Diskrete Strukturen II, Nachklausur

Name	Vorname	Matrikelnummer

Aufgabe	1	2	3	4	5	6	7	8	9	10	Σ
Punkte											

Bitte schreiben Sie auf jeden Zettel, den Sie abgeben, deutlich Ihren Namen. Bei Multiple-Choice-Aufgaben ergibt jedes korrekte, falsche bzw. nicht angekreuzte Kästchen +1/2, -1/2 bzw. 0 Punkte.

Aufgabe 1: (2 + 4 + 4 Punkte)

- (a) Geben Sie ein Beispiel für einen Ring, der Nullteiler hat.
- (b) Welche Elemente haben die zyklischen Untergruppen von $(\mathbb{F}_{11}\setminus\{0\},\cdot)$, die von den Elementen 3 bzw. 4 erzeugt werden?
- (c) Bestimmen Sie den größten gemeinsamen Teiler von 105 und 156 und stellen Sie ihn als Linearkombination der beiden Zahlen dar. Ist 105 in $\mathbb{Z}/156\mathbb{Z}$ invertierbar?

Aufgabe 2: (3 Punkte)

Hat $X^2 + X + 1$ Nullstellen in \mathbb{C}, \mathbb{F}_2 bzw. \mathbb{F}_3 , falls ja welche?

Aufgabe 3: (6 Punkte, minimal 0 Punkte)

Welche Aussagen gelten für $a, b, c, d, n \in \mathbb{Z}$ mit n > 1?

	Wahr	Falsch
$a \mid (b+c) \implies a \mid b \text{ oder } a \mid c.$		
$a \mid (b+c) \implies a \mid b \text{ und } a \mid c.$		
$a \equiv b \pmod{n}, c \equiv d \pmod{n} \Rightarrow a + c \equiv b + d \pmod{n}.$		
$a \equiv b \pmod{n}, b \equiv c \pmod{n} \Rightarrow a \equiv c \pmod{n}.$		
$n \text{ Primzahl}, \ a \mid n \implies a = 1, a = -1, a = n \text{ oder } a = -n.$		
$kgV(a,b) \mid a \cdot b.$		

Welche Aussagen gelten in allen Gruppen (G, \circ) ?

	Wahr	Falsch
Für alle $a, b, c, d \in G$: $(a \circ b) \circ (c \circ d) = a \circ ((b \circ c) \circ d)$.		
Für alle $a, b \in G$: $a \circ b = b \circ a$.		
(G, \circ) ist eine Halbgruppe.		
Für alle $a \in G$: $a \circ a \circ a^{-1} = a^{-1} \circ a \circ a$		
Für alle $a \in G$ gibt es ein $b \in G$ mit $b^{-1} \circ a \circ b = e$.		
Es gibt genau ein $e \in G$ mit $e \circ a = a \circ e = a$ für alle $a \in G$.		

Aufgabe 4: (4 Punkte)

Es sei $(R, +, \cdot)$ ein Integritätsbereich (ein Ring ohne Nullteiler) mit 4 Elementen. Zeigen Sie:

$$1 + 1 = 0$$
.

Hinweis: Sie dürfen die Gleichung 1+1+1+1=0 verwenden.

Aufgabe 5: (2 + 3 Punkte)

Berechnen Sie alle Lösungen $x, y \in \mathbb{Z}$ zu den Gleichungssystemen

(a)
$$x \equiv 3 \pmod{6}$$

 $x \equiv 2 \pmod{3}$,

(b)
$$y \equiv 4 \pmod{6}$$

 $y \equiv 5 \pmod{7}$.

Aufgabe 6: (5 Punkte)

Es seien

$$A := \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \in \mathbb{F}_2^{3 \times 3}, \quad a := \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{F}_2^3.$$

Bestimmen Sie alle Lösungen der Gleichung Ax = a.

Aufgabe 7: (2 + 5 Punkte)

Man löse das lineare Programm

$$-x_1 + 2x_2 \le 3$$

$$x_1 + 2x_2 \le 10$$

$$2x_1 + x_2 \le 11$$

$$x_1, x_2 \ge 0$$
, $Q(x_1, x_2) = -x_1 - x_2 = \text{Min!}$

- (a) graphisch
- (b) mit dem Simplex-Algorithmus.

Aufgabe 8: (1 + 2 + 3 Punkte)

Es seien 3 Urnen gegeben. Die i-te Urne enthält eine weiße und i schwarze Kugeln. Aus jeder Urne wird eine Kugel gezogen. Es sei X die Anzahl der weißen Kugeln.

- (a) Welche Werte nimmt die Zufallsvariable X an?
- (b) Bestimmen Sie den Erwartungswert E(X).
- (c) Bestimmen Sie die Varianz Var(X).

Hinweis: Man führe 3 Indikatoren X_1, X_2, X_3 ein: X_i ist 1, wenn die Kugel aus der i-ten Urne weiß ist, 0 sonst. Dann drücke man X durch die X_i aus.

Aufgabe 9: (2 + 2 Punkte)

Drei Maschinen A, B, C stellen Glühbirnen her, die mit Wahrscheinlichkeiten 0.75, 0.5, 0.8 gut sind. A, B, C stellen die Anteile 0.4, 0.2, 0.4 der Gesamtproduktion her.

- (a) Wie groß ist die Wahrscheinlichkeit, daß eine gekaufte Glühbirne gut ist?
- (b) Wie ist die Wahrscheinlichkeit, daß eine gekaufte Glühbirne von Maschine A stammt, wenn sie gut ist?

Aufgabe 10: (4 Punkte)

Es sei Ω ein diskreter Wahrscheinlichkeitsraum und A, B zwei Teilmengen. Zeigen Sie:

$$P(A \cap B) > P(A) + P(B) - 1.$$

Diskrete Strukturen II Lösungen zur Nachklausur

Aufgabe 1:

- (a) In $\mathbb{Z}/6\mathbb{Z}$ ist z.B. 2 ein Nullteiler, denn $2 \cdot 3 = 0$.
- (b) Die zyklischen Untergruppen, die von 3 bzw. 4 erzeugt werden, bestehen aus den Potenzen 3, 9, 5, 4, 1 bzw. 4, 5, 9, 3, 1 von 3 bzw. 4.
- (c) Erweiterter Eukidischer Algorithmus mit den Zahlen 156 und 105 liefert

$$3 = -2 \cdot 156 + 3 \cdot 105 \equiv 3 \cdot 105 \pmod{156}$$
,

105 ist also nicht invertierbar.

Aufgabe 2:

In \mathbb{C} hat $X^2 + X + 1$ die Nullstellen $-\frac{1}{2} + \sqrt{-\frac{3}{4}}$, $-\frac{1}{2} - \sqrt{-\frac{3}{4}}$. In \mathbb{F}_2 hat es keine Nullstellen und in \mathbb{F}_3 die Nullstelle 1.

Aufgabe 4:

Es ist (1+1)(1+1) = 1+1+1+1=0, d.h. 1+1=0, da R nullteilerfrei ist.

Aufgabe 5:

(a) Aus der Bedingung $x \equiv 3 \pmod 6$ folgt, daß x durch 3 teilbar sein soll. Dann gilt aber $x \equiv 0 \pmod 3$, was der zweiten Gleichung widerspricht. Das Gleichungssystem hat keine Lösung. (a) Die Zahlen 6 und 7 haben ggT 1. Der erweiterte Euklidische Algorithmus liefert die Kombination $1 = 1 \cdot 7 - 1 \cdot 6$.

Aus dem chinesischen Restsatz erhalten wir die Lösung $4 \cdot 1 \cdot 7 - 5 \cdot 1 \cdot 6 = -2$. Die weiteren Lösungen sind gegeben modulo dem kgV von 6 und 7, d.h. modulo 42; die Lösungsmenge ist also: $\{42 \cdot n - 2 \mid n \in \mathbb{Z}\}$.

Aufgabe 6:

Der Gauß-Algorithmus über \mathbb{F}_2 gibt:

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

Es gibt demnach keine Lösung.

Aufgabe 7:

Das Programm ist schon in Standardform gegeben. Der Algorithmus verläuft (zum Beispiel) folgendermaßen (das Pivotelement ist jeweils fett markiert):

	x_1	x_2				x_5	x_2				x_5	x_4	
$\overline{x_3}$	-1	2	3		x_3	$\frac{1}{2}$	$\frac{5}{2}$	$\frac{17}{2}$		$\overline{x_3}$,
x_4	1	2	10	\Rightarrow	x_4	$-\frac{1}{2}$	$\frac{3}{2}$	$\frac{1}{9}$	\Rightarrow	x_2			3
x_5	2	1	11		x_1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1\overline{1}}{2}$		x_1			4
	-1	-1	0			$\frac{1}{2}$	$-\frac{7}{2}$	$-\frac{11}{2}$			$\frac{1}{3}$	$\frac{1}{3}$	-7

Eine Lösung ist dann $x_1 = 4$, $x_2 = 3$ und $Q(x_1, x_2) = -7$.

Aufgabe 8:

Mit der Notation aus dem Hinweis: $X = X_1 + X_2 + X_3$. (a) Der Wertebereich von X ist: $W_X = \{0, 1, 2, 3\}$.

- (b) Für den Erwartungswert hat man: ${\rm E}(X)={\rm E}(X_1)+{\rm E}(X_2)+{\rm E}(X_3)=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}.$
- (c) Für die Varianz haben wir die Formel $Var(X) = Var(X_1) + Var(X_2) + Var(X_3)$, wobei

$$Var(X_i) = E(X_i^2) - E(X_i)^2 = (\sum_{x=0}^{1} x^2 P(X_i = x)) - \frac{1}{(i+1)^2} = \frac{1}{i+1} - \frac{1}{(i+1)^2} = \frac{i}{(i+1)^2}$$

und somit ist $Var(X) = \frac{1}{4} + \frac{2}{9} + \frac{3}{16} = \frac{95}{144}$.

Aufgabe 9:

- (a) Die Wahrscheinlichkeit ist $0.75 \cdot 0.4 + 0.5 \cdot 0.2 + 0.8 \cdot 0.4 = \frac{18}{25}$.
- (b) Es sei A das Ereignis, daß die Glühbirne von der Maschine A stammt, und B, daß die Glühbirne gut ist. Dann ist

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{0.75 \cdot 0.4}{0.75 \cdot 0.4 + 0.5 \cdot 0.2 + 0.8 \cdot 0.4} = \frac{5}{12}.$$

Aufgabe 10:

Es ist

$$1 = P(\Omega) \ge P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

und daraus folgt $P(A \cap B) \ge P(A) + P(B) - 1$.

Aufgabe 3:

	Wahr	Falsch
$a \mid (b+c) \implies a \mid b \text{ oder } a \mid c.$		×
$a \mid (b+c) \implies a \mid b \text{ und } a \mid c.$		×
$a \equiv b \pmod{n}, c \equiv d \pmod{n} \Rightarrow a + c \equiv b + d \pmod{n}.$	×	
$a \equiv b \pmod{n}, b \equiv c \pmod{n} \Rightarrow a \equiv c \pmod{n}.$	×	
$n \text{ Primzahl}, a \mid n \implies a = 1, a = -1, a = n \text{ oder } a = -n.$	×	
$kgV(a,b) \mid a \cdot b.$	×	
	Wahr	Falsch
Für alle $a, b, c, d \in G$: $(a \circ b) \circ (c \circ d) = a \circ ((b \circ c) \circ d)$.	×	
Für alle $a, b \in G$: $a \circ b = b \circ a$.		×
(G, \circ) ist eine Halbgruppe.	×	
Für alle $a \in G$: $a \circ a \circ a^{-1} = a^{-1} \circ a \circ a$	×	
Für alle $a \in G$ gibt es ein $b \in G$ mit $b^{-1} \circ a \circ b = e$.		×
Es gibt genau ein $e \in G$ mit $e \circ a = a \circ e = a$ für alle $a \in G$.	×	