‘H
q JOURNAL OF
?ﬁ COMPUTATIONAL AND

APPLIED MATHEMATICS

ELSEVIER Journal of Computational and Applied Mathematics 101 (1999) 231-236

Fourth order g-difference equation for the first associated of the
g-classical orthogonal polynomials

M. Foupouagnigni®!, A. Ronveaux®, W. Koepf®*

* Institut de Mathématiques et de Sciences Physiques. B.P. 613 Porto-Novo, Bénin
5 Mathematical Physics, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
“HTWK Leipzig, Fachbereich IMN, Postfach 66, D-04251 Leipzig, Germany

Received 8 June 1998

Abstract

We derive the fourth-order g-difference equation satisfied by the first associated of the g-classical orthogonal polynomials.
The coefficients of this equation are given in terms of the polynomials ¢ and 7 which appear in the g-Pearson difference
equation Dy(o p) =1p defining the weight p of the g-classical orthogonal polynomials inside the g-Hahn tableau. © 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

The fourth-order difference equation for the associated polynomials of all classical discrete poly-
nomials were given for all integers » (order of association) in [5], using the properties of the Stieltjes
functions of the associated linear forms.

On the other hand, the equation for the first associated (» = 1) of all classical discrete polynomials
was obtained in [13] using a useful relation proved in [2]. In this work, mimicking the approach
used in [13] we give a single fourth-order g-difference equation which is valid for the first associated
of all g-classical orthogonal polynomials. This equation is important for some connection coefficient
problems [10], and also in order to represent finite modifications inside the Jacobi matrices of the
g-classical starting family [14]. g-classical orthogonal polynomials involved in this work belong to
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the g-Hahn class as introduced by Hahn [8]. They are represented by the basic hypergeometric series
appearing at the level 3¢, and not at the level 4¢3 of the Askey—Wilson orthogonal polynomials.

The orthogonality weight p (defined in the interval /) for g-classical orthogonal polynomials is
defined by a Pearson-type g-difference equation

Dy(ap)=1p, (1)
where the g-difference operator D, is defined [8] by
D, foy= LIS g g<q <, @)
(g — D

and D, f(0) := f'(0) by continuity, provided that f’(0) exists. ¢ is a polynomial of degree at most
two and 7 is polynomial of degree one.

The monic polynomials P,(x; ¢g), orthogonal with respect to p, satisfy the second-order g-difference
equation

2, [V = [0()D, Dyjy + 7D, + A n Il y(x) =0, (3)
an equation which can be written in the g-shifted form

(o1 + 1107 — (1 + q)o1 + 11ty — Agu 1) T4 + qo194] y(x) =0, (4)
with

" 1— qn
fun =~ {7+ -1 5L =
! . e2q) T 1—g¢ (5)
g =oda(¢x), wu=1(q¢x), t;=t(g'x), tx)=(qg—1)x

and the geometric shift .7, defined by

T f(x)=f(¢'x), 7=, (=identity operator). (6)
2. Fourth-order g-difference equation for the first associated P (x;q) of the g-classical
orthogonal polynomial

The first associated of B,_;(x;q) is a monic polynomial of degree n — 1, denoted by Bf,])l(x;q),
and defined by

PY(x;q) = p(s)d,s, (7

§S—X

1 [B(s;q9) — B(x;q9)
ol

where 7y, is given by y,= [, p(s)d,s and the g-integral is defined in [7].
The polynomials B(x; q)=P"(x; q) and P""(x; q) satisfy also the following three-term recurrence
relation [4] for » = 0 and » = 1, respectively,

PO q) = (x = Bui) PO ) = Juir B (x39), n=1,

(®)
R (x;q) = 1. R"(xiq) =x—p,.
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Relation (7) can be written as

PU(x;9) = p(x)0u(x; q) — B(x;9)p(x)00(x; q), 9)

where
B.(s; q)
0.s9) = p(x) JHED pis)dgs.

It is well-known [15] that Q,(x;q) also satisfies Eq. (3); hence by (9)
(1)
2, [ i) +Pn(x;¢I)Q0(x;q)] ~0. (10)
In a first step, we eliminate p(x) and Qy(x;¢q) in Eq. (10) using Egs. (1) and (3) for B(x;q). This
can be easily carried out using a computer algebra system — we used Maple V Release 4 [3] —
and gives the relation

(o1 + 1) 25,y [BO(69)| = [e7, + £.94] B(x ), (1)

with
:2;”71 = 029;2 — (I +q)oy + 11ty — Zgn tf)ﬁ; + q(o + )9,

"
e—= <7 — ’L'/> ((1 + q)Ul + 71t — }vq,n tlz)tla (12)

f=- (%ﬁ — ‘c/) ((g + Doy + tit)t.

In a second step, we use Eqgs. (11), (12) and the fact that the polynomials P,(x; q) satisfy Eq. (3),
again. This gives — after some computations with Maple V.4 — the operator Q;‘ . annihilating
the right-hand side of Eq. (11),
Q;k,:il = (03 + 135)[¢°A1 + (1 + q)o2 + Tzfz]g;2 — [ A(02 + 1a12) + A3(02 + g41)] 7,

+901[¢° 42 + (1 + )3 + 1315)] Ja, (13)

where A(x)=(1+ g)o(x) + 1(x)t(x) — A, t(x)* and 4, = 4;(x) =A(¢'x), j =1,2,3.
We therefore obtain the factorized form of the fourth-order g-difference equation satisfied by each

E (ll(x q),

9%

92
*k 2,n—1 (1) /.
2 —|P = 0. 14
2,n—1q2(q 1)2x2[ nfl(xa CI)] O ( )

3. Limiting situations, comments and example

(1) Since lim,_; D,=d/dx, from Eqs. (12) and (13), we recover by a limit process the factorized
form of the fourth-order differential equation satisfied by the first associated B,(,l)l(x) of the
(continuous) classical orthogonal polynomials A,_; [12],

25k 95 [PV (x)] =0, (15)

n
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(2)

3)
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with
25 d> d
*c 13 2,n—1 o
251 = lim - Cae T 20" =)+ (0" =T+ A,
1 QFx d? d
a@**c _ 2,n—1 R / . ! }vn j’
21 46(x) qinl q*(g — 1)*x? 7 a2 (o T)dx (@A)
where 4, = lim, ., A,, = —n[(n — 1)% + 7.

If the polynomials ¢ and 7 are such that ¢” =21’ [12-14], then the right-hand side of Eq. (11)
is equal to zero, and the first associated P satisfies the second (instead of fourth)-order
difference equation

23, B (x 9)] = 0.
For the little g-Jacobi polynomials p,(x;a,b|q) [1, 9]

o(x) = x(x —1) () = 1 —aq + (abg® — 1)x
q q(g —1) ’

and for the big g-Jacobi polynomials B(x;a,b,c;q) [1, 9]

o(x) =acq — (a+c)x + X_Z’ 1(x) = cq +aq(1 — (b +c)q) + (abg* — l)x’
q q(g—1)

the constant ¢” — 27’ is equal to 2(1 — abq)/(q — 1). Therefore, the first associated of the little
g-Jacobi polynomials (resp. big g-Jacobi polynomials) is still in the little g-Jacobi (resp. big
g-Jacobi) family when abg = 1.

Computations involving the coefficients f3, and 7y, (see Eq. (8)) given in [1, 6, 11] and use
of Maple V.4 generate the following relations between the monic little g-Jacobi (resp. monic
big g-Jacobi) polynomials and their respective first associated

1 1
Y (x;% |q> =(aq)" p, ( - aqlq) (16)
qa aq’

P:“(x;a,ql’ ¢) =@y B (% agcasq). (17)

The results given in this paper (see Eqs. (11) and (13)), which agree with the ones obtained
using the Stieltjes properties of the ass001ated linear form [6], can be used for connection
problems, expanding the first associated P 1 in terms of £, in the same spirit as in [10]. We
have also computed the coefficients of the fourth-order g¢-difference equation satisfied by the
first associated of the g-classical orthogonal polynomials appearing in the g-Hahn tableau. In
particular, from the big g-Jacobi polynomials, we derive by limit processes [9] the fourth-order
differential (resp. g-difference) equation satisfied by the first associated of the classical (resp.
g-classical) orthogonal polynomials.
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4) For the little g-Jacobi polynomials for example, the operators 25, | and 25* | are given below,
2,n—1 2,n—1

with the notation: v = ¢".
25, =axl(g*x — DT} — v (—v — av + ¢’xabv’ + qx) T, + a(—1 + bqx).4],
2 =v " ¢*qa(—1 + bg'*x)(g’xaby + g’xabV* + ¢’xv + ¢*x — qv — gav — v — av) T}
— v {(@x* + av* + ¢* — ¢V — ¢xaby + ¢'x*a* by’
— @xa*bv’ — @’xabV? + ¢*a*V — ¢ xabv* — ¢xa* bV + ¢*av?
— @’xa*bv’ — g xav — q*xav — ¢*xv — ¢*xv — ¢*xav + ¢’x*v
—@xv + ¢ XPatbV + ¢°xPaby — ¢*xa’ bV + qa’ v’ — q*xav?
+2¢°%*abv* + ¢°x*abv’ + 2qav* +v* — g*xabv’ )7,

+ (=1 + gx)(g*xabv + g*xabv* + @xv + ¢’x — qv — qav — v — av).%,].
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