KLAUSUR

Mathematik I/II für E-Techniker 6.9.2004

(Prof. Dr. G. Malle, AG Computational Mathematics)

Name:			Vorname:			MatrNr.:	
	Bitte las	Bitte lassen Sie genügend Platz zwischen den Aufgaben					
	und beschreiben Sie nur die Vorderseite der Blätter! Geben Sie alle Zwischenschritte Ihrer Rechnungen an und begründen Sie Ihre Antworten!						
	Zum Bestehen der Klausur sollten 30 Punkte erreicht werden.						
	1)	2)	3)	4)	5)	6)	
				-)			
		Punkte:		Note:			

1. Gegeben seien die Vektoren

$$r_1 = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}, r_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, a_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, a_2 = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}.$$

- (a) Zeigen Sie, dass sich die Geraden $g_1: \vec{r} = \vec{r_1} + t \vec{a_1}$ und $g_2: \vec{r} = \vec{r_2} + s \vec{a_2}$ nicht schneiden.
- (b) Wie lautet die Gleichung der Ebene, die die Gerade g_1 enthält und parallel zur Geraden g_2 verläuft? Welchen Abstand hat diese Ebene vom Nullpunkt?
- (c) Wie lautet die Gleichung der Ebene, die von beiden Geraden gleichen Abstand hat?

(8 P)

- 2. Bestimmen und skizzieren Sie die folgenden Gebiete in der komplexen Zahlenebene (hierbei bezeichne $i = \sqrt{-1}$):
 - (a) $z \in \mathbb{C}$ mit $\text{Im}(z-3) \leq 2$,
 - (b) $z \in \mathbb{C}$ mit $|2z i| \le 5$,
 - (c) $z \in \mathbb{C}$ mit $\text{Im}(z-3) \le |2z-i|$.

(10 P)

3. Gegeben sei die Matrix

$$A = \begin{pmatrix} 6 & 10 & -3\sqrt{2} \\ 0 & 1 & 0 \\ 5\sqrt{2} & 10\sqrt{2} & -5 \end{pmatrix}.$$

- (a) Berechnen Sie das charakteristische Polynom und die Eigenwerte von A (zur Kontrolle: das charakteristische Polynom lautet $-\lambda^3 + 2\lambda^2 \lambda$).
- (b) Berechnen Sie die zugehörigen Eigenräume.
- (c) Bestimmen Sie (falls möglich) eine Matrix B, so dass $B^{-1}AB$ eine Diagonalmatrix ist. Wie lautet diese Diagonalmatrix ?

(12 P)

- 4. Gegeben sei die Funktion $f(x) = \frac{x}{\sqrt{1-x^2}}$.
 - (a) Wie lauten folgende Grenzwerte (Begründung): $\lim_{x\to +1^-} f(x)$, $\lim_{x\to -1^+} f(x)$, $\lim_{x\to -1^+} e^{f(x)}$.
 - (b) Existieren die uneigentlichen Integrale: $\int_0^1 f(x) dx$ und $\int_{-1}^0 f(x) dx$?
 - (c) Man berechne den Grenzwert

$$\lim_{x \to 0} \frac{\arctan(x)}{x^2 + 2x}.$$

(10 P)

5. Gegeben sei die Folge:

$$a_n = \frac{(-4)^n}{n + \sqrt{3} \, n} \, .$$

- (a) Konvergiert die Reihe $\sum_{n=1}^{\infty} a_n$ absolut?
- (b) Welchen Konvergenzradius besitzt die Potenzreihe $\sum_{n=1}^{\infty} a_n x^n$?
- (c) Konvergiert die Potenzreihe $\sum_{n=1}^{\infty} a_n x^n$ für $x = \pm \frac{1}{4}$?

(8 P)

- 6. Gegeben sei die Funktion $f(x,y) = x^2 + 3xy$.
 - (a) Besitzt f Extremalstellen bzw. Sattelpunkte?
 - (b) Man integriere f über das Dreieck, welches von den Geraden $x=1,\ y=-1$ und y=x begrenzt wird. Man gebe zwei verschiedene Reihenfolgen der Integration und führe eine Integration aus.
 - (c) Man integriere f über den Kreissektor im ersten Quadranten, der von den Geraden $y=0,\ y=\sqrt{3}\,x$ und dem Einheitskreis begrenzt wird. (Hinweis: $\arctan(\sqrt{3})=\pi/3$.)

(12 P)

Lösungen

1 a) Die Geraden schneiden sich nicht, falls das aus $\vec{r}_1 + t \vec{a}_1 = \vec{r}_2 + s \vec{a}_2$ entstehende Gleichungssystem keine Lösung in s, t besitzt. Gauß-Algorithmus: das lineare Gleichungssystem hat keine Lösung. Alternativ mit Kreuzprodukt:

$$\vec{n} = \vec{a}_1 \times \vec{a}_2 = \begin{pmatrix} 0 \\ 8 \\ 4 \end{pmatrix}$$

 $\vec{n} \cdot (\vec{r}_2 - \vec{r}_1) = 20 \neq 0$, also sind die Geraden windschief.

- **1 b)** Die gesuchte Ebene steht senkrecht auf \vec{a}_1 und \vec{a}_2 und enthält den Punkt \vec{r}_1 , hat also die Gleichung $\vec{n}(\vec{r}-\vec{r}_1)=0$, mit $\vec{n}=\vec{a}_1\times\vec{a}_2$. Es ist $||\vec{n}||=4\sqrt{5}$, also normierter Normalenvektor $\vec{n}_0=\frac{\vec{n}}{4\sqrt{5}}$. Damit ist der Abstand gleich $|\vec{n}_0\cdot\vec{r}_1|=|-\frac{3}{\sqrt{5}}|=\frac{3}{\sqrt{5}}$. **1 c)** Nach 1 b) haben parallele Ebenen durcg g_1,g_2 die Gleichungen $\vec{n}\cdot(\vec{r}-\vec{r}_1)=0$ bzw. $\vec{n}\cdot(\vec{r}-\vec{r}_2)=0$. Wegen $\vec{n}\cdot\vec{r}_1=-12$, $\vec{n}\cdot\vec{r}_2=8$ hat die gesuchte Ebene die Gleichung $\vec{n}\cdot\vec{r}=-2$. Alternativ: die gesuchte Ebene muss Richtungsvektoren \vec{a}_1 und \vec{a}_2 besitzen und den Punkt mit Ortsvektor $(1/2)(\vec{r}_1+\vec{r}_2)$ enthalten.
- **2 a)** Setze $z=x+i\,y$ mit $x,y\in\mathbb{R}$. Dann ist $\mathrm{Im}(z-3)=\mathrm{Im}(x-3+i\,y)=y,$ also liegen die gesuchten Punkte in der Halbebene $\{x+iy\mid y\leq 2\}$ der komplexen Ebene.
- **2 b)** Mit z = x + iy wird $|2z i|^2 = (2x)^2 + (2y 1)^2 \le 25$. Dies ist eine Kreisgleichung, also erhalten wir Inneres und Rand des Kreises

$$x^2 + (y - 1/2)^2 = \frac{25}{4}.$$

2 c) Der Ansatz $z=x+i\,y$ führt auf $y\leq \sqrt{(2\,x)^2+(2\,y-1)^2}$. Für y<0 ist das immer erfüllt. Für $y\geq 0$ erhalten wir $y^2\leq (2\,x)^2+(2\,y-1)^2$, also die Ellipsengleichung

$$1 \le \frac{x^2}{1/12} + \frac{(y - 2/3)^2}{1/9}.$$

Der gesuchte Bereich ist damit die untere Halbebene der komplexen Ebene zusammen mit dem Äußeren und dem Rand der Ellipse $\frac{x^2}{1/12} + \frac{(y-2/3)^2}{1/9} = 1$ in der oberen Halbebene.

- **3 a)** Sarrus oder Entwickeln nach der 2. Zeile liefert das charakteristische Polynom $\chi_A(\lambda) = -\lambda^3 + 2\lambda^2 \lambda = -\lambda(\lambda 1)^2$, also die Eigenwerte $\lambda_1 = 0$, $\lambda_{2,3} = 1$.
- **3 b)** Bestimmung der Eigenräume: für $\lambda_1=0$ löse das lineare Gleichungssystem $A\vec{u}=\vec{0}$. Dies führt auf $u_y=3/5\sqrt{2}\,u_x-6\,u_z=0$, also sind alle Eigenvektoren Vielfache von

$$\vec{u} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 1 \end{pmatrix}.$$

Für $\lambda_1 = 1$ löse $(A - E) \vec{v} = \vec{0}$:

$$A - E = \begin{pmatrix} 5 & 10 & -3\sqrt{2} \\ 0 & 0 & 0 \\ 5\sqrt{2} & 10\sqrt{2} & -6 \end{pmatrix}$$
. Dies hat 2-dimensionalen Lösungsraum,

erzeugt etwa von den beiden Vektoren
$$\vec{v_1} = \begin{pmatrix} \frac{3\sqrt{2}}{5} \\ 0 \\ 1 \end{pmatrix}, \vec{v_2} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}.$$

 $\bf 3$ c) Nach 3 b) stimmen für alle Eigenwerte geometrische und arithmetische Vielfachheit überein, daher ist A diagonalisierbar, und wir können

$$B = (\vec{u}, \vec{v_1}, \vec{v_2})$$
 nehmen, um $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ zu erhalten.

- **4 a)** Für den Grenzwert $x \to 1^-$, x > 0 forme um: $f(x) = \frac{x}{\sqrt{1-x^2}} = \frac{1}{\sqrt{\frac{1}{x^2}-1}}$, daher $\lim_{x \to +1^-} f(x) = +\infty$. (Oder direkt: Zähler geht gegen 1, Nenner ist > 0 und geht gegen 0). Ebenso, oder durch Symmetriebetrachtung folgt $\lim_{x \to -1^+} f(x) = -\infty$. Da die Exponentialfunktion stetig ist, folgt nunmehr $\lim_{x \to +1^-} e^{f(x)} = +\infty$, $\lim_{x \to -1^+} e^{f(x)} = 0$.
- **4 b)** 1. Lösungsweg: Eine Stammfunktion von f ist: $-\sqrt{1-x^2}$. (Ableiten der Wurzel, Kettenregel). Damit rechnen wir

$$\int_{0}^{1} \frac{x}{\sqrt{1-x^2}} \, dx = \left(-\sqrt{1-x^2}\right)\Big|_{0}^{1} = 1.$$

Ebenso, oder durch Symmetriebetrachtung folgt

$$\int_{-1}^{0} \frac{x}{\sqrt{1-x^2}} \, dx = -1.$$

2. Lösungsweg: Substitution (1. Form, $\phi(x) = 1 - x^2$) ergibt:

$$\int_{0}^{1} \frac{x}{\sqrt{1-x^2}} dx = -\frac{1}{2} \int_{0}^{1} \frac{2x}{\sqrt{1-x^2}} dx = -\frac{1}{2} \int_{1}^{0} \frac{1}{\sqrt{\tau}} d\tau = \int_{0}^{1} \frac{1}{2\sqrt{\tau}} d\tau = (\sqrt{\tau}) \Big|_{0}^{1} = 1.$$

3. Lösungsweg: Substitution (2. Form, $\psi(t)=\sqrt{1-t}$) ergibt $x=\sqrt{1-t}$, $t=1-x^2, \ \psi'(t)=-\frac{1}{2\sqrt{1-t}}$, und damit:

$$\int_{0}^{1} \frac{x}{\sqrt{1-x^2}} \, dx = \int_{1}^{0} \frac{\sqrt{1-t}}{\sqrt{t}} \left(-\frac{1}{2\sqrt{1-t}} \right) dt = \int_{0}^{1} \frac{1}{2\sqrt{t}} \, dt = 1.$$

4 c) Sowohl Zähler als auch Nenner verschwinden für x=0. Nach der Regel von de l' Hospital gilt:

$$\lim_{x \to 0} \frac{\arctan(x)}{x^2 + 2x} = \lim_{x \to 0} \frac{\frac{1}{1+x^2}}{2x+2} = \frac{1}{2}.$$

- **5 a)** 1. Lösungsweg: Es gilt $\frac{1}{n+3n} < \frac{4^n}{n+3n} < \frac{4^n}{n+\sqrt{3n}}$, und die harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{4n} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n}$ divergiert, ist daher eine divergente Minorante. Daher divergiert die vorgelegte Reihe. (Alternativ kann man zeigen, dass a_n keine Nullfolge ist, sodass auch $\sum_{n=1}^{\infty} a_n$ divergiert).
- 2. Lösungsweg: mit dem Quotientenkriterium:

$$\left| \frac{a_{n+1}}{a_n} \right| = 4 \frac{n + \sqrt{3} \, n}{n + 1 + \sqrt{3} \, (n+1)} = 4 \frac{1 + \sqrt{3} \, \frac{1}{n}}{1 + \frac{1}{n} + \sqrt{3} \, \frac{n+1}{n^2}}$$

und

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 4 > 1.$$

3. Lösungsweg: mit dem Wurzelkriterium:

$$\sqrt[n]{n} \le \sqrt[n]{n} + \sqrt{3n} \le \sqrt[n]{4n} = \sqrt[n]{4} \sqrt[n]{n}.$$

Wegen $\lim_{n\to\infty} \sqrt[n]{4} = 1$, $\lim_{n\to\infty} \sqrt[n]{n} = 1$, gilt somit $\lim_{n\to\infty} \sqrt[n]{n} + \sqrt{3n} = 1$ und

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = 4 > 1.$$

5 b) Der Konvergenzradius berechnet sich zu:

$$\rho = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}} = \frac{1}{4}.$$

5 c) Es ist $a_n \left(\frac{1}{4}\right)^n = (-1)^n \frac{1}{n+\sqrt{3}n}$. Da $\frac{1}{n+\sqrt{3}n}$ eine monoton fallende Nullfolge ist, liefert das Leibnizkriterium die Konvergenz bei x=1/4. Bei x=-1/4 ist $a_n \left(-\frac{1}{4}\right)^n = \frac{1}{n+\sqrt{3}n}$. Dies hat die divergente Minorante $\frac{1}{n+3n} < \frac{1}{n+\sqrt{3}n}$, daher divergiert die Reihe bei x=-1/4.

6 a) Wir bestimmen die Nullstellen des Gradienten: $\frac{\partial}{\partial x}f(x,y) = 2x + 3y$, $\frac{\partial}{\partial y}f(x,y) = 3x$, hat als einzige Nullstelle (0,0). Um das Vorliegen eines Extremums zu prüfen, werten wir die Hesse-Matrix

aus:

$$H(x,y) = \begin{pmatrix} \frac{\partial^2}{\partial x^2} f(x,y) & \frac{\partial^2}{\partial x \partial y} f(x,y) \\ \frac{\partial^2}{\partial x \partial y} f(x,y) & \frac{\partial^2}{\partial y^2} f(x,y) \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 0 \end{pmatrix}.$$

Da det H(0,0) = -9 < 0 liegt kein Extremum sondern ein Sattelpunkt vor.

- **6 b)** $\int_{-1}^{1} \int_{-1}^{x} f(x,y) \, dy \, dx = \int_{-1}^{1} \int_{y}^{1} f(x,y) \, dx \, dy = \frac{2}{3}$ **6 c)** 1. Lösungsweg: rechne auf Polarkoordinaten um:

$$\int_{0}^{\frac{\pi}{3}} \int_{0}^{1} (r^2 \cos^2(\phi) + 3r^2 \cos(\phi) \sin(\phi)) r \, dr \, d\phi = \frac{1}{96} (27 + 3\sqrt{3} + 4\pi).$$

2. Lösungsweg: berechne das Integral direkt: zerlege das Integrationsintervall für x in zwei Hälften und bestimme jeweils die Form der oberen Schranke für y. Die zwei Integrale lauten

$$I_1 = \int_{0}^{\frac{1}{2}} \int_{0}^{\sqrt{3}x} (x^2 + 3xy) \, dy \, dx = \frac{9 + 2\sqrt{3}}{128},$$

$$I_2 = \int_{\frac{1}{2}}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2 + 3xy) \, dy \, dx = \frac{6\sqrt{3} - 63 - 8\pi}{384} + \frac{6 + \pi}{16},$$

und

$$I_1 + I_2 = \frac{27 + 3\sqrt{3} + 4\pi}{96}.$$