ij(n,r,q,x) are polynomials in .

We use suitable change of variable and limit processes to extend the above result to the rth
associated Laguerre-Hahn orthogonal polynomials of a continuous and a discrete variable,
respectively [Foupouagnigni et al 1998b)].

We apply this result to compute explicitly the coefficients I;(n, r, g, x) for the rth associated
classical orthogonal polynomials (including classical continuous, classical discrete and ¢-
classical polynomials) [Foupouagnigni et al., 1998b, 1998c, 1998e].

1.2.2 The non-linear recurrence equations

We prove the following theorem (see 8.1) which is the main result of the second part of this
Dissertation.
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Theorem

The coefficients 3,, and =, of the three-term recurrence relation
Pn—i—l(x) = (SL‘ - ﬂn)Pn(x) - 'YnPn—l(x)a n>1, PO(-T) =1, Pl(x) =z — [,

satisfied by the Dj,-semi-classical monic orthogonal polynomials of class at most one, { Py, }nen,
can be computed recursively from the two non-linear equations

(2 + [271]%%)(% + Y1) = F1(g; 80, -+ Bns 115+ ),
(¢2 + [QTL + 1] %)ﬁnJrl'}/nJrl = F2(Q;50a ooy B Y1, 7'7n+1)~

1
q

3 . 2 )
¢; and 9; are the coefficients of the polynomials ¢ and ¢ (¢(x) = > ¢a?, Y(x) = > jal)
§=0 §=0

appearing in the Dy-Pearson equation, Dy(¢L) = ¥ L, satisfied by the regular linear functional
L. F is a polynomial of 2n+ 1 variables and of degree 2; and F3 a polynomial of 2n+ 2 variables
and of degree 3, with the initial conditions

Bo = M, a1 = —(0o).

(£,1)

We use suitable change of variable and limit processes to extend the previous theorem to
the D and A-semi-classical orthogonal polynomials of class at most one [Foupouagnigni et al.,
1998a]. We then give the Laguerre-Freud equations for the generalised Charlier and generalised
Meixner of class one and use these equations (numerical and symbolic computation with Maple
V Release 4) to give a conjecture about the asymptotic behaviour of the coefficients /3, and ~,
of the generalised Charlier and generalised Meixner polynomials of class one:

Conjecture

The coefficients 3, and ~, of the three-term recurrence relation satisfied by the monic generalised
Meixner polynomials of class one obey:

1 —1 —1 —1
lim <ﬂn +Mn7,u(061—|-0[2 )) =0, lim (’yn,u(n—i—al )(n + az )) =0,

and those of the three-term recurrence relation satisfied by the monic generalised Charlier poly-
nomials of class one obey:

lim (8, —n) =0, lim (y, —pn)=0.

n—oo n—oo

1.3 Outline of dissertation

In Chapter 2 we give some results and definitions on orthogonal and associated orthogonal
polynomials. We also prove some characterisation theorems for classical orthogonal polynomials.

Chapter 3 gives some useful properties of the operators A,, and Dy, and the proof of
some characterisation theorems for D, .-classical and D, ,-semi-classical orthogonal polynomi-
als; characterisation theorem which are valid (by limit processes) for the operators %, D, and
A.

Chapter 4 is devoted to the study of the D, -Riccati difference equation satisfied by the
Stieltjes function of the given associated linear functional. In particular, we prove that the affine
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D, .-Laguerre-Hahn orthogonal polynomials are the D, ,-semi-classical orthogonal polynomials
and conversely. In this chapter, it is also proved that the D, -Laguerre-Hahn orthogonal poly-
nomials can be obtained from the D,-Laguerre-Hahn orthogonal polynomials by a change of
variable.

In Chapter 5 we give the factored form of the fourth-order difference equation satisfied by
the first associated Dy-classical orthogonal polynomials and we deduce the difference equation
for classical orthogonal polynomials of continuous and of discrete variable. We also consider
the situations for which the first associated of the little and big ¢-Jacobi polynomials are still
classical.

Chapter 6 describes the method used to obtain, for the general situation, the single fourth-
order difference equation satisfied by the rth associated D, D, and A-Laguerre-Hahn orthogonal
polynomials. The coefficients of the fourth-order difference equation for classical situations are
also given explicitly.

Chapter 7 gives useful coefficients for classical orthogonal polynomials like 3,, vy, 15,1 and
T 2.

Chapter 8 presents the method used to obtain the two non-linear equations for the coefficients
of the TTRR satisfied by the D,-semi-classical orthogonal polynomials of class at most one. We
also show how these equations can be used to obtain the two non-linear equations for the
coefficients of the TTRR satisfied by the D and A-semi-classical orthogonal polynomials of
class at most one. The conjecture about the asymptotic behaviour of the coefficients of the
TTRR satisfied by the generalised Charlier and the generalised Meixner polynomials of class
one (conjecture obtained thanks to the two-non-linear equations) is also given.

The appendices I, IT and III contain the data for classical orthogonal polynomials as well as
the results on the fourth-order difference equations for classical situations.

It should be mentioned that:

e Chapter 2, devoted to the preliminaries, is based on [Chihara, 1978], [Guerfi, 1988], [Belme-
hdi, 1990a], [Salto, 1995] and [Medem, 1996].

e Chapters 3 and 4 generalise to the operator D, certain results given in the above men-
tioned references.

e The original results obtained in the framework of this thesis are presented in chapters 5,
6 and 8.



Chapter 2

Preliminaries

2.0.1 The notion of topology

We recall the notion of topology on polynomials and linear functional vector spaces. These
notions have been defined in [Treves, 1967], [Maroni, 1985, 1988], [Guerfi, 1988] and [Belmehdi,
1990a]. For these preliminaries, we shall exploit the works by Maroni [Maroni, 1988], Guerfi
[Guerfi, 1988] and [Belmehdi, 1990a].

Let P be a vector space of polynomials in one real variable with complex coefficients, endowed
with the strict inductive limit topology of the spaces P,. P, C P is the vector space of
polynomials of degree at most n. It satisfies

Pn C Pat1, n >0, P= | Pa,

n=0

and is endowed with its natural topology which makes it a Banach space.
Let P’ be the dual of P, equiped with its topology which is defined by the system of semi-
norms:
|I£]]5 = sup [ M|,
k<n

where M}, denotes the moments of the functional £ with respect to the sequence {z"},,: M} =
(L), = (L,z%). P and P’ are Fréchet spaces.
We consider V the vector space generated by the elements {ﬂDné}n (D = &) with its

n!

inductive limit topology. ¢ denotes the Dirac measure: (4, f) = f(0), f € C°(R).
Let F be the linear application:

F:V — P

n —1) . n .
d= E]dj%pﬂa — F(d) = z;]djxﬂ. (2.1)
Jj= Jj=

F verifies the following properties:
i) F is an isomorphism defined on V into P.
ii) The transpose ‘F of F, is an isomorphism defined on P’ into V'.
iii) *F =F on P’
Thus,
(F(L),d) = (L, F(d)),VL € P', Vd € V. (2.2)

15
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Since {%D”(S}n forms a basis of P’ [Maroni, 1988], that is, any element £ of P’ can be
expressed as

£=5 ), " pns, (2.3)

=0 n!
it follows that

F(L) =Y (L)na™ (2.4)

n>0

V’ is therefore the vector space of formal series.

Remark 2.1 Let L(P,P) (respectively L(P’,P’)) be the vector space of continuous linear
applications defined on P into P (respectively on P’ into P'). The transpose of any element
of L(P,P) is an element of L(P',P’). We shall use this process to define certain elements
of L(P',P') basically by transposing those of L(P,P).

2.0.2 Notations

We understand by linear functional any element £ of P’ and denote by (L, P) the action of
L € P on P e P. We also denote by R the field of real numbers, C the field of complex
numbers and by A the set of integers. Henceforth, we will use interchangeably deg(¢) and deg
¢ to denote the degree of the polynomial ¢. The operator D represents the usual derivative
operator (D = %) while the Kronecker symbol ¢, ; is defined by

5 1 if n=j,
Y0 n#g

2.1 Orthogonality and quasi-orthogonality

2.1.1 Orthogonal polynomials

Definition 2.1 A set of polynomials { P, }nen is said to be an orthogonal polynomial sequence
(OPS) associated to the linear functional L € P if

deg(P,) = n, V nenN,
(L,P,Pn)=0 VY mmneN, m#n, (2.5)
(L, P,P,) #0 V neN.

Definition 2.2 A polynomial P is said to be monic if its leading coefficient is equal to one
(P = 2™ + b2t 4+ ...); and a monic polynomial family is a one in which any element is

monic.

Definition 2.3 A linear functional L € P’ is said to be regular if there exists an OPS associated
to L.

Remark 2.2 We state the following properties.

1. If L is a regular linear functional, then there exists a unique monic (OPS) associated to

L.

2. If { P, }nen is orthogonal with respect to L, then {Pp}nen forms a basis of P.
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3. Any polynomial family { P, }nen with deg(P,) =n  Vn € N forms a basis of P.

Remark 2.3 If {P,}nen is a set of polynomials with deg(P,) =n Vn € N and L a given
linear functional then the following properties are equivalent:

i) (L,Py,Pyn)=0 VmneN,n#mand (L, P,P,)#0 VneN.
it) (L,2™P,) =0 VYmneN,0<m<nand (L,z"P,) #0 VneN.

The following theorem, proved in [Chihara, 1978], gives a necessary and sufficient condition for
the regularity of a given linear functional.

Theorem 2.1 (Chihara, 1978) Let L be a linear functional and M, the moment of order n
of L defined by M, = (L, z").
A necessary and sufficient condition for the existence of an orthogonal polynomial sequence
for L is
A, #0 VneN,

where the determinant A, is defined by

My My ... M, M,
A, = det(Mj+k) 0<j,k<n =
Mnfl Mn s MQn M2n71
Mn Mn+1 ces Mn MQn

Definition 2.4 (Chihara, 1978) A linear functional L is called positive-definite if
(L,m(x)) > 0 for every polynomial w that is not identically zero and is non-negative for all real
x.

Theorem 2.2 (Chihara, 1978) The linear functional L is positive-definite if and only if its
moments are all real and A,, >0 Vn e N.

The following theorem, taken from [Belmehdi, 1990a] gives in a more general situation some
characterisations of a regular linear functional.

Theorem 2.3 (Maroni, 1987, Belmehdi, 1990a) Let L be any linear functional; then the
following properties are equivalent:

i) The linear functional L is regular.

i1) There exists a polynomial sequence { Py }nen (with deg(P,) =n  Vn € N) such that

det((ﬁ, P] Pk))ogj,kgn #0 Vne N.

iii) For any polynomial sequence {Qn}nen (with deg(Qn) =n  VYn eN),

det((£,Q; Qr))o<jk<n #0 VneN.
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Theorem 2.4 (Szegd, 1939, Belmehdi, 1990a) Given a reqular linear functional L, the monic
orthogonal polynomials (O.P.) associated to L are given by

(L, QoQo) (£,Q0Q1) ... (L£,Q0Qn-1) (L, Q0Qn)
) (L, Q1Qo0) (L,1Q1) ... (L,Q1Qn-1) (L, Q1Qn)
Py(r) = A~ : : : : : (2.6)
L, Quo1Qo) (L, Quo1Q1) oo {L£,Quo1Qn1) (L, Qu1Qn)
QO Ql anl Qn

where {Qn}nen is any monic polynomial family (with deg(Qn) =n Vn € N); and,

A} =det((£,Q; Qk)) o<jk<n, n >0,

with the convention A* | = 1.

2.1.2 Quasi-orthogonal polynomials

The notion of quasi-orthogonal polynomials was introduced in [Riesz, 1923] and extended by
Maroni and Van Rossum (for more information see [Belmehdi, 1990a]).

Definition 2.5 (Belmehdi, 1990a) Let £ be any linear functional and { P, }nen a polynomial
family with deg(P,) = n  Vn € N. {P,}nen is said to be quasi-orthogonal of order s with
respect to L if

(L, PyPy) =0, |In—m|>s,
dm E./\/, <£>Pmpm+s> 5&0-

{Py}nen is said to be strictly quasi-orthogonal with respect to L if

(L, P,Py) =0, |n—m|>s,
(L, Py Pris) 20 Yme N,

Remark 2.4 (Belmehdi, 1990a) 1. Conditions (2.7) are equivalent to

<£7$um+t+s> = O, Vm € N Vit Z 1,
Im EN, (L,2™P,.s) #0,

while (2.8) is equivalent to

m — >
{@i Patirs) =0, ¥meN, W1, (2.10)

(L, 2™ Prs) 20, VmeN.

2. 1t follows from the definition 2.5 that if {Py}nen is orthogonal with respect to L, then
{Pp}nen is strictly quasi-orthogonal of class s = 0 with respect to L(see also [Shohat,
1937]).

3. Notice that quasi-orthogonality of class s = 1 was investigated in [Dickinson, 1961] and
that the definition 2.5 was also given in [Chihara, 1957] and [Ronveauz, 1979] but without
the second condition: 3m € N, (L, Py Prys) # 0.
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2.1.3 Other definitions

Definition 2.6 Given a polynomial f € P and a linear functional L € P’, the product of f and
L, fL, is defined as

f£L : P=C
(fL,Py = (L,fP) VYPeP.

Given f an element of P, the application £ — fL belongs to L(P’,P’) and is the transpose of
the following element of L(P,P): P — fP.

Definition 2.7 (Maroni,1988) Given a polynomial g € P and a linear functional L € P’, the
product of L and g, Lg, is a polynomial defined as

n

Lg(x) = Z Z g (L, aF )l (2.11)

J=0k=j

where

n
g(z) =>_ gjal.
=0

Given a functional £, the application P — LP belongs to L(P,P). By transposition, we defi