
Journal of Computational and Applied Mathematics 101 (1999) 231–236

Fourth order q-di�erence equation for the �rst associated of the
q-classical orthogonal polynomials
M. Foupouagnigni a; 1, A. Ronveaux b, W. Koepf c; ∗

a Institut de Math�ematiques et de Sciences Physiques. B.P. 613 Porto-Novo, B�enin
bMathematical Physics, Facult�es Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium

cHTWK Leipzig, Fachbereich IMN, Postfach 66, D-04251 Leipzig, Germany

Received 8 June 1998

Abstract

We derive the fourth-order q-di�erence equation satis�ed by the �rst associated of the q-classical orthogonal polynomials.
The coe�cients of this equation are given in terms of the polynomials � and � which appear in the q-Pearson di�erence
equation Dq(� �)= �� de�ning the weight � of the q-classical orthogonal polynomials inside the q-Hahn tableau. c© 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

The fourth-order di�erence equation for the associated polynomials of all classical discrete poly-
nomials were given for all integers r (order of association) in [5], using the properties of the Stieltjes
functions of the associated linear forms.
On the other hand, the equation for the �rst associated (r=1) of all classical discrete polynomials

was obtained in [13] using a useful relation proved in [2]. In this work, mimicking the approach
used in [13] we give a single fourth-order q-di�erence equation which is valid for the �rst associated
of all q-classical orthogonal polynomials. This equation is important for some connection coe�cient
problems [10], and also in order to represent �nite modi�cations inside the Jacobi matrices of the
q-classical starting family [14]. q-classical orthogonal polynomials involved in this work belong to
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the q-Hahn class as introduced by Hahn [8]. They are represented by the basic hypergeometric series
appearing at the level 3�2 and not at the level 4�3 of the Askey–Wilson orthogonal polynomials.
The orthogonality weight � (de�ned in the interval I) for q-classical orthogonal polynomials is

de�ned by a Pearson-type q-di�erence equation

Dq(��)= ��; (1)

where the q-di�erence operator Dq is de�ned [8] by

Dq f(x)=
f(qx)− f(x)
(q− 1)x ; x 6=0; 0¡q¡ 1; (2)

and Dqf(0) := f′(0) by continuity, provided that f′(0) exists. � is a polynomial of degree at most
two and � is polynomial of degree one.
The monic polynomials Pn(x; q), orthogonal with respect to �, satisfy the second-order q-di�erence

equation

Q2; n[y(x)]≡ [�(x)Dq D1=q + �(x)Dq + �q; nId]y(x)= 0; (3)

an equation which can be written in the q-shifted form

[(�1 + �1t1)T2
q − ((1 + q)�1 + �1t1 − �q; n t21)Tq + q�1Id]y(x)= 0; (4)

with

�q; n = −[n]q
{
�′ + [n− 1] 1

q

�′′

2q

}
; [n]q=

1− qn
1− q ;

�i ≡ �(qix); �i≡ �(qix); ti≡ t(qix); t(x) = (q− 1)x
(5)

and the geometric shift Tq de�ned by

Ti
q f(x)=f(q

i x); T0
q ≡Id (≡ identity operator): (6)

2. Fourth-order q-di�erence equation for the �rst associated P(1)n−1(x; q) of the q-classical
orthogonal polynomial

The �rst associated of Pn−1(x; q) is a monic polynomial of degree n − 1, denoted by P(1)n−1(x; q),
and de�ned by

P(1)n−1(x; q) =
1

0

∫
I

Pn(s; q)− Pn(x; q)
s− x �(s) dqs; (7)

where 
0 is given by 
0 =
∫
I �(s) dqs and the q-integral is de�ned in [7].

The polynomials Pn(x; q)≡P(0)n (x; q) and P(1)n (x; q) satisfy also the following three-term recurrence
relation [4] for r = 0 and r = 1, respectively,

P(r)n+1(x; q) = (x − �n+r)P(r)n (x; q)− 
n+r P(r)n−1(x; q); n¿ 1;

P(r)0 (x; q) = 1; P(r)1 (x; q) = x − �r:
(8)
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Relation (7) can be written as

P(1)n−1(x; q) = �(x)Qn(x; q)− Pn(x; q)�(x)Q0(x; q); (9)

where

Qn(x; q) =
1


0 �(x)

∫
I

Pn(s; q)
s− x �(s) dqs:

It is well-known [15] that Qn(x; q) also satis�es Eq. (3); hence by (9)

Q2; n

[
P(1)n−1(x; q)
�(x)

+ Pn(x; q)Q0(x; q)

]
= 0: (10)

In a �rst step, we eliminate �(x) and Q0(x; q) in Eq. (10) using Eqs. (1) and (3) for Pn(x; q). This
can be easily carried out using a computer algebra system — we used Maple V Release 4 [3] —
and gives the relation

(�1 + �1t1)Q∗2; n−1
[
P(1)n−1(x; q)

]
=

[
eTq + fId

]
Pn(x; q); (11)

with
Q∗2; n−1 = �2T2

q − ((1 + q)�1 + �1t1 − �q; n t21)Tq + q(� + �t)Id;

e=
(
�′′

2
− �′

)
((1 + q)�1 + �1t1 − �q; n t21)t1;

f= −
(
�′′

2
− �′

)
((q+ 1)�1 + �1t1)t1:

(12)

In a second step, we use Eqs. (11), (12) and the fact that the polynomials Pn(x; q) satisfy Eq. (3),
again. This gives — after some computations with Maple V.4 — the operator Q∗∗2; n−1 annihilating
the right-hand side of Eq. (11),

Q∗∗2; n−1 = (�3 + �3t3)[q2A1 + (1 + q)�2 + �2t2]T2
q − [q3A1(�2 + �2t2) + A3(�2 + qA1)]Tq

+ q�1[q2A2 + (1 + q)�3 + �3t3)]Id; (13)

where A(x)= (1 + q)�(x) + �(x)t(x)− �q; n t(x)2 and Aj≡Aj(x)≡A(qjx); j = 1; 2; 3:
We therefore obtain the factorized form of the fourth-order q-di�erence equation satis�ed by each

P(1)n−1(x; q),

Q∗∗2; n−1
Q∗2; n−1

q2(q− 1)2x2 [P
(1)
n−1(x; q)] = 0: (14)

3. Limiting situations, comments and example

(1) Since limq→1 Dq=d=dx; from Eqs. (12) and (13), we recover by a limit process the factorized
form of the fourth-order di�erential equation satis�ed by the �rst associated P(1)n−1(x) of the
(continuous) classical orthogonal polynomials Pn−1 [12],

Q∗∗c2; n−1 Q
∗c
2; n−1[P

(1)
n−1(x)] = 0; (15)
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with

Q∗c2; n−1 = limq→1

Q∗2; n−1
q2(q− 1)2x2 = �

d2

dx2
+ (2�′ − �) d

dx
+ (�′′ − �′ + �n)Id;

Q∗∗c2; n−1 =
1

4�(x)
lim
q→1

Q∗∗2; n−1
q2(q− 1)2x2 = �

d2

dx2
+ (�′ + �)

d
dx
+ (�′ + �n)Id;

where �n≡ limq→1 �q; n = −n [(n− 1) �′′2 + �′].
(2) If the polynomials � and � are such that �′′=2�′ [12–14], then the right-hand side of Eq. (11)

is equal to zero, and the �rst associated P(1)n−1 satis�es the second (instead of fourth)-order
di�erence equation

Q∗2; n−1[P(1)n−1(x; q)] = 0:

For the little q-Jacobi polynomials pn(x; a; b|q) [1, 9]

�(x) =
x(x − 1)
q

; �(x) =
1− aq+ (abq2 − 1)x

q(q− 1) ;

and for the big q-Jacobi polynomials Pn(x; a; b; c; q) [1, 9]

�(x) = acq − (a+ c)x + x
2

q
; �(x) =

cq + aq(1− (b+ c)q) + (abq2 − 1)x
q(q− 1) ;

the constant �′′ − 2�′ is equal to 2(1− abq)=(q− 1). Therefore, the �rst associated of the little
q-Jacobi polynomials (resp. big q-Jacobi polynomials) is still in the little q-Jacobi (resp. big
q-Jacobi) family when abq = 1.
Computations involving the coe�cients �n and 
n (see Eq. (8)) given in [1, 6, 11] and use

of Maple V.4 generate the following relations between the monic little q-Jacobi (resp. monic
big q-Jacobi) polynomials and their respective �rst associated

p(1)n

(
x; a;

1
qa

|q
)
=(aq)n pn

(
x
aq
;
1
a
; aq |q

)
; (16)

P(1)n

(
x; a;

1
qa;
; c; q

)
=(a)n Pn

(
x
a
;
1
a
; aq; c q; q

)
: (17)

(3) The results given in this paper (see Eqs. (11) and (13)), which agree with the ones obtained
using the Stieltjes properties of the associated linear form [6], can be used for connection
problems, expanding the �rst associated P(1)n−1 in terms of Pn, in the same spirit as in [10]. We
have also computed the coe�cients of the fourth-order q-di�erence equation satis�ed by the
�rst associated of the q-classical orthogonal polynomials appearing in the q-Hahn tableau. In
particular, from the big q-Jacobi polynomials, we derive by limit processes [9] the fourth-order
di�erential (resp. q-di�erence) equation satis�ed by the �rst associated of the classical (resp.
q-classical) orthogonal polynomials.
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(4) For the little q-Jacobi polynomials for example, the operators Q∗2; n−1 and Q∗∗2; n−1 are given below,
with the notation: � = qn.

Q∗2; n−1 = qx[(q2x − 1)T2
q − �−1(−�− a�+ q2xab�2 + qx)Tq + a(−1 + bqx)Id];

Q∗∗2; n−1 = �−1 q4x2[qa(−1 + bq4x)(q3xab�+ q3xab�2 + q2x�+ q2x − q�− qa�− �− a�)T2
q

− �−1(q5x2 + a�2 + q�2 − q2x�2 − q3xab�3 + q7x2a2b2�3

− q3xa2b�3 − q5xab�3 + q2a2�2 − q5xab�2 − q5xa2b�2 + q2a�2

− q5xa2b�3 − q2xa�− q4xa�− q2x�− q4x�− q3xa�+ q5x2�
− q3x�+ q7x2a2b2�4 + q6x2ab�− q4xa2b�3 + qa2�2 − q2xa�2

+ 2q6x2ab�2 + q6x2ab�3 + 2qa�2 + �2 − q4xab�3)Tq
+(−1 + qx)(q4xab�+ q4xab�2 + q3x�+ q3x − q�− qa�− �− a�)Id]:
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