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ences Physiques pour l’hospitalité, le soutien financier et les sacrifices consentis tout au long de ma
formation.
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Chapter 1

Introduction

1.1 Historical introduction

1.1.1 The fourth-order differential and difference equation

Consider the family of monic polynomials {Pn}n∈N , orthogonal with respect to a linear func-
tional L (see (2.5)). It satisfies a three-term recurrence relation (which we denote TTRR)
[Chihara, 1978]

{
Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x), n ≥ 1,
P0(x) = 1, P1(x) = x− β0,

where βn and γn are complex numbers with γn 6= 0 ∀n ∈ N .
The rth associated of {Pn}n∈N is the family of monic polynomials {P (r)

n }n∈N , defined by
the previous relation in which βn, γn and Pn are replaced by βn+r, γn+r and P (r)

n , respectively,{
P

(r)
n+1(x) = (x− βn+r)P

(r)
n (x)− γn+rP

(r)
n−1(x), n ≥ 1,

P
(r)
0 (x) = 1, P (r)

1 (x) = x− βr.

The rth associated of the regular linear functional L is, by Favard Theorem [Favard, 1935],
the unique linear functional L(r) with respect to which {P (r)

n }n∈N is orthogonal and satisfices
〈L(r), 1〉 = γr.

Let {Pn}n∈N be a family of polynomials, orthogonal with respect to the linear functional L
and S(L), the Stieltjes function of L given by

S(L)(x) = S(x) = −
∑
n≥0

Mn

xn+1
,

where Mn is the moment of order n of L: Mn = 〈L, xn〉.
When S satisfies a Riccati differential equation

φ(x)S(x)′ = B(x)S(x)2 +A(x)S(x) +D(x),

where φ, A, B and D are polynomials, then {Pn}n∈N are called Laguerre-Hahn orthogonal
polynomials [Magnus, 1984], [Dzoumba, 1985]. It is well-known [Magnus, 1984] that these
polynomials satisfy a fourth-order linear differential equation.

8



1.1. Historical introduction 9

Classical and semi-classical (continuous) orthogonal polynnomials are particular cases of
Laguerre-Hahn orthogonal polynomials, and they satisfy a second-order linear differential equa-
tion.

The rth associated Laguerre-Hahn orthogonal polynomials are Laguerre-Hahn orthogonal
polynomials, therefore they satisfy a fourth-order linear differential equation.

The search for these differential equations has been very intensive during the past few years.
For r = 1, Grosjean (1985, 1986) found them for Legendre and Jacobi families, and Ronveaux
(1988), has given a single equation valid for the first associated classical (continuous) orthogonal
polynomials.

For an arbitrary r, computer algebra packages have been very useful due to the heavy
computations involved. In this context we mention that Wimp (1987) has used the MACSYMA
[ref] package to construct the fourth-order differential equations satisfied by the rth associated
Jacobi polynomials (r in this case is integer or not). Belmehdi and Ronveaux (1989) devised
a REDUCE program in order to obtain these differential equations for the associated classical
orthogonal polynomials of integer (and fixed) order r.

Differential equations valid for the rth associated Laguerre-Hahn orthogonal polynomials
and for any integer r were given by Belmehdi et al. (1991) using the properties of the Stieltjes
function of the associated functional (see [Magnus, 1984], [Dzoumba, 1985]). Then, followed some
papers giving, in a simple way, the single fourth-order differential equation for the associated
classical orthogonal polynomials of any integer order r (see for instance [Ronveaux, 1991], [Zarzo
et al., 1993], [Lewanowicz, 1995]).

As it was the case for the associated orthogonal polynomial of a continuous variable, many
works have been done to give the fourth-order difference equation satisfied by the associated
classical orthogonal polynomials of a discrete variable.

Atakishiyev et al. (1996) have derived the relation (already known for classical continuous
orthogonal polynomials [Ronveaux, 1988]) giving the link between the first associated classical
discrete orthogonal polynomials and the starting polynomials, and used this relation to prove
that the first associated of the classical discrete orthogonal polynomials are solutions of a fourth-
order linear difference equation which can be factored as product of two second-order linear
difference equations.

Using the explicit representation of the associated Meixner polynomials (with the real as-
sociation parameter r ≥ 0) in terms of hypergeometric functions, Letessier et al.(1996) gave
the fourth-order difference equation satisfied by the rth associated Meixner polynomials and
deduced by an appropriate limit process the difference equation for the rth associated Charlier,
Laguerre and Hermite polynomials.

This equation, thanks to the computer algebra system MATHEMATICA [Wolfram, 1993]
and the relation proved in [Atakishiyev et al., 1996] is given explicitly for the first associated of
Charlier, Meixner, Krawtchouk and Hahn polynomials [Ronveaux et al., 1998a].

The question one can ask is whether it is possible to give one fourth-order difference equa-
tion valid for the rth associated Laguerre-Hahn orthogonal polynomials including orthogonal
polynomials of continuous, discrete variable and also q-polynomials? The answer is yes and the
first part of this dissertation aimed at answering this question.

1.1.2 The non-linear difference equations

Here, we consider that the polynomials {Pn}n∈N , orthogonal with respect the semi-classical
linear functional L is orthonormal (〈L, PnPn〉 = 1 ∀n ∈ N ), thus, satisfying

xPn = an+1 Pn+1 + bn Pn + anPn−1, n ≥ 0, a0 P−1 = 0,
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where an and bn are complex numbers with an 6= 0.
The coefficients an and bn can be given explicitly for classical (continuous) orthogonal poly-

nomials in terms of the polynomials φ and ψ appearing in the Pearson differential equation,
d
dx(φL) = ψL, satisfied by the linear functional L with respect to which {Pn}n∈N is orthogonal
(see for instance [Nikiforov et al., 1983] [Chihara, 1978], [Szegö, 1939], [Lesky, 1985], [Koepf et
al., 1996]. . . ).

These coefficients are also known for classical orthogonal polynomials of a discrete variable
and for q-classical orthogonal polynomials ([Nikiforov et al., 1991], [Szegö, 1939], [Lesky, 1985],
[Koepf et al., 1996], [Medem, 1996]. . . ).

When the polynomials are semi-classical (instead of classical), except for some particular
cases, it is difficult to give, in general situation, the coefficients an and bn.

The properties of the coefficients an and bn as well as those of the polynomials Pn have been
investigated by many authors.

• Firstly, we cite for example Laguerre, who, in 1885, explored the properties of the orthog-
onal polynomials related to the weight function ρ satisfying

ρ′(x)
ρ(x)

= R(x),

where R(x) is a rational function of x. He also studied Padé approximations and continued
fraction expansions of functions satisfying a differential equation of the form

W (x)f ′(x) = 2V (x)f(x) + U(x),

where U, V and W are polynomials; and recovered orthogonal polynomials Pn as denomi-
nators of the approximants of f . He succeeded in showing that the orthogonal polynomials
Pn satisfy the remarkable differential equation,

WΘn y
′′ + [(2V +W ′)Θn −WΘ′n] y′ +Kn y = 0,

where Θn and Kn are polynomials with bounded degrees, whose coefficients are solutions
of certain (usually) non-linear equations which provide non-linear equations for an and bn
(see [Magnus, 1991] for more details about Laguerre equations).

• Secondly, we cite the works by Freud (see [Freud, 1976, 1977, 1986]) who investigated
the asymptotic behaviour of the recurrence coefficients for special families of measures by
a technique producing an infinite system of (usually non-linear) equations (called Freud
equations) for these coefficients (see [Magnus, 1991] for more details about Freud equa-
tions). For example, if the polynomials Pn are related to the weight ρ(x) = exp(−x4) on
the whole real line, then the Freud equations are reduced to [Nevai, 1983]{

4a2
n(a2

n+1 + a2
n + a2

n−1) = n, n ≥ 2, a0 = 0, a2
1 = Γ(3/4)

Γ(1/4) ,

bn = 0, n ≥ 0.

It should be noted that other people found similar non-linear equations and identities (see for
instance [Laguerre, 1885], [Perron, 1929], [Shohat, 1939], see also [Nevai et al., 1986], [Magnus,
1991] for more details), but these authors did not study their solutions when no simple form
could be found.
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Using the Freud equations, Freud (1976) gave a conjecture about the asymptotic behaviour
of recurrence coefficients when the polynomials Pn are related to the weight function
ρ(x) = |x|` exp(−|x|α) stating that :

Let an and bn be the coefficients of the following recurrence relation

xPn = an+1 Pn+1 + bn Pn + anPn−1, n ≥ 0, a0 P−1 = 0,

satisfied by the polynomials {Pn}n∈N , orthogonal with respect to the weight ρ(x) = |x|` exp(−|x|α),
` > −1, α > 0, on the whole real line. Then an and bn obey:

lim
n→∞

an
[n/C(α)]1/α

= 1, C(α) =
2Γ(α)

Γ(α/2)2
.

Important investigations have been devoted to the proof of Freud conjecture as well as to the
study of the asymptotics for {Pn}n∈N , the distribution of zeros, the sharp estimates of the
extreme zeros . . . ([Chihara, 1978], [Freud, 1976, 1977, 1986], [Lubinsky, 1984, 1985a, 1985b],
[Lubinsky et al. 1986, 1988] , [Magnus, 1984, 1985a, 1985b, 1986], [Bonan, 1984], [Máté et al.,
1985], [Mhaskar et al., 1984a, 1984b], [Nevai, 1973, 1983, 1984a, 1984b, 1985, 1986], [Sheen,
1984] . . . , for more details see [Magnus, 1984, 1985a, 1985b, 1986]).

Later, Belmehdi and Ronveaux (1994) gave a systematic way to obtain non-linear equations
for the recurrence coefficients, valid for any semi-classical orthogonal polynomial of a continuous
variable. In fact, given a semi-classical linear functional L satisfying d

dx(φL) = ψL, where φ
and ψ are polynomials, they were able to provide two non-linear equations for the coefficients
an, bn of the recurrence relation satisfied by the polynomials {Pn}n∈N associated to L, called
Laguerre-Freud equations (denomination borrowed from Magnus [Magnus 1985b, 1986]).

In the second part of this dissertation, we give a generalisation of the previous results [Belme-
hdi et al., 1994] by giving the system of two non-linear difference equations satisfied by the
recurrence coefficients; equations which are valid for semi-classical orthogonal polynomials of a
continuous and discrete variable, and also for q-semi-classical orthogonal polynomials (both of
class 1).

1.2 Summary of the main results

1.2.1 The fourth-order difference equation

1. Using the result in [Suslov, 1989], we prove the following:

Consider L a regular linear functional satisfying Dq(φL) = ψL, where ψ is a first degree
polynomial and φ a polynomial of degree at most two. Dq is the Hahn operator defined by

Dq f(x) =
f(qx)− f(x)

(q − 1)x
, x 6= 0, q 6= 0, q 6= 1,Dq f(0) := f ′(0).

Then, if {Pn}n∈N is the monic family of polynomials, orthogonal with respect to L, then,
the first associated P

(1)
n of Pn satisfies the fourth-order difference equation

Q∗∗2,n−1

Q∗2,n−1

q2 (q − 1)2 x2

[
P

(1)
n−1(x; q)

]
= 0.
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Operators Q∗∗2,n−1 and Q∗2,n−1 are given by:

Q∗2,n−1 = φ(2) G2
q − ((1 + q)φ(1) + ψ(1) t1 − λn,0 t21)Gq + q (φ+ ψ t) Id,

Q∗∗2,n−1 = (φ(3) + ψ(3) t3)[q2A1 + (1 + q)φ(2) + ψ(2) t2]G2
q

−[q3A1 (φ(2) + ψ(2) t2) +A3 (φ(2) + q A1)]Gq
+q φ(1) [q2A2 + (1 + q)φ(3) + ψ(3) t3)] Id,

with

λn,0 = −[n]q{ψ′ + [n− 1] 1
q

φ′′

2q
}, [n]q =

qn − 1
q − 1

, q 6= 1, n ≥ 0, GqP (x) = P (qx) ∀P ∈ P,

φ(i) ≡ φ(qix), ψ(i) ≡ ψ(qix), ti ≡ t(qix), t(x) = (q − 1)x,

Aj = (1 + q)φ(j) + ψ(j) tj − λn,0 t2j .

This result [Foupouagnigni et al., 1998d], is used to deduce the factored form of the differ-
ence equations satisfied by the first associated classical orthogonal polynomials of a discrete
variable [Ronveaux et al., 1998a] and also the factored form of the differential equation sat-
isfied by the first associated classical continuous orthogonal polynomials [Ronveaux, 1988].
We have used, also, this result to prove that under certain conditions on the parameters,
the first associated of little and big q-Jacobi polynomials are still classical. Moreover, we
deduce that if pn(x; a, b |q) (respectively Pn(x; a, b, c; q)) denotes the monic little q-Jacobi
polynomials (respectively monic big q-Jacobi polynomials), then they are related with their
respective first associated by:

p(1)
n (x; a,

1
q a
|q) = an qn pn(

x

a q
;

1
a
, a q |q),

P (1)
n (x; a,

1
q a,

, c; q) = an Pn(
x

a
;

1
a
, a q, c q; q).

2. We prove that the rth associated Dq-Laguerre-Hahn orthogonal polynomials satisfy the
single fourth-order difference equation [Foupouagnigni et al., 1998e]

4∑
j=0

Ij(n, r, q, x)Djq P (r)
n = 0,

where Ij(n, r, q, x) are polynomials in x.

We use suitable change of variable and limit processes to extend the above result to the rth
associated Laguerre-Hahn orthogonal polynomials of a continuous and a discrete variable,
respectively [Foupouagnigni et al 1998b].

We apply this result to compute explicitly the coefficients Ij(n, r, q, x) for the rth associated
classical orthogonal polynomials (including classical continuous, classical discrete and q-
classical polynomials) [Foupouagnigni et al., 1998b, 1998c, 1998e].

1.2.2 The non-linear recurrence equations

We prove the following theorem (see 8.1) which is the main result of the second part of this
Dissertation.
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Theorem

The coefficients βn and γn of the three-term recurrence relation

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x), n ≥ 1, P0(x) = 1, P1(x) = x− β0,

satisfied by the Dq-semi-classical monic orthogonal polynomials of class at most one, {Pn}n∈N ,
can be computed recursively from the two non-linear equations (ψ2 + [2n] 1

q

φ3

q )(γn + γn+1) = F1(q;β0, . . . , βn; γ1, . . . , γn),

(ψ2 + [2n+ 1] 1
q

φ3

q )βn+1γn+1 = F2(q;β0, . . . , βn; γ1, . . . , γn+1).

φj and ψj are the coefficients of the polynomials φ and ψ (φ(x) =
3∑
j=0

φjx
j , ψ(x) =

2∑
j=0

ψjx
j)

appearing in the Dq-Pearson equation, Dq(φL) = ψL, satisfied by the regular linear functional
L. F1 is a polynomial of 2n+1 variables and of degree 2; and F2 a polynomial of 2n+2 variables
and of degree 3, with the initial conditions

β0 =
〈L, x〉
〈L, 1〉

, ψ2 γ1 = −ψ(β0).

We use suitable change of variable and limit processes to extend the previous theorem to
the D and ∆-semi-classical orthogonal polynomials of class at most one [Foupouagnigni et al.,
1998a]. We then give the Laguerre-Freud equations for the generalised Charlier and generalised
Meixner of class one and use these equations (numerical and symbolic computation with Maple
V Release 4) to give a conjecture about the asymptotic behaviour of the coefficients βn and γn
of the generalised Charlier and generalised Meixner polynomials of class one:

Conjecture

The coefficients βn and γn of the three-term recurrence relation satisfied by the monic generalised
Meixner polynomials of class one obey:

lim
n→∞

(
βn −

1 + µ

1− µ
n− µ (α1 + α2 − 1)

1− µ

)
= 0, lim

n→∞

(
γn −

µ(n+ α1 − 1)(n+ α2 − 1)
(1− µ)2

)
= 0,

and those of the three-term recurrence relation satisfied by the monic generalised Charlier poly-
nomials of class one obey:

lim
n→∞

(βn − n) = 0, lim
n→∞

(γn − µ) = 0.

1.3 Outline of dissertation

In Chapter 2 we give some results and definitions on orthogonal and associated orthogonal
polynomials. We also prove some characterisation theorems for classical orthogonal polynomials.

Chapter 3 gives some useful properties of the operators Aq,ω and Dq,ω and the proof of
some characterisation theorems for Dq,ω-classical and Dq,ω-semi-classical orthogonal polynomi-
als; characterisation theorem which are valid (by limit processes) for the operators d

dx , Dq and
∆.

Chapter 4 is devoted to the study of the Dq,ω-Riccati difference equation satisfied by the
Stieltjes function of the given associated linear functional. In particular, we prove that the affine
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Dq,ω-Laguerre-Hahn orthogonal polynomials are the Dq,ω-semi-classical orthogonal polynomials
and conversely. In this chapter, it is also proved that the Dq,ω-Laguerre-Hahn orthogonal poly-
nomials can be obtained from the Dq-Laguerre-Hahn orthogonal polynomials by a change of
variable.

In Chapter 5 we give the factored form of the fourth-order difference equation satisfied by
the first associated Dq-classical orthogonal polynomials and we deduce the difference equation
for classical orthogonal polynomials of continuous and of discrete variable. We also consider
the situations for which the first associated of the little and big q-Jacobi polynomials are still
classical.

Chapter 6 describes the method used to obtain, for the general situation, the single fourth-
order difference equation satisfied by the rth associated D, Dq and ∆-Laguerre-Hahn orthogonal
polynomials. The coefficients of the fourth-order difference equation for classical situations are
also given explicitly.

Chapter 7 gives useful coefficients for classical orthogonal polynomials like βn, γn, Tn,1 and
Tn,2.

Chapter 8 presents the method used to obtain the two non-linear equations for the coefficients
of the TTRR satisfied by the Dq-semi-classical orthogonal polynomials of class at most one. We
also show how these equations can be used to obtain the two non-linear equations for the
coefficients of the TTRR satisfied by the D and ∆-semi-classical orthogonal polynomials of
class at most one. The conjecture about the asymptotic behaviour of the coefficients of the
TTRR satisfied by the generalised Charlier and the generalised Meixner polynomials of class
one (conjecture obtained thanks to the two-non-linear equations) is also given.

The appendices I, II and III contain the data for classical orthogonal polynomials as well as
the results on the fourth-order difference equations for classical situations.

It should be mentioned that:

• Chapter 2, devoted to the preliminaries, is based on [Chihara, 1978], [Guerfi, 1988], [Belme-
hdi, 1990a], [Salto, 1995] and [Medem, 1996].

• Chapters 3 and 4 generalise to the operator Dq,ω certain results given in the above men-
tioned references.

• The original results obtained in the framework of this thesis are presented in chapters 5,
6 and 8.



Chapter 2

Preliminaries

2.0.1 The notion of topology

We recall the notion of topology on polynomials and linear functional vector spaces. These
notions have been defined in [Trèves, 1967], [Maroni, 1985, 1988], [Guerfi, 1988] and [Belmehdi,
1990a]. For these preliminaries, we shall exploit the works by Maroni [Maroni, 1988], Guerfi
[Guerfi, 1988] and [Belmehdi, 1990a].

Let P be a vector space of polynomials in one real variable with complex coefficients, endowed
with the strict inductive limit topology of the spaces Pn. Pn ⊂ P is the vector space of
polynomials of degree at most n. It satisfies

Pn ⊂ Pn+1, n ≥ 0, P =
∞⋃
n=0

Pn,

and is endowed with its natural topology which makes it a Banach space.
Let P ′ be the dual of P, equiped with its topology which is defined by the system of semi-

norms:
||L||n = sup

k≤n
|Mk|,

where Mk denotes the moments of the functional L with respect to the sequence {xn}n: Mk =
(L)k = 〈L, xk〉. P and P ′ are Fréchet spaces.

We consider V the vector space generated by the elements { (−1)n

n! D
nδ}n (D = d

dx) with its
inductive limit topology. δ denotes the Dirac measure: 〈δ, f〉 = f(0), f ∈ C∞(R).

Let F be the linear application:

F : V −→ P

d =
n∑
j=0

dj
(−1)j

j!
Djδ −→ F(d) =

n∑
j=0

djx
j . (2.1)

F verifies the following properties:

i) F is an isomorphism defined on V into P.

ii) The transpose tF of F , is an isomorphism defined on P ′ into V ′.

iii) tF =F on P ′.
Thus,

〈F(L), d〉 = 〈L,F(d)〉,∀L ∈ P ′, ∀d ∈ V. (2.2)

15
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Since { (−1)n

n! D
nδ}n forms a basis of P ′ [Maroni, 1988], that is, any element L of P ′ can be

expressed as

L =
∑
n≥0

(L)n
(−1)n

n!
Dnδ, (2.3)

it follows that
F(L) =

∑
n≥0

(L)nxn. (2.4)

V’ is therefore the vector space of formal series.

Remark 2.1 Let L(P,P) (respectively L(P ′,P ′)) be the vector space of continuous linear
applications defined on P into P (respectively on P ′ into P ′). The transpose of any element
of L(P,P) is an element of L(P ′,P ′). We shall use this process to define certain elements
of L(P ′,P ′) basically by transposing those of L(P,P).

2.0.2 Notations

We understand by linear functional any element L of P ′ and denote by 〈L, P 〉 the action of
L ∈ P ′ on P ∈ P. We also denote by R the field of real numbers, C the field of complex
numbers and by N the set of integers. Henceforth, we will use interchangeably deg(φ) and deg
φ to denote the degree of the polynomial φ. The operator D represents the usual derivative
operator (D = d

dx) while the Kronecker symbol δn,j is defined by

δn,j =

{
1 if n = j,
0 if n 6= j

.

2.1 Orthogonality and quasi-orthogonality

2.1.1 Orthogonal polynomials

Definition 2.1 A set of polynomials {Pn}n∈N is said to be an orthogonal polynomial sequence
(OPS) associated to the linear functional L ∈ P ′ if

deg(Pn) = n, ∀ n ∈ N ,
〈L, PnPm〉 = 0 ∀ m,n ∈ N , m 6= n,
〈L, PnPn〉 6= 0 ∀ n ∈ N .

(2.5)

Definition 2.2 A polynomial P is said to be monic if its leading coefficient is equal to one
(P = xn + bnx

n−1 + . . .); and a monic polynomial family is a one in which any element is
monic.

Definition 2.3 A linear functional L ∈ P ′ is said to be regular if there exists an OPS associated
to L.

Remark 2.2 We state the following properties.

1. If L is a regular linear functional, then there exists a unique monic (OPS) associated to
L.

2. If {Pn}n∈N is orthogonal with respect to L, then {Pn}n∈N forms a basis of P.
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3. Any polynomial family {Pn}n∈N with deg(Pn) = n ∀n ∈ N forms a basis of P.

Remark 2.3 If {Pn}n∈N is a set of polynomials with deg(Pn) = n ∀n ∈ N and L a given
linear functional then the following properties are equivalent:

i) 〈L, PnPm〉 = 0 ∀m,n ∈ N , n 6= m and 〈L, PnPn〉 6= 0 ∀n ∈ N .
ii) 〈L, xmPn〉 = 0 ∀m,n ∈ N , 0 ≤ m < n and 〈L, xnPn〉 6= 0 ∀n ∈ N .

The following theorem, proved in [Chihara, 1978], gives a necessary and sufficient condition for
the regularity of a given linear functional.

Theorem 2.1 (Chihara, 1978) Let L be a linear functional and Mn the moment of order n
of L defined by Mn = 〈L, xn〉.

A necessary and sufficient condition for the existence of an orthogonal polynomial sequence
for L is

∆n 6= 0 ∀n ∈ N ,

where the determinant ∆n is defined by

∆n = det(Mj+k) 0≤j,k≤n =

∣∣∣∣∣∣∣∣∣∣∣∣

M0 M1 . . . Mn−1 Mn

M1 M2 . . . Mn Mn+1
...

...
...

...
...

Mn−1 Mn . . . M2n M2n−1

Mn Mn+1 . . . Mn M2n

∣∣∣∣∣∣∣∣∣∣∣∣
.

Definition 2.4 (Chihara, 1978) A linear functional L is called positive-definite if
〈L, π(x)〉 > 0 for every polynomial π that is not identically zero and is non-negative for all real
x.

Theorem 2.2 (Chihara, 1978) The linear functional L is positive-definite if and only if its
moments are all real and ∆n > 0 ∀n ∈ N .

The following theorem, taken from [Belmehdi, 1990a] gives in a more general situation some
characterisations of a regular linear functional.

Theorem 2.3 (Maroni, 1987, Belmehdi, 1990a) Let L be any linear functional; then the
following properties are equivalent:

i) The linear functional L is regular.

ii) There exists a polynomial sequence {Pn}n∈N (with deg(Pn) = n ∀n ∈ N ) such that

det(〈L, Pj Pk〉) 0≤j,k≤n 6= 0 ∀n ∈ N .

iii) For any polynomial sequence {Qn}n∈N (with deg(Qn) = n ∀n ∈ N ),

det(〈L, Qj Qk〉) 0≤j,k≤n 6= 0 ∀n ∈ N .
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Theorem 2.4 (Szegö, 1939, Belmehdi, 1990a) Given a regular linear functional L, the monic
orthogonal polynomials (O.P.) associated to L are given by

Pn(x) =
1

∆∗n−1

∣∣∣∣∣∣∣∣∣∣∣∣

〈L, Q0Q0〉 〈L, Q0Q1〉 . . . 〈L, Q0Qn−1〉 〈L, Q0Qn〉
〈L, Q1Q0〉 〈L, Q1Q1〉 . . . 〈L, Q1Qn−1〉 〈L, Q1Qn〉

...
...

...
...

...
〈L, Qn−1Q0〉 〈L, Qn−1Q1〉 . . . 〈L, Qn−1Qn−1〉 〈L, Qn−1Qn〉

Q0 Q1 . . . Qn−1 Qn

∣∣∣∣∣∣∣∣∣∣∣∣
(2.6)

where {Qn}n∈N is any monic polynomial family (with deg(Qn) = n ∀n ∈ N ); and,

∆∗n = det(〈L, Qj Qk〉) 0≤j,k≤n, n ≥ 0,

with the convention ∆∗−1 = 1.

2.1.2 Quasi-orthogonal polynomials

The notion of quasi-orthogonal polynomials was introduced in [Riesz, 1923] and extended by
Maroni and Van Rossum (for more information see [Belmehdi, 1990a]).

Definition 2.5 (Belmehdi, 1990a) Let L be any linear functional and {Pn}n∈N a polynomial
family with deg(Pn) = n ∀n ∈ N . {Pn}n∈N is said to be quasi-orthogonal of order s with
respect to L if {

〈L, PnPm〉 = 0, |n−m| > s,
∃m ∈ N , 〈L, PmPm+s〉 6= 0.

(2.7)

{Pn}n∈N is said to be strictly quasi-orthogonal with respect to L if{
〈L, PnPm〉 = 0, |n−m| > s,
〈L, PmPm+s〉 6= 0 ∀m ∈ N . (2.8)

Remark 2.4 (Belmehdi, 1990a) 1. Conditions (2.7) are equivalent to{
〈L, xmPm+t+s〉 = 0, ∀m ∈ N ∀t ≥ 1,
∃m ∈ N , 〈L, xmPm+s〉 6= 0,

(2.9)

while (2.8) is equivalent to{
〈L, xmPm+t+s〉 = 0, ∀m ∈ N , ∀t ≥ 1,
〈L, xmPm+s〉 6= 0, ∀m ∈ N . (2.10)

2. It follows from the definition 2.5 that if {Pn}n∈N is orthogonal with respect to L, then
{Pn}n∈N is strictly quasi-orthogonal of class s = 0 with respect to L(see also [Shohat,
1937]).

3. Notice that quasi-orthogonality of class s = 1 was investigated in [Dickinson, 1961] and
that the definition 2.5 was also given in [Chihara, 1957] and [Ronveaux, 1979] but without
the second condition: ∃m ∈ N , 〈L, PmPm+s〉 6= 0.
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2.1.3 Other definitions

Definition 2.6 Given a polynomial f ∈ P and a linear functional L ∈ P ′, the product of f and
L, fL, is defined as

f L : P → C
〈f L, P 〉 = 〈L, fP 〉 ∀P ∈ P.

Given f an element of P, the application L −→ fL belongs to L(P ′,P ′) and is the transpose of
the following element of L(P,P): P −→ fP .

Definition 2.7 (Maroni,1988) Given a polynomial g ∈ P and a linear functional L ∈ P ′, the
product of L and g, Lg, is a polynomial defined as

Lg(x) =
n∑
j=0

n∑
k=j

gk 〈L, xk−j〉xj , (2.11)

where

g(x) =
n∑
j=0

gjx
j .

Given a functional L, the application P −→ LP belongs to L(P,P). By transposition, we define
the product of two linear functionals L and M as:

Definition 2.8 The product of two linear functionals L and M is defined by

〈LM, P 〉 = 〈L,MP 〉, ∀P ∈ P.

Definition 2.9 (Belmehdi, 1990a, Dini, 1988) The operator θc is defined as

θc : P → P

(θcP )(x) =

{
P (x)−P (c)

x−c , x 6= c

P ′(c), x = c
(2.12)

where c is a complex number.

The application θc belongs to L(P,P).

Definition 2.10 Consider the linear functional L. From the above definition and by transposi-
tion (see remark 2.1), we define the linear functional (x− c)−1L, as

(x− c)−1L : P → C
〈(x− c)−1L, P 〉 = 〈L, θcP 〉 ∀P ∈ P, (2.13)

where c ∈ C.

Corollary 2.1 (Belmehdi, 1990a) For any complex number c, and for any linear functional
L the following holds:

(x− c) [(x− c)−1 L] = L, (x− c)−1 [(x− c)L] = L − 〈L, 1〉δc, (2.14)

where δc is the Dirac measure at the point c.



20 Chapter 2. Preliminaries

2.1.4 Dual basis

Definition 2.11 (Maroni, 1988) Let {Pn}n∈N be a monic polynomial family with deg(Pn) =
n ∀n ∈ N .Then {Pn}n∈N forms a basis of P and therefore generates a unique basis of P ′,
called dual basis associated to {Pn}n∈N , denoted by {Pn}n∈N and satisfying

〈Pn, Pm〉 = δn,m ∀m,n ∈ N . (2.15)

Any element L of P ′ can be expressed in this basis as (see [Roman et. al., 1978], [Maroni, 1988]):

L =
∑
n≥0

〈L, Pn〉Pn. (2.16)

Proposition 2.1 (Salto, 1995) Let L be a regular linear functional, {Pn}n∈N the correspond-
ing monic orthogonal family and {Pn}n∈N the dual basis associated to {Pn}n∈N . We have

Pn =
Pn

〈L, PnPn〉
L ∀n ∈ N . (2.17)

Proof: Let us write PnL =
∑
j
cn,jPj . We obtain

cn,j = 〈L, PnPj〉 = 〈L, PnPn〉δn,j

by the fact that {Pn}n∈N is orthogonal with respect to L. Thus,

Pn =
Pn

〈L, PnPn〉
L.

2

2.2 Associated orthogonal polynomials

2.2.1 Three-term recurrence relation

We first give the following theorems which we shall use further to define associated orthogonal
polynomials. The first is taken from [Chihara, 1978] and the second from [Favard,1935] (see also
[Wintner,1929],[Stone,1932],[Sherman,1933],[Shohat,1938], [Peron,1957]).

Theorem 2.5 (Chihara,1978) Let L be a regular linear functional and {Pn}n∈N the corre-
sponding monic orthogonal polynomials. {Pn}n∈N satisfy a three-term recurrence relation{

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x), n ≥ 1,
P0(x) = 1, P1(x) = x− β0,

(2.18)

where βn and γn are complex numbers with γn 6= 0 ∀n ∈ N .

Proof: Since {Pn}n∈N is orthogonal with respect to L, it forms a basis of P (see Remark
2.2). We therefore expand the polynomial xPn on the basis {Pn}n∈N and obtain

xPn = Pn+1 + βn Pn + γn Pn−1 +
n−2∑
j=0

ηn,j Pj , n ≥ 1, (2.19)
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where γn, βn and ηn,j are complex numbers.
To compute ηn,j , we apply the linear functional L to both sides of the equation obtained

after multiplying the previous one by Pj , j ≤ n− 2 to get

ηn,j I0,j = 〈L, xPnPj〉 = 0, j < n− 1,

with I0,n = 〈L, PnPn〉.
Considering the fact that I0,n 6= 0 ∀n ∈ N (see (2.5)), it follows from the above equation

that ηn,j = 0, j < n− 1. Therefore equation (2.19) becomes

xPn = Pn+1 + βn Pn + γn Pn−1, n ≥ 1.

Mimicking the approach used above to compute ηn,j , but with the previous equation, we
express γn as

γn I0,n−1 = 〈L, xPn−1Pn〉 = 〈L, PnPn〉 = I0,n 6= 0, n ≥ 1.

Hence γn 6= 0 n ≥ 1.
By convention one takes γ0 = 〈L, 1〉. 2

The converse of the above theorem is due to Favard (1935) (see also [Chihara,1978]) .

Theorem 2.6 (Favard’s Theorem) Let {βn}n∈N and {γn}n∈N be two sequences of complex
numbers and let {Pn}n∈N be the family of polynomials defined by the recurrence formula{

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x), n ≥ 1,
P0(x) = 1, P1(x) = x− β0.

Then, there exists a unique linear functional L such that

〈L, 1〉 = γ0 and 〈L, PnPm〉 = 0 ∀m,n ∈ N , n 6= m.

L is regular and {Pn}n∈N are the corresponding monic orthogonal polynomials if and only if

γn 6= 0 ∀n ∈ N ,

while L is positive-definite if and only if

βn, γn ∈ R ∀n ∈ N , and γn > 0 ∀n ∈ N .

2.2.2 The first associated orthogonal polynomials

Definition 2.12 Given a regular linear functional L and the corresponding monic orthogonal
polynomials {Pn}n∈N , the first associated of the polynomial Pn is a monic polynomial of degree
n, denoted by P (1)

n and defined by

P (1)
n (x) =

1
γ0
〈L, Pn+1(x)− Pn+1(t)

x− t
〉 ∀n ∈ N , (2.20)

with γ0 = 〈L, 1〉. It is understood that the linear functional L acts on the variable t.

Lemma 2.1 (Chihara, 1978) The monic polynomial family {P (1)
n }n∈N satisfies the three-

term recurrence relation

{
P

(1)
n+1(x) = (x− βn+1)P (1)

n (x)− γn+1P
(1)
n−1(x), n ≥ 1,

P
(1)
0 (x) = 1, P (1)

1 (x) = x− β1,
(2.21)

where βn and γn are defined in (2.18).
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Proof: Using the three-term recurrence relation satisfied by {Pn}n∈N (see (2.18)) and (2.20)
we obtain

P
(1)
n+1(x) =

1
γ0
〈L, Pn+2(x)− Pn+2(t)

x− t
〉

=
1
γ0
〈L, (x− βn+1)Pn+1(x)− γn+1Pn(x)

x− t

−(t− βn+1)Pn+1(t)− γn+1Pn(t)
x− t

〉

= (x− βn+1)
1
γ0
〈L, Pn+1(x)− Pn+1(t)

x− t
〉

−γn+1
1
γ0
〈L, Pn(x)− Pn(t)

x− t
〉 − 1

γ0
〈L, Pn+1(t)〉

= (x− βn+1)P (1)
n (x)− γn+1P

(1)
n−1(x) ∀n ∈ N .

2

We deduce from Theorem 2.6 and Lemma 2.1 that there exists a unique regular linear
functional L(1) with respect to which {P (1)

n }n∈N is orthogonal with 〈L(1), 1〉 = γ1.
Iterating the above process, we define the general associated orthogonal polynomials.

2.2.3 The rth associated orthogonal polynomials

Definition 2.13 Let L be a regular linear functional and {Pn}n∈N the corresponding monic
orthogonal polynomials satisfying (2.18).

The rth associated of the orthogonal polynomial Pn is a polynomial of degree n, denoted P (r)
n

and defined by

γr−1P
(r)
n (x) = 〈L(r−1),

P
(r−1)
n+1 (x)− P (r−1)

n+1 (t)
x− t

〉, n ≥ 0, r ≥ 1, (2.22)

with
〈L(r), 1〉 = γr, r ≥ 1,

assuming that γ0 ≡ 〈L, 1〉, P (0)
n ≡ Pn, and L(0) ≡ L; where L(r−1) is the regular linear functional

with respect to which {P (r−1)
n }n∈N is orthogonal; and it is understood that L(r−1) acts on the

variable t.

Lemma 2.2 (Chihara, 1978) If L is a regular linear functional and {Pn}n∈N the correspond-
ing monic orthogonal polynomials, then, the rth associated polynomials {P (r)

n }n∈N of {Pn}n∈N
satisfy the three-term recurrence relation{

P
(r)
n+1(x) = (x− βn+r)P

(r)
n (x)− γn+rP

(r)
n−1(x), n ≥ 1,

P
(r)
0 (x) = 1, P (r)

1 (x) = x− βr, r ≥ 0.
(2.23)

Proof: We shall prove the lemma by induction on r. For r = 1, (2.23) is satisfied thanks to
Lemma 2.1. We suppose that (2.23) is satisfied up to a fixed integer r. Then using (2.22) we
obtain

P
(r+1)
n+1 (x) =

1
γr
〈L(r),

P
(r)
n+2(x)− P (r)

n+2(t)
x− t

〉
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=
1
γr
〈L(r),

(x− βn+r+1)P (r)
n+1(x)− γn+r+1P

(r)
n (x)

x− t

−
(t− βn+r+1)P (r)

n+1(t)− γn+r+1P
(r)
n (t)

x− t
〉

= (x− βn+r+1)
1
γr
〈L(r),

P
(r)
n+1(x)− P (r)

n+1(t)
x− t

〉

−γn+r+1
1
γr
〈L(r),

P
(r)
n (x)− P (r)

n (t)
x− t

〉 − 1
γr
〈L(r), P

(r)
n+1(t)〉

= (x− βn+r+1)P (r+1)
n (x)− γn+r+1P

(r+1)
n−1 (x) ∀n ∈ N .

Thus {P (r)
n }n∈N satisfies (2.23) ∀r ∈ N . 2

As consequence of the previous lemma, we claim the following known result (see [Magnus,
1984], [Belmehdi, 1990b]).

Lemma 2.3 (Magnus, 1984, Belmehdi, 1990b) The associated polynomials P (r)
n satisfy

P (r)
n P (r+1)

n − P (r)
n+1P

(r+1)
n−1 =

n∏
k=1

γr+k ≡ πn,k ∀n ∈ N , ∀r ∈ N . (2.24)

Proof: In the first step we write (2.23) for P (r)
n+1 and P

(r+1)
n

P
(r)
n+1(x) = (x− βn+r)P (r)

n (x)− γn+rP
(r)
n−1(x), (2.25)

P (r+1)
n (x) = (x− βn+r)P

(r+1)
n−1 (x)− γn+rP

(r+1)
n−2 (x). (2.26)

In the second step we subtract the two equations obtained after multiplying (2.25) and (2.26)
by P (r+1)

n−1 and P
(r)
n , respectively,

P (r)
n P (r+1)

n − P (r)
n+1P

(r+1)
n−1 = γn+r(P

(r)
n−1P

(r+1)
n−1 − P

(r)
n P

(r+1)
n−2 ).

Then relation (2.24) results by iterating the latter. 2

2.3 Operators D, Tω, Dω, Gq and Dq
2.3.1 Operator D

The application P −→ DP belongs to L(P,P). By transposition, we define derivative of the
linear functional as:

Definition 2.14 Let L be a given linear functional, we define the D-derivative of L, DL, as

DL : P → C
〈DL, P 〉 = −〈L,DP 〉 ∀P ∈ P. (2.27)

Proposition 2.2 Let L be a regular linear functional, {Pn}n∈N the corresponding monic or-
thogonal family and {Pn}n∈N the dual basis associated to {Pn}n∈N . If {Qn,1}n∈N is the dual
basis associated to the monic family {Qn,1}n∈N defined by

Qn,1 =
DPn+1

n+ 1
,
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then we have
DQn,1 = −(n+ 1)Pn+1.

Proof: This follows from Proposition 3.5. 2

Definition 2.15 The regular linear functional L and the corresponding monic orthogonal poly-
nomials are said to be D-semi-classical (or semi-classical continuous) if there exist two polyno-
mials ψ of degree at least one, and φ such that

D(φL) = ψL. (2.28)

Moreover, if φ is a polynomial of degree at most two and ψ a first-degree polynomial, then, the
linear functional and the corresponding orthogonal polynomials are called D-classical (classical
continuous). For more details about D-semi-classical orthogonal polynomials can be found in
[Maroni, 1985, 1987], [Marcellán, 1988], [Belmehdi, 1990a] and references therein.

2.3.2 Class of the D-semi-classical linear functional

Let L be a D-semi-classical linear functional satisfying

D(φL) = ψL, (2.29)

where φ is any non-zero polynomial and ψ a polynomial of degree at least one. L satisfies
D(fφL) = (φDf + ψf)L, for any polynomial f .

Definition 2.16 (Belmehdi, 1990a) We define the class cl(L) of the D-semi-classical linear
functional L as

cl(L) = min
(f,g)∈X1

{max(deg(f)− 2,deg(g)− 1)},

where
X1 = {(f, g) ∈ P2 /deg(g) ≥ 1 and D(fL) = gL}.

Proposition 2.3 (Belmehdi, 1990a) If L is a D-semi-classical linear functional satisfying
(2.29), then L is of class s = max(deg(φ)− 2,deg(ψ)− 1) if and only if∏

c∈Zφ

(|rc|+ |〈L, ψc〉|) 6= 0, (2.30)

where Zφ is the set of zeros of φ. The complex number rc and the polynomials φc, ψc are defined
by

(x− c)φc = φ, ψ − φc = (x− c)ψc + rc. (2.31)

Proof: For a proof see Proposition 3.4. 2

Remark 2.5 It follows from the definition of the class of the linear functional that the D-
classical linear functional is a D-semi-classical linear functional of class s = 0.

Lemma 2.4 Let L be a regular linear functional.
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i) If there exist two polynomials ψ 6= 0, and φ such that

D(φL) = ψL (2.32)

then φ is a non-zero polynomial.

ii) Conversely, if there exist two polynomials φ 6= 0 and ψ such that (2.32) holds, then ψ is
of degree at least one.

Proof: For a proof see Lemma 3.1 (see also [Dini, 1988]). 2

2.3.3 Characterisation of D-classical orthogonal polynomials

The following theorem which is a corollary of the theorem 3.1 gives some characterisations of
classical continuous orthogonal polynomials (see [Chihara, 1978],[Nikiforov et al., 1983], [Al-
salam, 1990], [Marcellán et al., 1994], . . . ).

Theorem 2.7 Let L be a regular linear functional, {Pn}n∈N the corresponding monic ortho-
gonal family and Qn,m the monic polynomial of degree n defined by

Bn,mQn,m = DmPn+m,

with
Bn,m =

(n+m)!
n!

, Qn,0 ≡ Pn.

The following properties are equivalent:
i) There exist two polynomials, φ of degree at most two and ψ of degree one, such that

D(φL) = ψL.

ii) There exist two polynomials, φ of degree at most two and ψ of degree one, such that for
any integer m,

D(φLm) = ψmL,
〈Lm, Qj,mQn,m〉 = knδj,n, ∀j, n ∈ N , (kn 6= 0 ∀n ∈ N ),

with the linear functional Lm and the polynomial ψm defined, recursively, by

ψm+1 = Dφ+ ψm, ψ0 ≡ ψ,
Lm+1 = φLm, L0 ≡ L

and given explicitly by

ψm(x) = mφ′(x) + ψ(x), (2.33)
Lm = φm L. (2.34)

iii) There exist two polynomials, φ of degree at most two and ψ of degree one, such that
for any integer m, the following second-order difference equation holds:

φD2Qn,m + ψmDQn,m + λ∗n,mQn,m = 0 ∀n ∈ N ,

with the polynomial ψm given by (2.33) and the constant λ∗n,m given by
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λ∗n,m = −n {ψ′m + (n− 1)
φ′′

2
} = −n {ψ′ + (2m+ n− 1)

φ′′

2
}. (2.35)

iv) There exist two polynomials, φ of degree at most two and ψ of degree one, such that, for
any integer m, the following relation holds:

nD [Qn−1,m+1Lm+1] = −λ∗n,mQn,mLm ∀n ∈ N , (2.36)

with the polynomial ψm, the linear functional Lm and the constant λ∗n,m given, respectively, by
(2.33), (2.34) and (2.35).

v) There exist a polynomial φ of degree at most two and three constants cn,n+1, cn,n, cn,n−1

with cn,n−1 6= 0 such that

φDPn = cn,n+1Pn+1 + cn,nPn + cn,n−1Pn−1, n ≥ 1.

vi) For any non-zero integer m, there exist a sequence of complex numbers {un,m}n∈N such
that

Qn,m−1 = Qn,m + un−1,mQn−1,m + vn−2,mQn−2,m, ∀n ∈ N − {0, 1}.

Remark 2.6 Let us comment on the above properties.

For all m ∈ N , the derivative of order m, {Qn,m}n∈N , of the family {Pn+m}n∈N is classical
and orthogonal with respect to the classical linear functional Lm.

The functional version of the generalised Rodrigues formula [Nikiforov et al, 1983], [Belmehdi,
1990c], given below, is obtained by iterating the relation (2.36):

Qn,mφ
mL =

n−1∏
j=0

1
ψ′ + (j + 2m+ n− 1)φ

′′

2

Dn(φn+mL).

2.3.4 Operators Tω and Dω

Definition 2.17 The arithmetic shift operator Tω is defined by

Tω : P −→ P
P −→ TωP, TωP (x) = P (x+ ω), ω ∈ R. (2.37)

We denote T1 = T .

Definition 2.18 The difference operator Dω is defined by

Dω : P −→ P

P −→ DωP, DωP (x) =
P (x+ ω)− P (x)

ω
, ω ∈ R, ω 6= 0. (2.38)

We denote D1 = ∆ and D−1 = ∇. ∆ and ∇ denote the forward and the backward difference
operators, respectively.

The applications P −→ TωP and P −→ DωP belong to L(P,P). We, therefore, use their
transposes to define the action of the operators Tω and Dω on the linear functionals.
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Definition 2.19 The action of the arithmetic shift operator Tω on the functional L is defined
by

〈TωL, P 〉 = 〈L, T−ωP 〉 ∀P ∈ P. (2.39)

Definition 2.20 Given a linear functional L, we define the Dω derivative of L, DωL, as

DωL : P → C
〈DωL, P 〉 = −〈L, D−ωP 〉 ∀P ∈ P. (2.40)

Definition 2.21 The regular linear functional L and the corresponding monic orthogonal poly-
nomials are said to be Dω-semi-classical if there exist two polynomials ψ of degree at least one,
and φ such that

Dω(φL) = ψL. (2.41)

Moreover, if φ is a polynomial of degree at most two and ψ a first-degree polynomial, then, the
linear functional and the corresponding orthogonal polynomials are called classical discrete.

Using the above definitions, we obtain the following properties:

Proposition 2.4 (Salto, 1995)

T−ωDω = DωT−ω = D−ω, DωD−ω = D−ωDω, (2.42)
Tω(f g) = Tωf Tωg, Tω(f L) = Tωf TωL, (2.43)
Dω(f g) = f Dωg + TωgDωf = TωfDωg + g Dωf, (2.44)
Dω(f L) = f DωL+Dωf TωL = Tωf DωL+Dωf L, (2.45)
ωDωL = (Tω − Id)L, (2.46)

Dω(fgL) = Tω f Dω(gL)− Tω f Dω gL+Dω(fg)L, ∀f, g ∈ P, ∀L ∈ P ′. (2.47)

Notice that equation (2.42) means that:

T−ωDωΦ = DωT−ωΦ = D−ωΦ, DωD−ωΦ = D−ωDωΦ, ∀Φ ∈ P,
T−ωDωΦ̄ = DωT−ωΦ̄ = D−ωΦ̄, DωD−ωΦ̄ = D−ωDωΦ̄, ∀Φ̄ ∈ P ′.

Proof: This follows directly from Proposition 3.1. 2

The following lemma proves that the arithmetic shift of the associated orthogonal polyno-
mials (resp. regular linear functional) are the associated shifted orthogonal polynomials and
shifted regular linear functional, respectively.

Lemma 2.5 Given a regular linear functional L and {Pn}n∈N the corresponding monic ortho-
gonal polynomials, the rth associated P (r)

n of Pn and L(r) of L obey

(Tω Pn)(r) = Tω P (r)
n , (Tω L)(r) = Tω L(r) ∀r, n ∈ N . (2.48)

Proof: We shall give the proof by induction on r. It follows from Lemma 3.2 that {Tω Pn}n∈N
are the monic orthogonal polynomials associated to Tω L.

For r = 0 (Tω Pn)(0) = Tω P (0)
n = Tω Pn and (Tω L)(0) = Tω L(0) = Tω L.
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Suppose that (2.48) is satisfied up to a fixed r. Then using (2.22) and the fact that L acts
on the variable t, we get

(Tω Pn)(r+1) (x) =
1
γr
〈(Tω L)(r) ,

(Tω Pn+1)(r) (x)− (Tω Pn+1)(r)

x− t
〉

=
1
γr
〈Tω L(r),

Tω P (r)
n+1(x)− Tω P (r)

n+1(t)
x− t

〉

=
1
γr
〈Tω L(r), Tω

Tω P (r)
n+1(x)− P (r)

n+1(t)
x− (t− ω)

〉

=
1
γr
〈L(r),

P
(r)
n+1(x+ ω)− P (r)

n+1(t)
x+ ω − t

〉

= Tω P (r+1)
n (x).

Then,
(Tω Pn)(r) = Tω P (r)

n , ∀n ∈ N , ∀r ∈ N . (2.49)

We use remark 2.3 to get

〈(Tω L)(r+1) , (Tω Pn)(r+1)〉 = 0 = 〈Tω L(r+1), Tω P (r+1)
n 〉, n ≥ 1, r ≥ 0. (2.50)

For n = 0 (see definition 2.13),

〈(Tω L)(r+1) , 1〉 = γr+1 = 〈Tω L(r+1), 1〉. (2.51)

We combine (2.49), (2.50) and (2.51) to get

〈(Tω L)(r+1) , Tω P (r+1)
n 〉 = 〈Tω L(r+1), Tω P (r+1)

n 〉 ∀n ≥ 0.

Hence (Tω L)(r+1) = Tω L(r+1), thanks to the fact that {Tω P (r+1)
n }n∈N , which is orthogonal with

respect to Tω L(r+1), forms a basis of P. 2

2.3.5 Class of the Dω-semi-classical linear functional

Let L be a Dω-semi-classical linear functional satisfying

Dω(φL) = ψL, (2.52)

where φ is any non-zero polynomial and ψ a polynomial of degree at least one. L satisfies
Dω(fφL) = (φDωf + ψTωf)L, for any polynomial f .

Definition 2.22 (Salto, 1995) We define the class cl(L) of the Dω-semi-classical linear func-
tional L as

cl(L) = min
(f,g)∈X2

{max(deg(f)− 2,deg(g)− 1)},

where

X2 = {(f, g) ∈ P2 /deg(g) ≥ 1 and Dω(fL) = gL}.

The following proposition give a characterisation of the class of a Dω-semi-classical linear func-
tional.
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Proposition 2.5 (Salto, 1995) If L is a Dω-semi-classical linear functional satisfying (2.52),
then L is of class s = max(deg(φ)− 2,deg(ψ)− 1) if and only if∏

c∈Zφ

(|rc,ω|+ |〈L, ψc,ω〉|) 6= 0, (2.53)

where Zφ is the set of zeros of φ. The complex number rc,ω and the polynomials φc, ψc,ω are
defined by

(x− c)φc = φ, ψ − φc = (x+ ω − c)ψc,ω + rc,ω. (2.54)

Proof: This follows from Proposition 3.4. 2

More details about the class of a Dω-semi-classical linear functional can be found in [Salto,
1996] and [Godoy et al., 1997b].

Remark 2.7 From the definition of the class of the semi-classical linear functional, we deduce
that the Dω-classical linear functional is a Dω-semi-classical linear functional of class s = 0.

Lemma 2.6 The linear functional L is regular if and only if TωL is regular.

Proof: For a proof see Lemma 3.2. 2

Lemma 2.7 Let L be a regular linear functional.

i) If there exist two polynomials ψ 6= 0 and φ such that

Dω(φL) = ψL, (2.55)

then φ is a non-zero polynomial.

ii) Conversely, if there exist two polynomials φ 6= 0 and ψ such that (2.55) holds, then ψ is
of degree at least one.

Proof: This follows from Lemma 3.1. 2

Proposition 2.6 (Salto, 1995) Let L be a regular linear functional, {Pn}n∈N the correspond-
ing monic orthogonal family and {Pn}n∈N the dual basis associated to {Pn}n∈N . If {Q̃n,1}n∈N
is the dual basis associated to the monic family {Q̃n,1}n∈N defined by

Q̃n,1 =
DωPn+1

n+ 1
,

then we have

D−ωQ̃n,1 = −(n+ 1)Pn+1.

Proof: For a proof see Proposition 3.5. 2
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2.3.6 Characterisation of ∆-classical orthogonal polynomials

The following theorem which is a corollary of Theorem 3.1 gives a characterisation of the or-
thogonal polynomials of a discrete variable [Al-salam, 1990], [Nikiforov et al., 1991], [Garcia et
al., 1995], [Salto, 1995]. . . .

Theorem 2.8 Let L be a regular linear functional, {Pn}n∈N the corresponding monic ortho-
gonal family and Qn,m the monic polynomial of degree n defined by

Bn,mQn,m = ∆mPn+m, (2.56)

with

Bn,m =
(n+m)!

n!
, Qn,0 ≡ Pn. (2.57)

The following properties are equivalent:
i) There exist two polynomials, φ of degree at most two and ψ of degree one, such that

∆(φL) = ψL.

ii) There exist two polynomials, φ of degree at most two and ψ of degree one, such that for
any integer m,

∆(φLm) = ψmL,
〈Lm, Qj,mQn,m〉 = knδj,n, (kn 6= 0 ∀n ∈ N ),

with the linear functional Lm and the polynomial ψm defined, recursively, by

ψm+1 = ∆φ+ T ψm, ψ0 ≡ ψ,
Lm+1 = T (φLm), L0 ≡ L

and given explicitly by

ψm(x) = φ(x+m)− φ(x) + ψ(x+m), (2.58)

Lm =
m∏
j=1

φ(x+ j) T mL. (2.59)

iii) There exist two polynomials, φ of degree at most two and ψ of degree one, such that
for any integer m, the following second-order difference equation holds:

φ∆∇Qn,m + ψm ∆Qn,m + λ∗n,mQn,m = 0 ∀n ∈ N ,

with the polynomial ψm given by (2.58) and the constant λ∗n,m given by

λ∗n,m = −n {ψ′m + (n− 1)
φ′′

2
} = −n {ψ′ + (2m+ n− 1)

φ′′

2
}. (2.60)

iv) There exist two polynomials, φ of degree at most two and ψ of degree one, such that, for
any integer m, the following relation holds:

n∇ [Qn−1,m+1Lm+1] = −λ∗n,mQn,mLm ∀n ∈ N , (2.61)
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with the polynomial ψm, the linear functional Lm and the constant λ∗n,m given, respectively, by
(2.58), (2.59) and (2.60).

v) There exist a polynomial φ of degree at most two and three constants cn,n+1, cn,n, cn,n−1

with cn,n−1 6= 0 such that

φ∇Pn = cn,n+1Pn+1 + cn,nPn + cn,n−1Pn−1, n > 1.

vi) For any non-zero integer m, there exist sequence of complex numbers {un,m}n∈N such
that

Qn,m−1 = Qn,m + un−1,mQn−1,m + vn−2,mQn−2,m, ∀n ∈ N − {0, 1}. (2.62)
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Remark 2.8 1. For all m ∈ N , the ∆-derivative of order m, {Qn,m}n∈N , of the family
{Pn+m}n∈N is classical discrete and orthogonal with respect to the classical linear func-
tional Lm.

2. The analogue of the functional version of the generalised Rodrigues formula [Nikiforov et
al., 1991], [Salto, 1995] given below, is obtained by iterating the relation (2.61)

Qn,m

m∏
j=1

φ(x+ j)T mL =
n−1∏
j=0

1
ψ′ + (2m+ j + n− 1)φ

′′

2

∇n(
n+m∏
j=1

φ(x+ j)T n+mL).

3. If the linear functional L is represented by the positive weight ρ on the interval I = ]a , b[,

〈L, P 〉 =
∑
x∈I

ρ(x)P (x) ∀P ∈ P, (2.63)

with xn φ(x) ρ(x)|ba = 0 ∀n ∈ N , then we have the equivalence

∆(φL) = ψL ⇐⇒ ∆ (φρ) = ψρ. (2.64)

2.3.7 Operators Gq and Dq
Definition 2.23 The geometric shift operator Gq is defined by

Gq : P −→ P
P −→ GqP, GqP (x) = P (q x), q 6= 0. (2.65)

Definition 2.24 (Hahn, 1948) The q-difference operator Dq, called Hahn operator is defined
by

Dq : P −→ P

P −→ DqP, DqP (x) =
P (q x)− P (x)

(q − 1)x
, q ∈ R, q 6= 0, q 6= 1. (2.66)

The applications P −→ GqP and P −→ DqP belong to L(P,P). We, therefore, use their
transposes to define the action of the operators Gq and Dq on the linear functionals.

Definition 2.25 The action of the geometric shift operator Gq on the functional L is defined by

〈GqL, P 〉 =
1
q
〈L,G 1

q
P 〉 ∀P ∈ P. (2.67)

Definition 2.26 Given a linear functional L, we define the Dq-derivative of L, DqL, as

DqL : P → C

〈DqL, P 〉 = −1
q
〈L,D 1

q
P 〉 ∀P ∈ P. (2.68)

Definition 2.27 Given a real number q 6= 1 and an integer n, we define the real number [n]q
by

[n]q =
qn − 1
q − 1

, q 6= 1, n ≥ 0. (2.69)
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Definition 2.28 The regular linear functional L and the corresponding monic orthogonal poly-
nomials are said to be Dq-semi-classical if there exist two polynomials ψ of degree at least one,
and φ such that

Dq(φL) = ψL. (2.70)

Moreover, if φ is a polynomial of degree at most two and ψ a first-degree polynomial, then
the linear functional and the corresponding orthogonal polynomials are called Dq-classical or
q-classical.

From the above definitions, we state the following corollary of Proposition 3.1 [Medem, 1996].

Proposition 2.7 (Medem, 1996)

GqD 1
q

= Dq, Dq Gt = tGtDq, D 1
q
Dq = qDqD 1

q
, (2.71)

Gq(f g) = GqfGqg, Gq(f L) = GqfGqL, (2.72)
Dq(f g) = f Dqg + GqgDqf = GqfDqg + gDqf, (2.73)
Dq(f L) = f DqL+Dqf Gq L = Gq f DqL+Dqf L, (2.74)

(q − 1)DqL = x−1(GqL − L), (2.75)
Dq(fgL) = Gq f Dq(gL)− Gq f DqgL+Dq(fg)L, ∀f, g ∈ P, ∀L ∈ P ′. (2.76)

Notice that the identities defined in (2.71) are valid when the operators Gq and Dq act on P and
also on P ′.

2.3.8 Class of the Dq-semi-classical linear functional

Let L be a Dq-semi-classical linear functional satisfying

Dq(φL) = ψL, (2.77)

where φ is any non-zero polynomial and ψ a polynomial of degree at least one. L satisfies
Dq(fφL) = (φDqf + ψGqf)L, for any polynomial f . We, therefore, define the class of the
Dq-semi-classical linear functional L as:

Definition 2.29 (Medem, 1996) We define the class cl(L) of the Dq-semi-classical linear
functional L as

cl(L) = min
(f,g)∈X3

{max(deg(f)− 2,deg(g)− 1)}.

where

X3 = {(f, g) ∈ P2 /deg(g) ≥ 1, Dq(fL) = gL}.

Proposition 2.8 (Medem, 1996) If L is a Dq-semi-classical linear functional satisfying (2.77),
then L is of class s = max(deg(φ)− 2,deg(ψ)− 1) if and only if∏

c∈Zφ

(|rc,q|+ |〈L, ψc,q〉|) 6= 0, (2.78)

where Zφ is the set of zeros of φ. The complex number rc,q and the polynomials φc, ψc,q are
defined by

(x− c)φc = φ, ψ − φc = (qx− c)ψc,q + rc,q. (2.79)
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Proof: For a proof see Proposition 3.4. 2

Remark 2.9 It follows from the definition of the class of the linear functional that the Dq-
classical linear functional is a Dq-semi-classical linear functional of class s = 0.

Lemma 2.8 The linear functional L is regular if and only if GqL (with q 6= 0) is regular.

Proof: This follows from Lemma 3.2. 2

Lemma 2.9 Let L be a regular linear functional, we have:

i) If there exist two polynomials ψ 6= 0, and φ such that

Dq(φL) = ψL, (2.80)

then φ is a non-zero polynomial.

ii) Conversely, if there exist two polynomials φ 6= 0 and ψ such that (2.80) holds, then ψ is
of degree at least one.

Proof: For a proof see Lemma 3.1. 2

Proposition 2.9 (Medem, 1996) Let L be a regular linear functional, {Pn}n∈N the corre-
sponding monic orthogonal family and {Pn}n∈N the dual basis associated to {Pn}n∈N .

If {Q̄n,1}n∈N is the dual basis associated to the monic family {Q̄n,1}n∈N defined by

Q̄n,1 =
DqPn+1

[n+ 1]q
,

then we have
D 1
q
Q̄n,1 = −q [n+ 1]qPn+1.

Proof: This follows from Proposition 3.5. 2

2.3.9 Characterisation of Dq-classical orthogonal polynomials

We give some characterisations for Dq-classical orthogonal polynomials. The following theorem
is a corollary of Theorem 3.1 [Medem, 1996].

Theorem 2.9 (Medem, 199) 6 Let L be a regular linear functional, {Pn}n∈N the correspond-
ing monic orthogonal family, and Qn,m the monic polynomial of degree n defined by

Bn,m(q)Qn,m = Dmq Pn+m,

with

Bn,m(q) =
m−1∏
j=0

[n+m− j]q, Qn,0 ≡ Pn.

The following properties are equivalent:
i) There exist two polynomials, φ of degree at most two and ψ of degree one, such that

Dq(φL) = ψL.
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ii) There exist two polynomials, φ of degree at most two and ψ of degree one, such that for
any integer m,

Dq(φLm) = ψmL,
〈Lm, Qj,mQn,m〉 = knδj,n, ∀j, n ∈ N , (kn 6= 0 ∀n ∈ N ),

with the linear functional Lm and the polynomial ψm defined, recursively, by

ψm+1 = Dqφ+ qGqψm, ψ0 ≡ ψ,
Lm+1 = Gq(φLm), L0 ≡ L

and given explicitly as

ψm(x) =
φ(qmx)− φ(x)

(q − 1)x
+ qmψ(qmx), (2.81)

Lm =
m∏
j=1

φ(qjx)Gmq L. (2.82)

iii) There exist two polynomials, φ of degree at most two and ψ of degree one, such that
for any integer m, the following second-order q-difference equation holds:

φDqD 1
q
Qn,m + ψmDq Qn,m + λ∗∗n,mQn,m = 0 ∀n ∈ N ,

with the polynomial ψm given by (2.81) and the constant λ∗∗n,m given by

λ∗∗n,m = −[n]q {Dqψm + [n− 1] 1
q

φ′′

2 q
} = −[n]q q2m {ψ′ + [2m+ n− 1] 1

q

φ′′

2 q
}. (2.83)

iv) There exist two polynomials, φ of degree at most two and ψ of degree one, such that, for
any integer m, the following relation holds:

[n]qD 1
q

[Qn−1,m+1Lm+1] = −q λ∗∗n,mQn,mLm ∀n ∈ N , (2.84)

with the polynomial ψm, the linear functional Lm and the constant λ∗∗n,m given respectively by
(2.81), (2.82) and (2.83).

v) There exist a polynomial φ of degree at most two and three constants cn,n+1, cn,n, cn,n−1

with cn,n−1 6= 0 such that

φD 1
q
Pn = cn,n+1Pn+1 + cn,nPn + cn,n−1Pn−1.

vi) For any non-zero integer m, there exist a sequence of complex numbers {un,m}n∈N such
that

Qn,m−1 = Qn,m + un−1,mQn−1,m + vn−2,mQn−2,m, ∀n ∈ N − {0, 1}.

Remark 2.10 1. For all m ∈ N , the Dq -derivative of order m, {Qn,m}n∈N , of the family
{Pn+m}n∈N is q-classical and orthogonal with respect to the q-classical linear functional
Lm.

2. The q-analogue of the functional version of the generalised Rodrigues formula [Medem,
1996] given below, is obtained by iterating the relation (2.84):

Qn,mLm = (−1)nq−n
n−1∏
j=0

[n− j]q
λ∗∗n−j,m+j

Dn
1
q
Ln+m.
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2.4 The q-integration

In this section, exploiting the thesis of Medem [Medem, 1996], we recall the definition of the
concept of the q-integration with the assumption 0 < q < 1 and give some properties. More
details can be found in [Jackson, 1919] and [Gasper et al., 1990] and [Medem, 1996].

2.4.1 The q-integration on the interval [0, a], a > 0

Let f be a real function defined on the interval [0, a] and Pq([0, a]) the ”q-partition” of the
interval [0, a] defined by

Pq([0, a]) = {. . . aqn+1 < aqn < . . . < aq < a}.

For any integer N , consider the ”Riemann sum”

AN (f) =
N∑
n=0

(aqn − aqn+1)f(aqn) = a(1− q)
N∑
n=0

qnf(aqn).

If the limit of AN (f) when N →∞ is finite, then f is said to be q-integrable and the q-integral
of f on the interval [0, a], denoted

∫ a
0 f(s)dqs, is given by∫ a

0
f(s)dqs = lim

N→∞
AN (f) = a(1− q)

∞∑
n=0

qnf(aqn). (2.85)

2.4.2 The q-integration on the interval [a, 0], a < 0

Let f be a real function defined on the interval [a, 0] and Pq([a, 0]) the ”q-partition” of the
interval [a, 0] defined by

Pq([a, 0]) = {a < aq < . . . aqn < aqn+1 < . . .} = {aqn, n ∈ N}.

For any integer N , consider the ”Riemann sum”

AN (f) =
N∑
n=0

(aqn+1 − aqn)f(aqn) = −a(1− q)
N∑
n=0

qnf(aqn).

If the limit of AN (f) when N →∞ is finite, then f is said to be q-integrable and the q-integral
of f on the interval [a, 0], denoted

∫ 0
a f(s)dqs, is given by∫ 0

a
f(s)dqs = lim

N→∞
AN (f) = −a(1− q)

∞∑
n=0

qnf(aqn). (2.86)

2.4.3 The q-integration on the interval [a,∞[, a > 0

Let f be a real function defined on the interval [a,∞[ and Pq([a,∞[) the ”q-partition” of the
interval [a,∞[ defined by

Pq([a,∞[) = {a < aq−1 < . . . aq−n < aq−n−1 < . . .} = {aq−n, n ∈ N}.

For any integer N , consider the ”Riemann sum”

AN (f) =
N∑
n=0

(aq−n−1 − aq−n)f(aq−n−1) = a(
1
q
− 1)

N∑
n=0

q−nf(aq−n−1).
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If the limit of AN (f) when N →∞ is finite, then f is said to be q-integrable and the q-integral
of f on the interval [a,∞[, denoted

∫∞
a f(s)dqs, is given by

∫ ∞
a

f(s)dqs = lim
N→∞

AN (f) = a(
1
q
− 1)

∞∑
n=0

q−nf(aq−n−1). (2.87)

2.4.4 The q-integrationon the interval ]−∞, a], a < 0

Let f be a real function defined on the interval ]−∞, a] and Pq(]−∞, a]) the ”q-partition” of
the interval ]−∞, a] defined by

Pq(]−∞, a]) = {a > aq−1 > . . . > aq−n−1 > . . .} = {aq−n, n ∈ N}.

For any integer N , consider the ”Riemann sum”

AN (f) =
N∑
n=0

(aq−n − aq−n−1)f(aq−n−1) = −a(
1
q
− 1)

N∑
n=0

q−nf(aq−n−1).

If the limit of AN (f) when N →∞ is finite, then f is said to be q-integrable and the q-integral
of f on the interval ]−∞, a], denoted

∫ a
−∞ f(s)dqs, is given by

∫ a

−∞
f(s)dqs = lim

N→∞
AN (f) = −a(

1
q
− 1)

∞∑
n=0

q−nf(aq−n−1) (2.88)

Remark 2.11 The q-integration is extended to the whole real line by using relations (2.85)-
(2.88) and the following rules∫ b

a
f(s)dqs =

∫ 0

a
f(s)dqs+

∫ b

0
f(s)dqs ∀a, b ∈ R,∫ ∞

a
f(s)dqs =

∫ b

a
f(s)dqs+

∫ ∞
b

f(s)dqs ∀a, b ∈ R, a < 0, b > 0∫ b

−∞
f(s)dqs =

∫ a

−∞
f(s)dqs+

∫ b

a
f(s)dqs ∀a, b ∈ R, a < 0, b > 0 (2.89)∫ ∞

−∞
f(s)dqs =

∫ a

−∞
f(s)dqs+

∫ b

a
f(s)dqs+

∫ ∞
b

f(s)dqs ∀a, b ∈ R.

As the usual integration, the q-integration enjoys some properties. Here, we give some, which
are proved using the definition of the concept of the q-integration.

Lemma 2.10 1. If f is a real function continuous at 0, then we have∫ a

0
Dqf(s)dqs = f(a)− f(0).

2. For any function f integrable on [0, a], we have

Dq
∫ a

0
f(s)dqs = f(a),

assuming that the operator Dq acts on the variable a.
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3. If f is a real function continuous on the interval [0, a], then f is q-integrable on [0,a] and
obeys

lim
q→1

∫ a

0
f(s)dqs =

∫ a

0
f(s)ds.

4. If f and g are two real functions, q-integrable on the interval [0, a], then we have∫ a

0
f(s)Dqg(s)dqs = fg|a0 −

∫ a

0
Dqf(s) g(q s)dqs = f(s/q) g(s)|a0 −

1
q

∫ a

0
g(s)D 1

q
f(s)dqs,

with fg|a0 = f(a)g(a)− f(0)g(0).

Remark 2.12 The previous lemma can be extended to the whole real line by using (2.89).



Chapter 3

The Dq,ω-semi-classical orthogonal
polynomials

3.1 Introduction

We define the operators Aq,ω and Dq,ω. The first generalises the operators Tω and Gq and the
second generalises the operators D, Dω and Dq. We give some definitions related to these opera-
tors and then give the characterisation theorems for Dq,ω-semi-classical orthogonal polynomials;
and deduce by limit processes the characterisation theorems for D, Dω and Dq-semi-classical
orthogonal polynomials.

3.1.1 Operators Aq,ω and Dq,ω

Definition 3.1 We combine the operators Tω and Gq to obtain a new operator denoted by Aq,ω
and defined by

Aq,ω : P −→ P
P −→ Aq,ωP, Aq,ωP (x) = GqTωP (x) = P (qx+ ω), q 6= 0. (3.1)

We denote
A∗q,ω = A 1

q
,−ω

q
. (3.2)

Definition 3.2 (Hahn, 1948) The difference operator Dq,ω is defined by

Dq,ω : P −→ P

P −→ Dq,ωP, Dq,ωP (x) =
P (q x+ ω)− P (x)

(q − 1)x+ ω
, ω ∈ R, q ∈ R, q 6= 0. (3.3)

We denote
D∗q,ω = D 1

q
,−ω

q
(3.4)

The applications P −→ Aq,ωP and P −→ Dq,ωP belong to L(P,P). We, therefore, use their
transposes to define the action of the operators Aq,ω and Dq,ω on the linear functionals.

Definition 3.3 We define the action of the operator Aq,ω on the functional L as

〈Aq,ωL, P 〉 =
1
q
〈L, A∗q,ωP 〉 ∀P ∈ P, (q 6= 0). (3.5)

39
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Definition 3.4 We define the Dq,ω-derivative of a given linear functional L, Dq,ωL, as

Dq,ωL : P → C

〈Dq,ωL, P 〉 = −1
q
〈L, D∗q,ωP 〉 ∀P ∈ P, (q 6= 0). (3.6)

Definition 3.5 The regular linear functional L and the corresponding monic orthogonal poly-
nomials are said to be Dq,ω-semi-classical if there exist two polynomials ψ of degree at least one,
and φ such that

Dq,ω(φL) = ψL. (3.7)

Moreover, if φ is a polynomial of degree at most two and ψ a first-degree polynomial, then the
linear functional and the corresponding orthogonal polynomials are called Dq,ω-classical.

Remark 3.1 The operators Dω and Dq generalise the operator d
dx in the following way:

lim
ω→0

Dω =
d

dx
, lim
q→1
Dq =

d

dx
,

while the operators d
dx , Dω and Dq can be obtained from the operator Dq,ω by the following limit

processes:

lim
ω→0

Dq,ω = Dq, lim
q→1

Dq,ω = Dω, lim
q→1,ω→0

Dq,ω =
d

dx
.

Lemma 3.1 Let L be a regular linear functional.

i) If there exist two polynomials ψ 6= 0, and φ such that

Dq,ω(φL) = ψL, (3.8)

then φ is a non-zero polynomial.

ii) Conversely, if there exist two polynomials φ 6= 0 and ψ such that (3.8) holds, then ψ is of
degree at least one.

Proof: We give the proof for the operator Dq,ω and extend it to the operators d
dx , Dω and

Dq by limit processes (see Remark 3.1).

i) Suppose that

ψ(x) =
r∑
j=0

ψjx
j ,

with ψr 6= 0; and let {Pn}n∈N be the monic polynomial family orthogonal with respect to
L. If φ = 0, we apply both sides of (3.8) to the polynomial 1

ψr
Pr and obtain

0 = 〈ψL, 1
ψr
Pr〉 = 〈L, PrPr〉.

Then 〈L, PrPr〉 = 0. This is a contradiction because {Pn}n∈N is the monic (OPS) associ-
ated to L (see (2.5)). Thus φ is a non-zero polynomial.
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ii) Suppose that ψ is a constant denoted ψ0 and then apply both sides of (3.8) to the poly-
nomial P0P0 (P0(x) = 1) and get

ψ0 〈L, P0P0〉 = 〈Dq,ω(φL), P0P0〉

= −1
q
〈φL, D∗q,ω(P0P0)〉 = 0.

Since 〈L, P0P0〉 6= 0, we deduce that ψ0 = 0 and it results from (3.8) that

Dq,ω(φL) = 0.

The previous equation is equivalent to φL = 0. In fact,

Dq,ω(φL) = 0 ⇐⇒ 〈Dq,ω(φL), P 〉 = 0 ∀P ∈ P
⇐⇒

〈φL, D∗q,ωP 〉 = 0 ∀P ∈ P
⇐⇒

φL = 0.

Since φ 6= 0, we pose

φ(x) =
t∑

j=0

φjx
j ,

with φt 6= 0. Then applying both sides of (3.8) to the polynomial 1
φt
Pt, we obtain

0 = 〈φL, 1
φt
Pt〉 =

1
φt
〈L, φ Pt〉 = 〈L, PtPt〉.

The previous equation gives a contradiction since {Pn}n∈N is orthogonal with respect to
L. We, therefore, conclude that the polynomial ψ is of degree at least one. 2

Remark 3.2 The operators Dω, Dq or Dq,ω transform any polynomial Pn of degree n in a
polynomial of degree n− 1.

Lemma 3.2 If L is a linear functional and Y one of the difference operator {Tω,Gq, Aq,ω},
q 6= 0, then the linear functional Y(L) is regular if and only if L is regular.

Proof: We prove the lemma for the operator Aq,ω and extend it to the operators Tω and Gq.
If {Pn}n∈N is the monic polynomial family orthogonal with respect to L, then {q−nAq,ωPn}n∈N
is the monic polynomial family orthogonal with respect to Aq,ω L.

In fact,

〈Aq,ω L, Aq,ω PnAq,ω Pm〉 =
1
q
δn,m ∀n,m ∈ N .

2

We prove the following proposition:
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Proposition 3.1 For all q, ω ∈ R, q 6= 0, q 6= 1; for all f, g ∈ P; and for all L ∈ P ′ the
following properties hold:

i)Aq,ωA∗q,ω = A∗q,ωAq,ω = Id, Dq,ωAq,ω = qAq,ωDq,ω, Dq,ωA
∗
q,ω =

1
q
A∗q,ωDq,ω =

1
q
D∗q,ω,(3.9)

ii)D∗q,ωDq,ω = qDq,ωD
∗
q,ω, Aq,ωA

∗
q,ω = A∗q,ωAq,ω = Id, (3.10)

iii)Aq,ω(f g) = Aq,ωfAq,ωg, Aq,ω(f L) = Aq,ωfAq,ωL, (3.11)
iv)Dq,ω(fg) = fDq,ωg +Aq,ωgDq,ωf = Aq,ωfDq,ωg + gDq,ωf, (3.12)
v)Dq,ω(fL) = fDq,ωL+Dq,ωfAq,ωL = Aq,ωfDq,ωL+Dq,ωfL, (3.13)

vi)(q − 1)Dq,ωL = (x− ω

1− q
)−1(Aq,ω L − L), (3.14)

Dq,ω(fgL) = Aq,ω f Dq,ω(gL)−Aq,ω f Dq,ωgL+Dq,ω(fg)L, ∀f, g ∈ P, ∀L ∈ P ′. (3.15)

Proof: Properties i) and ii) are obtained directly from the definition.
It should be noted that the identities in relations (3.9) and (3.10) are valid when the operators

Aq,ω and Dq,ω act on P and also on P ′.
For iii), use of (3.5) gives

〈Aq,ω(fL), P 〉 =
1
q
〈fL, A∗q,ωP 〉

=
1
q
〈L, fA∗q,ωP 〉

=
1
q
〈L, A∗q,ω(Aq,ωfP )〉

= 〈Aq,ωL, Aq,ωfP 〉
= 〈Aq,ωfAq,ωL, P 〉,

thus
Aq,ω(fL) = Aq,ωfAq,ωL.

Dq,ω(fg) =
f(qx+ ω)g(qx+ ω)− f(x)g(x)

(q − 1)x+ ω

= f(x)
g(qx+ ω)− g(x)

(q − 1)x+ ω
+ g(qx+ ω)

f(qx+ ω)− f(x)
(q − 1)x+ ω

= f(x)Dq,ωg(x) + g(qx+ ω)Dq,ωf(x),

then reversing the role of f and g, we deduce that

Dq,ω(fg) = fDq,ωg +Aq,ωgDq,ωf = Aq,ωfDq,ωg + gDq,ωf.

We now use i), ii) and iii) to prove iv).

〈Dq,ω(fL), P 〉 = −1
q
〈fL, D∗q,ωP 〉

= −1
q
〈L, fD∗q,ωP 〉

= −1
q
〈L, D∗q,ω(fP )−A∗q,ωPD∗q,ωf〉
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= 〈Dq,ωL, fP 〉+
1
q
〈L, D∗q,ωfA∗q,ωP 〉

= 〈fDq,ωL, P 〉+
1
q
〈D∗q,ωfL, A∗q,ωP 〉

= 〈fDq,ωL, P 〉+ 〈Aq,ω(D∗q,ωfL), P 〉
= 〈fDq,ωL, P 〉+ 〈Dq,ωfAq,ωL, P 〉.

Then
Dq,ω(fL) = fDq,ωL+Dq,ωfAq,ωL = Aq,ωfDq,ωL+Dq,ωfL.

For q 6= 1 and q 6= 0, we have

〈(x− ω

1− q
)−1(Aq,ωL − L), P 〉 = 〈Aq,ωL − L, θ ω

1−q
P 〉

= 〈Aq,ωL − L,
P (x)− P ( ω

1−q )

x− ω
1−q

〉

=
1
q
〈L,

P (x−ωq )− P ( ω
1−q )

x−ω
q −

ω
1−q

〉 − 〈L,
P (x)− P ( ω

1−q )

x− ω
1−q

〉

= −(q − 1)
1
q
〈L,

P (x−ωq )− P (x)

(1
q − 1)x− ω

q

= −(q − 1)
1
q
〈L, D∗q,ωP 〉

= (q − 1)〈Dq,ωL, P 〉.

Then,

(q − 1)Dq,ωL = (x− ω

1− q
)−1(Aq,ω L − L).

The relation (3.15) follows straightforwardly from (3.12) and (3.13). 2

Remark 3.3 The proof of Proposition 2.4 (resp. Proposition 2.7) is obtained in the same way
just by replacing q by one and ω by zero, respectively. In particular, to derive the relation (2.46)
from (3.14), we first multiply both sides of (3.14) by (x− ω

1−q ), then use (2.14) to get

((q − 1)x+ ω)Dq,ωL = (Aq,ω − Id)L.

Therefore, (2.46) yields by taking q = 1 in the previous relation.

Proposition 3.2 If L is a regular linear functional, and q ∈ R− {0}, then we have

Dq,ω(φL) = ψL ⇐⇒ D∗q,ω(φ̃L) = ψL, (3.16)

with

φ̃ =
1
q

(φ+ [(q − 1)x+ ω]ψ). (3.17)

Proof: Let φ and ψ be two polynomials, then using Proposition 3.1
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we have

Dq,ω(φL) = ψL ⇐⇒ 〈Dq,ω(φL), Aq,ωP 〉 = 〈ψL, Aq,ωP 〉 ∀P ∈ P

⇐⇒ −1
q
〈φL, D∗q,ωAq,ωP 〉 = 〈ψL, Aq,ωP 〉 ∀P ∈ P

⇐⇒ −〈φL, Aq,ωD∗q,ωP 〉 = 〈ψL, Aq,ωP 〉 ∀P ∈ P
⇐⇒ −〈φL, Dq,ωP 〉 = 〈ψL, [(q − 1)x+ ω]Dq,ωP + P 〉 ∀P ∈ P
⇐⇒ −〈(φ+ [(q − 1)x+ ω]ψ)L, Dq,ωP 〉 = 〈ψL, P 〉 ∀P ∈ P

⇐⇒ 1
q
〈D∗q,ω [(φ+ [(q − 1)x+ ω]ψ)L] , P 〉 = 〈ψL, P 〉 ∀P ∈ P

⇐⇒ D∗q,ω(φ̃L) = ψL,

with φ̃ given by (3.17). 2

Corollary 3.1 (Salto, 1995, Medem, 1996) From the above proposition, we deduce the fol-
lowing:

i) L is Dq,ω-semi-classical ⇐⇒ L is D∗q,ω-semi-classical.
ii) L is Dq-semi-classical ⇐⇒ L is D 1

q
-semi-classical.

Indeed,
Dq(φL) = ψL ⇐⇒ D 1

q
(φ̃L) = ψL,

with
φ̃ =

1
q

(φ+ (q − 1)xψ).

iii) L is Dω-semi-classical ⇐⇒ L is D−ω-semi-classical. Moreover,

Dω(φL) = ψL ⇐⇒ D−ω(φ̃L) = ψL,

where
φ̃ = φ+ ωψ.

Remark 3.4 If Y represents one of the operators: Tω, Gq, Aq,ω, d
dx , Dω, Dq, and Dq,ω, we

define the power of Y, Ym as

Ym = YYm−1, m ≥ 1 with Y0 ≡ Id,

where Id is the identity operator.

Remark 3.5 One proves easily that ∀P ∈ P and ∀n ∈ N

Anq,ωP (x) = P (qnx+ ω[n]q), Gnq P (x) = P (qnx), T nω P (x) = P (x+ nω). (3.18)

3.1.2 Class of the Dq,ω-semi-classical linear functional

Let L be a Dq,ω-semi-classical linear functional satisfying

Dq,ω(φL) = ψL, (3.19)

where φ is a non-zero polynomial and ψ a polynomial of degree at least one. L satisfies
Dq,ω(fφL) = (φDq,ωf + ψAq,ωf)L, for any polynomial f .
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Definition 3.6 We define the class cl(L) of the Dq,ω-semi-classical linear functional L as

cl(L) = min
(f,g)∈X4

{max(deg(f)− 2,deg(g)− 1)}, (3.20)

where
X4 = {(f, g) ∈ P2 /deg(g) ≥ 1 and Dq,ω(fL) = gL}. (3.21)

We state the following lemmas and propostion which we shall use to prove the proposition
characterising the class of the semi-classical linear functional.

Lemma 3.3 Consider L a regular linear functional, ψ a non-zero polynomial and φ a polynomial
of degree at least one. Then, for any zero, c, of φ, we have

Dq,ω(φL) = ψL ⇐⇒ Dq,ω(φcL) = ψc,q,ωL − 〈L, ψc,q,ω〉 δ c−ω
q

+
1
q
rc,q,ω (x− c− ω

q
)−1L, (3.22)

where
φ = (x− c)φc, ψ − φc = (qx+ ω − c)ψc,q,ω + rc,q,ω. (3.23)

Proof: The proof is obtained straightforwardly by using (2.14), (3.13) and (3.23). 2

Lemma 3.4 Let L be a regular linear functional. If there exist four polynomials φ, ψ, φ̃ and
ψ̃, with deg(φ̃ ≥ 1), such that

Dq,ω(φL) = ψL, Dq,ω(φφ̃L) = ψ̃L, (3.24)

then, for any zero, c, of φ̃,
rc,q,ω = 〈L, ψ̃c,q,ω〉 = 0, (3.25)

where,
φ̃ = (x− c)φ̃c, ψ̃ − φφ̃c = (qx+ ω − c)ψ̃c,q,ω + rc,q,ω. (3.26)

Proof: The second relation of (3.24) thanks to Lemma 3.3 is equivalent to

Dq,ω(φφ̃cL) = ψ̃c,q,ωL − 〈L, ψ̃c,q,ω〉 δ c−ω
q

+
1
q
rc,q,ω (x− c− ω

q
)−1L, (3.27)

where rc,q,ω and ψc,q,ω are defined by (3.26). The previous relation, used together with (3.13)
and the first relation of (3.24) gives

(ψAq,ωφ̃c + φDq,ωφ̃c − ψ̃c,qω)L = −〈L, ψ̃c,q,ω〉 δ c−ω
q

+
1
q
rc,q,ω (x− c− ω

q
)−1L. (3.28)

The multiplication of the latter equation by (x− c−ω
q ), use of (2.14) and the relation (x−a)δa = 0,

gives

(x− c− ω
q

)(ψAq,ωφ̃c + φDq,ωφ̃c − ψ̃c,qω)L =
1
q
rc,q,ω L.

It follows from the previous equation and the fact that L is regular that,

(x− c− ω
q

)(ψAq,ωφ̃c + φDq,ωφ̃c − ψ̃c,qω) =
1
q
rc,q,ω.

Thus, rc,q,ω = 0 and ψAq,ωφ̃c + φDq,ωφ̃c − ψ̃c,qω = 0. We, therefore, deduce that 〈L, ψ̃c,qω〉 = 0.
2

The following proposition, already known for the operator Dω [Salto, 1995], is also needed
to characterise the class of the Dq,ω-semi-classical linear functional.
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Proposition 3.3 Consider Φ1, Φ2, Ψ1 and Ψ2, four polynomials such that: Φ1 6= 0, Φ2 6= 0,
deg(Φ1) ≤ deg(Φ2), deg(Ψ1) ≥ 1 and deg(Ψ2) ≥ 1. Let L be a regular linear functional satisfying

Dq,ω(Φ1L) = Ψ1L, Dq,ω(Φ2L) = Ψ2L, q 6= 0. (3.29)

If Φ denotes the highest common factor of Φ1 and Φ2: Φ = hcf(Φ1,Φ2), then, there exists a
polynomial Ψ such that,

Dq,ω(ΦL) = ΨL (3.30)

and

max(deg(Φ)− 2,deg(Ψ)− 1) ≤ max(deg(Φj)− 2,deg(Ψj)− 1), j = 1, 2. (3.31)

Moreover, If Φ1 is not a divisor of Φ2 (Φ2 6= f Φ1, ∀f ∈ P), then the previous relation
becomes

max(deg(Φ)− 2,deg(Ψ)− 1) < max(deg(Φj)− 2,deg(Ψj)− 1), j = 1, 2. (3.32)

Proof:
We shall give the proof mimicking the approach developed in [Salto, 1996] for the operator

Dω. Since Φ = hcf(Φ1,Φ2), there exist two polynomials Φ̃1 and Φ̃2 satisfying

Φ1 = Φ Φ̃1, Φ2 = Φ Φ̃2, (3.33)

with Φ̃1 and Φ̃2 having no common zero.
In the first step, we combine (3.12), (3.15) and (3.29) to get

Dq,ω(Φ̃2Φ1L) = Aq,ωΦ̃2Ψ1L −Aq,ωΦ̃2Dq,ωΦ1L+Dq,ω(Φ1Φ̃2)L, (3.34)
Dq,ω(Φ̃1Φ2L) = Aq,ωΦ̃1Ψ2L −Aq,ωΦ̃1Dq,ωΦ2L+Dq,ω(Φ2Φ̃1)L. (3.35)

In the second step, we subtract the two previous equations taking care that Φ̃1Φ2 = Φ̃2Φ1, to
get [

Aq,ωΦ̃2(Ψ1 − ΦDq,ωΦ̃1)−Aq,ωΦ̃1(Ψ2 − ΦDq,ωΦ̃2)
]
L = 0.

Since L is regular, we deduce that

Aq,ωΦ̃2(Ψ1 − ΦDq,ωΦ̃1) = Aq,ωΦ̃1(Ψ2 − ΦDq,ωΦ̃2).

Using the previous relation and the fact that Φ̃1 and Φ̃2 have no common zero, it follows that
there exists a polynomial Ψ verifying

Aq,ωΦ̃1Ψ = Ψ1 − ΦDq,ωΦ̃1, Aq,ωΦ̃2Ψ = Ψ2 − ΦDq,ωΦ̃2. (3.36)

Use of (3.33) and (3.36) transforms (3.29) in

Aq,ωΦ̃1Dq,ω(ΦL) = Aq,ωΦ̃1ΨL, (3.37)
Aq,ωΦ̃2Dq,ω(ΦL) = Aq,ωΦ̃2ΨL. (3.38)

Since Φ̃1 and Φ̃2 have no common zero, there exist two polynomials (Bezout identity) h1 and h2

such that Φ̃1 h1+Φ̃2 h2 = 1. In the third step, we sum the two equations obtained by multiplying
(3.37) and (3.38) by Aq,ωh1 and Aq,ωh2, respectively, and get

Dq,ω(ΦL) = ΨL.
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The latter equation, used together with Lemma 3.1 gives deg(Ψ) ≥ 1. In the fourth step, we
use (3.33) and (3.36) to get

deg(Φj) = deg(Φ) + deg(Φ̃j), deg(Ψ) + deg(Φ̃j) ≤ max(deg(Ψj),deg(Φj)− 1), j = 1, 2. (3.39)

We, therefore, deduce (3.31).
If we assume that polynomials Φ1 and Φ2 are such that Φ2 6= f Φ1 ∀f ∈ P, then,

deg(Φ) < deg(Φj), j = 1, 2. We finally use (3.39) to get (3.32). 2

The following proposition gives a characterisation for the class of semi-classical linear func-
tional.

Proposition 3.4 If L is a Dq,ω-semi-classical linear functional satisfying (3.19), then L is of
class cl(L) = max(deg(φ)− 2,deg(ψ)− 1) if and only if∏

c∈Zφ

(|rc,q,ω|+ |〈L, ψc,q,ω〉|) 6= 0, (3.40)

where Zφ is the set of zeros of φ. The complex number rc,q,ω and the polynomials φc, ψc,q,ω are
defined by

(x− c)φc = φ, ψ − φc = (qx+ ω − c)ψc,q,ω + rc,q,ω. (3.41)

Proof: We first recall the definition of the class cl(L) of L (see (3.20) and (3.21)).

cl(L) = min
(f,g)∈X4

{max(deg(f)− 2,deg(g)− 1)},

where
X4 = {(f, g) ∈ P2 /deg(g) ≥ 1 and Dq,ω(fL) = gL}.

Let (φ, ψ) ∈ X4 such that there exists a zero, c, of φ verifying rc,q,ω = 〈L, ψc,q,ω〉 = 0. We shall
prove that,

cl(L) < max(deg(φ)− 2,deg(ψ)− 1).

Equation Dq,ω(φL) = ψL, thanks to Lemma 3.3 is equivalent to

Dq,ω(φcL) = ψc,q,ωL,

therefore, (φc, ψc,q,ω) belongs to X4 (see Lemma 3.1). Moreover, the degree of φ, ψ, φc and
ψc,q,ω obey

max(deg(φc)− 2,deg(ψc,q,ω)− 1) = max(deg(φ)− 2,deg(ψ)− 1)− 1.

Thus,
cl(L) ≤ max(deg(φc)− 2,deg(ψc,q,ω)− 1) < max(deg(φ)− 2,deg(ψ)− 1).

We conclude that for any (φ, ψ) ∈ X4 such that cl(L) = max(deg(φ)− 2,deg(ψ)− 1), then, for
any zero, c, of φ,

|rc,q,ω|+ |〈L, ψc,q,ω〉| 6= 0. (3.42)

Conversely, we shall prove that for any (φ, ψ) ∈ X4 such that (3.42) holds for any zero,
c, of φ, then cl(L) = max(deg(φ) − 2,deg(ψ) − 1). Let (φm, ψm) ∈ X4 such that cl(L) =
max(deg(φm)− 2,deg(ψm)− 1). We assume without loss of generality that deg(φm) ≤ deg(φ).
We write

φ = φm f +R, R, f ∈ P, deg(R) < deg(φm).
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• If R 6= 0, then, from Proposition 3.3, there exists (φ̃, ψ̃) ∈ X4, with φ̃ = hcf(φ, φm) such
that

max(deg(φ̃)− 2,deg(ψ̃)− 1) < max(deg(φm)− 2,deg(ψm)− 1) = cl(L).

This is a contradiction because (φ̃, ψ̃) ∈ X4. Thus, R = 0.

• If deg(f) ≥ 1, then, it yields from Lemma 3.4, that for any zero, c, of f (then of φ),

|rc,q,ω|+ |〈L, ψc,q,ω〉| = 0.

The previous equation contradicts (3.42).

Finally, f is a constant and we have φ = fφm, ψ = fψm. Thus,

cl(L) = max(deg(φ)− 2,deg(ψ)− 1) = max(deg(φm)− 2,deg(ψm)− 1).

2

The proof of the proposition is therefore complete. It should be noted that the proof of
Propositions 2.3, 2.5 and 2.8 are deduced by limit processes (see Remark 3.1).

Remark 3.6 It follows from the definition of the class of the linear functional that the Dq,ω-
classical linear functional is a Dq,ω-semi-classical linear functional of class s = 0.

Definition 3.7 The Pearson-type difference equation (3.19) is said to be irreducible on c ∈ Zφ
if |rc,q,ω|+ |〈L, ψc,q,ω〉| 6= 0.
Moreover, (3.19) is said to be irreducible if it is not reducible on any c ∈ Zφ.

Proposition 3.5 Let L be a regular linear functional, {Pn}n∈N the corresponding monic ortho-
gonal family and {Pn}n∈N the dual basis associated to {Pn}n∈N . If {Qn,1}n∈N is the dual basis
associated to the monic family {Qn,1}n∈N defined by

Qn,1 =
Dq,ωPn+1

[n+ 1]q
, (3.43)

then, we have
D∗q,ωQn,1 = −q [n+ 1]qPn+1. (3.44)

Proof:

〈D∗q,ωQn,1, Pm+1〉 = −q〈Qn,1, Dq,ωPm+1〉
= −q[m+ 1]q〈Qn,1, Qm,1〉
= −q[n+ 1]qδn,m
= −q[n+ 1]q〈Pn+1, Pm+1〉,

then
D∗q,ωQn,1 = −q [n+ 1]qPn+1.

2
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3.2 Characterisation theorems for Dq,ω-semi-classical orthogonal
polynomials

3.2.1 Dq,ω-classical orthogonal polynomials

The following theorem characterises the Dq,ω-classical orthogonal polynomials. It should be
mentioned that the following theorem is partly proved in [Smaili, 1987].

Theorem 3.1 Let L be a regular linear functional, {Pn}n∈N the corresponding monic orthogo-
nal family, and Qn,m the monic polynomial of degree n defined by

Bn,m(q)Qn,m = Dm
q,ωPn+m, (3.45)

with

Bn,m(q) =
m−1∏
j=0

[n+m− j]q, Qn,0 ≡ Pn ∀n ∈ N . (3.46)

The following properties are equivalent:
i) There exist two polynomials, φ of degree at most two and ψ of degree one, such that

Dq,ω(φL) = ψL. (3.47)

ii) There exist two polynomials, φ of degree at most two and ψ of degree one, such that for
any integer m,

Dq,ω(φLm) = ψmL, (3.48)
〈Lm, Qj,mQn,m〉 = knδj,n, ∀j, n ∈ N , (kn 6= 0 ∀n ∈ N ), (3.49)

with the linear functional Lm and the polynomial ψm defined, recursively, by

ψm+1 = Dq,ωφ+ qAq,ωψm, ψ0 ≡ ψ, (3.50)
Lm+1 = Aq,ω(φLm), L0 ≡ L (3.51)

and given explicitly by

ψm(x) =
φ(qmx+ ω[m]q)− φ(x)

(q − 1)x+ ω
+ qmψ(qmx+ ω[m]q), (3.52)

Lm =
m∏
j=1

φ(qjx+ ω[j]q)Amq,ωL. (3.53)

iii) There exist two polynomials, φ of degree at most two and ψ of degree one, such that
for any integer m, the following second-order difference equation holds:

φDq,ωD
∗
q,ω Qn,m + ψmDq,ω Qn,m + λn,mQn,m = 0 ∀n ∈ N , (3.54)

with the polynomial ψm given by (3.52) and the constant λn,m given by

λn,m = −[n]q {Dqψm + [n− 1] 1
q

φ′′

2 q
}. (3.55)
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iv) There exist two polynomials, φ of degree at most two and ψ of degree one, such that, for
any integer m, the following relation holds:

[n]qD∗q,ω [Qn−1,m+1Lm+1] = −q λn,mQn,mLm ∀n ∈ N , (3.56)

with the polynomial ψm, the linear functional Lm and the constant λn,m given, respectively, by
(3.52), (3.53) and (3.55).

v) There exist a polynomial φ of degree at most two and three constants cn,n+1, cn,n, cn,n−1

with cn,n−1 6= 0 such that

φD∗q,ωPn = cn,n+1Pn+1 + cn,nPn + cn,n−1Pn−1, n > 1. (3.57)

vi) For any non-zero integer m, there exist a sequence of complex numbers {un,m}n∈N such
that

Qn,m−1 = Qn,m + un−1,mQn−1,m + vn−2,mQn−2,m, ∀n ∈ N − {0, 1}. (3.58)

Proof: i) =⇒ ii). Suppose that the property i) is satisfied. We will show by induction
on m that the relations (3.48) and (3.49) hold. From (3.47) and the orthogonality of the family
{Pn}n∈N , it is obvious that the relations (3.48) and (3.49) are satisfied for m = 0. Suppose that
relations (3.48) and (3.49) are satisfied up to a fixed integer m. Using Proposition 3.1, we have

Dq,ω(φLm+1) = Dq,ω (φAq,ω(φLm))
= Dq,ω φAq,ω(φLm) +Aq,ωφDq,ω Aq,ω(φLm)
= Dq,ω φAq,ω(φLm) +Aq,ωφ q Aq,ωDq,ω (φLm)
= Dq,ω φAq,ω(φLm) + q Aq,ωφAq,ω(ψmLm)
= Dq,ω φAq,ω(φLm) + q Aq,ωψmAq,ω(φLm)
= (Dq,ω φ+ q Aq,ωψm)Aq,ω(φLm)
= ψm+1Lm+1.

Thus, the relation (3.48) holds for all integers m.
Let j and n be two integers such that j < n. Using Proposition 3.1 and the fact that (3.48)

and (3.49) hold up to a fixed integer m, we have

[j + 1]q [n+ 1]q〈Lm+1, Qj,m+1Qn,m+1〉
= 〈Aq,ω(φLm), Dq,ω Qj+1,mDq,ω Qn+1,m〉
= 〈Aq,ω(φLm), Dq,ω [Qn+1,mDq,ω Qj+1,m]−Aq,ωQn+1,mD

2
q,ωQj+1,m〉

= −1
q
〈D∗q,ωAq,ω(φLm), Qn+1,mDq,ω Qj+1,m〉 −

1
q
〈φLm, Qn+1,mA

∗
q,ωD

2
q,ωQj+1,m〉

= −〈Dq,ω(φLm), Qn+1,mDq,ω Qj+1,m〉 −
1
q
〈Lm, Qn+1,mφA

∗
q,ωD

2
q,ωQj+1,m〉

= −〈Lm, ψmQn+1,mDq,ω Qj+1,m〉 −
1
q
〈Lm, Qn+1,mφA

∗
q,ωD

2
q,ωQj+1,m〉

= 0,

because deg(φA∗q,ωD
2
q,ωQj+1,m) ≤ deg(ψmDq,ω Qj+1,m) = j + 1 < n+ 1 (see Lemma 3.5).

Repeated use of the following relations, proved in Lemma 3.5,

[n+ 1]q[n+ 1]q 〈Lm+1, Qn,m+1Qn,m+1〉 = λn+1,m〈Lm, Qn+1,mQn+1,m〉, (3.59)

λn+1,m =
[n+ 1]qq2m

[n+ 1 + 2m]q
λn+1+2m,0 6= 0 ∀n,m ∈ N (3.60)
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gives

〈Lm, Qn,mQn,m〉 =
m−1∏
j=0

λn+1+j,m−1−j
[n+ j + 1]2q

〈L, Pn+mPn+m〉. (3.61)

Thus,
〈Lm, Qn,mQn,m〉 6= 0 ∀n,m ∈ N .

Iteration of relations (3.50) and taking into account (3.9) lead to

ψm =
m−1∑
j=0

qjAjq,ωDq,ω φ(x) + qmAmq,ωψ(x)

=
m−1∑
j=0

qjq−jDq,ωA
j
q,ωφ(x) + qmAmq,ωψ(x)

=
m−1∑
j=0

Aj+1
q,ω φ(x)−Ajq,ωφ(x)

(q − 1)x+ ω
+ qmAmq,ωψ(x).

Thus,

ψm(x) =
φ(qmx+ ω[m]q)− φ(x)

(q − 1)x+ ω
+ qmψ(qmx+ ω[m]q).

Taking into account Remark 3.5, relation (3.53) follows directly from the iteration of (3.51).
ii) =⇒ iii). Assuming that the property ii) holds, it follows that for any integer m, the

monic polynomial family {Qn,m}n∈N is orthogonal with respect to Lm; thus, {Qn,m}n∈N forms
a basis of P.

From the following expansion

φDq,ωD
∗
q,ωQn,m + ψmDq,ω Qn,m = −

n∑
j=0

λj,mQj,m, (3.62)

we obtain

λj,m〈Lm, Qj,mQj,m〉 = −〈Lm, φQj,mDq,ωD
∗
q,ω Qn,m + ψmQj,mDq,ω Qn,m〉

= −〈Lm, φQj,mDq,ωD
∗
q,ω Qn,m〉 − 〈ψm Lm, Qj,mDq,ω Qn,m〉

= −〈Lm, φQj,mDq,ωD
∗
q,ω Qn,m〉 − 〈Dq,ω(φLm), Qj,mDq,ωQn,m〉

= −〈Lm, φQj,mDq,ωD
∗
q,ω Qn,m〉+

1
q
〈φLm, D∗q,ω(Qj,mDq,ωQn,m)〉

= −〈Lm, φQj,mDq,ωD
∗
q,ω Qn,m〉+

1
q
〈φLm, Qj,mD∗q,ωDq,ωQn,m〉

+
1
q
〈φLm, D∗q,ωQj,mA∗q,ωDq,ωQn,m)〉

= −〈Lm, φQj,mDq,ωD
∗
q,ω Qn,m〉+ 〈φLm, Qj,mDq,ωD

∗
q,ωQn,m〉

+
1
q
〈φLm, D∗q,ωQj,mA∗q,ωDq,ωQn,m〉

= +
1
q
〈φLm, A∗q,ωDq,ωQj,mA

∗
q,ωDq,ω Qn,m〉

= +
1
q
〈φLm, A∗q,ω(Dq,ωQj,mDq,ω Qn,m)〉
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= 〈Aq,ω(φLm), Dq,ωQj,mDq,ωQn,m〉
= [j]q[n]q〈Lm+1, Qj−1,m+1Qn−1,m+1〉
= 0 for j < n,

by orthogonality of {Qn,m+1}n∈N with respect to Lm+1. Thus,

φDq,ωD
∗
q,ω Qn,m + ψmDq,ω Qn,m + λn,mQn,m = 0 ∀n ∈ N .

Identification of the coefficients of xn in the previous equation gives

φ′′

2
[n− 1]q[n] 1

q
+ ψ′m[n]q + λn,m = 0.

Then using the following relation

[n] 1
q

= q1−n[n]q, ∀n ∈ N , (3.63)

we obtain

λn,m = −[n]q(ψ′m + [n− 1] 1
q

φ′′

2q
).

iii) =⇒ i). Assuming that the property iii) holds, elementary computations using (3.12)
and (3.54) for m = 1 give

[n+ 1]q〈Dq,ω (φL)− ψL, Qn,1〉 = −1
q
〈φL, D∗q,ωDq,ω Pn+1〉 − 〈ψL, Dq,ω Pn+1〉

= −〈L, φDq,ωD
∗
q,ω Pn+1 + ψDq,ω Pn+1〉

= 〈L, λn+1,0 Pn+1〉
= 0 ∀n ∈ N . (3.64)

Since the family {Qn,1}n∈N forms a basis of P ′, it is clear that
Dq,ω (φL) = ψL.

iii) ⇐⇒ vi). Computations using Proposition 3.1 show straightforwardly that given an
integer m, (3.56) is equivalent to

(φDq,ωD
∗
q,ω Qn,m + ψmDq,ω Qn,m + λn,mQn,m)Lm = 0 ∀n ∈ N .

Since Lm is regular (see property ii)) it is obvious that properties iii) and iv) are equivalent.
i) =⇒ v). Expanding the polynomial φ(x)D∗q,ωPn in the basis {Pn}n∈N of P,

φ(x)D∗q,ωPn =
n+1∑
j=0

cn,jPj ,

we obtain, using (3.10),

cn,j〈L, PjPj〉 = 〈φL, PjD∗q,ωPn〉
= 〈φL, D∗q,ω(Aq,ωPjPn)− PnD∗q,ωAq,ωPj 〉
= −q〈Dq,ω(φL), Aq,ωPjPn〉 − q〈φL, PnDq,ωPj 〉
= −q〈L, (ψAq,ωPj + φDq,ωPj)Pn 〉
= 0 for j < n− 1.
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Thus,
φ(x)D∗q,ωPn = cn,n+1Pn+1 + cn,nPn + cn,n−1Pn−1.

When we set j = n− 1 in the above equations we obtain, taking into account (3.63),

cn,n−1〈L, Pn−1Pn−1〉
= −q〈L, (ψAq,ωPn−1 + φDq,ωPn−1)Pn〉

= −q(qn−1ψ′ + [n− 1]q
φ′′

2
)〈L, xnPn〉

= −qn(ψ′ + [n− 1] 1
q

φ′′

2q
)〈L, PnPn〉

= qn
λn,0
[n]q
〈L, PnPn〉

6= 0 for n ≥ 1

by relation (3.74).
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v) =⇒ i). Expanding the linear functional Dq,ω(φL) in the dual basis {Pn}n∈n of the
orthogonal family {Pn}n∈N ,

Dq,ω(φL) =
∑
n≥0

hnPn, (3.65)

we obtain, using (3.57),

hn = 〈Dq,ω(φL), Pn〉

= −1
q
〈L, φD∗q,ωPn〉

= −1
q
〈L, cn,n+1Pn+1 + cn,nPn + cn,n−1Pn−1〉

= 0 for n ≥ 2,

then
hn = 0 for n ≥ 2. (3.66)

On the other hand,

h0 = 〈Dq,ω(φL), 1〉 = −1
q
〈φL, D∗q,ω1〉 = 0, (3.67)

h1 = −c1,0

q
〈L, P0P0〉 6= 0 (3.68)

because by hypothesis, cn,n−1 6= 0 for n ≥ 1.
Use of (3.65)-(3.68) and the fact that P1 = P1

〈L,P1P1〉L (see (2.17)) give

Dq,ω(φL) = h1P1 = −c1,0〈L, P0P0〉P1

q〈L, P1P1〉
L. (3.69)

Then the regular linear functional L satisfies Dq,ω(φL) = ψL, where

ψ(x) = −c1,0〈L, P0P0〉
q〈L, P1P1〉

P1(x),

with deg(φ) ≤ 2 and deg(ψ) = deg(P1) = 1. Thus L is Dq,ω-classical, and therefore properties
i) and v) are equivalent.

i) =⇒ vi). Since properties i) and ii) are equivalent, assuming that the property i) is
satisfied, it yields that for any integer m the monic polynomial family {Qn,m}n∈N is orthogonal
with respect to Lm. Let m be a non-zero integer. We expand the polynomial Qn,m−1 in the
basis {Qn,m}n∈N of P,

Qn,m−1 = Qn,m +
n−1∑
j=0

uj,mQj,m

and obtain

uj,m[j + 1]q〈Lm, Qj,mQj,m〉 = [j + 1]q〈Lm, Qn,m−1Qj,m〉
= 〈Lm, Dq,ωQj+1,m−1Qn,m−1〉
= 〈Aq,ω(φLm−1), Dq,ω(Qj+1,m−1Qn,m−1)〉
−〈Aq,ω(φLm−1), Aq,ωQj+1,m−1Dq,ωQn,m−1〉

= −1
q
〈D∗q,ωAq,ω(φLm−1), Qj+1,m−1Qn,m−1〉
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−[n]q〈Lm, Aq,ωQj+1,m−1Qn−1,m〉
= −〈Dq,ω(φLm−1), Qj+1,m−1Qn,m−1〉
−[n]q〈Lm, Aq,ωQj+1,m−1Qn−1,m〉

= −〈Lm−1, ψm−1Qj+1,m−1Qn,m−1〉
−[n]q〈Lm, Aq,ωQj+1,m−1Qn−1,m〉

= 0 for j < n− 2,

by the orthogonality of {Qn,m}n∈N and {Qn,m−1}n∈N with respect to Lm and Lm−1, respectively.
Therefore,

Qn,m−1 = Qn,m + un−1,mQn−1,m + un−2,mQn−2,m ∀n ∈ N − {0, 1} ∀m ∈ N − {0}.

iv) =⇒ i). Let {Pn}n∈N and {Qn,m}n∈N be the dual basis associated to the monic families
{Pn}n∈N and {Qn,m}n∈N , respectively.

In the first step we expand Q0,1 in the dual basis {Qn,0}n∈N ,

Q0,1 =
∑
j≥0

αjQj,0

and obtain, using, (3.58)

αj = 〈Q0,1, Qj,0〉
= 〈Q0,1, Qj,1 + uj−1,1Qj−1,1 + uj−2,1Qj−2,1〉
= 0 for j ≥ 3.

Using (2.17), we, therefore, obtain,

Q0,1 =
2∑
j=0

αjQj,0 =
2∑
j=0

αjPj = φL, (3.70)

where

φ(x) =
2∑
j=0

αjPj(x)
〈L, PjPj〉

. (3.71)

In the second step, we compute D∗q,ωQ0,1 using (2.17), (3.44) and obtain

D∗q,ω(Q0,1) = −qP1 = ψL, (3.72)

where
ψ(x) =

−qP1(x)
〈L, P1P1〉

. (3.73)

Use of (3.70)-(3.72) permit us to conclude that

D∗q,ω(φL) = ψL.

The previous equation, thanks to Proposition 3.2, is equivalent to

Dq,ω(φ̃L) = ψL,

with
φ̃ = qφ− [(q − 1)x+ ω]ψ.
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We complete the proof of vi) =⇒ i). by remarking that deg(φ) ≤ deg(P2) = 2 and deg(ψ) =
deg(P1) = 1 (see (3.71) and (3.73)).

Summing up, we have proved that i) =⇒ ii) =⇒ iii) =⇒ i), iii) ⇐⇒ iv), i) ⇐⇒ v) and
i)⇐⇒ vi); thus, the proof of the theorem is complete. 2

Lemma 3.5 Let L be a regular linear functional satisfying Dq,ω(φL) = ψL, where φ is a poly-
nomial of degree at most two and ψ a first-degree polynomial.The following properties hold:

i) λn+1,0 6= 0 ∀n ∈ N , (3.74)

ii) λn+1,m =
[n+ 1]q q2m

[n+ 1 + 2m]q
λn+1+2m,0, (3.75)

iii) Dq,ωψm 6= 0 ∀m ∈ N , (3.76)
iv) [n+ 1]2q〈Lm+1, Qn,m+1Qn,m+1〉 = λn+1,m〈Lm, Qn+1,mQn+1,m〉, (3.77)

with Lm, λn,m and Qn,m defined in Theorem 3.1.

Proof: i) From the relation

D∗q,ωx
n = [n] 1

q
xn−1 +

n∑
j=2

a∗n,j(q, ω)xn−j ,

where a∗n,j(q, ω) are complex numbers given by

a∗n,j(q, ω) = (
ω

q
)j−1

n−1∑
k=0

qk
(

k

j − 1

)
, (3.78)

we obtain,

Dq,ω(φL) = ψL ⇐⇒ 〈Dq,ω(φL), xn〉 = 〈ψL, xn〉 ∀n ∈ N

⇐⇒ −1
q
〈φL, D∗q,ωxn〉 = 〈ψL, xn〉 ∀n ∈ N

⇐⇒ (ψ′ + [n] 1
q

φ′′

2q
)Mn+1 =

n∑
j=0

f̃jMj ∀n ∈ N (3.79)

⇐⇒ − λn+1,0

[n+ 1]q
Mn+1 =

n∑
j=0

f̃jMj ∀n ∈ N ,

where Mj ≡ 〈L, xj〉 is the moment of order j of the linear functional L and f̃j are complex
numbers easily computed as function of coefficients a∗n,j and those of the polynomials φ and ψ.
Since L is regular, to have all its moments given in the unique way by the previous ones, it is
necessary to have

λn+1,0 6= 0 ∀n ∈ N . (3.80)

ii) The Dq,ω-derivative of (3.52), taking into account (3.63), gives

Dq,ωψm = ψ′m = [2m]q
φ′′

2
+ q2mψ′

= q2m(ψ′ + q1−2m[2m]q
φ′′

2q
)

= q2m(ψ′ + [2m] 1
q

φ′′

2q
),
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then

Dq,ωψm = q2m(ψ′ + [2m] 1
q

φ′′

2q
) =

−q2m

[2m+ 1]q
λ2m+1,0 ∀m ∈ N . (3.81)

We, therefore, conclude using (3.80) that for any integer m, ψ′m 6= 0 and ψm is a first-degree
polynomial.

iii) use of (3.55), (3.63) and (3.81) give

λn,m = −[n]q{ψ′m + [n− 1] 1
q

φ′′

2 q
}

= −[n]q{q2m(ψ′ + [2m] 1
q

φ′′

2q
) + [n− 1] 1

q

φ′′

2 q
}

= −[n]qq2m{ψ′ + ([2m] 1
q

+ q−2m[n− 1] 1
q
)
φ′′

2 q
}

= −[n]q q2m{ψ′ + [2m+ n− 1] 1
q

φ′′

2 q
}

=
[n]q q2m

[n+ 2m]q
λn+2m,0.

We derive the relation iv) using Proposition 3.1, the second property of Theorem 3.1 and the
orthogonality of the family {Qn,m}n∈N with respect to Lm. In fact,

[n+ 1]q[n+ 1]q〈Lm+1, Qn,m+1Qn,m+1〉
= 〈Aq,ω(φLm), Dq,ωQn+1,mDq,ωQn+1,m〉
= 〈Aq,ω(φLm), Dq,ω(Qn+1,mDq,ωQn+1,m)−Aq,ωQn+1,mD

2
q,ωQn+1,m〉

= −1
q
〈D∗q,ωAq,ω(φLm), Qn+1,mDq,ωQn+1,m〉

−1
q
〈φLm −Qn+1,mA

∗
q,ωD

2
q,ωQn+1,m〉

= −〈Lm, ψmQn+1,mDq,ωQn+1,m〉 −
1
q
〈Lm, φQn+1,mD

∗
q,ωDq,ωQn+1,m〉

= −[n+ 1]qψ′m〈Lm, Qn+1,mQn+1,m〉 − [n+ 1]q[n] 1
q

φ′′

2 q
〈Lm, Qn+1,mQn+1,m〉

= −[n+ 1]q{ψ′m + [n] 1
q

φ′′

2 q
}〈Lm, Qn+1,mQn+1,m〉

= λn+1,m 〈Lm, Qn+1,mQn+1,m〉.

2

3.2.2 Dq,ω-semi-classical orthogonal polynomials

Let L be a regular linear functional and {Pn}n∈N the corresponding monic orthogonal family.
When the linear functional L is Dq,ω-semi-classical of class s > 0 satisfying (3.47), the charac-
terisation theorem (see Theorem 3.1) is not valid anymore. In particular, the derivative Dq,ωPn
of Pn is not orthogonal with respect to Aq,ω(φL) but quasi-orthogonal of class s with respect to
Aq,ω(φL). The following theorem, which generalise some results in [Salto, 1995] and [Medem,
1996], gives some characterisations for Dq,ω-semi-classical orthogonal polynomials.
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Theorem 3.2 (Smaili, 1987) Let L be a regular linear functional and {Pn}n∈N the corre-
sponding monic orthogonal family. The following properties are equivalent:

i) There exist two polynomials: ψ of degree at least one and φ such that

Dq,ω(φL) = ψL. (3.82)

ii) There exists a polynomials φ 6= 0 and an integer s with deg φ ≤ s+ 2 such that{
〈Aq,ω(φL), Qm,1Qn,1〉 = 0, |n−m| > s
〈Aq,ω(φL), Qm,1Qm+s,1〉 6= 0, ∀m ≥ 1,

(3.83)

where polynomials Qn,1 are defined in theorem 3.1.
iii) There exists a polynomial φ 6= 0 and an integer s with t = deg φ ≤ s+ 2 such that

φD∗q,ωPn =
n+t−1∑

j=n−s−1

ξn,j Pj n > s+ 1, (3.84)

with
ξn,n−s−1 6= 0, n > s+ 1. (3.85)

Proof: i) =⇒ ii). Suppose that (3.82) is satisfied. Then φ 6= 0 by Lemma 3.1 and (3.82).
Let m and n be two integers such that n > m+ s and pose s = max{deg(φ)−2,deg(ψ)−1}.

Using (3.82) and Proposition 3.1, we get

[m+ 1]q [n+ 1]q〈Aq,ω(φL), Qn,1Qm,1〉
= 〈Aq,ω(φL), Dq,ω Pm+1Dq,ω Pn+1〉
= 〈Aq,ω(φL), Dq,ω [Pn+1Dq,ω Pm+1]−Aq,ωPn+1D

2
q,ωPm+1〉

= −1
q
〈D∗q,ωAq,ω(φL), Pn+1Dq,ω Pm+1〉 −

1
q
〈φL, Pn+1A

∗
q,ωD

2
q,ωPm+1〉

= −〈L, Pn+1ψDq,ω Pm+1〉 −
1
q
〈L, Pn+1φA

∗
q,ωD

2
q,ωPm+1〉

= 0,

because deg(1
q φA

∗
q,ωD

2
q,ωPm+1 + ψDq,ω Pm+1) ≤ m+ s+ 1 < n+ 1.

Given non-zero integer m, we have, from the previous computations,

〈Aq,ω(φL), Dq,ω Pm+1Dq,ω Pm+s+1〉

= −〈L, Pm+s+1ψDq,ω Pm+1〉 −
1
q
〈L, Pm+s+1φA

∗
q,ωD

2
q,ωPm+1〉

= −{[m+ 1]qψpδp,s+1 + [m]q[m+ 1]q q1−m φt
q
δt,s+2}I0,m+s+1

= −[m+ 1]q {ψpδp,s+1 +
φt
q

[m] 1
q
δt,s+2}I0,m+s+1, (3.86)

where I0,m is defined by
I0,m = 〈L, PmPm〉, m ≥ 0, (3.87)

and the polynomials φ and ψ are given by

φ(x) =
t∑

j=0

φj x
j , ψ(x) =

p∑
j=0

ψj x
j , (3.88)



3.2. Characterisation theorems for Dq,ω-semi-classical OP 59

with |φt||ψp| 6= 0.
It results from (3.86) that 〈Aq,ω(φL), Dq,ω Pm+1Dq,ω Pm+s+1〉(I0,n+s+1)−1 = U(m, s), takes

one of the three values:

i): t < s+ 2, p = s+ 1,
U(m, s) = −[m+ 1]q ψs+1 6= 0, m ≥ 0,

ii): t = s+ 2, p < s+ 1,

U(m, s) = −[m] 1
q

[m+ 1]q
φs+2

q
6= 0, m ≥ 1,

iii): t = s+ 2, p = s+ 1,

U(m, s) = −[m+ 1]q {ψs+1 +
φs+2

q
[m] 1

q
}.

U(m, s) for the case iii) is not zero by the regularity of the linear functional L.

In fact, mimicking the approach used in (3.79), we conclude that if L is regular and satisfies
(3.82), with φ and ψ given by (3.88) and t = p+ 1, then we have

ψp +
φp+1

q
[m] 1

q
6= 0 ∀m ∈ N . (3.89)

We deduce that 〈Aq,ω(φL), Qm,1Qm+s,1〉 6= 0 ∀m ≥ 1 and therefore that the property ii)
is fulfilled.

ii) =⇒ iii). We assume that ii) holds and expand φD∗q,ωPn on the basis {Pn}n∈N

φD∗q,ωPn =
n+t∑
j=0

ξn,j Pj ,

where t = deg(φ), and get

ξn,jI0,j = 〈φL, Pj D∗q,ωPn〉
= 〈φL, A∗q,ω(Aq,ωPj Dq,ωPn)〉
= q[n]q〈Aq,ω(φL), Aq,ωPj Qn−1,1〉
= 0 for n > j + s+ 1,

by (3.83).
Moreover, for n > s+ 1,

ξn,n−s−1I0,n−s−1 = q[n]q〈Aq,ω(φL), Aq,ωPn−s−1Qn−1,1〉 6= 0

also by (3.83).
iii) =⇒ i).
Let {Pn}n∈N be the dual basis associated to the monic family {Pn}n∈N and t the degree of

φ.
We expand the linear functional Dq,ω(φL) in the basis {Pn}n∈N

Dq,ω(φL) =
∑
n≥0

αn Pn
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and get

αn = 〈Dq,ω(φL), Pn〉

= −1
q
〈L, φD∗q,ωPn〉

= −1
q
〈L,

s+t−1∑
j=n−s−1

ξn,jPj〉

= 0 for n > s+ 1.

Then

Dq,ω(φL) =
s+1∑
j=0

αj Pj

=
s+1∑
j=0

αj
Pj

〈L, PjPj〉
L

= ψL

thanks to Proposition 2.1. We deduce from the previous equations, Lemma 3.1 and the fact that
φ 6= 0, that ψ is of degree at least one. The linear functional L is, therefore, Dq,ω-semi-classical.
2



Chapter 4

The formal Stieltjes function

4.1 The Stieltjes function and the Riccati difference equation

4.1.1 Some definitions

Definition 4.1 The formal Stieltjes function S(L) of a given linear functional L ∈ P ′ is defined
by

S(L)(x) = −
∑
k≥0

(L)k
xk+1

, (4.1)

where (L)k = 〈L, xk〉, represents the moment of order k of the linear functional L with respect
to the sequence {xn}n≥0.

We define the action of the operators D, Tω, Dω, Gq, Dq, D, Aq,ω and Dq,ω on the Stieltjes
function S(L) as is done in [Medem, 1996] (for more information see [Medem, 1996, p. 357]).

Definition 4.2 (Medem, 1996) The operators Tω, Dω, Gq, Dq, D, Aq,ω and Dq,ω act on the
Stieltjes function S(L) of the linear functional L in the following ways:

TωS(L)(x) = S(L)(x+ ω) = −
∑
n≥0

(L)n
(x+ ω)n+1

,

GqS(L)(x) = S(L)(q x) = −
∑
n≥0

(L)n
qn+1 xn+1

, q 6= 0,

Aq,ωS(L)(x) = S(L)(q x+ ω)−
∑
n≥0

(L)n
(qx+ ω)n+1

,

DS(L)(x) =
∑
n≥0

(n+ 1)
(L)n
xn+2

,

DqS(L)(x) =
S(L)(qx)− S(L)(x)

(q − 1)x
=
∑
n≥0

[n+ 1]q (L)n
qn+1 xn+2

,

DωS(L)(x) =
S(L)(x+ ω)− S(L)(x)

ω
= −

∑
n≥0

(L)n
1
ω

(
1

(x+ ω)n+1
− 1
xn+1

)
,

Dq,ωS(L)(x) =
S(L)(q x+ ω)− S(L)(x)

(q − 1)x+ ω
= −

∑
n≥0

(L)n
1

(q − 1)x+ ω

(
1

(q x+ ω)n+1
− 1
xn+1

)
.

61
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Definition 4.3 The formal Stieltjes function S(L) = S (see (4.1)) of the regular linear func-
tional L satisfies a Riccati differential equation if S satisfies an equation of type [Magnus, 1984],
[Dzoumba, 1985]

φ(x)DS(x) = A(x)S(x)2 +B(x)S(x) + C(x), (4.2)

where φ is a non-zero polynomial and A, B and C are polynomials.
When A = 0, the Riccati differential equation is called the affine Riccati differential equation.

Definition 4.4 The formal Stieltjes function, S(L) = S, of the regular linear functional L
satisfies a Dω-Riccati difference equation if S satisfies an equation of type

φ(x+ w)DωS(x) = G(x;ω)S(x)TωS(x) + E(x;ω)S(x)
+F (x;ω)TωS(x) +H(x;ω), (4.3)

where φ is a non-zero polynomial and E,F,G and H are polynomials in the variable x and
depending on ω.

When G = 0, the Dω-Riccati difference equation is called the affine Dω-Riccati difference
equation.

Definition 4.5 The formal Stieltjes function S(L) = S of the regular linear functional L satis-
fies a Dq-Riccati difference equation if S satisfies an equation of type

φ(qx)DqS(x) = G(x; q)S(x)GqS(x) + E(x; q)S(x)
+F (x; q)GqS(x) +H(x; q) (4.4)

where φ is a non-zero polynomial and E,F,G and H are polynomials in the variable x and
depending on q.

When G = 0, the Dq-Riccati difference equation is called the affine Dq-Riccati difference
equation.

Definition 4.6 The formal Stieltjes function, S(L) ≡ S, of the regular linear functional L
satisfies a Dq,ω-Riccati difference equation if S satisfies an equation of type

φ(qx+ ω)Dq,ωS(x) = G(x; q, ω)S(x)Aq,ωS(x) + E(x; , q, ω)S(x)
+F (x; , q, ω)Aq,ωS(x) +H(x; q, ω), (4.5)

where φ is a non-zero polynomial and E,F,G and H are polynomials in the variable x and
depending on q and ω.

When G = 0, the Dq,ω-Riccati difference equation is called the affine Dq,ω-Riccati difference
equation.

Definition 4.7 Let Y be any one of the four operators {D, Dω,Dq, Dq,ω}. Then, the regular lin-
ear functional L and the corresponding monic orthogonal polynomials belong to the Y-Laguerre-
Hahn class (resp. affine Y-Laguerre-Hahn class) if the Stieltjes function of L satisfies a Y-Riccati
difference equation (an affine Y-Riccati difference equation). The regular linear functional and
the corresponding orthogonal polynomials belonging to the Y-Laguerre-Hahn class are called Y-
Laguerre-Hahn linear functional and Y-Laguerre-Hahn orthogonal polynomials, respectively (see
[Magnus, 1984], [Dzoumba, 1985], [Guerfi, 1988], [Medem, 1995], [Salto, 1996], [Marcellán et
al., 1998]). It should be mentioned that the affine Y-Laguerre-Hahn linear functionals (resp.
Orthogonal polynomials) are precisely the Y-semi-classical linear functionals (orthogonal poly-
nomials).
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Remark 4.1 Let Y be any one of the four operators {D, Dω,Dq, Dq,ω}. Then, the affine Y-
Laguerre-Hahn orthogonal polynomial is a Y-semi-classical orthogonal polynomial, and con-
versely (see [Guerfi, 1988]).

4.1.2 Some properties

Proposition 4.1 The formal Stieltjes function, S(L), of a given linear functional L ∈ P ′ obeys
the relations

i) S(αL+ βM) = αS(L) + βS(M) ∀α, β ∈ C, ∀M ∈ P ′ (4.6)
ii) S(fL) = fS(L) + Lθ0f, ∀f ∈ P, (4.7)
iii) Aq,ω S(L) = S(Aq,ω L), (4.8)
iv) S(Dq,ωL) = Dq,ωS(L). (4.9)

Proof: i) Let α, β be two complex numbers and L,M two linear functionals. Then,

S(αL+ βM) = = −
∑
k≥0

〈αL+ βM, xk〉
xk+1

= −α
∑
k≥0

〈L, xk〉
xk+1

− β
∑
k≥0

〈M, xk〉
xk+1

= αS(L) + βS(M).

ii) Let k be an integer; we shall prove that

S(xkL) = xkS(L) + Lθ0x
k ∀k ∈ N

and use property i) to deduce that (4.8) holds for any f ∈ P.
In fact,

S(xkL)(x) = −
∞∑
n=0

〈xkL, xn〉
xn+1

= −
∞∑
n=0

〈L, xn+k〉
xn+1

= −
∞∑
m=k

〈L, xm〉
xm−k+1

(taking k + n = m)

= −xk(
∞∑
m=0

〈L, xm〉
xm+1

−
k−1∑
m=0

〈L, xm〉
xm+1

)

= xkS(L)(x) +
k−1∑
m=0

〈L, xm〉xk−1−m

= xkS(L)(x) +
k∑
j=1

〈L, xk−j〉xj−1 (taking k −m = j)

= xkS(L)(x) + Lθ0x
k.
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For property iii),

S(Aq,ωL)(x) = −
∞∑
n=0

〈Aq,ωL, xn〉
xn+1

= −1
q

∞∑
n=0

〈L, A∗q,ωxn〉
xn+1

= −
∞∑
n=0

〈L, (x− ω)n〉
(qx)n+1

= −
∞∑
n=0

1
(qx)n+1

〈L,
n∑
j=0

xj
(
n

j

)
(−ω)n−j〉

= −
∞∑
n=0

n∑
j=0

(
n

j

)
(−ω)n−j

〈L, xj〉
(qx)n+1

,

where (
n

j

)
=

{
n!

j!(n−j)! if j ≤ n,
0 if j > n.

(4.10)

Then,

S(Aq,ωL)(x) = −
∞∑
n=0

n∑
j=0

(
n

j

)
(−ω)n−j

〈L, xj〉
(qx)n+1

. (4.11)

On the other hand, using the series expansion of 1
(qx+ω)n+1 ,

1
(qx+ ω)n+1

=
∞∑
p=0

(n+p
n

)
(−ω)p

(qx)n+1+p
, (4.12)

we obtain

Aq,ωS(L)(x) = −
∞∑
n=0

〈L, xn〉
(qx+ ω)n+1

= −
∞∑
n=0

∞∑
p=0

(n+p
n

)
(−ω)p〈L, xn〉

(qx)n+p+1
.

Then changing the variable n+ p = j, the previous equation gives

Aq,ωS(L)(x) = −
∞∑
j=0

j∑
n=0

(
j

n

)
(−ω)j−n

〈L, xn〉
(qx)j+1

= S(Aq,ωL)(x),

by (4.11) after reversing the role of n and j.
To derive relation iv), we compute both sides of (4.9) and remark that they are the same.

In fact,

S(Dq,ωL)(x) = −
∞∑
n=0

〈Dq,ωL, xn〉
xn+1

=
1
q

∞∑
n=1

〈L, D∗q,ωxn〉
xn+1

=
1
q

∞∑
n=1

1
xn+1

〈L,
(x−ωq )n − xn

x−ω
q − x

〉.
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Then, using the relations (derived by induction on n),

(a+ b)n =
n∑
j=0

(
n

j

)
aj bn−j ∀a, b ∈ C ∀n ∈ N , (4.13)

an − bn = (a− b)
n−1∑
j=0

aj bn−1−j ∀a, b ∈ C ∀n ∈ N , (4.14)

we obtain

S(Dq,ωL)(x) =
1
q

∞∑
n=1

1
xn+1

n−1∑
k=0

k∑
j=0

(
k

j

)
(−ω)k−jq−k〈L, xn+j−1−k〉.

On replacing n by n+ 1, we obtain,

S(Dq,ωL)(x) =
∞∑
n=0

1
xn+2

n∑
k=0

k∑
j=0

(
k

j

)
(−ω)k−jq−k−1〈L, xn+j−k〉. (4.15)

Let us compute Dq,ωS(L)(x).

Dq,ωS(L)(x) = −
∞∑
n=0

〈L, xn〉Dq,ω
1

xn+1

=
∞∑
n=0

〈L, xn〉 Dq,ωx
n+1

xn+1 (qx+ ω)n+1

=
∞∑
n=0

(qx+ ω)n+1 − xn+1

qx+ ω − x
〈L, xn〉

xn+1 (qx+ ω)n+1
.

Use of (4.14) transforms the previous relation into

Dq,ωS(L)(x) =
∞∑
n=0

〈L, xn〉
(qx+ ω)n+1 xn+1

n∑
j=0

(qx+ ω)j xn−j

=
∞∑
n=0

n∑
j=0

〈L, xn〉
(qx+ ω)n−j+1 xj+1

.

Rewriting this equation, taking into account the series expansion of 1
(qx+ω)n−j+1 (see (4.12)),

leads to

Dq,ωS(L)(x) =
∞∑
n=0

n∑
j=0

〈L, xn〉
xj+1

∞∑
k=0

(n+ k − j)! (−ω)k

k! (n− j)! (qx)n+k−j+1

=
∞∑
n=0

n∑
j=0

∞∑
k=0

(n+ k − j)! (−ω)k〈L, xn〉
k! (n− j)!xn+k+2 qn+k−j+1

.

The change of variable, n+ k = t, transforms the latter equation into

Dq,ωS(L)(x) =
∞∑
t=0

t∑
k=0

t−k∑
j=0

(t− j)! (−ω)k〈L, xt−k〉
k! (t− k − j)!xt+2 qt−j+1

.
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We obtain after replacing in the previous equation t− j by m that

Dq,ωS(L)(x) =
∞∑
t=0

t∑
k=0

t∑
m=k

m! (−ω)k〈L, xt−k〉
k! (m− k)!xt+2 qm+1

=
∞∑
t=0

t∑
k=0

t∑
m=k

(m
k

)
(−ω)k〈L, xt−k〉
xt+2 qm+1

=
∞∑
t=0

t∑
k=0

t∑
m=0

(m
k

)
(−ω)k〈L, xt−k〉
xt+2 qm+1

=
∞∑
t=0

t∑
m=0

m∑
k=0

(m
k

)
(−ω)k〈L, xt−k〉
xt+2 qm+1

.

Again, replacing m− k by l in the above equation, we obtain

Dq,ωS(L)(x) =
∞∑
t=0

t∑
m=0

m∑
l=0

( m
m−l

)
(−ω)m−l〈L, xt+l−m〉
xt+2 qm+1

=
∞∑
t=0

t∑
m=0

m∑
l=0

(m
l

)
(−ω)m−l〈L, xt+l−m〉

xt+2 qm+1

= S(Dq,ωL)(x),

by (4.15); hence the proof of Proposition 4.1 is complete. 2We give some consequences of the
previous proposition, already given in [Guerfi, 1988], [Salto, 1995], [Medem, 1996].

Corollary 4.1 The formal Stieltjes function S(L) of a given linear functional L ∈ P ′ obeys the
relations:

Tω S(L) = S(Tω L), S(DωL) = DωS(L),
Gq S(L) = S(Gq L), S(DqL) = DqS(L).

We announce another corollary of Proposition 4.1. This result has been given for the operators
D, Dq and Dω (see [Dzoumba, 1985], [Guerfi, 1988], [Medem, 1996]).

Theorem 4.1 Let L be a regular linear functional. L belongs to the affine Dq,ω-Laguerre-Hahn
class if and only if L is Dq,ω-semi-classical.

Proof: Suppose that L is Dq,ω-semi-classical and satisfies Dq,ω(φL) = ψL, where φ is a
non-zero polynomial and ψ a polynomial of degree at least one. We first use Propositions 3.1
and 4.1 to compute S(Dq,ω(φL)) and obtain

S(Dq,ω(φL)) = S(Aq,ωφDq,ωL+Dq,ωφL)
= Aq,ωφS(Dq,ωL) + (Dq,ωL)θ0Aq,ωφ+Dq,ωφS(L) + Lθ0Dq,ωφ

= Aq,ωφDq,ωS(L) + (Dq,ωL)θ0Aq,ωφ+Dq,ωφS(L) + Lθ0Dq,ωφ.

Secondly, we use again Proposition 4.1 to compute S(ψL) and we obtain

S(ψL) = ψS(L) + Lθ0ψ.

Since Dq,ω(φL) = ψL and φ is a non-zero polynomial, we deduce from the above computations
that S(L) satisfies the affine Dq,ω-Riccati difference equation

φ(qx+ ω)Dq,ωS(L)(x) = (ψ(x)−Dq,ωφ(x))S(L)(x) + Lθ0ψ(x)
−(Dq,ωL)θ0φ(qx+ ω)− Lθ0Dq,ωφ(x).
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Thus, L belongs to the affine Dq,ω-Laguerre-Hahn class.
Conversely, assume that the Stieltjes function S(L) of the regular linear functional L satisfies

an affine Dq,ω-Riccati difference equation

A(x)Dq,ωS(L)(x) = B(x)S(L)(x) + C(x),

where B and C are any polynomials and A is a non-zero polynomial. Using Propositions 3.1
and 4.1 we obtain

A(x)Dq,ωS(L)(x) = B(x)S(L)(x) + C(x)
⇐⇒

S(A(x)Dq,ωL)(x)− (Dq,ωL)θ0A(x) = S(B(x)L)(x)− Lθ0B(x) + C(x)
⇐⇒

S(A(x)Dq,ωL −B(x)L)(x) = (Dq,ωL)θ0A(x)− Lθ0B(x) + C(x).

The right hand-side of the previous equation is a polynomial while the left hand-side is, by
definition of the Stieltjes function of a given linear functional, an infinite (unless it vanishes)
linear combination of { 1

xn+1 , n ∈ N}. Therefore, both sides of the previous equation vanish and
we obtain

A(x)Dq,ωL −B(x)L = 0 (4.16)

and
(Dq,ωL)θ0A(x)− Lθ0B(x) + C(x) = 0 ∀x ∈ R. (4.17)

Again, we use Proposition 3.1 to deduce that (4.16) is equivalent to

Dq,ω(A∗q,ωAL) = (B +
1
q
D∗q,ωA)L. (4.18)

The previous equation, used together with Lemma 3.1 taking into account the fact that A 6= 0,
allows us to conclude that the degree of B + 1

qD
∗
q,ωA is at least one. Then the regular linear

functional L is Dq,ω-semi-classical. 2

4.2 Dq,ω-Laguerre-Hahn orthogonal polynomials as Dq-Laguerre-
Hahn orthogonal polynomials

In this section we prove that the Dq,ω-Laguerre-Hahn orthogonal polynomials can be deduced
from Dq-Laguerre-Hahn orthogonal polynomials by a change of variable and then we give some
consequences.

Theorem 4.2 Let L be any regular linear functional, then we have:

i) L is a Dq,ω-Laguerre-Hahn linear functional if and only if Aa, ω
1−q
L is a Dq-Laguerre-Hahn

linear functional. This means that the Stieltjes function S(L) of L satisfies

φ(qx+ ω)Dq,ωS(L)(x) = G(x; q, ω)S(L)(x)Aq,ωS(L)(x) + E(x; q, ω)S(L)(x)
+F (x; q, ω)Aq,ωS(L)(x) +H(x; q, ω), (4.19)
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where a is any non-zero real number, φ is a non-zero polynomial, E,F,G and H are
polynomials in the variable x, if and only if the Stieltjes function S(Aa, ω

1−q
L) of Aa, ω

1−q
L

satisfies

φ̃(qx)DqS(L̃)(x) = G̃(x; q, ω)S(L̃)(x)Gq S(L̃)(x) + Ẽ(x; q, ω)S(L̃)(x)
+F̃ (x; q, ω)GqS(L̃)(x) + H̃(x; q, ω), (4.20)

where φ̃ = a−1Aa, ω
1−q

φ, Φ̃ = Aa, ω
1−q

Φ for Φ ∈ {L, E, F, G, H}.

ii) Let L be a Dq,ω-Laguerre-Hahn linear functional satisfying (4.19). If {Pn}n∈N and {P̃n}n∈N
represent the monic orthogonal families associated to L and Aa, ω

1−q
L, respectively, then we

have the following results:

P̃n(x) = a−n Pn(ax+
ω

1− q
) ∀x ∈ R, (4.21)

βn(q, ω, φ,E, F,G,H) = a β̃n(q, 0, φ̃, Ẽ, F̃ , G̃, H̃) +
ω

1− q
,

γn(q, ω, φ,E, F,G,H) = a2 γ̃n(q, 0, φ̃, Ẽ, F̃ , G̃, H̃),

where βn, γn, β̃n and γ̃n are coefficients of the three-term recurrence relation satisfied by
{Pn}n∈N and {P̃n}n∈N :

Pn+1(x) = (x− βn(q, ω, φ,E, F,G,H))Pn(x)− γn(q, ω, φ,E, F,G,H)Pn−1(x), n ≥ 0,
P̃n+1(x) = (x− β̃n(q, 0, φ̃, Ẽ, F̃ , G̃, H̃)P̃n(x)− γ̃n(q, 0, φ̃, Ẽ, F̃ , G̃, H̃)P̃n−1(x), n ≥ 0,
P−1(x) = 0, P0(x) = 1, P̃−1(x) = 0, P̃0(x) = 1.

(4.22)

Proof: i) We use the relation [Guerfi, 1988], [Medem, 1996]

Aa, ω
1−q

Dq,ω = a−1Dq Aa, ω
1−q

, Aa, ω
1−q

Aq,ω = Gq Aa, ω
1−q

, q 6= 1, a 6= 0 (4.23)

and get

φ(qx+ ω)Dq,ωS(L)(x) = G(x; q, ω)S(L)(x)Aq,ωS(L)(x) + E(x; q, ω)S(L)(x)
+F (x; q, ω)Aq,ωS(L)(x) +H(x; q, ω)
⇐⇒
Aa, ω

1−q
Aq,ωφ(x)Aa, ω

1−q
Dq,ωS(L)(x) = G̃(x; q, ω)Aa, ω

1−q
S(L)(x)Aa, ω

1−q
Aq,ωS(L)(x)

+Ẽ(x; q, ω)Aa, ω
1−q

S(L)(x) + F̃ (x; q, ω)Aa, ω
1−q

Aq,ωS(L)(x) + H̃(x; q, ω)
⇐⇒
a−1 Gq Aa, ω

1−q
φ(x)Dq Aa, ω

1−q
S(L)(x) = G̃(x; q, ω)Aa, ω

1−q
S(L)(x)Gq Aa, ω

1−q
S(L)(x)

+Ẽ(x; q, ω)Aa, ω
1−q

S(L)(x) + F̃ (x; q, ω)Gq Aa, ω
1−q

S(L)(x) + H̃(x; q, ω)
⇐⇒
φ̃(qx)DqS(L̃)(x) = G̃(x; q, ω)S(L̃)(x)Gq S(L̃)(x) + Ẽ(x; q, ω)S(L̃)(x)
+F̃ (x; q, ω)GqS(L̃)(x) + H̃(x; q, ω),

by the relation (4.8): S(Aq,ω L) = Aq,ω S(L).
ii) Since the family {Aa, ω

1−q
Pn}n∈N is orthogonal with respect Aa, ω

1−q
L (see Lemma 3.2), we

deduce that P̃n = a−nAa, ω
1−q

Pn, thanks to the uniqueness of the monic orthogonal polynomial
family associated to a given regular linear functional.
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Since {Pn}n∈N is orthogonal with respect to the linear functional L, it satisfies

Pn+1(x) = (x− βn(q, ω, φ,E, F,G,H))Pn(x)− γn(q, ω, φ,E, F,G,H)Pn−1(x),

where βn(q, ω, φ,E, F,G,H), γn(q, ω, φ,E, F,G,H) are complex numbers depending on q, ω, φ,
E, F, G and H.

After applying the operator Aa, ω
1−q

to both sides of the previous equation, we obtain that

Aa, ω
1−q

Pn+1(x) = (a x+
ω

1− q
− βn(q, ω, φ, ψ))Aa, ω

1−q
Pn(x)− γn(q, ω, φ, ψ)Aa, ω

1−q
Pn−1(x).

This latter equation, used together with (4.21), gives

P̃n+1(x) = (x+
ω

(1− q)a
− 1
a
βn(q, ω, φ, ψ))P̃n(x)− 1

a2
γn(q, ω, φ, ψ)P̃n−1(x).

We complete the proof of the theorem by identifying the coefficients of the previous equation
with the ones of the three-term recurrence relation satisfied by family {P̃n}n∈N , orthogonal with
respect to the Dq-semi-classical linear functional Aa, ω

1−q
L

P̃n+1(x) = (x− β̃n(q, 0, φ̃, ψ̃))P̃n(x)− γ̃n(q, 0, φ̃, ψ̃)P̃n−1(x), n ≥ 0,

with φ̃ and ψ̃ defined by (4.24). 2

Remark 4.2 Since the results stated in Theorem 4.2 are valid for any real number a 6= 0,
without loss of generality, we choose a = 1. In this case A1, ω

1−q
= T ω

1−q
and we, therefore, get

the following consequences:

Corollary 4.2 Let L be any regular linear functional, {Pn}n∈N and {P̃n}n∈N represent the
orthogonal families associated to L and T ω

1−q
L, respectively. Then, we have the following results:

1. L is Dq,ω-semi-classical if and only if T ω
1−q
L is Dq-semi-classical, i.e.,

Dq,ω(φL) = ψ ⇐⇒ Dq(φ̃ L̃) = ψ̃ L̃,

where φ is any polynomial and ψ a polynomial of degree at least one, with

L̃ = T ω
1−q
L, φ̃(x) = φ(x+

ω

1− q
), ψ̃(x) = ψ(x+

ω

1− q
). (4.24)

2. The coefficients of the TTRR satisfied by {Pn}n∈N and {P̃n}n∈N are related by

βn(q, ω, φ, ψ) = β̃n(q, 0, φ̃, ψ̃) +
ω

1− q
,

γn(q, ω, φ, ψ) = γ̃n(q, 0, φ̃, ψ̃),

where βn, γn, β̃n and γ̃n are coefficients of the three-term recurrence relation
Pn+1(x) = (x− βn(q, ω, φ, ψ))Pn(x)− γn(q, ω, φ, ψ)Pn−1(x), n ≥ 0,
P̃n+1(x) = (x− β̃n(q, 0, φ̃, ψ̃))P̃n(x)− γ̃n(q, 0, φ̃, ψ̃)P̃n−1(x), n ≥ 0,
P−1(x) = 0, P0(x) = 1, P̃−1(x) = 0, P̃0(x) = 1

and φ̃, ψ̃ given by (4.24).
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Proof: The proof is similar to the one given for Dq,ω-Laguerre-Hahn case. In particular,
we have,

Dq,ω(φL) = ψ ⇐⇒ T ω
1−q

Dq,ω(φL) = T ω
1−q

ψ T ω
1−q
L

⇐⇒ Dq T ω
1−q

(φL) = T ω
1−q

ψ T ω
1−q
L

⇐⇒ Dq(T ω
1−q

φ T ω
1−q
L) = T ω

1−q
ψ T ω

1−q
L.

2



Chapter 5

Difference equations for the first
associated classical orthogonal
polynomials

5.1 Introduction

In this chapter we derive the single fourth order difference equation satisfied by the first associ-
ated of the q-classical orthogonal polynomials. We give this equation in the factored and simple
form, we then use Theorem 4.2 to deduce the single fourth order difference (resp. differential)
equation satisfied by the first associated of the classical orthogonal polynomials of a discrete
variable and continuous variable, respectively.
Although the main result of this section is contained in the general theory given in the next
chapter, this method is worth to be communicated because it uses the properties of the functions
of a discrete variable of the second kind [Suslov, 1989] rather than the properties of the Stieltjes
function which are used in the next chapter. It also allows us to have a factored and simple
form for the fourth-order difference equation and to confirm the results obtained by the general
theory.

5.2 q-classical weight

Let ρ(x) be a positive weight function defined on the interval I =]a, b[ and let L be a linear
functional defined by

〈L, P 〉 =
∫
I
P (s) ρ(s)dqs. (5.1)

The orthogonality weight ρ (defined in the interval I) is said to be q-classical if ρ satisfies:

i) There exists a monic polynomial family {Pn}n∈N , orthogonal with respect to ρ, i.e.,∫
I
Pn(s)Pm(s) ρ(s)dqs = kn δn,m ∀n,m ∈ N , (kn 6= 0 ∀n ∈ N ). (5.2)

ii) There exist two polynomials φ of degree at most two and ψ of degree one such that

Dq (φρ) = ψ ρ, (5.3)

71
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with
xn φ(x) ρ(x)|ba = 0 ∀n ∈ N . (5.4)

Lemma 5.1 The linear functional L represented by the q-classical weight ρ (see (5.1)) is Dq-
classical and satisfies

Dq(φL) = ψL. (5.5)

Proof: If P is any element of P, we use (5.1)-(5.4) and get,

〈Dq(φL), P 〉 = −1
q
〈φL,D 1

q
P 〉

= −1
q

∫
I
φ(s)D 1

q
P (s) ρ(s)dqs

= −1
q

∫
I
(D 1

q
(φ(qs) ρ(qs)P (s))−D 1

q
(φ(qs)ρ(qs))P (s))dqs

= −
∫
I
(Dq(φ(s) ρ(s)P (s/q)) +Dq(φ(s)ρ(s))P (s))dqs

= −φ(s) ρ(s)P (s/q)|ba +
∫
I
ψ(s)ρ(s)P (s)dqs

=
∫
I
ψ(s)ρ(s)P (s)dqs

= 〈ψL, P 〉.

Hence, Dq(φL) = ψL. We complete the proof by remarking that {Pn}n∈N is orthogonal with
respect to L (see (5.2)). 2

The monic polynomials {Pn}n∈N , orthogonal with respect to L, satisfy the second order q-
difference equation (see Theorem 3.1),

Q2,n [y(x)] ≡ [φDq D 1
q

+ ψDq + λn,0Id] y(x) = 0, (5.6)

an equation which can be written in the q-shifted form,

[(φ(1) + ψ(1) t1)G2
q − ((1 + q)φ(1) + ψ(1) t1 − λn,0 t21)Gq + qφ(1) Id]y(x) = 0, (5.7)

with

λn,0 = −[n]q{ψ′ + [n− 1] 1
q

φ′′

2q
}, (5.8)

φ(i) ≡ φ(qix), ψ(i) ≡ ψ(qix), ti ≡ t(qix), t(x) = (q − 1)x.

5.3 Fourth-order q-difference equation for P
(1)
n−1(x; q)

The first associated P
(1)
n−1(x; q) of Pn−1(x; q) is a monic polynomial of degree n− 1 defined by

P
(1)
n−1(x; q) =

1
γ0
〈L, Pn(s; q)− Pn(x; q)

s− x
〉 =

1
γ0

∫
I

Pn(s; q)− Pn(x; q)
s− x

ρ(s)dqs, (5.9)

where γ0 is given by γ0 = 〈L, 1〉 =
∫
I
ρ(s)dqs.
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Relation (5.9) can be rewritten as

P
(1)
n−1(x; q) = ρ(x)Qn(x; q)− Pn(x; q)ρ(x)Q0(x; q), (5.10)

where

Qn(x; q) =
1

γ0 ρ(x)

∫
I

Pn(s; q)
s− x

ρ(s)dqs.

It is well-known [Suslov, 1989] that Qn(x; q) also satisfies Equation (5.6); hence, by (5.10)

Q2,n

P (1)
n−1(x; q)
ρ(x)

+ Pn(x; q)Q0(x; q)

 = 0. (5.11)

In a first step, we eliminate ρ(x) and Q0(x; q) in Equation (5.11) using Equation (5.3) and
Equation (5.6) for Pn(x; q). This can be easily carried out using a computer algebra system—we
used Maple V Release 4 [Char et al., 1991]—and gives the relation

(φ(1) + ψ(1) t1)Q∗2,n−1

[
P

(1)
n−1(x; q)

]
= [eGq + f Id]Pn(x; q), (5.12)

with

Q∗2,n−1 = φ(2) G2
q − ((1 + q)φ(1) + ψ(1) t1 − λn,0 t21)Gq + q (φ+ ψ t) Id, (5.13)

e = (
φ′′

2
− ψ′) ((1 + q)φ(1) + ψ(1) t1 − λn,0 t21) t1,

f = −(
φ′′

2
− ψ′) ((q + 1)φ(1) + ψ(1) t1) t1.

In a second step, we use Equations (5.12), (5.13) and the fact that the polynomials Pn(x; q) satis-
fy Equation (5.6), again. This gives—after some computations with Maple V.4—the operator
Q∗∗2,n−1 annihilating the right-hand side of Equation (5.12),

Q∗∗2,n−1 = (φ(3) + ψ(3) t3)[q2A1 + (1 + q)φ(2) + ψ(2) t2]G2
q

−[q3A1 (φ(2) + ψ(2) t2) +A3 (φ(2) + q A1)]Gq (5.14)

+q φ(1) [q2A2 + (1 + q)φ(3) + ψ(3) t3)] Id,

where Aj = (1 + q)φ(j) + ψ(j) tj − λn,0 t2j .
We, therefore, obtain the factored form of the fourth-order q-difference equation satisfied by

each P
(1)
n−1(x; q),

Q∗∗2,n−1

Q∗2,n−1

q2 (q − 1)2 x2

[
P

(1)
n−1(x; q)

]
= 0. (5.15)

5.4 Applications

5.4.1 The first associated Little and Big q-Jacobi polynomials

For the Little q-Jacobi polynomials, pn(x; a, b|q) [Area et al., 1998a],[Koekoek et. al, 1996]

φ(x) =
x (x− 1)

q
, ψ(x) =

1− a q + (abq2 − 1)x
q(q − 1)

,



74 Chapter 5. Difference equations for the first associated OP

and for the Big q-Jacobi polynomials, Pn(x; a, b, c; q) [Area et al., 1998a],[Koekoek et. al 1996]

φ(x) = acq − (a+ c)x+
x2

q
, ψ(x) =

cq + aq(1− (b+ c)q) + (abq2 − 1)x
q(q − 1)

,

the constant φ′′ − 2ψ′ is equal to 2 (1−a b q)
q−1 . Therefore, the first associated of the Little q-Jacobi

polynomials (resp. Big q-Jacobi polynomials) is still in the Little q-Jacobi (resp. Big q-Jacobi)
family when a b q = 1.

Let βn(a, b|q) and γn(a, b|q) ( resp. βn(a, b, c; q) and γn(a, b, c; q)) be the coefficients of the
three-term relation (see (2.18)) satisfied by the Little q-Jacobi polynomials pn(x; a, b|q) and the
Big q-Jacobi polynomials Pn(x; a, b, c; q), respectively.

It follows immediately from Lemma 7.1 that they obey:

βn+1(a,
1
q a
|q) = q a βn(

1
a
, a q |q), γn+1(a,

1
q a
|q) = q2 a2 γn(

1
a
, a q |q),

βn+1(a,
1
q a
, c; q) = a βn(

1
a
, a q, c q; q), γn+1(a,

1
q a
, c; q) = a2 γn(

1
a
, a q, c q; q).

The previous equations used, together with (2.23), give:

Theorem 5.1 (Foupouagnigni, 1999) The monic Little q-Jacobi (resp. monic Big q-Jacobi)
polynomials and their respective first associated are related by

p(1)
n (x; a,

1
q a
|q) = an qn pn(

x

a q
;

1
a
, a q |q), (5.16)

P (1)
n (x; a,

1
q a,

, c; q) = an Pn(
x

a
;

1
a
, a q, c q; q). (5.17)

5.4.2 The first associated D-classical orthogonal polynomials

Since lim
q→1
Dq = d

dx , from Equations (5.13) and (5.14), we recover by a limit process the

factored form of the fourth-order differential equation satisfied by the first associated P
(1)
n−1(x)

of the (continuous) classical orthogonal polynomials Pn−1 [Ronveaux, 1988],

Q∗∗c2,n−1Q∗c2,n−1

[
P

(1)
n−1(x)

]
= 0, (5.18)

with

Q∗c2,n−1 = lim
q→1

Q∗2,n−1

q2(q − 1)2x2
= φ

d2

dx2
+ (2φ′ − ψ)

d

dx
+ (φ′′ − ψ′ + λn)Id,

Q∗∗c2,n−1 =
1

4φ(x)
lim
q→1

Q∗∗2,n−1

q2(q − 1)2x2
= φ

d2

dx2
+ (φ′ + ψ)

d

dx
+ (ψ′ + λn)Id,

where

λn ≡ lim
q→1

λn,0 = −n [(n− 1)
φ′′

2
+ ψ′].
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5.4.3 The first associated Dq,ω-classical orthogonal polynomials

In this subsection we apply the result of Theorem 4.2 to deduce the fourth-order difference
equation satisfied by the Dq,ω-classical orthogonal polynomials and then deduce the difference
equation for classical orthogonal polynomials of a discrete variable.

In the first step we replace in (5.15), the polynomials φ (resp. ψ and P (1)
n−1 ) by T ω

1−q
φ̄, T ω

1−q
ψ̄

and T ω
1−q

P̄
(1)
n−1, respectively, i.e.,

φ = T ω
1−q

φ̄, ψ = T ω
1−q

ψ̄, P
(1)
n−1(x; q) = T ω

1−q
P̄

(1)
n−1(x; q, ω) (5.19)

and get an equation which multiplied by T −ω
1−q

, taking into account (4.23) and Corollary 4.2,
gives

Q∗∗+2,n−1

Q∗+2,n−1

((q − 1)x+ ω)2

[
P̄

(1)
n−1(x; q, ω)

]
= 0, (5.20)

where

Q∗+2,n−1 = φ̄[2]A
2
q,ω − ((1 + q)φ̄[1] + ψ̄[1] t̄1 − λn,0 t̄21)Aq,ω + q (φ̄+ ψ̄ t̄) Id,

Q∗∗+2,n−1 = (φ̄[3] + ψ̄[3] t̄3)[q2 Ā1 + (1 + q) φ̄[2] + ψ̄[2] t̄2]A2
q,ω

−[q3 Ā1 (φ̄[2] + ψ̄[2] t̄2) + Ā3 (φ̄[2] + q Ā1)]Aq,ω
+q φ̄[1] [q2 Ā2 + (1 + q) φ̄[3] + ψ̄[3] t̄3)] Id,

with the notations

Āj(x) ≡ Āj = (1 + q)φ̄[j] + ψ̄[j] t̄j − λn,0 t̄2j , φ̄[j] ≡ φ̄(qj x+ ω [j]q), ψ̄[j] ≡ ψ̄(qj x+ ω [j]q),

t̄j ≡ qj T −ω
1−q

t(x) = qj ((q − 1)x+ ω), t̄0 ≡ t̄(x) = (q − 1)x+ ω.

Since {Pn}n∈N is Dq-classical with respect to L (see (5.5)), it follows immediately from Theorem
4.2 that {P̄n}n∈N (with P̄n(x; q, ω) = T −ω

1−q
Pn(x; q)) is Dq,ω-classical with respect to L̄ = T −ω

1−q
L,

where the linear functional L̄ satisfies Dq,ω(φ̄L̄) = ψ̄L̄. Therefore (5.20) is the factored form of
the fourth-order difference equation satisfied by the first associated P̄

(1)
n−1(x; q, ω) of the Dq,ω-

classical orthogonal polynomial P̄n−1(x; q, ω) .

5.4.4 The first associated ∆-classical orthogonal polynomials

We obtain the difference equation satisfied by the first associated P
(1)
n−1 of the polynomial of

a discrete variable, Pn−1, orthogonal with respect to the classical linear functional L̃ (with L
satisfying ∆(φ̃L̃) = ψ̃L̃) [Atakishiyev et al., 1988], [Ronveaux et al. 1998a], [Foupouagnigni et
al., 1998b] by limit processes ( lim

q→1, ω→1
Dq,ω = ∆) :

Q∗∗d2,n−1Q∗d2,n−1

[
P

(1)
n−1(x)

]
= 0, (5.21)

where

Q∗d2,n−1 = lim
ω→1, q→1

Q∗+2,n−1

= φ̃(2) T 2 − (2φ̃(1) + ψ̃(1) − λn)T + (φ̃(0) + ψ̃(0))Id
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and

Q∗∗d2,n−1 = lim
ω→1, q→1

Q∗∗+2,n−1

= (φ̃(3) + ψ̃(3))(λn − 2φ̃(1) − ψ̃(1) − 2φ̃(2) − ψ̃(2)) T 2

+[φ̃(3) (2 φ̃(2) + 4 φ̃(1) + 2 ψ̃(1) − 2λn) + φ̃(2) (2 φ̃(1) + ψ̃(1) + ψ̃(3) − 2λn)

+2 φ̃(1) (ψ̃(2) + ψ̃(3) − λn) + (ψ̃(2) + ψ̃(3))(ψ̃(1) − λn) + λn (λn − ψ̃(1))]T
+φ̃(1)(λn − 2φ̃(2) − ψ̃(2) − 2φ̃(3) − ψ̃(3))Id,

with the notations

φ̃(j) ≡ φ̃(x+ j), ψ̃(j) ≡ ψ̃(x+ j), λn = lim
q→1

λn,0 = −n (ψ̃′ + (n− 1)
φ̃′′

2
).

The results given in this chapter (see Equations (5.12) and (5.14)), which agree with the
ones obtained using the Stieltjes properties of the associated linear functional [Foupouagnigni
et al., 98e19], can be used for connection problems (see [Askey, 1965, 1975], [Askey et al.,
1984], [Lewanowicz, 1995, 1996], [Godoy et al., 1997a] [Area et al., 1998b]) , expanding the
first associated P

(1)
n−1 in terms of Pn, in the same spirit as in [Lewanowicz, 1995]; and also in

order to represent finite modifications inside the Jacobi matrices of the q-classical starting family
[Ronveaux et al., 1996]. We have also computed the coefficients of the fourth order q-difference
equation satisfied by the first associated q-classical orthogonal polynomials appearing in the
q-Hahn tableau. In particular, from the Big q-Jacobi polynomials, we derive by limit processes
[Koekoek et al., 1996] the fourth-order differential (resp. q-difference) equation satisfied by the
first associated classical (resp. q-classical) orthogonal polynomials.

For the Little q-Jacobi polynomials, for example, the operators Q∗2,n−1 and Q∗∗2,n−1 are given
below, with the notation: ν = qn.

Q∗2,n−1 = q x
[
(q2 x− 1)G2

q − ν−1 (−ν − a ν + q2 x a b ν2 + q x)Gq
+ a (−1 + b q x) Id] ,

Q∗∗2,n−1 = ν−1 q4x2
[
qa(−1 + bq4x) ×

(q3xabν + q3xabν2 + q2xν + q2x− qν − qaν − ν − aν)G2
q

− ν−1(q5x2 + aν2 + qν2 − q2xν2 − q3xabν3 + q7x2a2b2ν3

− q3xa2bν3 − q5xabν3 + q2a2ν2 − q5xabν2 − q5xa2bν2 + q2aν2

− q5xa2bν3 − q2xaν − q4xaν − q2xν − q4xν − q3xaν + q5x2ν

− q3xν + q7x2a2b2ν4 + q6x2abν − q4xa2bν3 + qa2ν2 − q2xaν2

+ 2q6x2abν2 + q6x2abν3 + 2qaν2 + ν2 − q4xabν3)Tq
+ (−1 + qx)(q4xabν + q4xabν2 + q3xν + q3x− qν
− qaν − ν − aν)Id] .



Chapter 6

Difference equations for the rth
associated Laguerre-Hahn
orthogonal polynomials

6.1 Introduction

Using the properties of the Stieltjes function of a given Laguerre-Hahn linear functional, we
derive the single fourth-order difference equation satisfied by the rth associated Dq-Laguerre-
Hahn orthogonal polynomials [Foupouagnigni et al., 1998d, 1998e]. We deduce by the limit
process, lim

q→1
Dq = d

dx , the fourth-order differential equation satisfied by the rth associated D-

Laguerre-Hahn orthogonal polynomials [Belmehdi et al., 1991].
Moreover, we use Theorem 4.2 to give the fourth-order difference equation satisfied by the

rth associated Dq,ω-Laguerre-Hahn orthogonal polynomials. Then follows, immediately, the
fourth-order difference equation satisfied by the rth associated ∆-Laguerre-Hahn orthogonal
polynomials [Letessier et al., 1996], [Foupouagnigni et al., 1998b, 1998c].

6.2 The associated Dq-Laguerre-Hahn linear functional

6.2.1 The associated Dq-Laguerre-Hahn linear functional is a Dq-Laguerre-
Hahn linear functional

Theorem 6.1 (Guerfi, 1988; Medem, 1996; Foupouagnigni et al., 1998e) The associated
of any integer order of the regular linear functional belonging to the Dq-Laguerre-Hahn class be-
longs to the Dq-Laguerre-Hahn class.

The proof of the above theorem is given by induction on the order of association using the
following proposition.

Proposition 6.1 (Guerfi, 1988; Medem, 1996; Foupouagnigni et al., 1998e) Let L be
a given regular linear functional; L(r) the associated of order r of L and Sr(≡ S(L(r))) the
Stieltjes function of L(r).

If Sr satisfies the Dq-Riccati difference equation,

φ(qx)DqSr(x) = Gr(x; q)Sr(x)GqSr(x) + Er(x; q)Sr(x)
+ Fr(x; q)GqSr(x) +Hr(x; q), r ≥ 0, (6.1)

77
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where φ is a non-zero polynomial and Er, Fr, Gr and Hr are polynomials in the variable x
depending on q, then the same property holds for Sr+1:

φ(qx)Dq,ω Sr+1(x) = Gr+1(x; q)Sr+1(x)Gq Sr+1(x)
+Er+1(x; q)Sr+1(x) (6.2)
+Fr+1(x; q)Gq Sr+1(x) +Hr+1(x; q),

with

Gr+1 =
Hr

γr
, (6.3)

Er+1 = (qx− βr)
Hr

γr
− Fr, (6.4)

Fr+1 = (x− βr)
Hr

γr
− Er, (6.5)

Hr+1 = −φ(qx) + γrGr − (qx− βr)Er − (x− βr)Fr

+(x− βr)(qx− βr)
Hr

γr
. (6.6)

Proof: Application of the Dq -derivative rule

Dq
(
f

g

)
(x) ≡

f(qx)
g(qx) −

f(x)
g(x)

(q − 1)x
=
g(x)Dq f(x)− f(x)Dq g(x)

g(x)g(qx)
, (6.7)

to (6.21) gives

Dq Sr(x) =
γr [1 +Dq Sr+1(x)]

(qx− βr + Gq Sr+1(x)) (x− βr + Sr+1(x))
. (6.8)

Using (6.21), (6.1) and (6.8), we obtain the Dq -Riccati difference equation for Sr+1

φ(qx)DqSr+1 =
Hr

γr
Sr+1GqSr+1

+[(qx− βr)
Hr

γr
− Fr]Sr+1 + [(x− βr)

Hr

γr
− Er]GqSr+1

−φ(qx) + γrGr − (qx− βr)Er − (x− βr)Fr.

Identification of the previous difference equation with (6.2) completes the proof. 2

Remark 6.1 Use of (6.4)-(6.6) gives the following properties:

i)

Er+1 − Fr+1 − Er + Fr = (q − 1)x
Hr

γr
, (6.9)

Er+1 + Fr+1 + Er + Fr =
Hr

γr
((1 + q)x− 2βr) , (6.10)

Er+1Fr+1 − ErFr = φ(qx)
Hr

γr
+
HrHr+1

γr
−HrGr. (6.11)
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ii) Knowing polynomials φ, E0, F0, G0, H0, βn and γn, n ≥ 0, we can compute the
coefficients Ei, Fi and Hi for all i ≥ 1 using equations (6.4)-(6.6).

Note that the coefficients βn and γn of the three-term recurrence relation (see (2.18)), for
Dq-semi-classical orthogonal polynomials of class one are given by Theorem 8.1.

Let L be a regular Dq-Laguerre-Hahn linear functional. By Theorem 6.1, the rth associated
of L, L(r), belongs to the Dq-Laguerre-Hahn class and its Stieltjes function Sr satisfies the
following Dq -Riccati difference equation

φ(qx)DqSr(x) = Gr(x; q)Sr(x)GqSr(x) + Er(x; q)Sr(x)
+ Fr(x; q)GqSr(x) +Hr(x; q), r ≥ 0,

where φ is a non-zero polynomial and Er, Fr, Gr and Hr are polynomials in the variable x
depending eventually on q. The following proposition proves that the degrees of the polynomials
Er, Fr, Gr and Hr are bounded.

Proposition 6.2 (Guerfi, 1988; Medem, 1996; Foupouagnigni et al., 1998e) The poly-
nomial coefficients Er, Fr, Gr and Hr satisfy:

deg(Hr) ≤ m− 1, deg(Er) ≤ m and deg(Fr) ≤ m, r ≥ 0, (6.12)

where m is given by m = max{deg(E0), deg(F0), deg(H0) + 1}.

Proof: For r = 0, (6.12) holds by hypothesis. Suppose that (6.12) holds up to a fixed
integer r. Then using (6.4), we obtain

deg(Er+1) = deg((qx− βr)
Hr

γr
− Fr) ≤ m, (6.13)

by the above hypothesis. Likewise, using (6.5), we have deg(Fr+1) ≤ m. Finally use of (6.4)
and the fact that the last two inequalities of (6.12) hold for any integer r, give

deg(Hr+1) + 1 = deg(Fr+1 + Er+2) ≤ m.

2

Corollary 6.1 Let L be a Dq-semi-classical linear functional satisfying

Dq(φL) = ψL, (6.14)

where φ is any non-zero polynomial, ψ a polynomial of degree at least one, and Er, Fr, Gr and
Hr are defined by (6.1). Then the following properties hold:

deg(Hr) ≤ max{deg(ψ), deg(φ)− 1} − 1 ∀r ∈ N ,
deg(Er) ≤ max{deg(ψ), deg(φ)− 1 } ∀r ∈ N , (6.15)
deg(Fr) ≤ max{deg(ψ), deg(φ)− 1 } ∀r ∈ N .

Proof: We shall give the proof by showing that

m = max{deg(E0), deg(F0), deg(H0) + 1} ≤ max{deg(ψ), deg(φ)− 1},

then use Proposition 6.2.
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In fact, since L is Dq-semi-classical satisfying (6.14), we deduce from Theorem 4.1 that L is
a Dq-Laguerre-Hahn linear functional and its Stieltjes function S0 satisfies

φ(qx)DqS0 = G0S0GqS0 + E0S0 + F0GqS0 +H0,

where

E0(x; q) = ψ(x)−Dqφ(x),
F0(x; q) = G0(x; q) = 0,
H0(x; q) = Lθ0ψ(x)− (DqL)θ0φ(qx)− Lθ0Dqφ(x).

(6.16)

From (6.16) results immediately

deg(F0) ≤ deg(E0) ≤ max{deg(ψ), deg(φ)− 1}. (6.17)

It follows from (2.11) and (2.12) that

deg(Lθ0ψ) ≤ deg(ψ)− 1, deg(Lθ0Dqφ) ≤ deg(φ)− 2. (6.18)

To show that
deg((DqL)θ0φ(qx) ≤ deg(φ)− 2, (6.19)

we assume

φ(qx) =
n∑
j=0

φjx
j

and deduce that

θ0φ(qx) =
n−1∑
j=0

φj+1x
j ,

(DqL)θ0φ(qx) =
n−1∑
j=0

φ̃jx
j ,

with

φ̃j =
n−1∑
k=j

φk+1〈DqL, xk−j〉.

It turns out that
φ̃n−1 = φn〈DqL, 1〉 = −1

q
φn〈L,D∗q1〉 = 0,

then deg((DqL)θ0φ(qx)) ≤ deg(φ)− 2.
Using (6.18) and (6.19), we deduce that

deg(H0) ≤ max{deg(ψ), deg(φ)− 1} − 1. (6.20)

It results from (6.17) and (6.20) that

m = max{deg(E0), deg(F0), deg(H0) + 1} ≤ max{deg(ψ), deg(φ)− 1}.

The previous equation, combined with Proposition 6.2, completes the proof of the corollary. 2
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6.3 Fourth-order difference equation

Through the following steps, we will show that the rth associated Laguerre-Hahn orthogonal
polynomials are solution of a single fourth-order linear difference equation with polynomial
coefficients. To do this, we shall need the following identities giving relation between Sr and the
associated orthogonal polynomials.

Lemma 6.1 (Sherman, 1933, Maroni, 1986a) Let L be a given regular linear functional;
{Pn}n∈N the corresponding monic orthogonal polynomials satisfying (2.18); L(r) the rth associ-
ated of L and Sr(≡ S(L(r))) the Stieltjes function of L(r); then, we have

Sr(x) =
−γr

x− βr + Sr+1(x)
, ∀r ∈ N , (6.21)

where βn and γn are defined in (2.18).

Lemma 6.2 (Dzoumba, 1985) Let L be a given regular linear functional; {Pn}n∈N the cor-
responding monic orthogonal polynomials satisfying (2.18); L(r) the associated of order r of L;
{P (r)

n }n∈N the orthogonal polynomials associated to L(r) and Sr(= S(L(r))) the Stieltjes function
of L(r). Then, the following identity holds:

Sr = −γr
P

(r+1)
n + Sn+r+1P

(r+1)
n−1

P
(r)
n+1 + Sn+r+1P

(r)
n

, (6.22)

where βn and γn are defined in (2.18).

We suppose that L is a regular linear functional belonging to the Dq-Laguerre-Hahn class,
that L(r) is the rth associated of L, and that {P (r)

n }n∈N is the family of monic polynomials,
orthogonal with respect to L(r). If Sr represents the Stieltjes function of L(r), then by Theorem
6.1, for any integer r, Sr satisfies a Dq-Riccati difference equation (see (6.1)). We first apply the
difference operator Gq to (6.22) and obtain

Gq Sr = −γr
Gq P (r+1)

n + Gq Sn+r+1Gq P (r+1)
n−1

Gq P (r)
n+1 + Gq Sn+r+1Gq P (r)

n

. (6.23)

Secondly, we apply the quotient rule (see (6.7)) to (6.22) and obtain(
P

(r)
n+1 + Sn+r+1P

(r)
n

) (
GqP (r)

n+1 + Gq Sn+r+1Gq P (r)
n

) Dq Sr
γr

=
(
Gq P (r+1)

n Dq P (r)
n − Gq P (r)

n+1Dq P
(r+1)
n−1

)
Sn+r+1

+
(
Gq P (r+1)

n−1 Dq P
(r)
n+1 − Gq P

(r)
n Dq P (r+1)

n

)
Gq Sn+r+1

−
(
Gq P (r)

n Dq P
(r+1)
n−1 − Gq P

(r+1)
n−1 Dq P

(r)
n

)
Sn+r+1Gq Sn+r+1

− Gq P (r)
n+1Dq P

(r+1)
n + Gq P (r+1)

n Dq P (r)
n+1 (6.24)

+
(
Gq P (r+1)

n Gq P (r)
n − Gq P (r+1)

n−1 Gq P
(r)
n+1

)
Dq Sn+r+1.

Further, we replace Sr, GqSr and DqSr, given by (6.22), (6.23) and (6.24), respectively, in (6.1)
and obtain after taking into account (2.24), the Dq-Riccati difference equation for Sn+r+1; an
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equation which when compared with

φ(qx)Dq Sn+r+1(x) = Gn+r+1(x; q)Sn+r+1(x)Gq Sn+r+1(x)
+En+r+1(x; q)Sn+r+1(x)
+Fn+r+1(x; q)Gq Sn+r+1(x) +Hn+r+1(x; q),

gives the following proposition:

Proposition 6.3 (Foupouagnigni et al., 1998e) The coefficients of the Dq-Riccati differ-
ence equation for Sn+r+1 are given by

πn,r En+r+1 = −φ(qx)
(
Gq P (r+1)

n Dq P (r)
n − Gq P (r)

n+1Dq P
(r+1)
n−1

)
−ErP (r+1)

n−1 Gq P
(r)
n+1 − FrP

(r)
n Gq P (r+1)

n (6.25)

+
Hr

γr
P (r)
n Gq P

(r)
n+1 + γrGr P

(r+1)
n−1 Gq P

(r+1)
n ,

πn,r Fn+r+1 = φ(qx)
(
Gq P (r)

n Dq P (r+1)
n − Gq P (r+1)

n−1 Dq P
(r)
n+1

)
−ErP (r+1)

n Gq P (r)
n − FrP (r)

n+1Gq P
(r+1)
n−1 (6.26)

+
Hr

γr
P

(r)
n+1Gq P

(r)
n + γrGr P

(r+1)
n Gq P (r+1)

n−1 ,

πn,rHn+r+1 = −φ(qx)
(
Gq P (r+1)

n Dq P (r)
n+1 − Gq P

(r)
n+1Dq P

(r+1)
n

)
−ErP (r+1)

n Gq P (r)
n+1 − FrP

(r)
n+1Gq P

(r+1)
n (6.27)

+
Hr

γr
P

(r)
n+1Gq P

(r)
n+1 + γrGr P

(r+1)
n Gq P (r+1)

n ,

πn−1,rHn+r = −φ(qx)
(
Gq P (r+1)

n−1 Dq P
(r)
n − Gq P (r)

n Dq P
(r+1)
n−1

)
−ErP (r+1)

n−1 Gq P
(r)
n − FrP (r)

n Gq P
(r+1)
n−1 (6.28)

+
Hr

γr
P (r)
n Gq P (r)

n + γrGr P
(r+1)
n−1 Gq P

(r+1)
n−1 ,

where πn,r is given by (2.24).

We combine (2.24) and (6.25)-(6.28) to obtain:

Theorem 6.2 (Foupouagnigni et al., 1998e) The associated polynomials obey:

φ(qx)Dq P (r)
n = −En+r+1Gq P (r)

n − FrP (r)
n

+
Hn+r

γn+r
Gq P (r)

n+1 + γrGr P
(r+1)
n−1 , (6.29)

φ(qx)Dq P (r+1)
n−1 = −En+r+1Gq P (r+1)

n−1 + ErP
(r+1)
n−1

+
Hn+r

γn+r
Gq P (r+1)

n − Hr

γr
P (r)
n , (6.30)

φ(qx)Dq P (r)
n+1 = Fn+r+1Gq P (r)

n+1 − FrP
(r)
n+1

−Hn+r+1Gq P (r)
n + γrGr P

(r+1)
n , (6.31)

φ(qx)Dq P (r+1)
n = Fn+r+1Gq P (r+1)

n + ErP
(r+1)
n

−Hn+r+1Gq P (r+1)
n−1 −

Hr

γr
P

(r)
n+1. (6.32)
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Proof: We subtract the two equations obtained after multiplying (6.25) (and (6.28), re-
spectively) by GqP (r)

n , GqP (r+1)
n+1 and obtain

πn,rEn+r+1Gq P (r)
n − πn−1,rHn+rGq P (r)

n+1

= −φ(qx)
(
GqP (r)

n GqP (r+1)
n − GqP (r)

n+1GqP
(r+1)
n−1

)
Dq P (r)

n

−
(
GqP (r)

n GqP (r+1)
n − GqP (r)

n+1GqP
(r+1)
n−1

)
Fr P

(r)
n (6.33)

+
(
GqP (r)

n GqP (r+1)
n − GqP (r)

n+1GqP
(r+1)
n−1

)
γrGr P

(r+1)
n−1 .

Then use of the relation obtained from (2.24)

GqP (r)
n GqP (r+1)

n − GqP (r)
n+1GqP

(r+1)
n−1 = πn,r, (6.34)

and the fact that
πn−1,r =

πn,r
γn+r

,

transform (6.33) in (6.29).
Again, we multiply both sides of (6.25) (and(6.28), respectively) by GqP (r+1)

n−1 , GqP (r+1)
n and

obtain two equations which subtracted give

πn,rEn+r+1Gq P (r+1)
n−1 − πn−1,rHn+rGq P (r+1)

n

= −φ(qx)
(
GqP (r)

n GqP (r+1)
n − GqP (r)

n+1GqP
(r+1)
n−1

)
Dq P (r+1)

n−1

+
(
GqP (r)

n GqP (r+1)
n − GqP (r)

n+1GqP
(r+1)
n−1

)
Er P

(r+1)
n−1 (6.35)

+
(
GqP (r)

n GqP (r+1)
n − GqP (r)

n+1GqP
(r+1)
n−1

) Hr

γr
P (r)
n .

Then use of (6.34) transforms (6.35) in (6.30).
Equations (6.31) and (6.32) are obtained in the same way by combining (6.26), (6.27) and

(6.34). 2

For the sake of simplicity and uniformity we shall present difference equations in terms of
powers of the operator Aq,ω instead of Dq,ω. This is possible because for q 6= 1 or ω 6= 0, all
powers of the operator Dq,ω can be expressed in terms of the powers of Aq,ω and conversely. To
do this we present the following lemma (proved by solving system of equations).

Lemma 6.3 The powers of the operators Dq,ω and Aq,ω are linked by the following relations:

D0
q,ω = A0

q,ω = Id,
((q − 1)x+ ω)Dq,ω = Aq,ω − Id,

((q − 1)x+ ω)2D2
q,ω = q−1A2

q,ω − [2]q q−1Aq,ω + Id,
((q − 1)x+ ω)3D3

q,ω = q−3A3
q,ω − [3]q q−3A2

q,ω + [3]q Aq,ω − Id,
((q − 1)x+ ω)4D4

q,ω = q−6A4
q,ω − (q − 1) [4]q q−6A3

q,ω + (1 + q2)[3]q q−5A2
q,ω

−[4]q q−3Aq,ω + Id,
((q − 1)x+ ω)5D5

q,ω = q−10A5
q,ω − [5]q q−10A4

q,ω + (1 + q2) [5]q q−9A3
q,ω

−(1 + q2) [5]q q−7A2
q,ω + [5]q q−4Aq,ω − Id,
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A0
q,ω = D0

q,ω = Id,
Aq,ω = ((q − 1)x+ ω)Dq,ω + Id,
A2
q,ω = q ((q − 1)x+ ω)2D2

q,ω + (1 + q) ((q − 1)x+ ω)Dq,ω + Id,
A3
q,ω = q3 ((q − 1)x+ ω)3D3

q,ω + q[3]q ((q − 1)x+ ω)2D2
q,ω + [3]q ((q − 1)x+ ω)Dq,ω + Id,

A4
q,ω = q6 ((q − 1)x+ ω)4D4

q,ω + q3 (q − 1) [4]q ((q − 1)x+ ω)3D3
q,ω

+q (1 + q2) [3]q ((q − 1)x+ ω)2D2
q,ω + (q − 1) [4]q ((q − 1)x+ ω)Dq,ω + Id,

A5
q,ω = q10 ((q − 1)x+ ω)5D5

q,ω + q6 [5]q ((q − 1)x+ ω)4D4
q,ω

+q3 (1 + q2) [5]q ((q − 1)x+ ω)3D3
q,ω + q (1 + q2) [5]q ((q − 1)x+ ω)2D2

q,ω

+[5]q ((q − 1)x+ ω)Dq,ω + Id.

Remark 6.2 If we take ω = 0, q 6= 1 (resp. ω 6= 0, q = 1) in the previous lemma, we find the
link between the powers of the operators Dq and Gq (resp. Dω and Tω).

Theorem 6.3 (Foupouagnigni et al., 1998e) Let L be a regular linear functional belonging
to the Dq-Laguerre-Hahn class, L(r) the rth associated of L and {P (r)

n }n∈N the family of monic
polynomials, orthogonal with respect to L(r). If Sr represents the Stieltjes function of L(r), by
Theorem 6.1, for any integer r, Sr satisfies a Dq-Riccati difference equation (see (6.1)). The
associated polynomials P (r)

n satisfy

Dr,n
[
P (r)
n

]
= Nr+1,n−1

[
P

(r+1)
n−1

]
, (6.36)

D̄r+1,n−1

[
P

(r+1)
n−1

]
= N̄r,n

[
P (r)
n

]
, (6.37)

where the operators Dr,n, Nr+1,n−1, D̄r+1,n−1 and N̄r,n are given by

Dr,n = a2 G2
q + a1 Gq + a0 Id, Nr+1,n−1 = ã1 Gq + ã0 Id, (6.38)

D̄r+1,n−1 = b2 G2
q + b1 Gq + b0 Id, N̄r,n = b̃1 Gq + b̃0 Id. (6.39)

The coefficients aj , bj , ãj and b̃j are defined as

a2 = K3,0(K1,1K7,1 −K3,1K8,1), b2 = K3,0(K1,1K7,1 −K3,1K8,1)
a1 = −K2,1(K3,0K7,1 +K1,0K3,1), b1 = −K5,1(K3,0K7,1 +K1,0K3,1)
a0 = K3,1(K2,0K2,1 +K4,1K6,0), b0 = K3,1(K5,0K5,1 +K4,0K6,1)
ã1 = K4,1(K3,0K7,1 +K1,0K3,1), b̃1 = K6,1(K3,0K7,1 +K1,0K3,1)
ã0 = −K3,1(K2,1K4,0 +K4,1K5,0), b̃0 = −K3,1(K5,1K6,0 +K6,1K2,0),

(6.40)

where the coefficients Ki,j are given below with the notations:{
Ki ≡ Ki,0(x; r, n, q) = Ki(x; r, n, q),
Ki,j ≡ Ki,j(x; r, n, q) = GjqKi(x; r, n, q) = Ki(qjx; r, n, q).

(6.41)

K1 =
φ(qx)

(q − 1)x
+ En+r+1(x; q), K2 =

φ(qx)
(q − 1)x

− Fr(x; q),

K3 =
Hn+r(x; q)
γn+r

,K4 = γrGr(x; q) =

{
γr

Hr−1(x;q)
γr−1

if r ≥ 1
γ0G0 if r = 0

, (6.42)

K5 =
φ(qx)

(q − 1)x
+ Er(x; q), K6 = −Hr(x; q)

γr
,

K7 =
φ(qx)

(q − 1)x
− Fn+r+1(x; q), K8 = −γn+r+1

Hn+r+1(x; q)
γn+r+1

.
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Proof: Use of the relation

(q − 1)xDqP (x) = GqP (x)− P (x) ∀P ∈ P,

transforms relations (6.29)-(6.32) in

K1 Gq P (r)
n = K2 P

(r)
n +K3 Gq P (r)

n+1 +K4 P
(r+1)
n−1 , (6.43)

K1 Gq P (r+1)
n−1 = K5 P

(r+1)
n−1 +K3 Gq P (r+1)

n +K6 P
(r)
n , (6.44)

K7 Gq P (r)
n+1 = K2 P

(r)
n+1 +K8 Gq P (r)

n +K4 P
(r+1)
n , (6.45)

K7 Gq P (r+1)
n = K5 P

(r+1)
n +K8 Gq P (r+1)

n−1 +K6 P
(r)
n+1, (6.46)

where Kj are given by (6.42).
In the first step, we solve equations (6.43) and (6.44) in terms of Gq P (r)

n+1 and Gq P (r+1)
n and

obtain

Gq P (r)
n+1 =

K1 Gq P (r)
n −K2 P

(r)
n −K4 P

(r+1)
n−1

K3
, (6.47)

Gq P (r+1)
n =

K1 Gq P (r+1)
n−1 −K5 P

(r+1)
n−1 −K6 P

(r)
n

K3
. (6.48)

In the second step we apply the operator Gq to both sides of (6.45) and (6.46) and get

K7,1 G2
q P

(r)
n+1 = K2,1 Gq P (r)

n+1 +K8,1 G2
q P

(r)
n +K4,1 Gq P (r+1)

n ,

K7,1 G2
q P

(r+1)
n = K5,1 Gq P (r+1)

n +K8,1 G2
q P

(r+1)
n−1 +K6,1 Gq P (r)

n+1.

Then, we replace Gq P (r)
n+1 and Gq P (r+1)

n given by (6.47) and (6.48) respectively, in the two
previous equations and obtain

G2
q P

(r)
n+1 =

K8,1

K7,1
G2
q P

(r)
n +

K1K2,1

K3K7,1
Gq P (r)

n − (K2K2,1 +K6K4,1)
K3K7,1

P (r)
n

+
K1K4,1

K3K7,1
Gq P (r+1)

n−1 −
(K4K2,1 +K5K4,1)

K3K7,1
P

(r+1)
n−1 , (6.49)

G2
q P

(r+1)
n =

K8,1

K7,1
G2
q P

(r+1)
n−1 +

K1K5,1

K3K7,1
Gq P (r+1)

n−1 −
(K5K5,1 +K4K6,1)

K3K7,1
P

(r+1)
n−1

+
K1K6,1

K3K7,1
Gq P (r)

n − (K6K5,1 +K2K6,1)
K3K7,1

P (r)
n . (6.50)

In the third step we apply the operator Gq to both sides of (6.43) and (6.44) and obtain

K1,1 G2
q P

(r)
n = K2,1 Gq P (r)

n +K3,1 G2
q P

(r)
n+1 +K4,1 Gq P (r+1)

n−1 ,

K1,1 G2
q P

(r+1)
n−1 = K5,1 Gq P (r+1)

n−1 +K3,1 G2
q P

(r+1)
n +K6,1 Gq P (r)

n .

Finally, use of (6.49) and (6.50) transforms the two previous equations in

K3,0(K1,1K7,1 −K3,1K8,1)G2
q P

(r)
n −K2,1(K3,0K7,1 +K1,0K3,1)Gq P (r)

n

+K3,1(K2,0K2,1 +K4,1K6,0)P (r)
n =
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K4,1(K3,0K7,1 +K1,0K3,1)Gq P (r+1)
n−1 −K3,1(K2,1K4,0 +K4,1K5,0)P (r+1)

n−1 ,

K3,0(K1,1K7,1 −K3,1K8,1)G2
q P

(r+1)
n−1 −K5,1(K3,0K7,1 +K1,0K3,1)Gq P (r+1)

n−1

+K3,1(K5,0K5,1 +K4,0K6,1)P (r+1)
n−1 =

K6,1(K3,0K7,1 +K1,0K3,1)Gq P (r)
n −K3,1(K5,1K6,0 +K6,1K2,0)P (r+1)

n−1 ,

thus the proof of Theorem 6.3 is complete. 2
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After proving Theorem 6.3, we have now all ingredients to derive the single fourth-order
difference equation satisfied by P (r)

n .
In fact, we apply the operator Gq to both sides of (6.36) and eliminate Gq 2P

(r+1)
n−1 in the

equation obtained, by using (6.37) and obtain

c3 Gq 3P (r)
n + c2 Gq 2P (r)

n + c1 Gq P (r)
n + c0 P

(r)
n

= c̃1 Gq P (r+1)
n−1 + c̃0 P

(r+1)
n−1 , (6.51)

with polynomials cj and c̃j given by

c3 = b2 a2,1, c2 = b2 a1,1, c1 = b2 a0,1 − b̃1ã1,1

c0 = −b̃0ã1,1, c̃1 = b2ã0,1 − b1 ã1,1, c̃0 = −b0ã1,1,

where χi,j = Gjqχi for χi ∈ {ai, bi, ãi, b̃i}.
By the same process, we apply the operator Gq to both sides of (6.51) and eliminate Gq 2P

(r+1)
n−1

in the equation obtained, by using (6.37) and get

d4 Gq 4P (r)
n + d3 Gq 3P (r)

n + d2 Gq 2P (r)
n + d1 Gq P (r)

n + d0 P
(r)
n

= d̃1 Gq P (r+1)
n−1 + d̃0 P

(r+1)
n−1 , (6.52)

with

d4 = b2 b2,1a2,1, d3 = b2 b2,1a1,1, d2 = b2(a0,1b2,1 − ã1,1b̃1,1),
d1 = (b̃1 b1,1 ã1,1 − b̃1 ã0,1b̃2,1 − b̃2 b̃0,1ã1,1), d0 = (ã1,1 b1,1 − ã0,1 b2,1)b̃0,
d̃1 = (b1 b1,1 ã1,1 − b1 ã0,1b2,1 − b2 b0,1ã1,1), d̃0 = (ã1,1 b1,1 − ã0,1 b2,1)b0.

We, therefore, deduce from (6.36), (6.51) and (6.52) the following result:

Theorem 6.4 (Foupouagnigni et al., 1998e) The associated polynomials P (r)
n , for any in-

teger n and for any integer r, satisfies the single fourth-order difference equation∣∣∣∣∣∣∣∣
a2 G2

qP
(r)
n + a1 GqP (r)

n + a0 P
(r)
n ã1 ã0

c3 G3
qP

(r)
n + c2 G2

qP
(r)
n + c1 GqP (r)

n + c0 P
(r)
n c̃1 c̃0

d4 G4
qP

(r)
n + d3 G3

qP
(r)
n + d2 G2

qP
(r)
n + d1 GqP (r)

n + d0 P
(r)
n d̃1 d̃0

∣∣∣∣∣∣∣∣ = 0, (6.53)

which by Lemma 6.3 can be written in the two different forms:

4∑
j=0

Ij(r, n, q;x)Gjq P (r)
n (x) = 0, (6.54)

4∑
j=0

I∗j (r, n, q;x)Djq P (r)
n (x) = 0, (6.55)

where Ij(r, n, q;x), I∗j (r, n, q;x) are polynomials in the variable x and depending on r, n and q.
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6.3.1 Fourth-order differential equation for P (r)
n

We deduce from the previous results and by the limit process, lim
q→1
Dq = d

dx , the fourth-order

differential equation satisfied by the rth associated orthogonal polynomial of the D-Laguerre-
Hahn class [Belmehdi et al., 1991]. Moreover, we recover relations used in [Belmehdi et al., 1991]
to derive the fourth-order differential equation satisfied by the rth associated D-Laguerre-Hahn
orthogonal polynomials.

From (6.55) and by the limit process we get

4∑
j=0

I∗j (r, n, 1;x)
dj

dxj
P (r)
n (x) = 0, (6.56)

where I∗j (r, n, 1;x) = lim
q→1

I∗j (r, n, q;x).

To compare more easily the equations obtained from (6.29)-(6.32) by this limit process with
those given in [Belmehdi et al., 1991], we state the following lemma:

Lemma 6.4 If Er(x; 1), Fr(x; 1) are the limit when q → 1 of Er(x; q) and Fr(x; q) respectively,
we have

En+r+1(x; 1)− Er(x; 1) = Fn+r+1(x; 1)− Fr(x; 1) ∀n ∈ N . (6.57)

Proof: We shall prove the lemma using the relation

Er+1(x; 1)− Er(x; 1) = Fr+1(x; 1)− Fr(x; 1),

easily derived by limit process from (6.9).
In fact, use of the previous relation gives:

En+r+1(x; 1)− Er(x; 1) =
n∑
j=0

Ej+r+1(x; 1)− Ej+r(x; 1)

=
n∑
j=0

Fj+r+1(x; 1)− Fj+r(x; 1)

= Fn+r+1(x; 1)− Fr(x; 1).

2

When we take the limit of equations (6.29)-(6.32) as q → 1, we obtain, taking into account the
previous lemma [Magnus, 1984], [Dzoumba, 1985] [Belmehdi et al., 1994],

φ
d

dx
P (r)
n = −Cn+r+1 + Cr

2
P (r)
n +

Dn+r

γn+r
P

(r)
n+1 +

γr
γr−1

Dr−1 P
(r+1)
n−1 ,

φ
d

dx
P

(r+1)
n−1 = −Cn+r+1 − Cr

2
P

(r+1)
n−1 +

Dn+r

γn+r
P (r+1)
n − Dr

γr
P (r)
n ,

φ
d

dx
P

(r)
n+1 =

Cn+r+1 − Cr
2

P
(r)
n+1 −Dn+r+1 P

(r)
n +

γr
γr−1

Dr−1P
(r+1)
n ,

φ
d

dx
P (r+1)
n =

Cn+r+1 + Cr
2

P (r+1)
n −Dn+r+1 P

(r+1)
n−1 −

Dr

γr
P

(r)
n+1,

where the polynomial coefficients Cr and Dr are given by

Cr ≡ Cr(x) = Er(x; 1) + Fr(x; 1), Dr ≡ Dr(x) = lim
q→1

Hr(x; q). (6.58)
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Notice that the previous four differential equations, already known earlier [Magnus, 1984],
[Dzoumba, 1985], are exactly those which allow Belmehdi et al. (1991) to derive the fourth-order
differential equation satisfied by the associated orthogonal polynomial of the D-Laguerre-Hahn
class. The coefficients Cr and Dr, for the associated D-classical orthogonal polynomials, are
given by

Cr = (x− βr)(2rφ2 + ψ1)− φ′, Dr

γr
= (2r − 1)φ2 + ψ1,

where φ and ψ are the polynomials appearing in the Pearson differential equation satisfied by
the regular linear functional L: D(φL) = ψL, with

φ(x) = φ2 x
2 + φ1 x+ φ0, ψ(x) = ψ1 x+ ψ0.

6.3.2 Fourth-order difference equation for the rth associated Dq,ω-Laguerre-
Hahn orthogonal polynomials

We deduce the difference equation satisfied by the associated Dq,ω-Laguerre-Hahn class from
Theorem 6.4.

Consider L a Dq-Laguerre-Hahn linear functional and {Pn}n∈N the corresponding family of
monic orthogonal polynomials. Let P (r)

n and L(r) be the rth associated of Pn and L, respectively.
The Stieltjes function Sr of L(r) satisfies (6.1):

φ(qx)DqSr(x) = Gr(x; q)Sr(x)GqSr(x) + Er(x; q)Sr(x)
+ Fr(x; q)GqSr(x) +Hr(x; q), r ≥ 0,

where φ, Er, Fr, Gr and Hr are polynomials in x and depending on q. It follows from Theo-
rem 6.4 that P (r)

n satisfies the fourth-order q-difference equation (6.54) where the polynomials
Ij(r, n, q;x) depend on the polynomial coefficients φ, Er, Fr, Gr and Hr. To be more explicit,
we denote Ij(r, n, q;x) = Ij(r, n, q;x;φ,Er, Fr, Gr,Hr).

It results from Theorem 4.2 and Lemma 2.5 that the polynomials {P̃n}n∈N , with P̃n =
T −ω

1−q
Pn, are orthogonal with respect to L̃ = T −ω

1−q
L and that the Stieltjes function S̃r of L̃(r)

satisfies

φ̃(qx+ ω)Dq,ωS̃r(x) = G̃r(x; q, ω)S̃r(x)Aq,ωS̃r(x) + Ẽr(x; q, ω) S̃r(x)
+ F̃r(x; q, ω)Aq,ωS̃r(x) + H̃r(x; q, ω), r ≥ 0,

where φ̃ = T −ω
1−q

φ, and Φ̃(x; q, ω) = T −ω
1−q

Φ(x; q), Φ ∈ {Er, Fr, Gr,Hr}.
We state the following

Theorem 6.5 The rth associated P̃ (r)
n of the polynomial P̃n satisfies the fourth-order difference

equation
4∑
j=0

Igj (r, n, q, ω;x)Ajq,ω P̃
(r)
n (x) = 0, (6.59)

where the polynomial coefficient Igj (r, n, q, ω;x) depending on φ̃, Ẽr, F̃r, G̃r, H̃r and denoted
Igj (r, n, q, ω;x) = Igj (r, n, q, ω;x; φ̃, Ẽr, F̃r, G̃r, H̃r), are given by

Igj (r, n, q, ω;x; φ̃, Ẽr, F̃r, G̃r, H̃r) = Ij(r, n, q;x−
ω

1− q
;φ,Er, Fr, Gr,Hr).
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Proof: We replace in (6.54) P (r)
n by T ω

1−q
P̃

(r)
n , i.e.,

P (r)
n = T ω

1−q
P̃ (r)
n ,

and obtain an equation which multiplied by the operator T −ω
1−q

gives

4∑
j=0

T −ω
1−q

Ij(r, n, q;x) T −ω
1−q
Gjq T ω

1−q
P̃ (r)
n (x) = 0.

We therefore use the relation (4.23): T −ω
1−q
Gjq T ω

1−q
= Ajq,ω to transform the previous equation in

4∑
j=0

Ij(r, n, q;x−
ω

1− q
)Ajq,ω P̃

(r)
n (x) = 0.

We complete the proof by identifying the coefficients of Ajq,ω P̃
(r)
n (x) in the previous equation

with the ones of (6.59). 2

6.3.3 Fourth-order difference equation for the rth associated ∆-Laguerre-
Hahn orthogonal polynomials

¿From the fourth-order difference equation satisfied by the rth associated orthogonal polynomial
of the Dq,ω-Laguerre-Hahn class, we deduce, again, by the limit process the fourth-order dif-
ference equation satisfied by the rth associated orthogonal polynomial of the ∆-Laguerre-Hahn
class [Foupouagnigni et al., 1998b]

4∑
j=0

I∆
j (r, n;x) T j P̃ (r)

n (x) = 0,

with
I∆
j (r, n;x) = lim

ω→1, q→1
Igj (r, n, q, ω;x; φ̃, Ẽr, F̃r, G̃r, H̃r).

6.4 Application of difference equations to classical situations

6.4.1 Coefficients Er, Fr and Hr for classical situations

Here we suppose that the regular linear functional L satisfies the Dq-Pearson linear functional
equation, Dq(φL) = ψL, where φ is a polynomial of degree at most two, and ψ is a first-degree
polynomial given by

φ(x) = φ2 x
2 + φ1 x+ φ0, ψ(x) = ψ1 x+ ψ0, |ψ1|(|φ2|+ |φ1|+ |φ0|) 6= 0.

It follows from Proposition 6.2 that Hr is constant and Er and Fr are polynomials of degree at
most one.

Let us compute first polynomials Er, Fr, and Hr
γr

in terms of φ and ψ. The first Dq-derivative
of (6.4), (6.5) and the first and second Dq-derivative of (6.6) give, respectively,

Dq Er+1 = q
Hr

γr
−Dq Fr, r ≥ 0, (6.60)
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Dq Fr+1 =
Hr

γr
−Dq Er, r ≥ 0, (6.61)

qEr + Fr = −qGq Dq φ− (q2x− βr)Dq Er − (qx− βr)Dq Fr

+(1 + q)(qx− βr)
Hr

γr
, r ≥ 0, (6.62)

qDq Er + Dq Fr = q
Hr

γr
− q2 φ2, r ≥ 0. (6.63)

In the first step, we solve equations (6.60), (6.61) and (6.63), taking into account the initial
conditions (6.16)

H0(x, q) = Lθ0ψ(x)− (DqL)θ0φ(qx)− Lθ0Dqψ = (ψ1 − φ2)γ0,

Dq E0(x, q, w) = ψ′ −D2
qφ(x) = ψ1 − (1 + q)φ2,

F0(x, q) = 0,

and obtain [Foupouagnigni et al., 1998e]

Dq Er = qrψ1 + ([r]q − [2]q)φ2,

Dq Fr = q2−r[r]qφ2, (6.64)
Hr

γr
= qrψ1 + q−r([2r]q − 1)φ2.

In a second step, we compute the coefficients Er and Fr using (6.62), (6.64) and the equation
obtained after iterating (6.9):

Er − Fr = ((q − 1)x)
r−1∑
k=0

Hk

γk
+ ψ −Dq φ

and we get huge expressions for Er and Fr. Finally, use of Maple V.4 and the simplification pro-
cedures for q-hypergeometric terms developped in [Böing et al., 1998] allow us to have readable
expressions for Er and Fr [Foupouagnigni et al., 1998e],

Er(x; q) = ((qr − q2)φ2 + qr ψ1 (q − 1))((qr − q) (qr x q − qr x+ x q2 − x q)φ2 (6.65)

+ (q − 1) (qr − q)φ1 + qr (q − 1) (qr x q ψ1 + q ψ0 − qr xψ1 − ψ0))
/

(q − 1)2 ((qr − q) (qr + q)φ2 + (qr)2 ψ1 (q − 1)),

Fr(x; q) = (−1 + qr)((qr − q) (qr x q2 − qr x q + x q3 − x q2)φ2
2 + (6.66)

(qr (q − 1) (qr − q)φ1 + qr (q − 1) (qr x q2 ψ1 − ψ0 q
2 − qr x q ψ1 + q ψ0))φ2

+ ψ1 (qr)2 (q − 1)2 φ1)q
/

(qr (q − 1)2((qr − q) (qr + q)φ2 + (qr)2 ψ1 (q − 1))).

Remark 6.3 1. For q-classical situations, coefficients K3, K4, K6 and K8 (see (6.42)) are
constant with respect to the variable x.

2. For r = 0, K4 = 0, then it follows from (6.40), (6.42) and (6.64)-(6.66) that (6.36) and
(6.37) (for r = 0 and for Dq-classical situations) are, respectively, equivalent to equations
(5.7) and (5.12).

3. When the regular functional L is Dq-semi-classical, K4 = γ0G0 = 0 (for r = 0). This
allows us to obtain the factored form of the fourth-order difference equation for the first
associated Dq-semi-classical orthogonal polynomials.
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6.4.2 Results on general associated Dq-classical orthogonal polynomials

The coefficients Ij(r, n, q;x) (see (6.53)) can be computed using the algorithm described in
(6.21)-(6.53). But this involves heavy computations due to huge expressions containing powers
of q which need to be factored. To avoid these difficulties, we again used Maple V.4 to compute
symbolically the coefficients Ij(r, n, q;x) and to simplify common factors as was done for the
associated classical discrete orthogonal polynomial [Foupouagnigni et al., 1997c] to obtain

Theorem 6.6 (Foupouagnigni et al., 1998c, 1998e) The coefficients Ij(r, n, q;x) of the
fourth-order q-difference equation satisfied by the rth associated Dq-classical orthogonal poly-
nomials are given by

I4 = K9, 2(K10, 0K10, 1 −K12, 0K12, 1),
I3 = K10, 2 (K12, 0 (k2, 3K12, 1 +K13, 1) − K10, 0K10, 1 (K2, 3 +K5, 2)) +K9, 1K10, 0K12, 2,

I2 = K10, 1 (K10, 2 (K10, 0K10, 1 +K13, 0 −K5, 1K12, 0)
− K9, 1K10, 0)−K12, 1 (K12, 2K13, 0 + k11, 2K12, 0), (6.67)

I1 = K10, 0K12, 2 (k2, 2K12, 0 +K13, 0) +K10, 2K12, 0 (K9, 0 −K10, 0K10, 1),
I0 = K9,−1 (K10, 1K10, 2 −K12, 1K12, 2),

where the coefficients Ki,j are obtained from (6.41), (6.42) and

K9(x) = K7(qx)K1(qx)−K3(x)K8(x), K10(x) = K7(qx) +K1(x),
K11(x) = K2(qx)K2(x) +K4(x)K6(x), K12(x) = K2(qx) +K5(x),
K13(x) = K5(qx)K5(x) +K4(x)K6(x), K14(x) = K5(qx) +K2(x),

with coefficients En, Fn, and Hn
γn

given by (6.64)-(6.66).

Notice that coefficients Ij(r, n, q;x), are given in appendix III, for some Dq-classical orthog-
onal polynomials.

6.4.3 Fourth-order differential equation for the rth associated D-classical or-
thogonal polynomials

From the relation lim
q→1
Dq = d

dx and by the limit process, we recover using Maple V Release 4 the

fourth-order differential equation satisfied by the rth associated classical continuous orthogonal
polynomials (see [Belmehdi et al., 1991], [Zarzo et al., 1993]) [Lewanowicz, 1995], [Foupouagnigni
et al., 1998e]). This equation is given in terms of the factored form of the fourth-order differential
equation satisfied by the first associated classical continuous orthogonal polynomials as already
done earlier [Lewanowicz, 1995].

Oc(r, n;x)P (r)
n (x) = 0, (6.68)

where

O(r, n, q;x) =
4∑
j=0

Ij(r, n, q;x)Gjq

and

Oc(r, n;x) =
1

2φ(x) η(r, n)
lim
q→1

O(r, n, q;x)
q2(q − 1)2x2

= Q∗∗c2,nQ∗c2,n + (1− r)ζ(n, r)Qc2,n, (6.69)
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with

Qc2,n = 2φ
d2

dx2
+ 3φ′

d

dx
− n(n+ 2)φ′′Id,

ζ(r, n) = ((n+ r − 1)φ′′ + 2ψ′),
η(r, n) = (n+ 1)((n+ 2r − 2)φ′′ + 2ψ′).

Q∗∗c2,n and Q∗c2,n are given by (5.13) and (5.14).

6.4.4 Fourth-order difference equation for the rth associated ∆-classical or-
thogonal polynomials

We first deduce the fourth-order difference equation for the rth associated Dq,ω-classical orthog-
onal polynomials using Theorems 4.2 and 6.6, then deduce the difference equation for the rth
associated ∆-classical orthogonal polynomial by the limit process: lim

ω→1,q→1
Dq,ω = ∆.

We assume that {Pn}n∈N , orthogonal with respect to L, is Dq-classical with L satisfying
Dq(φL) = ψL where φ and ψ are polynomials of degree at most two and degree one, respectively.
The rth associated P (r)

n satisfies Theorem 6.6. It yields from Theorem 4.2 and 6.6 that {P̃n}n∈N ,
with P̃n = T −ω

1−q
Pn, is orthogonal with respect to L̃ = T −ω

1−q
L and L̃ is Dq,ω-classical satisfying

Dq,ω(φ̃L̃) = ψ̃L̃, where φ̃ = T −ω
1−q

φ and ψ̃ = T −ω
1−q

ψ. Again, we use Theorem 4.2 and 6.6 to

conclude that the rth associated P̃
(r)
n of the Dq,ω-classical orthogonal polynomial P̃n satisfies

the fourth-order difference equation

4∑
j=0

Ij(r, n, q, ω;x; φ̃, ψ̃)Aq,ωj P̃ (r)
n (x) = 0.

We, therefore, use the limit process to state the following:

Theorem 6.7 (Foupouagnigni et al., 1998c) Let P̃n be the classical orthogonal polynomials
of a discrete variable associated with the linear functional L̃ satisfying ∆(φ̃) = ψ̃L̃. Then, the
rth associated P̃ (r)

n of P̃n satisfies the fourth-order difference equation

4∑
j=0

I∆
j (r, n;x) T j P̃ (r)

n (x) = 0,

where the coefficients I∆
j are given by

I∆
4 = K9, 2(K10, 0K10, 1 −K12, 0K12, 1),
I∆

3 = K10, 2 (K12, 0 (k2, 3K12, 1 +K13, 1) − K10, 0K10, 1 (K2, 3 +K5, 2)) +K9, 1K10, 0K12, 2,

I∆
2 = K10, 1 (K10, 2 (K10, 0K10, 1 +K13, 0 −K5, 1K12, 0)

− K9, 1K10, 0)−K12, 1 (K12, 2K13, 0 + k11, 2K12, 0), (6.70)
I∆

1 = K10, 0K12, 2 (k2, 2K12, 0 +K13, 0) +K10, 2K12, 0 (K9, 0 −K10, 0K10, 1),
I∆

0 = K9,−1 (K10, 1K10, 2 −K12, 1K12, 2),

with the notation: Ki,j ≡ ki(x+ j). Coefficients kj read as:

k1(x) = φ̃(x+ 1) + Ẽn+r+1(x), k2(x) = φ̃(x+ 1)− F̃r(x), k3(x) =
H̃n+r

γ̃n+r
,
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k4(x) =

{
γ̃r

H̃r−1

γ̃r−1
if r ≥ 1

0 if r = 0
, k5(x) = φ̃(x+ 1) + Ẽr(x), k6(x) = −H̃r

γ̃r
,

k7(x) = φ̃(x+ 1)− F̃n+r+1(x), k8(x) = −H̃n+r+1, k9(x) = k7(x+ 1)k1(x+ 1)− k3(x)k8(x),
k10(x) = k7(x+ 1) + k1(x), k11(x) = k2(x+ 1)k2(x) + k4(x)k6(x), k12(x) = k2(x+ 1) + k5(x),
k13(x) = k5(x+ 1)k5(x) + k4(x)k6(x), k14(x) = k5(x+ 1) + k2(x),

with φ̃(x) = φ̃2 x
2 + φ̃1 x+ φ̃0, ψ̃(x) = ψ̃1 x+ ψ̃0 and

Ẽn(x, φ̃, ψ̃) = lim
ω→1,q→1

Er(x−
ω

1− q
, T ω

1−q
φ̃, T ω

1−q
ψ̃)

= (φ̃2 n− 2 φ̃2 + ψ̃1)x

+
(φ̃2 n− 2 φ̃2 + ψ̃1) (φ̃2 n

2 − φ̃2 + φ̃1 n+ ψ̃1 n− φ̃1 + ψ̃0)
2 (n− 1) φ̃2 + ψ̃1

,

F̃n(x, φ̃, ψ̃) = lim
ω→1,q→1

Fr(x−
ω

1− q
, T ω

1−q
φ̃, T ω

1−q
ψ̃)

= φ̃2 xn

−n (φ̃2 φ̃1 + 3 φ̃2
2 + φ̃2

2 n
2 − 4 φ̃2

2 n− 2 φ̃2 ψ̃1 − φ̃2 φ̃1 n+ ψ̃1 n φ̃2 + φ̃2 ψ̃0 − ψ̃1 φ̃1)
2 (n− 1) φ̃2 + ψ̃1

,

H̃r

γ̃r
= = lim

ω→1,q→1

Hr

γr
(x− ω

1− q
, T ω

1−q
φ̃, T ω

1−q
ψ̃) = ((2r − 1)φ̃2 + ψ̃1)γ̃r.

It should be mentioned that Er, Fr and Hr are given by (6.64), (6.65) and (6.66), respectively.
The coefficients βn, γn are given in Lemma 7.1.

β̃n ≡ β̃n(φ̃, ψ̃) = lim
ω→1,q→1

(βn(T ω
1−q

φ̃, T ω
1−q

ψ̃) +
ω

1− q
)

= − φ̃2 (ψ̃1 + 2 φ̃1)n2 − (ψ̃1 + 2 φ̃1) (−ψ̃1 + φ̃2)n− ψ̃0 (−ψ̃1 + 2 φ̃2)
(ψ̃1 + 2 φ̃2 n) (2 (n− 1) φ̃2 + ψ̃1)

,

γ̃n ≡ γ̃n(φ̃, ψ̃) = lim
ω→1,q→1

γn(T ω
1−q

φ̃, T ω
1−q

ψ̃)

= −((n− 2) (n− 1)4 φ̃4
2

+(4 (n− 2) (n− 1)2 φ̃0 + (n− 1)2 (3 ψ̃1 n
2 + 2n ψ̃0 − 8 ψ̃1 n− 4 ψ̃0 + 5 ψ̃1)) φ̃3

2 +
(−(n− 2) (n− 1)2 φ̃2

1 − ψ̃1 (n− 2) (n− 1)2 φ̃1 + 4 ψ̃1 (n− 1) (−3 + 2n) φ̃0

+ (ψ̃0 + ψ̃1 n− ψ̃1) (n ψ̃0 − 2 ψ̃0 + 4 ψ̃1 − 7 ψ̃1 n+ 3 ψ̃1 n
2))φ̃2

2

+(−ψ̃1 (n− 1) (−3 + 2n) φ̃2
1 − ψ̃1 (−5 ψ̃1 n+ 3 ψ̃1 − 2 ψ̃0 + n ψ̃0 + 2 ψ̃1 n

2) φ̃1

+ ψ̃2
1 (−6 + 5n) φ̃0 + ψ̃1 (ψ̃0 + ψ̃1 n− ψ̃1)2)φ̃2 − ψ̃2

1 (n− 1) φ̃2
1 − ψ̃2

1 (ψ̃0 + ψ̃1 n− ψ̃1) φ̃1

+ φ̃0 ψ̃
3
1)n

/
(((2n− 1) φ̃2 + ψ̃1) ((−2 + 2n) φ̃2 + ψ̃1)2 ((−3 + 2n) φ̃2 + ψ̃1)).

Remark 6.4 The coefficients I∆
0 (r, n, x), as well as operators Dr,n, Nr,n, D̃r,n and Ñr,n (see

Theorem 6.3), are given in Appendix II for all classical orthogonal polynomial of a discrete
variable. They are obviously deduced from those of q-classical case by Theorem 4.2.



Chapter 7

Three-term recurrence relation
coefficients for classical situations

7.1 Introduction

We describe the method used to compute the coefficients βn and γn for the Dq-classical case.
This method, already used in [Koepf et al., 1996] but for classical continuous and classical

discrete cases, consists to derive from the second order difference equation satisfied by {Pn}n∈N
(3.54) a system of equations satisfied by Tn,1, Tn,2 and λn,0 [Foupouagnigni et al., 1998a], then
solve these equations and deduce coefficients βn and γn.

7.2 Three-term recurrence relation coefficients for Dq-classical
situations

7.2.1 Coefficients Tn,1 and Tn,2

Let L be a Dq-classical linear functional satisfying
Dq(φL) = ψL, where φ is of degree at most two and ψ a first-degree polynomial i.e.,

φ(x) = φ2 x
2 + φ1 x+ φ0, ψ(x) = ψ1 x+ ψ0, |ψ1|(|φ2|+ |φ1|+ |φ0|) 6= 0. (7.1)

It follows from Theorem 3.1 that {Pn}n∈N satisfies

φDqD 1
q
Pn + ψDq Pn + λn,0 Pn = 0 ∀n ∈ N , (7.2)

with λn,0 given by (3.55).
Use of the expansions (see [Foupouagnigni et al., 1998a], see also (8.8)),

Pn(x) =
n∑
j=0

Tn,j x
n−j , Dqxn = [n]q xn−1

allows us to write (7.2) as
n∑
j=0

dn,j x
n−j = 0. (7.3)

We compute the first three coefficients dn,j and obtain, with ρ = qn,

dn,0 = q4 ρ (q − 1)2 λn,0 − q4 (ρ− 1) (−ρ+ q)φ2 + q4 ρ (ρ− 1) (q − 1)ψ1,
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dn,1 = (q4 ρ (q − 1)2 λn,0 + q3 (−ρ+ q) (−ρ+ q2)φ2 − q3 ρ (q − 1) (−ρ+ q)ψ1)Tn,1
− q4 (ρ− 1) (−ρ+ q)φ1 + q4 ρ (ρ− 1) (q − 1)ψ0,

dn,2 = (2 q3 (−ρ+ q) (−ρ+ q2)φ1 − 2 q3 ρ (q − 1) (−ρ+ q)ψ0)Tn,1
+ (2 q4 ρ (q − 1)2 λn,0 + 2 q2 (−ρ+ q2) (q3 − ρ)φ2 − 2 q2 ρ (q − 1) (−ρ+ q2)ψ1)Tn,2
− 2 q4 (ρ− 1) (−ρ+ q)φ0

We solve the equations dn,0 = 0, dn,1 = 0 and dn,2 = 0 in terms of λn,0, Tn,1 and Tn,2 and get

λn,0 =
(ρ− 1) (−φ2 ρ+ ρψ1 − q ρψ1 + φ2 q)

ρ (q − 1)2
= −[n]q (ψ1 + [n− 1] 1

q

φ2

q
),

Tn,1 =
(−1 + ρ) q (q − 1) (q − ρ)φ1 − ρ q (q − 1)2 (−1 + ρ)ψ0

(q − 1)2 (q2 φ2 − ψ1 q ρ2 + ψ1 ρ2 − φ2 ρ2)
,

Tn,2 =
1
2

(2 q2 (−1 + ρ) (q − 1)3 (q + ρ) (q − ρ)2 φ0 φ2

− 2 q2 (−1 + ρ) (q − 1)2 (−ρ+ q2) (q − ρ)2 φ1
2

+ 2 q2 ρ (−1 + ρ) (q − 1)3 (q − ρ) (−2 ρ+ q2 + q)ψ0 φ1

− 2 ρ2 q2 (−1 + ρ) (q − 1)4 (q − ρ)ψ1 φ0 − 2 ρ2 q2 (−1 + ρ) (q − 1)4 (q − ρ)ψ0
2)
/

((q + 1) (q − 1)4 (−ψ1 q ρ
2 + ψ1 ρ

2 + φ2 q
3 − φ2 ρ

2) (q2 φ2 − ψ1 q ρ
2 + ψ1 ρ

2 − φ2 ρ
2)).

7.2.2 Coefficients βn and γn for Dq-classical orthogonal polynomials

We use the following identities already given in [Foupouagnigni, 1998a] (see also (8.8))

βn = Tn,1 − Tn+1,1, γn = Tn,2 − Tn+1,2 − βn Tn,1 (7.4)

to compute the coefficients βn, γn and get:

Lemma 7.1 (Medem, 1996) The coefficients βn and γn of TTRR satisfied by the polynomials
{Pn}n∈N (see (2.18)), orthogonal with respect to the Dq-classical linear functional L, satisfying
Dq(φL) = ψL, where φ and ψ are defined in (7.1), are given by:

βn(q, φ, ψ) = −ρ((−(q + 1) (−1 + ρ) (−q + ρ)φ1 − (q − 1) (−ρ q2 + q − q ρ+ ρ2)ψ0)φ2

− ρ (q − 1) (q + 1) (−1 + ρ)ψ1 φ1 − ρ2 (q − 1)2 ψ0 ψ1)
/

((−1 + ρ) (ρ+ 1)φ2 + ρ2 (q − 1)ψ1) (−(−q + ρ) (q + ρ)φ2 − ρ2 (q − 1)ψ1),

γn(q, φ, ψ) = −(−1 + ρ) ((−ρ+ q2)φ2 − (q − 1) ρψ1)((−q + ρ)2 (q + ρ)2 φ0 φ2
2

+ (−q ρ (−q + ρ)2 φ1
2 − q ρ (q − 1) (−q + ρ)2 ψ0 φ1

+ 2 ρ2 (q − 1) (−q + ρ) (q + ρ)ψ1 φ0 + q2 ρ2 (q − 1)2 ψ0
2)φ2

−ρ2 q (q − 1)(−q + ρ)ψ1 φ1
2 − q ρ3 (q − 1)2 ψ0 ψ1 φ1

+ ρ4 (q − 1)2 ψ1
2 φ0)ρ q

/
(((−q + ρ2)φ2 + ρ2 (q − 1)ψ1)×

((q − ρ) (q + ρ)φ2 − ρ2 (q − 1)ψ1)2 ((q3 − ρ2)φ2 − ρ2 (q − 1)ψ1)).
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7.3 Three-term recurrence relation coefficients for D-classical
situations

7.3.1 Coefficients T̃n,1 and T̃n,2

If we denote by T̃n,1 and T̃n,2 the coefficients Tn,1 and Tn,2 when the linear functional L is
D-classical satisfying D(φL) = ψL, we obtain T̃n,1 and T̃n,2 by limit process [Koepf et al., 1996]:

T̃n,1 = lim
q→1

Tn,1 =
n ((n− 1)φ1 + φ0)

2(n− 1)φ2 + ψ1
,

T̃n,2 = lim
q→,1

Tn,2

=
1
2
n(2 (n− 1)2 φ0 φ2 + (n− 2) (n− 1)2 φ1

2 + ψ0 (n− 1) (2n− 3)φ1

+ ψ1 (n− 1)φ0 + ψ0
2 (n− 1))) /(((2n− 3)φ2 + ψ1) ((2n− 2)φ2 + ψ1)).

We, therefore, use (7.4) to deduce coefficients β̃n and γ̃n and get [Lesky, 1985], [Koepf et al.,
1996]. . . .

β̃n = lim
q→,1

βn = −(2n (n− 1)φ1 − 2ψ0)φ2 + 2φ1 ψ1 n+ ψ0 ψ1

(ψ1 + 2φ2 n) ((2n− 2)φ2 + ψ1)
,

γ̃n = lim
q→,1

γn = −n(4φ0 (n− 2) (n− 1)2 φ2
3 + (−(n− 2) (n− 1)2 φ1

2

+ 4 (n− 1) (2n− 3)ψ1 φ0 + (n− 2)ψ0
2)φ2

2 + (−ψ1 (n− 1) (2n− 3)φ1
2

+ (2− n)ψ0 ψ1 φ1 + (−6 + 5n)ψ1
2 φ0 + ψ0

2 ψ1)φ2

+ψ1
2 (−n+ 1)φ1

2 − ψ0 φ1 ψ1
2 + φ0 ψ1

3)
/

(((2n− 1)φ2 + ψ1) ((2n− 2)φ2 + ψ1)2((2n− 3)φ2 + ψ1)).

7.4 Three-term recurrence relation coefficients for ∆-classical
situations

We state the following:

Lemma 7.2 (Smaili, 1987; Salto, 1995; Koepf et al., 1996) Let {Pn}n∈N be a family of
monic polynomials, orthogonal with respect to the ∆-classical linear functional L̃ satisfying
∆(φ̃L̃) = ψ̃L̃. If β̃n and γ̃n are the coefficients of TTRR satisfied by {Pn}n∈N , then, they
are given by

β̃n = − φ̃2 (ψ̃1 + 2 φ̃1)n2 − (ψ̃1 + 2 φ̃1) (−ψ̃1 + φ̃2)n− ψ̃0 (−ψ̃1 + 2 φ̃2)
(ψ̃1 + 2 φ̃2 n) (2 (n− 1) φ̃2 + ψ̃1)

,

γ̃n = −((n− 2) (n− 1)4 φ̃4
2 ×

+(4 (n− 2) (n− 1)2 φ̃0 + (n− 1)2 (3 ψ̃1 n
2 + 2n ψ̃0 − 8 ψ̃1 n− 4 ψ̃0 + 5 ψ̃1)) φ̃3

2

+(−(n− 2) (n− 1)2 φ̃2
1 − ψ̃1 (n− 2) (n− 1)2 φ̃1 + 4 ψ̃1 (n− 1) (−3 + 2n) φ̃0

+ (ψ̃0 + ψ̃1 n− ψ̃1) (n ψ̃0 − 2 ψ̃0 + 4 ψ̃1 − 7 ψ̃1 n+ 3 ψ̃1 n
2))φ̃2

2
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+(−ψ̃1 (n− 1) (−3 + 2n) φ̃2
1 − ψ̃1 (−5 ψ̃1 n+ 3 ψ̃1 − 2 ψ̃0 + n ψ̃0 + 2 ψ̃1 n

2) φ̃1

+ ψ̃2
1 (−6 + 5n) φ̃0 + ψ̃1 (ψ̃0 + ψ̃1 n− ψ̃1)2)φ̃2 − ψ̃2

1 (n− 1) φ̃2
1 − ψ̃2

1 (ψ̃0 + ψ̃1 n− ψ̃1) φ̃1

+ φ̃0 ψ̃
3
1)n

/
(((2n− 1) φ̃2 + ψ̃1) ((−2 + 2n) φ̃2 + ψ̃1)2 ((−3 + 2n) φ̃2 + ψ̃1)).

The corresponding coefficients T̃n,1 and T̃n,2 are deduced by the same way [Koepf et al., 1996].



Chapter 8

Laguerre-Freud equations for the
recurrence coefficient of the
semi-classical orthogonal
polynomials of class one

8.1 Introduction

We assume that L is a regular linear functional satisfying

Dq(φL) = ψL, (8.1)

with polynomials φ and ψ given by

φ(x) =
t∑

j=0

φj x
j , ψ(x) =

p∑
j=0

ψj x
j , p ≥ 1, |φt||ψp| 6= 0. (8.2)

We suppose that (8.1) is not reducible and that the class of the linear functional L, cl(L) is
cl(L) ≡ s = max{deg(φ) − 2,deg(ψ) − 1}. {Pn}n∈N , which is a family of monic polynomials
orthogonal with respect to L, satisfies the TTRR:

{
Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x), n ≥ 1,
P0(x) = 1, P1(x) = x− β0,

(8.3)

where βn and γn are complex numbers with γn 6= 0 ∀n ∈ N .
When L is D, Dq or ∆-classical, the coefficients βn and γn can be given explicitly in terms

of polynomials φ and ψ appearing in (8.1) (see the previous chapter).
But if L is D, Dq or ∆-semi-classical of class s > 0, it is very difficult to give the coefficients

βn and γn explicitly in terms of the polynomials φ and ψ.
We propose a method which enables us to compute them recursively when the linear func-

tional L is Dq-semi-classical of class s = 1. Then, we use limit processes and Theorem 4.2 to
extend this result to the D and ∆-semi-classical orthogonal polynomials of class 1.

This method consists to derive two non-linear equations satisfied by βn and γn, called
Laguerre-Freud equations.

99
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8.2 Starting the Laguerre-Freud equations

The initial form of the Laguerre-Freud equations is obtained by applying both sides of (8.1) to
the polynomials PnPn and PnPn+1, respectively

〈Dq,ω(φL), PnPn〉 = 〈ψL, PnPn〉,
〈Dq,ω(φL), PnPn+1〉 = 〈ψL, PnPn+1〉.

Then, we apply the rules (3.6) and (3.12) to the previous equations and obtain

〈L, φD 1
q
PnG 1

q
Pn〉+ 〈L, φD 1

q
Pn Pn〉 = −q 〈ψL, PnPn〉, (8.4)

〈L, φD 1
q
Pn+1G 1

q
Pn〉+ 〈L, φD 1

q
Pn Pn+1〉 = −q 〈ψL, PnPn+1〉. (8.5)

The respective right-hand sides of the previous equations are given by

Lemma 8.1 (Belmehdi et al., 1994){
〈ψL, PnPn〉 = [ψ(βn) + ψ2(γn + γn+1)]I0,n,
〈ψL, PnPn+1〉 = [ψ1 + ψ2(βn + βn+1)]γn+1I0,n.

(8.6)

Proof: Using the three-term recurrence relation (8.3), we first derive the relation

I0,n+1 = γn+1I0,n ∀n ∈ N (8.7)

and then use it together with (8.3) to prove the lemma. In fact, use of (8.3) and (8.7) give

I0,n+1 = 〈L, Pn+1Pn+1〉
= 〈L, Pn+1((x− βn)Pn − γnPn−1)〉
= 〈L, Pn+1xPn〉
= 〈L, Pn(Pn+2 + βn+1Pn+1 + γn+1Pn)〉
= γn+1〈L, PnPn〉
= γn+1I0,n.

Using (8.7) we obtain

〈ψL, PnPn〉 = ψ0〈L, PnPn〉+ ψ1〈L, xPnPn〉+ ψ2〈L, x2PnPn〉
= ψ0I0,n + ψ1〈L, (Pn+1 + βnPn + γnPn−1)Pn〉

+ψ2〈L, (Pn+1 + βnPn + γnPn−1)2〉
= ψ0I0,n + ψ1βnI0,n + ψ2(I0,n+1 + β2

nI0,n + γ2
nI0,n−1)

= [ψ(βn) + ψ2(γn + γn+1)]I0,n.

〈ψL, PnPn+1〉 = ψ0〈L, PnPn+1〉+ ψ1〈L, xPnPn+1〉+ ψ2〈L, x2Pn+1Pn〉
= ψ1〈L, (Pn+1 + βnPn + γnPn−1)Pn+1〉

+ψ2〈L, (Pn+2 + βn+1Pn+1 + γn+1Pn)(Pn+1 + βnPn + γnPn−1)〉
= ψ1I0,n+1 + ψ2(βn+1I0,n+1 + γn+1βn)I0,n

= [ψ1 + ψ2(βn + βn+1)]γn+1I0,n

2

In order to express all terms of (8.4) and (8.5) in terms of βn and γn, we need to expand the
polynomials Pn in the basis {xn}n∈N with coefficients depending on βn and γn.
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8.3 Intermediate coefficients

8.3.1 Coefficients Tn,j

Lemma 8.2 (Foupouagnigni et al., 1998a) All basic coefficients Tn,i in the expansion of

Pn(x) =
n∑
i=0

Tn,ix
n−i (8.8)

can be computed recursively from the relations:

T1,1 = −β0,

Tn,0 = 1, n ≥ 0, (8.9)
Tn+1,1 = Tn,1 − βn, n ≥ 1, (8.10)
Tn+1,j = Tn,j − βnTn,j−1 − γnTn−1,j−2, 2 ≤ j ≤ n, (8.11)

Tn+1,n+1 = −βnTn,n − γnTn−1,n−1, n ≥ 1. (8.12)

Proof: We use the relation (8.8) and the three-term recurrence relation (8.3) to obtain

n∑
i=0

Tn,ix
n+1−i =

n+1∑
i=0

Tn+1,ix
n+1−i + βn

n∑
j=0

Tn,jx
n−j + γn

n−1∑
k=0

Tn−1,kx
n−1−k.

We replace the variable j and k in the previous equation by j − 1 and k − 2, respectively, to
obtain

n∑
i=0

Tn,ix
n+1−i =

n+1∑
i=0

Tn+1,ix
n+1−i + βn

n+1∑
j=1

Tn,j−1x
n+1−j + γn

n+1∑
k=2

Tn−1,k−2x
n+1−k,

an equation which is equivalent to

(Tn+1,0 − Tn,0)xn+1 + (Tn+1,1 − Tn,1 + βnTn,0)xn

+
n∑
k=2

(Tn+1,k − Tn,k + βnTn,k−1 + γnTn−1,k−2)xn+1−k + Tn+1,n+1 + βnTn,n

+γnTn−1,n−1 = 0.

From the relation P1 = T1,0 x + T1,1 = x − β0, it follows that T1,0 = 1 and T1,1 = −β0. We
complete the proof by identifying to zero all coefficients of the polynomial on the right hand-side
of the previous equation. 2

Corollary 8.1 Using Lemma 8.2, we compute the coefficients Tn,j j = 0, 3 as:

Tn+1,1 = −
n∑
i=0

βi, n ≥ 0,

Tn+1,2 =
∑

0≤i<j≤n
βiβj −

n∑
i=1

γi, n ≥ 1, (8.13)

Tn+1,3 = −
∑

0≤i<j<k≤n
βiβjβk +

∑
1≤i<j≤n

(γiβj + βiγj) + β0

n∑
i=1

γi

−
n∑
i=1

βi−1γi, n ≥ 2.
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All other terms can be computed in the same way, but for class s = 1, only these 3 terms will
be used.

Let us emphasise that the two terms Tn,1 and Tn,2 are already given in [Chihara, 1978];
the computation of the higher order coefficients allows to generate Laguerre-Freud equations
for any arbitrary class s > 1. These coefficients play the role (but in a simpler way) of the
Turán determinants introduced in [Belmehdi et al., 1994] showing the interest of Laguerre-Freud
equations.

8.3.2 Coefficients Bk
n

The coefficients Bk
n appear from the action of the linear functional L on the polynomial xn+k Pn

Bk
n = 〈L, xn+k Pn〉, (8.14)

with the initial condition

B0
n = 〈L, xn Pn〉 = 〈L, Pn Pn〉 = I0,n.

From the relation 0 = 〈L, Pn+k Pn, 〉; k ≥ 1 and (8.8) we deduce that

Bk
n = −

k∑
i=1

Tn+k,iB
k−i
n .

We use the previous equation to compute, recursively, the coefficient Bk
n. In particular, we have:

B1
n = −Tn+1,1I0,n,

B2
n = (Tn+1,1Tn+2,1 − Tn+2,2)I0,n, (8.15)

B3
n = [Tn+1,1(Tn+3,2 − Tn+2,1Tn+3,1) + Tn+3,1Tn+2,2 − Tn+3,3] I0,n.

Notice that the connection between Bk
n and the coefficients Cnj,k introduced in [Belmehdi et al.,

1994],

xn+kPn(x) =
2n+k∑
j=0

Cn+k
j,n Pj(x),

is obviously
Bk
n = Cn+k

0,n I0,0.

8.3.3 Structure relations

We first recall the structure relation (3.84):

φD 1
q
Pn =

n+t−1∑
j=n−s−1

ξn,j Pj , , n > s+ 1,

with t = deg(φ), ξn,n−s−1 6= 0, n > s + 1 and then apply the linear functional L to both sides
of the equation obtained when multiplying the previous one by Pj and get

ξn,jI0,j = 〈φL, Pj D 1
q
Pn〉, n− s− 1 ≤ j ≤ n+ t− 1. (8.16)
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Then, using (8.2), (8.14) and the previous equation we get

ξn,jI0,j = 〈φL, Pj D 1
q
Pn〉

= 〈L, Pj(
t∑
i=0

φix
i)

n∑
k=1

[n+ 1− k] 1
q
Tn,k−1 x

n−k〉

=
n+t−1∑
k=0

ck(q)〈L, xkPj〉

=
n+t−1∑
k=j

ck(q)〈L, xkPj〉

=
n+t−1∑
k=j

ck(q)B
k−j
j ,

with

ck(q) =
n+t−1∑

i+j=k, i≤t, j≤n−1

φi [j + 1] 1
q
Tn,n−j−1. (8.17)

Thus,

ξn,jI0,j =
n+t−1∑
k=j

ck(q)B
k−j
j . (8.18)

Once (8.18) is derived, we are now able to compute the coefficients ξn,i in terms of βn, γn and
the polynomials φ and ψ, by using (8.2) (8.15) and (8.18). To be more precise, we assume that
the linear functional L is of class at most one, this implies that

φ(x) =
3∑
j=0

φj x
j , ψ(x) =

2∑
j=0

ψj x
j ,

with
(|φ0|+ |φ1|+ |φ2|+ φ3)(|ψ1|+ |ψ2|) 6= 0.

We use the method described above to compute the coefficients ξn,j , n− 1 ≤ j ≤ n+ 2 and get

ξn,n+2 = [n] 1
q
φ3,

ξn, n+1 = q1−n {[[n]n(βn + βn+1)− Tn,1]φ3 + [n]qφ2},

ξn,n = q1−n {[n]qφ1 + [[n]qβn − Tn,1]φ2 + [[n]q(γn + γn+1 + β2
n)

+T 2
n,1 − βn Tn,1 − (1 + q)Tn,2]φ3},

ξn,n−1 = q1−n {[n]qφ0 − Tn,1φ1 + [T 2
n,1 − (1 + q)Tn,2 + [n]qγn]φ2

+[−T 3
n,1 + (1 + q)Tn,2 − γn Tn,1 − [3]q Tn,3 + [n]q γn(βn−1 + βn)]φ3}.

The search for ξn,n−2 requires the constant Tn,4 which is huge and needs heavy computation.
To get rid of this difficulty we, again, use (3.12), (8.1) and (8.16) to get

ξn,jI0,j = 〈φL, Pj D 1
q
Pn〉
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= 〈φL,D 1
q
[Aq,ωPjPn]−D 1

q
Aq,ωPj Pn〉

= −q〈Dq(φL),GqPj Pn〉 − q〈φL,DqPj Pn〉
= −q〈L, ψGqPj Pn〉 − q〈φL,DqPj Pn〉
= −q〈L, (ψGqPj + φDqPj)Pn〉,

hence
ξn,jI0,j = −q〈L, (ψAq,ωPj + φDqPj)Pn〉. (8.19)

It follows immediately that

ξn,n−2I0,n−2 = −q〈L, (qn−2ψ2 + [n− 2]qφ3)xnPn〉.

We use (3.63) and (8.7) to simplify the expression of ξn,n−2 and get

ξn,n−2 = −qn−1(ψ2 + [n− 2] 1
q

φ3

q
)γnγn−1. (8.20)

In the same way, we compute another expression for ξn,n−1 which we denote by ξ+
n,n−1

ξ+
n,n−1I0,n−1 = −q〈L, (ψAq,ωPn−1 + φDqPn−1)Pn〉
= −q〈L, [(ψ0 + ψ1x+ ψ2x

2)(qn−1 xn−1 + qn−2 Tn−1,1 x
n−2)

+(φ0 + φ1x+ φ2x
2 + φ3x

3)([n− 1]q xn−2 + [n− 2]q Tn−1,1 x
n−3)]Pn〉

and get, after simplifications,

ξ+
n,n−1 = q[n− 1]q γn Tn,1φ3 − q([n− 2]qTn−1,1 + [n− 1]qβn)γnφ3

−q[n− 1]qγnφ2 + qnγnTn,1ψ2 − (qψ1 + qψ2βn + Tn−1,1ψ2)γn qn−1.

8.4 Final form of the Laguerre-Freud equations

We prove the following theorem which is the main result of this chapter.

Theorem 8.1 The coefficients βn and γn of the three-term recurrence relation

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x), n ≥ 1, P0(x) = 1, P1(x) = x− β0

satisfied by the Dq-semi-classical orthogonal polynomials of class at most one, {Pn}n∈N , can be
computed recursively from the two non-linear equations (ψ2 + [2n] 1

q

φ3

q )(γn + γn+1) = F1(q, ;β0, . . . , βn; γ1, . . . , γn),

(ψ2 + [2n+ 1] 1
q

φ3

q )βn+1γn+1 = F2(q, ;β0, . . . , βn; γ1, . . . , γn+1).
(8.21)

φj and ψj are the coefficients of the polynomials φ and ψ appearing in the Pearson equation,
Dq(φL) = ψL, satisfied by the regular linear functional L. F1 is a polynomial of 2n+1 variables
and of degree 2 and F2 a polynomial of 2n+2 variables and of degree 3, with the initial conditions

β0 =
〈L, x〉
〈L, 1〉

, ψ2 γ1 = −ψ(β0). (8.22)
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Proof: In the first step we use the structure relation (3.84) to transform Equations (8.4)
and (8.5) as

ξn,n−2〈L,G 1
q
Pn Pn−2〉+ ξ+

n,n−1〈L,G 1
q
Pn Pn−1〉+ (1 + q−n) ξn,n I0,n

= −q〈L, ψ Pn Pn〉, (8.23)
ξn+1,n−1〈L,G 1

q
Pn Pn−1〉+ ξn+1,n q

−n I0,n + ξn,n+1 I0,n+1

= −q〈L, ψ Pn Pn+1〉. (8.24)

In the second step we compute 〈L,G 1
q
Pn Pn−1〉 and 〈L,G 1

q
Pn Pn−2〉 using (8.8) and get

〈L,G 1
q
Pn Pn−1〉 = 〈L, (q−n xn + q1−n Tn,1 x

n−1)Pn−1〉

= q−nB1
n−1 + q1−n Tn,1 I0,n−1

= q−n(q − 1)Tn,1 I0,n−1,

〈L,G 1
q
Pn Pn−2〉 = 〈L, (q−nxn + q1−n Tn,1 x

n−1 + q2−n Tn,2 x
n−2)Pn−2〉

= q−nB2
n−2 + q1−n Tn,1B

1
n−2 + q2−n Tn,2I0,n−2.

In the third step we use (8.6) and the previous equations to simplify (8.23) and (8.24) and
obtain:

−q2n+2 (ψ2 + [2n] 1
q

φ3

q
) (γn + γn+1) = [q2 [2n]q β2

n + q(q + q2n)(T 2
n,1 − βnTn,1)

−(q + 1)(q2 + q2n)Tn,2]φ3 + [q2[2n]qβn − q(q + q2n)Tn,1]φ2 + q2[2n]qφ1 + q2n+2β2
n (8.25)

+q2n (q − 1)ψ2 [qT 2
n,1 − q βn Tn,1 − (1 + q)Tn,2] + q2n+1[qβn − (q − 1)Tn,1]ψ1 + q2n+2ψ0,

−q2n+1 (ψ2 + [2n+ 1] 1
q

φ3

q
) γn+1 βn+1 = {β3

n + (q − 1)β2
n Tn,1

+[(q + 2)γn − (q − 1)T 2
n,1 + (q2 − 1)Tn,2 + (1 + [2n+ 1]q)γn+1]βn (8.26)

+[(q2 − 1)Tn,1 + [3]q βn−1]γn − T 3
n,1 + [(q + 2)Tn,2 − (1 + q2n+1)γn+1]Tn,1 − [3]q Tn,3}φ3

+{β2
n + (q − 1)βn Tn,1 + (q + 1)γn + T 2

n,1 − (q + 1)Tn,2 + [2n+ 1]qγn+1}φ2 + (βn − Tn,1)φ1

+[n+ 1]qφ0 + q2n+1βnγn+1ψ2 − q2n(q − 1)γn+1Tn,1ψ2 + q2n+1γn+1ψ1.

The first initial condition is obtained by applying the linear functional L to P1 = x − β0 while
the second comes from the application of both sides of (8.1) to the polynomial P0P0.

In fact, it follows from (8.1) that

〈ψL, P0P0〉 = 〈Dq(φL), P0P0〉 = −1
q
〈φL,D 1

q
P0P0〉 = 0.

The previous equation used together with (8.6) gives ψ(β0) + γ1ψ2 = 0.
We complete the proof of the theorem by saying that:

1. For any non-zero integer n, the coefficients ψ2 + [j] 1
q

φ3

q , j = 2n, 2n+ 1 of the right-hand
sides of the two previous equations, thanks to the fact that the Dq-semi-classical linear
functional L is regular (see (3.89)), are non-zero (except if φ3 = ψ2 = 0).
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2. The right-hand sides of the previous equations contain only constants, sums and products
of coefficients βj and γj . Polynomials F1 and F2 are obtained by replacing Tn,j , j = 1, 2, 3
in equations (8.25) and (8.26) by (8.13).

2

Notice that we can also obtain the second Laguerre-Freud Equation (8.26) by identification of
the two expressions ξn,n−1 and ξ+

n,n−1.
Equation (8.25) gives, linearly, γn+1 in terms of βj , j = 0, n and γj , j = 1, n; when (8.26)

gives βn+1 in terms of βj , j = 0, n, γj , j = 1, n and the previous γn+1 via the non-linear term
(ψ2 + [2n+ 1] 1

q

φ3

q )βn+1γn+1.

The fact that βn+1 is not obtained linearly (except for the classical case) in terms of the
previous βj and γj exemplify the fundamental barrier between semi-classical of class s > 0 and
classical situation in which both φ3 and ψ2 are zero. For Dq-semi-classical of class s > 0, both
relations (8.25) and (8.26) must be used simultaneously, starting with the initial values given by
(8.22). In the classical situation Equations (8.25) and (8.26) can be decoupled.

8.4.1 Laguerre-Freud equations for Dq-classical orthogonal polynomials

When we take φ3 = ψ2 = 0 in Equations (8.25) and (8.26), we obtain the Laguerre-Freud
equations for Dq-classical orthogonal polynomials:

q2n(ψ1 + [2n] 1
q

φ2

q
)βn + [(1 + q2n−1)φ2 + (q − 1)q2n−1ψ1]

n−1∑
j=0

βj

+ [2n]qφ1 + q2n−1ψ0 = 0, (8.27)

q2n+1(ψ1 + [2n+ 1] 1
q

φ2

q
) γn+1 + (1 + q)φ2

n∑
j=0

γj (8.28)

= −(
n−1∑
j=0

βj)2 φ2 + [(q − 1)φ2βn − φ1]
n−1∑
j=0

βj

+(q − 1)φ2

n−1∑
0≤i<j≤n−1

βiβj − φ2 β
2
n − φ1 βn − [n+ 1]q φ0.

Remark 8.1 Using Maple V.4 and the simplification procedures for q-hypergeometric terms
developped in [Böing et al., 1998], we have solved (8.27) with the initial condition β0 = −ψ0

ψ1
to

get βn.
Taking into account the βn obtained above, we have solved (8.28) with the initial condition

γ1 = − φ(β0)
φ2+qψ1

to get γn. Obviously the coefficients βn and γn obtained coincide with the ones
given in Lemma 7.1.

8.5 Applications to D, Dω and Dq,ω-semi-classical orthogonal
polynomials of class one

8.5.1 Laguerre-Freud equations for D-semi-classical orthogonal polynomials
of class one

We obtain these equations by computing the limits of (8.25) and (8.26) as q → 1 to obtain
[Belmehdi et al., 1994], [Foupouagnigni et al., 1998a]
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ψ(βn) + 4φ3

n−1∑
i=1

γi + 2
n−1∑
i=0

θβnφ(βi) = −(ψ2 + 2nφ3)(γn + γn+1),

n∑
i=0

φ(βi) + 3φ3

n∑
i=1

γi(βi−1 + βi) +

[
(2n+ 1)γn+1 + 2

n∑
i=1

γi

]
φ2 + 2γn+1(nβn +

n∑
i=0

βi)φ3

+ [ψ1 + ψ2βn]γn+1 = −[ψ2 + (2n+ 1)φ3]βn+1γn+1, (8.29)

where

θaφ(x) =
φ(x)− φ(a)

x− a
,

with the initial conditions

β0 =
〈L, x〉
〈L, 1〉

, ψ2 γ1 = −ψ(β0).

8.5.2 Laguerre-Freud equations for Dω-semi-classical orthogonal polynomials
of class one

It follows from Theorem 4.2 that the Laguerre-Freud equations for Dω semi-classical linear
functional of class one is obtained just by replacing βj (resp. φ and ψ ) in (8.25) and (8.26) by
βj − ω

1−q (T ω
1−q

φ and T ω
1−q

ψ respectively). For this reason, we need to control the behaviour of
Tn,1, Tn,2 and Tn,3 when βj is replaced by βj − ω

1−q .

Lemma 8.3 If the coefficients T̄n,j , j = 1, 2, 3 represent the coefficients Tn,j , j = 1, 2, 3 in
which βj is replaced by βj − ω

1−q , then, they are related by

T̄n,1 = Tn,1 +
nω

1− q
,

T̄n,2 = Tn,2 +
(n− 1)ω

1− q
Tn,1 +

ω2

(1− q)2

(
n

2

)
, (8.30)

T̄n,3 = Tn,3 +
(n− 2)ω

1− q
Tn,2 +

ω2

(1− q)2

(
n− 1

2

)
Tn,1 +

ω3

(1− q)3

(
n

3

)
.

Proof:

The proof follows immediately from (8.13). 2

We replace φ and ψ in (8.25) and (8.26) by T ω
1−q

φ and T ω
1−q

ψ, respectively (and implicitly βj
by βj − ω

1−q ), taking into account the previous lemma and obtain the Laguerre-Freud equations
for the recurrence coefficients of the Dq,ω-semi-classical [Azatassou et al, 1998] orthogonal poly-
nomials {Pn}n∈N . These polynomials are orthogonal with respect to the linear functional L, of
class at most one, satisfying Dq,ω(φL) = ψL. Hence we take the limit of these two equations as
q → 1 and obtain:

Theorem 8.2 (Foupouagnigni et al., 1998a) The coefficients βj and γj of the three-term
recurrence relation,

Pn+1 = (x− βn)Pn − γn Pn−1, n ≥ 0, P−1 = 0, P0 = 1,
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satisfied by the monic polynomials {Pn}n∈N , orthogonal with respect to the Dω-semi-classical
linear functional L, of class at most one, satisfying Dω(φL) = ψL, are given by

ψ(βn) + 4φ3

n−1∑
i=1

γi + 2
n−1∑
i=0

θβnφ(βi) + ω
n−1∑
i=0

θβnψ(βi) + 2

(
n

3

)
ω2φ3

+

(
n

2

)
ω2ψ2 = −(ψ2 + 2nφ3)(γn + γn+1), (8.31)

where

θaφ(x) =
φ(x)− φ(a)

x− a
and

n∑
i=0

φ(βi) +

[
(2n+ 1)γn+1 + 2

n∑
i=1

γi

]
φ2 +

+ 3φ3

n∑
i=1

γi(βi−1 + βi) + 2γn+1(nβn +
n∑
i=0

βi)φ3

+ nωψ2γn+1 −
(
n+ 1

2

)
ωφ1 +

[
−nω

n∑
i=0

βi +

(
n+ 1

3

)
ω2

]
φ2

− ω

 ∑
0≤i<j≤n

βiβj + n
n∑
i=0

βiβi + (2n− 1)
n∑
i=1

γi + nγn+1

φ3

+

[(
n

2

)
ω2

n∑
i=0

βi −
(
n+ 1

4

)
ω3

]
φ3 + [ψ1 + ψ2βn]γn+1

= −[ψ2 + (2n+ 1)φ3]βn+1γn+1, (8.32)

with the initial conditions

β0 =
〈L, x〉
〈L, 1〉

, ψ2 γ1 = −ψ(β0).

8.5.3 Laguerre-Freud equations for Dω-classical orthogonal polynomials

The Laguerre-Freud equations obtained in (8.31) and (8.32) contain, obviously, the classical
cases when ψ2 = φ3 = 0. We use the notation of [Salto, 1995] so that we can compare more
easily with the results therein.

φ(x) = ax2 + bx+ c and ψ(x) = px+ q.

Equations (8.31) and (8.32) reduce to:

ψ(βn) + 2a
n−1∑
i=0

βi + 2nb+ 2naβn = −nωp, (8.33)

n∑
i=0

φ(βi) +

[
(2n+ 1)γn+1 + 2

n∑
i=1

γi

]
a−

(
n+ 1

2

)
ωb

+

[
−nω

n∑
i=0

βi +

(
n+ 1

3

)
ω2

]
a = −pγn+1. (8.34)
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Rewriting the second equation with n→ n− 1 and subtracting we get:

φ(βn) + [p+ (2n+ 1)a]γn+1 − [p+ (2n− 3)a]γn

−nωb− anωβn − aω
n−1∑
i=0

βi + aω2

(
n

2

)
= 0. (8.35)

Using symbolic computation with Maple V.4 we have checked positively that for the classical
discrete orthogonal polynomials, the coefficients βn and γn, given explicitly in terms of polyno-
mials φ and ψ (see Lemma 7.2), are solutions of Equations (8.33) and (8.34) (with ω = 1).

Equations (8.33) and (8.35) are exactly the ones derived in the thesis [Salto, 1995] taking
into account the Dω derivative of the linear functional given by definition 2.20 and the one used
in [Salto, 1995]. Let us remark, however, that in [Salto, 1995] the γn equation is obtained using
the so-called Dω representation, expanding a classical orthogonal polynomial Pn as a sum of
(see (2.62)) (maximum three) DωPi(i = n+ 1, n, n− 1). This technique cannot be extended to
the class 1, because of the non-existence of such a representation for semi-classical orthogonal
polynomials of class s > 0.

8.6 Applications to generalised Charlier and generalised Meixner
polynomials of class one

8.6.1 Laguerre-Freud equations for the generalised Meixner polynomial of
class one

These polynomials with ` parameters were introduced in [Ronveaux, 1986] in order to show the
quasi-orthogonality character of the Dω derivative (with ω = 1). The weight ρ is given by:

ρ(i) =
µi

(i!)`
∏̀
j=1

Γ(i+ αj), (0 < µ < 1, αj > 0), i = 0, 1, 2, .... (8.36)

Generalised Meixner polynomials are denoted by m(~α,µ)
n , where ~α = (α1, . . . , α`), which reduce,

of course, to the well-known classical Meixner polynomials when ~α is the scalar α (` = 1).
If ` = 2, α1 6= 1 and α2 6= 1, the weight ρ obeys

∆(φρ) = ψρ,

with
φ(x) = x2 and ψ(x) = (µ− 1)x2 + (α1 + α2)µx+ µα1α2. (8.37)

The family is, therefore, discrete semi-classical of class one.
In fact, we have

φ(x) = xφ0(x), ψ(x)− φ0(x) = (x+ 1)ψ0,1(x) + r0,1,

with

φ0(x) = x, ψ0,1(x) = (µ− 1)x+ µ (α1 + α2 − 1), r0,1 = µ (α1 − 1)(α2 − 1). (8.38)

Since the only root of φ is zero, it follows from Proposition 2.5, and the fact that r0,1 6= 0 (for
(α1 − 1)(α2 − 1) 6= 0), that for ` = 2 and for (α1 − 1)(α2 − 1) 6= 0, the generalised Meixner
polynomial is of class one.
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Of course, when α1 = 1 (or α2 = 1), the class reduce to 0 and we obtain the classical Meixner
polynomials m(α2,µ)

n [Nikiforov et al., 1991]. In particular for α1 = α2 = 1, the generalised
Meixner polynomials of class 1 reduces to the particular case of the Meixner polynomials, called
discrete Laguerre polynomials and denoted [Chihara, 1978]

lan(x) = m(1,µ)
n (x). (8.39)

We have checked, positively, the Laguerre-Freud equations when ω → 1 with the known βn, γn
of the classical Meixner polynomials and the discrete Laguerre polynomials.

It should be noted that for ` = 2 and for arbitrary positive α1 and α2, the weight given
by Equation (8.36), is not a polynomial modification of the Meixner weight, except when α1 or
α2 is an integer.

Replacing in Equations (8.31) and (8.32) ω by one and polynomials φ and ψ given by
Equation (8.38), we obtain the Laguerre-Freud equations for the generalised Meixner polynomial
of class s = 1 :

(1− µ)(γn + γn+1) = (µ− 1)(

(
n

2

)
+ β2

n) + ((1 + µ)n

+µ(α1 + α2))βn + (1 + µ)
n−1∑
i=0

βi

+µ(α1 + α2)n+ µα1α2, (8.40)

(1− µ)(βn + βn+1)γn+1 = −n
n∑
i=0

βi + ((1 + µ)n+ µ(α1 + α2) + 1) γn+1

+

(
n+ 1

3

)
+

n∑
i=0

β2
i + 2

n∑
i=1

γi, (8.41)

with initial values

β0 =
M1

M0
=
µα1 α2 2F1(1 + α1, 1 + α2; 2;µ)

2F1(α1, α2; 1;µ)
, γ1 =

ψ(β0)
1− µ

. (8.42)

8.6.2 Laguerre-Freud equations for generalised Charlier polynomial of class
one

The generalised Charlier polynomials introduced in [Hounkonnou et al., 1998] are discrete semi-
classical orthogonal polynomials associated with the weight

ρ(x) =
µx

(x!)N
, N ≥ 1, (µ > 0), x = 0, 1, 2, . . . . (8.43)

The generalised Charlier weight ρ is semi-classical and satisfies the Pearson equation

∆(φρ) = ψρ,

with
φ(x) = xN and ψ(x) = µ− xN . (8.44)

If N = 2, the orthogonal polynomial family associated to the weight ρ(x) = µx

(x!)2 is discrete
semi-classical of class one (and called generalised Charlier polynomials of class one).
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Replacing in Equations (8.31) and (8.32) ω by one and the polynomials φ and ψ given by
Equation (8.44) (but with N = 2), we obtain the Laguerre-Freud equations for the generalised
Charlier polynomials of class one:

γn + γn+1 = −
(
n

2

)
− β2

n + nβn +
n−1∑
i=0

βi + µ, (8.45)

(βn + βn+1)γn+1 = −n
n∑
i=0

βi + nγn+1 +

(
n+ 1

3

)
+

n∑
i=0

β2
i + 2

n∑
i=1

γi + γn+1, (8.46)

with initial values

β0 =
M1

M0
=
√
µI1(2

√
µ)

I0(2
√
µ)

=
µ 0F1(2;µ)
0F1(1;µ)

, (8.47)

γ1 = µ− β2
0 ,

where I0(x) and I1(x) are the modified Bessel functions of order 0 and 1, respectively.

Remark 8.2 The polynomials Pn have been computed for the generalised Meixner and Charlier
polynomials of class one, up to n = 10 from βn, γn generated by the Laguerre-Freud equations
given above and also from the Hankel representation of polynomials (see (2.6)) which requires
the computation of the moments Mj up to j = 19. These moments were computed from the
moment recurrence relation for the generalised Meixner and Charlier polynomials of class one,
respectively:

(1− µ)Mk+2 = α1α2µMk + (α1 + α2)µMk+1

−
k∑
j=1

(−1)j
(
k

j

)
Mk+2−j ,

Mk+2 = µMk −
k∑
j=1

(−1)j
(
k

j

)
Mk+2−j .

The polynomial coefficients in both approaches are written in terms of M0 and M1 using the
initial values of the Laguerre-Freud recurrence given by Equations (8.42) and (8.47). The poly-
nomials obtained in these two ways coincide, of course, and the Laguerre-Freud approach is
obviously more efficient.

8.6.3 Asymptotic behaviour

In the first step we compute numerically, up to n = 100000, the coefficients βn and γn Using
(8.40) and (8.41), for several values of the coefficients α1, α2 and µ and the result of the
plot for all cases indicates that the sequences γn

n2 and βn
n are convergent. Assuming that they

converge, their limits, a(µ) and b(µ)

a(µ) =
µ

(1− µ)2
, b(µ) =

1 + µ

1− µ
, (8.48)

are obtained using Maple V.4 and Equations (8.40), (8.41) with the approximations:
γn ∼= a(µ)n2 and βn ∼= b(µ)n, for n large.

In the same way, but with βn and γn replaced by βn − b(µ)n and γn − a(µ)n2, respectively,
using numerical and symbolic computation with Maple V.4 and analysis of Equations (8.40) and
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(8.41) [Foupouagnigni et al., 1998f], we observe the asymptotic behaviour for the coefficients βn
and γn.

The same process, applied to (8.45) and (8.46), allows to observe the asymptotic behaviour
for the generalised Charlier polynomials of class one. We, therefore, give the following conjec-
ture about the asymptotic behaviour for the generalised Charlier and Meixner polynomials of
class one. These results, obtained by the Laguerre-Freud equations with Maple V.4, are under
investigation [Foupouagnigni et al., 1998f] in order to give a suitable proof.

Conjecture 8.1 The coefficients βn and γn of the three-term recurrence relation satisfied by
the monic generalised Meixner polynomials of class one obey:

lim
n→∞

(
βn −

1 + µ

1− µ
n− µ (α1 + α2 − 1)

1− µ

)
= 0, lim

n→∞

(
γn −

µ(n+ α1 − 1)(n+ α2 − 1)
(1− µ)2

)
= 0,

and those of the three-term recurrence relation satisfied by the monic generalised Charlier poly-
nomials of class one obey:

lim
n→∞

(βn − n) = 0, lim
n→∞

(γn − µ) = 0.

It should be mentioned that the coefficients βn and γn of the generalised Meixner polynomials of
class 1, are known when α1 or α2 is an integer [Ronveaux et al., 1998b]. They obviously confirm
the asymptotic behaviour of the coefficients βn and γn stated in the previous conjecture.



Chapter 9

Conclusion and perspectives

We first list our main contributions to the theory of orthogonal polynomials, then give some
open problems which can be investigated as the continuation of this work.

9.1 Conclusion

Chapter 1 introduces the work while Chapter 2 recalls some known materials on orthogonal
polynomials.

The main results of Chapter 3 are theorems 3.1 and 3.2. Theorem 3.1 gives a general carac-
terisation of classical orthogonal polynomials. This result gives a more general caracterisation
of classical orthogonal polynomials, and is valid for classical orthogonal polynomials of a con-
tinuous variable, classical orthogonal polynomials of a discrete variable and also for q-classical
polynomials. It constitutes a unified theory for classical orthogonal polynomials.

Theorem 3.2 caracterises the semi-classical orthogonal polynomials. It gives some links be-
tween the semi-classical aspect of the orthogonal polynomials, the quasi-orthogonal aspect of
the derivative of these orthogonal polynomials and the structure relations satisfied by these
polynomials.

In Chapter 4, we study the properties of the formal Stieltjes function. We mention two
results. The first is the theorem 4.1, stating that the affine Dq,ω-Laguerre-Hahn orthogonal
polynomials and the Dq,ω-semi-classical orthogonal polynomials are the same. This result is
used to obtain the coefficients of the affine Dq,ω-Riccati difference equation and the coefficients
of the fourth-order difference equation satisfied by the associated Laguerre-Hahn orthogonal
polynomials.

The second result is theorem 4.2. It proves that the Dq,ω-Laguerre-Hahn orthogonal poly-
nomials can be deduced, using a suitable change of variable, from the Dq-Laguerre-Hahn ortho-
gonal polynomials. This result is very interesting and could have lot of applications. We have
used it to deduce the coefficients of the fourth-order difference equation satisfied by the rth
associated ∆-Laguerre-Hahn orthogonal polynomials from the coefficients of the fourth-order
difference equation satisfied by the rth associated Dq-Laguerre-Hahn orthogonal polynomials.
The Laguerre-Freud equations for the recurrence coefficients of the Dω-semi-classical orthogonal
polynomials of class 1 have also been obtained using theorem 4.2.

In Chapter 5 we use a result by Suslov [Suslov, 1989] to obtain the factored form of the fourth-
order difference equation satisfied by the first associated Dq-classical orthogonal polynomials.

113
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We have again used theorem 4.2 to deduce the factored form of the fourth-order difference
equation satisfied by the first associated ∆-classical orthogonal polynomials.

We mention that equation (5.12) can be used to obtain some families of classical orthogonal
polynomials for which the first associated is still classical. These families:

1- For classical continuous orthogonal polynomials we note the Grosjean polynomials [Ron-
veaux et al., 1996] of the first kind Gαn for which the first associated is a Grosjean polynomial
of the second kind gαn [Grosjean, 1985, 1986], i.e.,

(Gαn)(1) = g−αn , −1 < α < 0,

where Gαn(x) = P
(α,−1−α)
n (x), −1 < α < 0 and gαn(x) = P

(α,1−α)
n (x), −1 < α < 2.

P
(α,β)
n represents the monic Jacobi polynomials with the parameters α and β.

2- For the classical orthogonal polynomials of a discrete variable, we note that the first
associated of the monic Hahn polynomial Hn(x, α, β,N) with α + β + 1 = 0 is classical and is
related to the Hahn family by [Area et al., 1996]

Hn(x, α, β,N)(1) = Hn(x− α− 1,−α, 1 + α,N − 1).

3- For the q-classical polynomials, we have already pointed out the situations for which the
first associated little q-Jacobi polynomials pn(x; a, b|q) and big q-Jacobi polynomials Pn(x; a, b, c; q)
are still classical.

The monic little q-Jacobi (resp. monic big q-Jacobi) polynomials and their respective first
associated are related by

p(1)
n (x; a,

1
q a
|q) = an qn pn(

x

a q
;

1
a
, a q |q),

P (1)
n (x; a,

1
q a,

, c; q) = an Pn(
x

a
;

1
a
, a q, c q; q).

In Chapter 6 we have proved (see theorem 6.1 and proposition 6.1) that the associated of
any integer order of the Laguerre-Hahn linear functional is a Laguerre-Hahn linear functional.
We also gave upper bounds for the degrees of coefficients Er, Fr, Gr and Hr of the Dq-Riccati
difference equation satisfied by the Stieltjes function Sr of the rth associated L(r) of L (see
proposition 6.2).

Theorem 6.3 gives fondamental relations which lead to the fourth-order difference equation
for the rth associated Dq-Laguerre-Hahn orthogonal polynomials

4∑
j=0

Ij(r, n, q;x)Gjq P (r)
n = 0,

given in theorem 6.4. Theorem 6.3 and 6.4 are valid forD-Laguerre-Hahn orthogonal polynomials
(by limit process) and for ∆-Laguerre-Hahn orthogonal polynomials (via theorem 4.2). We have
also given explicitly coefficients Er, Fr, Gr, Hr and Ij(r, n, q;x) for classical situations.

Chapter 7 contains known materials needed for this work.
The main result of Chapter 8 is theorem 8.1 which shows that it is possible to compute

recursively via two non-linear equations, coefficients βn and γn of the three-term recurrence
relation satisfied by the Dq-semi-classical orthogonal polynomials of class one. This new result
(theorem 8.1 ) is used, together with theorem 4.2 and lemma 8.3, to obtain Theorem 8.2 giving
the Laguerre-Freud equations for the recurrence coefficients of the Dω-semi-classical orthogonal
polynomials of class one.



9.2. Perspectives 115

Using theorem 8.2, we have given a conjecture about the asymptotic behaviour of the coeffi-
cients βn and γn of the three-term recurrence relation satisfied by the generalised Charlier and
generalised Meixner polynomials of class 1.

9.2 Perspectives

As the continuation of this work, many investigations can be done:

1. Theorem 4.2 proves that the ∆-Laguerre-Hahn orthogonal polynomials can be obtained
from the Dq-Laguerre-Hahn orthogonal polynomials. In principle, this result means that
any result obtained for the Dq-Laguerre-Hahn orthogonal polynomials can be extended to
the ∆-Laguerre-Hahn orthogonal polynomials. It will be interesting to see how these results
are extended and see their consequences in the applications of orthogonal polynomials.

2. It might be possible to simplify and writte the fourth-order difference equation for the Dq-
classical orthogonal polynomials in the compact form as was done forD-classical orthogonal
polynomials (see (6.69)) [Lewanowicz, 1995].

3. One can use the fourth-order difference equation satisfied by the rth associated Dq-classical
orthogonal polynomials P (r)

n

M(r, n, q;x)P (r)
n =

4∑
j=0

Ij(r, n, q;x)Gjq P (r)
n = 0,

to expand the rth associated P
(r)
n in the basis {Pn}n∈N

P (r)
n (x) =

n∑
j=0

C(n, j)Pj ,

as was done for D-classical orthogonal polynomials and ∆-classical orthogonal polynomials
(see [Lewanowicz, 1996,1997], [Area et al. ,1998a, 1998b], [Godoy et al., 1996], [Askey
1965,1975],[Askey et al, 1984] . . . ).

4. The fourth-order difference equation can be established for the general Laguerre-Hahn
orthogonal polynomials. We mention for example that Bangerezako [Bangerezako, 1998],
had derived the fourth-order difference equation for the Laguerre-Hahn polynomials or-
thogonal on special non-uniform lattices (snul).

5. The Laguerre-Freud equations for class s > 1 can be obtained by mimicking the approach
developed in this thesis. This generalisation is already under investigation [Azatassou et
al., 1998].

6. The conjecture obtained using the Laguerre-Freud equations need to be proved and exten-
ded to the semi-classical orthogonal polynomials of class s > 1. For this purpose, It may
be hepful to have a look at the papers giving the proof of Freud’s conjecture (see the
Introduction).
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Appendices

10.1 Appendix I

10.1.1 About D-classical orthogonal polynomials

We give the polynomials φ and ψ appearing in the Pearson equation satisfied by the weight ρ
(D(φρ) = ψρ) defining the classical orthogonal polynomials of a continuous variable [Chihara,
1978], [Nikiforov et al., 1983, 1991], [Szegö, 1939].

1. Jacobi P (α,β)
n (x), α > −1, β > −1 :

φ(x) = 1− x2, ψ(x) = −(α+ β + 2)x+ β − α

2. Laguerre Lαn(x), α > −1 :

φ(x) = x, ψ(x) = −x+ α+ 1

3. Hermite Hn(x)
φ(x) = 1, ψ(x) = −2x

4. Bessel Ba(x)
φ(x) = x2, ψ(x) = −2 (a x+ 1)

10.1.2 About ∆-classical orthogonal polynomials

We give the polynomials φ and ψ appearing in the Pearson equation satisfied by the weight ρ
(∆(φρ) = ψρ) defining the classical orthogonal polynomials of a discrete variable [Chihara,
1978], [Nikiforov et al., 1983, 1991], [Szegö, 1939].

1. Hahn h
(α,β)
n (x)

φ(x) = x (N + α− x), ψ(x) = −(α+ β + 2)x+ (β + 1)(N − 1)

2. Meixner m(ν,µ)
n (x), ν > 0, 0 < µ < 1 :

φ(x) = x, ψ(x) = µν + (µ− 1)x

116
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3. Krawtchouk k(p)
n (x), 0 < p < 1 :

φ(x) = x, ψ(x) =
(N p− x)

1− p

4. Charlier c(µ)
n (x), µ > 0 :

φ(x) = x, ψ(x) = µ− x

10.1.3 About q polynomials

We give the polynomials φ and ψ appearing in the Pearson equation satisfied by the weight ρ
(Dq(φρ) = ψρ) defining the q-classical polynomials appearing in the q-Hahn tableau. [Koekoek
et al, 1996], [Koornwinder, 1994]. Notice that these polynomials φ and ψ were already given
case by case in [Medem, 1996] and [Ivan et al, 1998].

1. Big q-Jacobi Pn(x; a, b, c; q)

φ(x) = (aq − x)(cq − x), ψ(x) =
c q − x+ a q (1− (b+ c) q + b q x)

q − 1

2. Little q-Jacobi pn(x; a, b|q)

φ(x) = x (x− 1), ψ(x) =
1− x+ a q (b q x− 1)

q − 1

3. Big q-Laguerre Pn(x; a, b; q)

φ(x) = (x− aq)(bq − x), ψ(x) =
−(a+ b)q + abq2 + x

q − 1

4. q-Meixner Mn(x, b, c; q)

φ(x) = c(x− bq), ψ(x) =
c(bq − 1) + q(x− 1)

q − 1

5. Alternative q-Charlier Kn(x; a; q)

φ(x) = x (1− x), ψ(x) =
−1 + x (1 + a q)

q − 1

6. Little q-Laguerre/Wall pn(x; a|q)

φ(x) = x (1− x), ψ(x) =
−1 + a q + x

q − 1

7. Moak L(α)
n (x; q)

φ(x) = x, ψ(x) =
1 + q1+α(x(q − 1)− 1)

1− q
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8. Al-salam-Carlitz I U (a)
n (x; q)

φ(x) = (1− x)(x− a), ψ(x) =
x− a− 1
q − 1

9. Al-Salam-Carlitz II V (a)
n (x; q)

φ(x) = a, ψ(x) =
x− a− 1
q − 1

10. Stieltjes-Wigert Sn(x; q)

φ(x) = x, ψ(x) =
qx− 1
q − 1

11. Discrete q-Hermite I hn(x; q)

φ(x) = 1− x2, ψ(x) =
x

q − 1

12. Discrete q-Hermite II h̃n(x; q)

φ(x) = 1, ψ(x) =
x

1− q

10.2 Appendix II

10.2.1 Results on general associated classical discrete polynomials

We use Theorem 4.2 and 6.3 to obtain operators Dr,n, Nr+1,n−1, D̄r+1,n−1 and N̄r,n for the
classical orthogonal polynomials of a discrete variable (see Foupouagnigni et al. 1998b]. These
basic operators (see (6.38) and (6.39)) and the coefficients of the fourth order difference equation
for associated classical discrete orthogonal polynomials (see (6.7)) are written down in each case
(for notations see [Nikiforov et al.,1991]).

Charlier case Cµn(x), µ > 0

φ(x) = x, ψ(x) = −x+ µ,

Dr,n = µ (2 + x) T 2 − (2 + x− r) (x− n− r + 1 + µ) T
−(−3x− 2 + 3 r − x2 + 2x r − r2 + r µ) Id,

Nr+1,n−1 = −r µ (x− n− r + 1 + µ) T + r µ (µ+ 2 + x− r) Id,

D̄r+1,n−1 = µ (2 + x) T 2 − µ (x− n− r + 1 + µ) T + µ (−r + µ) Id,
N̄r,n = −(−x+ n+ r − 1− µ) T − (µ+ x+ 1− r) Id,
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I0(r, n, x) = µ (1 + x) (−2 + n+ 2R),
I1(r, n, x) = (2xµ+ 2R+ 4µ− 2R3 + nR− 3nR2 − n2R),
I2(r, n, x) = (2xµ+ 2R+ 4µ− 5µn− 2xµn− 4µxR+ 4R3 − 10µR− 6R2,

−4nR+ 6nR2 + 4n2R− n2 + n3),
I3(r, n, x) = +(−2xµ− 4R− 6µ− 2n− 2R3 + 6R2 + 7nR− 3nR2 − n2R+ 2n2),
I4(r, n, x) = µ (4 + x) (n+ 2R),

where R is given by R = r − x− µ− 2.

Meixner case M
(ν,µ)
n (x), ν > 0, 0 < µ < 1

φ(x) = x; ψ(x) = (µ− 1)x+ µ ν,

Dr,n = µ (x+ 2) (x+ 1 + ν) (µ− 1)T 2

+(−2− x+ r) (1 + x− r − n+ µ ν + xµ+ r µ+ nµ+ µ) (µ− 1)T
−(−r µ+ r µ ν + r2 µ− 3x− r2 + 2x r − x2 − 2 + 3 r) (µ− 1)Id,

Nr+1,n−1 = +r (ν + r − 1) (1 + x− r − n+ µ ν + xµ+ r µ+ nµ+ µ)µT
−r (ν + r − 1) (µ ν + xµ+ x− r + r µ+ 2)µId,

D̄r+1,n−1 = µ (x+ 2) (x+ 1 + ν)T 2

−(x+ 1 + ν + r) (1 + x− r − n+ µ ν + xµ+ r µ+ nµ+ µ)µT
+(r − r ν + xµ+ r µ+ r2 µ+ µ ν2 + x2 µ+ 2xµ ν + 2 r µ ν
+2xµ r + µ ν − r2)µId,

N̄r,n = −(µ− 1) (1 + x− r − n+ µ ν + xµ− r µ+ nµ+ µ)T
+(µ− 1) (xµ+ µ+ µ ν + r µ− r + x+ 1)Id,

I0(r, n, x) = −µ (−3µ+M + 2R− 3) (x+ ν) (x+ 1),

I1(r, n, x) = −6µ2 x− 2x2 µ2 − 4µ2 − 4µ2 ν − 2xµ2 ν − 3µR2 − 3µM R− 6xµ
−2x2 µ− 4µ− 4µ ν − 2xµ ν − 3M R− 3R2 +M2R+ 3R2M + 2R3,

I2(r, n, x) = −4R3 − 6µ2 − 4M2R− 9µ2 ν − 14µ2 x− 4µR− 2µM − 5M −M3

−6µ− 4x2 µ2 − 4x2 µ− 4xµ ν − 4xµ2 ν − 14xµ− 9µ ν + 2 + 16Rxµ+ 10Rµν
+12µR2 + 4Rx2 µ+ 4Rxµν + 8µM x+ 12µM R+ 12M R+ 2µ3 + 4M2 − 10µ2R

+5M µν − 6R2M + 2x2 µM − 5µ2M + 2xµ ν M − 10R+ 12R2 + 4µM2,
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I3(r, n, x) = 2R3 +M2R+ 6µ2 ν + 10µ2 x+ 24µR+ 12µM + 6M + 2x2 µ2

+2x2 µ+ 2xµµ+ 2xµ2 ν + 10xµ+ 6µ ν − 4− 9µR2 − 9µM R− 9N R− 4µ3

−2M2 + 12µ2R+ 3R2M + 6µ2M + 12R− 9R2 − 2µM2,

I4(r, n, x) = −(x+ 4) (x+ 3 + ν) (−µ+M + 2R− 1)µ,

where R = r − x− 2− µ(r + x+ ν), and M = (n+ 1)(1− µ).

Krawtchouk case k
(p)
n (x), p > 0, q > 0, p+ q = 1

φ(x) = x, ψ(x) =
1
q

((1− q)N − x),

Dr,n = (q − 1)(x+ 2) (−x− 1 +N) T 2

+(−2− x+ r) (−2 q − 2x q + q N −N + x+ r + 1 + n) T
+(−3x q − 2 q −N r q + r − r2 − x2 q + r N + 2x q r + 2 r q) Id,

Nr+1,n−1 = (q − 1)(N − r + 1) (−2 q − 2x q + q N −N + x+ r + 1 + n) r T
+(q − 1)(N − r + 1) (q N −N − 2 q − 2x q + r + x) r Id,

D̄r+1,n−1 = q (q − 1)(x+ 2) (−x− 1 +N) T 2

+(q − 1)(N − x− r − 1) (−2 q − 2x q + q N −N + x+ r + 1 + n) T
−(q − 1)(−2x q N + q N2 − q N + 2 r q + 2x q r + x2 q + x q −N r q + 2 r N
−r2 − r − 2x r −N2 +N + 2N x− x2 − x)Id,

N̄r,n = −(−x− r − q N + 2 q + 2x q − n− 1 +N)T − (−2x q − 2 q + q N + r + x−N + 1)Id,

I0(r, n, x) = q (1 + x) (x−N) (q − 1) (2R+ n),
I1(r, n, x) = (6x q + 9n q − 4N q − 12 q2

− 4x q3N + 2n2 − 2xN q + 2x2 q − 8 q3N + 12x q3 + 4x2 q3 + 8 q3

− 9n q2 + 4 q − 2n− 4R− 3n2 q + 12 q2N + 6x q2N − 18x q2 − 6x2 q2

− 12n q R− 3nR2 − 2R3 − 18Rq2 − 12 q R2 − n2R+ 7nR+ 18Rq + 6R2),
I2(r, n, x) = −(10x q − 8n q − 6N q − 42 q2

− 5nN q2 + 8x q2 n− 4x q3N + 2x2 n q2 + 5nN q + 2xN q n+ n2

− 2xN q + 2x2 q − 12 q3N + 20x q3 + 4x2 q3 − 2xN q2 n+ 28 q3 + 6n q2

+ 14 q − 2R− 8x q n− n3 − 4n2 q + 18 q2N + 6x q2N − 30x q2 − 2x2 n q

− 6x2 q2 − 12n q R− 4x2 q R− 6nR2 − 4R3 + 12Rq2 − 12 q R2 − 4n2R

+ 4nR− 12Rq + 6R2 − 10 q2N R− 16x q R+ 16x q2R− 4x q2N R

+ 4xN q R+ 10N qR+ 4x2 q2R),
I3(r, n, x) = −(10x q + n q − 6N q − 42 q2 − 4x q3N − 2xN q + 2x2 q − 12 q3N

+20x q3 + 4x2 q3 + 28 q3 − 3n q2 + 14 q − 2R− n2 q + 18 q2N + 6x q2N

−30x q2 − 6x2 q2 + 3nR2 + 2R3 − 6Rq2 + n2R− nR+ 6Rq),
I4(r, n, x) = q (4 + x) (x+ 3−N) (q − 1) (n− 2 + 4 q + 2R).
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where R is given by R = r + x− 2xq + qN − 5q −N + 2.

Hahn case h
(α,β)
n (x,N) α > −1, β > −1,

φ(x) = x(N + α− x), ψ(x) = (β + 1)(N − 1)− (α+ β + 2)x

The r th associated P
(r)
n of the Hahn polynomials, with n + r ≤ N , is annihilated by the

following difference operator, by a decomposition already used in the r associated Meixner case
(see [Lewanowicz, 1997]).

M (r)
n ≡

4∑
j=0

Ij(r, n, x) T j = D̄∗∗1,n D̄∗1,n + (r − 1)
4∑
j=0

Īj(r, n, x) T j , (10.1)

where from (5.21) ,

D̄∗1,n = (x+ 2) (α+N − x− 2)T 2

+(7 + n (3 + n+ α)− 3N + 6x− (α+ 2N)x+ 2x2 + β (3 + n+ x−N))T
+(x+ β + 1) (N − x− 1)Id,

D̄∗∗1,n = (x+ 4 + β) (N − x− 4)
(
20 + 3n+ n2 − 8N − 4 (N − 4)x+ 4x2

+β (6 + n− 2N + 2x) + α (n− 2x− 2)) T 2

+
(
360 + 141n+ 56n2 + 6n3 + n4 − 260N − 45N n− 15N n2 + 44N2

−2 (52 + 3n (3 + n)− 20N) (N − 5)x
+2 (3n (3 + n) + 152 + 4 (−15 +N)N)x2 − 16 (N − 5)x3 + 8x4

+α2 (n− 2− x) (n− 2x− 2) + β2 (3 + n+ x−N) (n+ 8− 2N + 2x) + α(
2n3 + 2n2 − 3n2 x− 2 (x+ 1) (38− 12N + 23x− 4N x+ 4x2)
+n (35− 15N + 21x− 6N x+ 6x2)
+β (2n2 + 7n− 3N n+ 4 (N − x− 4) (x+ 1))) + β(2n3

+n2 (17− 3N + 3x) + n (80 + 39x+ 6x2 − 24N − 6N x)

+2 (N − x− 4) (−23 + 9N + 4N x− 17x− 4x2))
)
T

+(x+ 1) (x+ 1−N − α) (−n (3 + n) + α (4− n+ 2x)− β (n+ 8− 2N + 2x)

−40 + 12N − 24x+ 4N x− 4x2
)
Id,

Ī0(r, n, x) = −2(x+ 1) (x+ 1−N) (x+ 1−N − α) (x+ β + 1) (r + β + n+ 1 + α),

Ī1(r, n, x) = (r + β + n+ 1 + α)(840x− 24 r N α+ 18αN β + 4αβ r + 74nβ
− 234N β + 58β r + 58α r + 50nα− 30N β2 − 10α r2 + 14 r β2

− 24N r2 + 20n2 + 58 r2 + 36β2 + 90N2 + 2 r4 + 270β − 420N − 150α
+ 40n+ 600x2 + 192x3 + 24x4 + 58 r n− 42αβ + 66N α+ 14β r2

+ 12α2 − 24 r N β + 56β xn+ 48β N2 + 6N2 β2 + 4α r3 + 2 r2 β2 + 4β r3

+ 6x2 β2 + 348β x− 252xα− 132x2 α+ 156x2 β + 30β2 x+ 48x r2
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+ 24β x3 − 24x3 α+ 12x2 r2 + 6x2 α2 + 18xα2 − 10 r α2 + 2α2 r2

− 600N x− 6 r N αβ + 4α r2 β − 6 r2N β − 6N β2 r + 24β N2 x

− 12x2 αβ + 12x2 β r + 12x2 α r − 12β2N x− 48xαβ + 84αN x

− 204β N x+ 24N x2 α+ 48xα r + 48xβ r − 48β N x2 − 6xα r2

− 12xN r2 + 6xβ r2 + 6β2 x r − 12β N x r − 12αN x r + 12αN xβ

− 6xα2 r + 24n2 x+ 48nx+ 24N2 x2 − 12N n2 + 16nx2 + 8n2 x2

− 48N x3 − 24N n− 288N x2 + 14nβ2 + r2 n+ 4 r3 n+ 3 r2 n2 + r n2

+ 9β n2 − 10nα2 − 3αn2 + α2 n2 + n2 β2 + n3 β + n3 α+ r n3 + 96xN2

− 8N n2 x− 16N nx− 6N β2 n+ 3β2 r n+ 7 r2 nβ + 15 r n β + 4αnβ
− 4N β n2 + 4β r n2 + 3α2 r n+ 7α r2 n+ 4α r n2 + 2αβ n2 + 6α r nβ
− 6N αnβ − 6N r nβ − 32N β n− 9α r n− 24N αn− 24N r n

+ 6β2 xn+ 4β xn2 − 6xα2 n− 4xαn2 + 40xαn+ 12x2 αn

+ 12x2 β n+ 12x2 r n+ 48x r n− 6xα r n+ 6x r nβ − 12αN xn

− 12β N xn− 12xN r n+ 450),

Ī2(r, n, x) = −2 (r + β + n+ 1 + α)(1540x− 30 r N α+ 19αN β + 4αβ r
+ 140nβ − 326N β + 88β r + 88α r + 60nα− 36N β2 − 13α r2

+ 17 r β2 − 30N r2 + 131n2 + 88 r2 + 54β2 + 133N2 + 2 r4 + 475β
− 770N − 295α+ 238n+ 858x2 + 220x3 + 22x4 + 88 r n− 55αβ
+ 103N α+ 17β r2 + 24α2 − 30 r N β + 76β xn+ 55β N2 + 6N2 β2

+ 4α r3 + 2 r2 β2 + 4β r3 + 6x2 β2 + 489β x− 369xα− 153x2 α

+ 177x2 β + 36β2 x+ 60x r2 + 22β x3 − 22x3 α+ 12x2 r2 + 6x2 α2

+ 24xα2 − 13 r α2 + 2α2 r2 − 858N x− 6 r N αβ + 4α r2 β − 6 r2N β

− 6N β2 r + 22β N2 x− 10x2 αβ + 12x2 β r + 12x2 α r − 12β2N x

− 50xαβ + 98αN x− 232β N x+ 22N x2 α+ 60xα r + 60xβ r
− 44β N x2 − 6xα r2 − 12xN r2 + 6xβ r2 + 6β2 x r − 12β N x r

− 12αN x r + 10αN xβ − 6xα2 r + 12n3 + 80n2 x+ 3n4 + 160nx
+ 22N2 x2 − 40N n2 + 32nx2 + 16n2 x2 − 44N x3 − 80N n− 330N x2

+ 19nβ2 + 9 r2 n+ 4 r3 n+ 7 r2 n2 + 9 r n2 + 35β n2 − 11nα2 − 5αn2

+ 2α2 n2 + 2n2 β2 + 5n3 β + 5n3 α+ 5 r n3 + 110xN2 − 16N n2 x

− 32N nx− 6N β2 n+ 3β2 r n+ 7 r2 nβ + 26 r n β + 8αnβ − 8N β n2

+ 8β r n2 + 3α2 r n+ 7α r2 n+ 8α r n2 + 4αβ n2 + 6α r nβ − 6N αnβ

− 6N r nβ − 46N β n− 4α r n− 30N αn− 30N r n+ 6β2 xn+ 8β xn2

− 6xα2 n− 8xαn2 + 44xαn+ 12x2 αn+ 12x2 β n+ 12x2 r n

+ 60x r n− 6xα r n+ 6x r nβ − 12αN xn− 12β N xn− 12xN r n

+ 1093),

Ī3(r, n, x) = (r + β + n+ 1 + α)(2760x− 36 r N α+ 30αN β + 4αβ r
+ 150nβ − 486N β + 118β r + 118α r + 94nα− 42N β2 − 16α r2

+ 20 r β2 − 36N r2 + 100n2 + 118 r2 + 72β2 + 210N2 + 2 r4 + 810β
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− 1380N − 570α+ 200n+ 1320x2 + 288x3 + 24x4 + 118 r n− 102αβ
+ 174N α+ 20β r2 + 36α2 − 36 r N β + 80β xn+ 72β N2 + 6N2 β2

+ 4α r3 + 2 r2 β2 + 4β r3 + 6x2 β2 + 732β x− 588xα− 204x2 α

+ 228x2 β + 42β2 x+ 72x r2 + 24β x3 − 24x3 α+ 12x2 r2 + 6x2 α2

+ 30xα2 − 16 r α2 + 2α2 r2 − 1320N x− 6 r N αβ + 4α r2 β − 6 r2N β

− 6N β2 r + 24β N2 x− 12x2 αβ + 12x2 β r + 12x2 α r − 12β2N x

− 72xαβ + 132αN x− 300β N x+ 24N x2 α+ 72xα r + 72xβ r
− 48β N x2 − 6xα r2 − 12xN r2 + 6xβ r2 + 6β2 x r − 12β N x r

− 12αN x r + 12αN xβ − 6xα2 r + 2250 + 56n2 x+ 112nx+ 24N2 x2

− 28N n2 + 16nx2 + 8n2 x2 − 48N x3 − 56N n− 432N x2 + 20nβ2 + r2 n

+ 4 r3 n+ 3 r2 n2 + r n2 + 17β n2 − 16nα2 − 11αn2 + α2 n2 + n2 β2 + n3 β

+ n3 α+ r n3 + 144xN2 − 8N n2 x− 16N nx− 6N β2 n+ 3β2 r n

+ 7 r2 nβ + 21 r n β + 4αnβ − 4N β n2 + 4β r n2 + 3α2 r n+ 7α r2 n

+ 4α r n2 + 2αβ n2 + 6α r nβ − 6N αnβ − 6N r nβ − 44N β n

− 15α r n− 36N αn− 36N r n+ 6β2 xn+ 4β xn2 − 6xα2 n− 4xαn2

+ 64xαn+ 12x2 αn+ 12x2 β n+ 12x2 r n+ 72x r n− 6xα r n
+ 6x r nβ − 12αN xn− 12β N xn− 12xN r n),

Ī4(r, n, x) = −2(x+ 4) (x+ 4−N) (x+ 4−N − α) (x+ 4 + β) (r + β + n+ 1 + α).

10.3 Appendix III

We give the coefficients Ij(r, n, q;x) of the fourth-order difference equation satisfied by the rth
associated Dq-classical orthogonal polynomials. φj and ψj are the coefficients of the polynomials
φ and ψ, both related to the q-Pearson equation: Dq(φL) = ψL.

Coefficients Ij(r, n, q;x) for some q-classical orthogonal polynomials

For the discrete q-Hermite and Stieltjes-Wigert cases [see Koekoek et al., 1996], we compute
the coefficients Ij(r, n, q;x) using the results given in Theorem 6.6 and obtain after cancelling
common factors the following results with the notations: ν = qr and ρ = qn.

1. Discrete q-Hermite case (φ(x) = x2 − 1, ψ(x) = x
1−q ).

I0(r, n, q;x) = (x2 ρ q8 + q7 x2 − q3 ν ρ− q2 ν ρ− ν ρ q − ν ρ)
(q x− 1) (q x+ 1),

I1(r, n, q;x) = (q15 x6 − ν3 ρ2 + 2 ν2 ρ2 q10 x2 + 2 ν2 ρ q9 x2 − q8 ν ρ x4

+ q4 ν2 ρ x2 + q4 ρ2 x2 ν3 + 2 q6 x2 ν2 ρ2 + 2 ν2 ρ2 q8 x2 − 2 ν ρ q12 x4

+ 2 ν2 ρ2 x2 q7 − 2 ν ρ q13 x4 + 2 ν2 ρ q8 x2 + 2 ν2 ρ2 q9 x2 − ν ρ2 q13 x4

− q11 x4 ν ρ− q10 x4 ν ρ+ 2 ν2 ρ q6 x2 − q9 ν ρ x4 + 2x2 ρ ν2 q5

+ ν2 ρ2 q11 x2 + ν2 ρ q10 x2 − ν3 ρ2 q9 x2 + ν2 ρ2 q5 x2 − ν3 ρ2 q8 x2

+ ν3 ρ2 x2 q5 − ν ρ2 q14 x4 + 2 ν2 ρ x2 q7 − ν q12 x4 − q11 x4 ν + x6 ρ q16

− ν3 ρ2 q6 − 3 ν3 ρ2 q4 − 4 ν3 ρ2 q3 − 3 ν3 ρ2 q2 − 2 ν3 ρ2 q − 2 ν3 ρ2 q5)
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ρ−1ν−2q−3,

I2(r, n, q;x) = −(q17 x6 + 3 ν2 ρ2 q10 x2 + 3 q6 x2 ν2 ρ2 + 4 ν2 ρ2 q8 x2

− 2 ν ρ q12 x4 + 4 ν2 ρ2 x2 q7 − 2 ν ρ q13 x4 + 4 ν2 ρ2 q9 x2 − 2 ν ρ2 q13 x4

− q11 x4 ν ρ− q10 x4 ν ρ+ 4 ν2 ρ3 q8 x2 + 4 ν2 ρ3 q9 x2 + 2 ν2 ρ2 q11 x2

+ 2 ν2 ρ2 q5 x2 − 2 ν ρ2 q14 x4 − ν3 ρ3 − ν x4 q15 ρ2 − ν ρ3 q17 x4

+ ν2 ρ3 q15 x4 − ν q16 ρ3 x4 + ν2 ρ2 q14 x4 − ν ρ2 q12 x4 − ν ρ q14 x4

− 2 ν ρ3 q14 x4 + ν2 q13 ρ3 x4 − 2 ν3 ρ3 q10 x2 + 4 ν2 ρ3 q10 x2

+ 2 ν2 ρ3 q12 x2 − 2 ν3 ρ3 q7 x2 + 3 ν2 q11 ρ3 x2 − ν ρ x4 q15 − 2 ν3 ρ3 q8 x2

+ 2 ν2 ρ3 q6 x2 − 2 ν3 ρ3 q9 x2 + 3 ν2 ρ3 q7 x2 − 2 ν ρ3 q15 x4 + ν2 ρ2 q12 x4

− ν ρ2 q11 x4 − ν ρ3 q12 x4 − ν ρ2 q16 x4 − ν q13 ρ3 x4 + q18 x6 ρ+ q19 x6 ρ2

− 5 ν3 ρ3 q3 − 4 ν3 ρ3 q2 − 4 ν3 ρ3 q5 − 5 ν3 ρ3 q4 − ν3 ρ3 q7 − 2 ν3 ρ3 q6

− 2 ν3 ρ3 q + q20 x6 ρ3)ν−2 ρ−2 q−5,

I3(r, n, q;x) = (−ν3 ρ2 + 2 ν2 ρ2 q10 x2 + 2 ν2 ρ q9 x2 + q6 x2 ν2 ρ2

+ 2 ν2 ρ2 q8 x2 + 2 ν2 ρ2 x2 q7 − 2 ν ρ q13 x4 + 2 ν2 ρ q8 x2 + 2 ν2 ρ2 q9 x2

+ 2 ν2 ρ q6 x2 + x2 ρ ν2 q5 + 2 ν2 ρ2 q11 x2 + 2 ν2 ρ q10 x2 − ν3 ρ2 q8 x2

− ν ρ2 q14 x4 + 2 ν2 ρ x2 q7 + q20 x6 − ν x4 q15 ρ2 − 2 ν ρ q14 x4 − ν ρ x4 q15

− ν q12 x4 − ν3 ρ2 q6 − 3 ν3 ρ2 q4 − 4 ν3 ρ2 q3 − 3 ν3 ρ2 q2 − 2 ν3 ρ2 q

− 2 ν3 ρ2 q5 − ν q13 x4 − ν ρ q16 x4 − ν ρ q18 x4 − ν ρ q17 x4 − ν3 ρ2 x2 q7

+ ν2 ρ q11 x2 + ν3 ρ2 q11 x2 + ν3 ρ2 q12 x2 + ν2 ρ2 q12 x2 + q21 x6 ρ)
ν−2 ρ−1 q−6,

I4(r, n, q;x) = (x2 ρ q6 + q5 x2 − q3 ν ρ− q2 ν ρ− ν ρ q − ν ρ)
(q4 x− 1) (q4 x+ 1)q−6.

2. Stieltjes-Wigert case ( φ(x) = x
q , ψ(x) = qx−1

q(q−1))

I0(r, n, q;x) = (q3 x ν ρ+ x ν q2 + q + 1) q x,
I1(r, n, q;x) = −(q4 ρ2 x3 ν3 + q4 x2 ν2 ρ2 + q3 x3 ν3 ρ+ 2 q3 ν2 ρ x2

+ q3 x ν ρ− q2 x+ x ν q2 + q2 ν2 x2 + q2 x2 ν2 ρ+ ν ρ q2 x+ q + q x ν

+ q x2 ν2 ρ+ ν ρ q x+ 1 + x ν + x) q,
I2(r, n, q;x) = (1 + 2 q + 2 q4 ν2 ρ x2 + q6 x2 ν2 ρ2 + q2 ν2 x2 + 2 q x ν

− 2 q2 x+ x2 ρ ν2 q5 + 2 ν2 ρ2 q5 x2 − 2 q3 x+ q3 ν2 ρ x2 + q4 x2 ν2 ρ2

+ 2 ν ρ q2 x+ q2 + 2 q3 x ν ρ+ 2x ν q2 + 2 q3 x2 ν2 + 2 q3 x ν + q4 x2 ν2

− ν q3 x2 − ν q4 x2 + q4 x3 ν3 + ν3 ρ2 q6 x3 + ν3 ρ3 q7 x3 + ν3 ρ q5 x3

− ν ρ q4 x2 − ν q5 x2 ρ+ 2 q4 x ν ρ),
I3(r, n, q;x) = −(ν3 ρ2 x3 q7 + ν3 ρ q6 x3 + ν2 ρ q6 x2 + ν2 ρ2 q5 x2

+ x2 ρ ν2 q5 + q4 x ν ρ+ q4 x+ 2 q4 ν2 ρ x2 + q3 x2 ν2 + q3 x ν + q3 x ν ρ

− q2 x+ x ν q2 + ν ρ q2 x+ q + q x ν + 1),
I4(r, n, q;x) = (ν ρ q2 x+ q + q x ν + 1) q3 x.
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