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1 Introduction

The Appell polynomials A, (x) defined by

Fe =3 An(e) 1)
n=0

where f is a formal power series in t, have found remarkable applications in different
branches of mathematics, theoretical physics and chemistry [2, 15]. Two special cases
of Appell polynomials are Bernoulli polynomials B,(z) and Euler polynomials FE,(z)
that are, respectively, generated by choosing f(t) = ﬁ and f(t) = ﬁ in (1). Also,
Bernoulli numbers B,, := B,(0) and Euler numbers E, := 2"E, (1) are of considerable
importance in number theory, special functions, combinatorics and numerical analysis.

Bernoulli numbers are given by

t >t
g1 2 By (<o)

or by the recurrence relation

= 1
Z(nz )Bk:() forn>1 and By=1.
k=0
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They are directly related to various combinatorial numbers such as Stirling, Cauchy and
harmonic numbers. For example, except B; we have

n

Bu= (-1 WSQ(n, m), @)

m=0

where

Sa(n,m) = = S(-1) <m> (m )",

j=0 J

denotes the second kind of Stirling numbers [5, 7] with Sa(n,m) =0 for n <m.

There are some algorithms for computing Bernoulli numbers. One of them is Euler’s
formula

(—1)" 12n

Ban = 22n(22n _ 1)

Tn,

where {T,}, known as Tangent numbers, are generated by

0 t2n—1
tant =S Ty
an ; "2n —1)!

In 2001, Akiyama and Tanigawa [1] (see also [13]) found an algorithm for computing
Ao = (—1)"B,, without computing Tangent numbers as

An+1,m = (m + 1)(An,m - An,m—i—l)a

_ 1
where Ao,m = i
Later on, a modified version of the above-mentioned algorithm was proposed by Chen

[4] for computing Cj o := B, as
Cn+1,m = an,m - (m + 1)Cn,m+1
where Co ,, = #H .

Bernoulli numbers have found various extensions such as poly-Bernoulli numbers, which
are somehow connected to multiple zeta values. For recent extensions of poly-Bernoulli
numbers see e.g. [3, 6, 8, 9, 14]. In [12], the author has defined a new family of poly-
Bernoulli numbers in terms of Gaussian hypergeometric functions and obtained its basic
properties. He has also presented an algorithm for computing Bernoulli numbers and
polynomials and showed that poly-Bernoulli numbers are related to the certain regular
values of the Euler-Zagiers multiple zeta function at non-positive integers of depth p > 1,
ie.

1
(1,89, 08) = Y =
P

0<ni<na<--<np
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where s1,52,...,5, are positive integers with s, > 1.

Another combinatorial aspect of Bernoulli numbers is that they have several symmetry
properties with Cauchy numbers. The first kind of Cauchy numbers is defined by [5, 11]

an/olt(t—n-.-(t—nﬂ) dt:n!/ol (2) dt,

having the generating function

t <
[ C.
1+1t) HZ:O "nl’

log(

and the second kind is defined by

én:/olt(t—l).--(t—n+1) oht:n!/o1 (;) dt.

Both C, and C, can be explicitly written as

° Z (=1)™S1(n,m) and Gy = (—1)" Si(n,m)
m+1 m+1

)

such that Si(n,m) are the first kind of Stirling numbers given by
(B =tt+1)--(t+n—1)= > S (n,mt™,

where Si(n,m) =0 for n <m.

This paper is organized as follows: In the next section, we introduce a parametric type of
Bernoulli polynomials and present basic properties of them in section 3. We also compute
the Fourier expansion of the extended polynomials in section 4. As a valuable application
of the extended polynomials, we introduce in section 5 an extension of the well-known
Euler-Maclaurin quadrature formula and compare it with the ordinary case in detail.

2 A Parametric Type of Bernoulli Polynomials

If p,qg € R, it is known that the Taylor expansion of the two functions eP!cosqt and
ePlsingt are respectively as follows [10]

Peosgt = Cr(p,q) 7 (3)
k=0 )
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and

where

and

0 k

. '

e’ singt = Sk(p, @) 77
k=0 '

Sk(p,q) = Z(—l)j< ,k >pk2jl 2j+1
=0

27+1

q

(6)

By referring to relations (3)-(6), we can introduce two kinds of bivariate Bernoulli poly-

nomials as

and

teP
t=Y Bl t| < 2m),
7 C0Sq Z (pa) (It <2m)

For instance, we have

B (p,q) =

B{” (p, q)
By (p,q)
B (p. q)
B (p.q)
B (p, q)

B (p,q)

1
=P’ —p—a+

1

Y

- 1
=P 9’

6

3 1 3
=p’ = 5p* + (5 =3¢ + 5%,

5
=p" = 3p" + (5 — 15¢")p" + 30¢°p” + (15¢" —

GRS
T4 T4 T

Slnqt ZB(S D, q (|t] < 2m).

2 2 2
1
=p*—2p° + (1 - 6¢°)p* + 6¢°p + ¢* — ¢* — 0
5 5
=p° — 5194 +(3 - 10¢%)p* + 15¢%p* + (5¢* — 5¢* —

6

15¢% —

1 D
7)p - 7q47

2

1
5)1)2 — 15¢"p

(7)
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and

B(()S) (pa q) = 07
B (p,q) = ¢,
B (p,q) = 2ap — 4,

. 1
B (p, q) = 3qp*> — 3qp — ¢ + 3@

B (p, q) = 4gp® — 6qp* + (2q — 4¢°)p + 247,
54 1

gq - 6%

BY (p,q) = 6gp° — 15gp* + (10g — 20¢*)p* + 30¢°p” + (6¢° — 10¢° — q)p — 3¢°.

B (p,q) = 5qp* — 10gp® + (5¢ — 10¢°)p + 10¢°p + ¢° —

3 Some Basic Properties of Bff)(p, q) and B,(f)(p, q) .

3.1. Bff)( p,q) and B( )( p,q) can be represented in terms of Bernoulli numbers as follows

n

BO(p,q) =3 () BiCri(p, a), (9)
p.q kZ_O (k) +Cnk(psq
and
B{(p,q) = (Z) BiSn—k(p, q)- (10)
k=0

Proof. By noting the general identity

(Sl (S0t) - (S5 0en )

k=0

we have

which proves (9). The proof of (10) is similar. O
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3.2. For every m € Z* we have
BY(1-p,q) = (-1)"BY(p,q),
and
BY(1-p,q) = (=1)""' B (p,q).
Proof. Applying the generating function (7) gives

o
tn tell-P)
(€)1 — L
T;]Bn (1 =p,q) 5 =5 cosat,

as well as
o0
" —te Pt te(1=P)t
E _1\n Rl L o
n:()( DB q)n! et —1 cos(—qt) = et — 1 cos gt.

Similarly, property (12) can be proved.

Corollary 1. Relations (11) and (12) imply that

1
Bé?—i—l(ia‘]) = 07
and
s), 1
Bén)(§7q) =0.

3.3. For every n € N, the following identities hold

B (1 +p,q) — B (p,q) = nCp_1(p, q),

and

B (14 p,q) — B (p,q) = nSn-_1(p, q).

Proof. We have

(o.9]
t” tePt(e! —1+1 pt
E B )1 +p,q) Mcosqt:teptcosqt—l— © cos qt
n! et — 1 et — 1
n=0
3 S BOG o
— C _
=Y Culp,a)— + Y _ By (p.a)—
n=0 n=0

= t . tn
= ZnCn_l(p, q)a + 237(1 '(p, Q)m7

which proves (13). The proof of (14) is similar.

(11)

(12)
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Corollary 2. Relations (13) and (14) first imply that

B, (1,q) — BY),1(0,9) = (2n+ 1)(=1)"¢*",

and
By (1,) = B5;)(0.9) = 2n(-1)"1g> .
Hence, combining proposition 3.2 respectively yields

C C 2n + 1 n n
Byl (L) = =Byl 5(0,0) = =5 —(=1)"¢"",

and

Béi)(l?q> = —Bés)(o,q) = p(—1)"H g1,

n

3.4. For every n € Z" the following identities hold

= n c _
BE(p+rq =) <k>B,§ '(p, q)r"F,

k=0

and

Proof. Apply (7) to obtain
t” tePt o > e t
ZB (p+ra) = (et_lcosqt>e = (;Bé)(p 9)—
o0 n C) tn

which proves (15). The result (16) can be similarly proved.
3.5. We have

<n Z 1) B (p,q) = (n+ 1)Cn(p, q),

il
o)

and

<n Z 1) B(p.q) = (n+ 1)Su(p.0).

Eon
o
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Proof. From (15), one can conclude that

n
c n+1 c
Bﬁll(erl,q)—Bflil(p,Q): < i )B,i)(p,Q)-
k=0

Hence, by referring to (13), the result (17) is derived. The proof of (18) can be done in a
similar way. 0

Corollary 3. Relations (17) and (18) imply that

_1\m 2m _
" + 1 i - (—1)™(2m+1)q n = 2m even,
Z 0 ,q) = (n+1)q cosng =
0 n=2m + 1 odd,

and
0 n = 2m even,

> (n—,: 1>B;(f)(0,q) = (n+1)¢" Sinng =

k=0 (=1)™(2m +2)¢g*™ !t n=2m+1 odd.

3.6. For every n € N, the following partial differential equations hold

0 .
%Bg )(p,q) = nBY | (p, q), (19)
0 . s
5B£ )(p.q) = —nBY, (p,q), (20)
q
d . i
a*qu(z )(p,q) = nBY (p,q), (21)
and
0 ¢
958 ,0) = nBY, (p.q). (22)

Proof. Relation (7) yields

OB (p,q) " _ 2P
Z = — = cosqt ZB(C D, q
—~ op nl €t

o0 n

n=1 n=1 ’

proving (19). Other equations (20), (21) and (22) can be similarly derived. O
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Corollary 4. By combining the above results and proposition 3.2 and corollary 2, we
obtain

1
/ By (p,q) dp = (—1)"¢*",
0
b @
/0 BZn+1(p7 q) dp =0,

1
/0 B (p,q) dp =0,

and
1
/0 Bégﬂ(P? q) dp = (—1)"¢*" L,

3.7. If B}lc)(p, q) and Bff)(p, q) are sorted in terms of the variable p, then they are
polynomials of degree m and n — 1 respectively, such that we have

B (p.g) =" — 50"+ (23)
and
_ n\
B (p,q) = ngp" ' — <2>qp T (24)

Also, if they are sorted in terms of the variable q, then

n—1 ntl n n—
(D) n(p— g™+ (1) (DG — 3+ )" P+ (n odd),

By(lc)(pa q) = 12
(—1)3g"+ (=1)"F (5) (> —p+ $)g" 2 +--- (n even),
(25)
and
(1) n(p— 5)a" "+ (<13 (5) (0 — 3p* + 5p)g" 7 + -+ (n cven),
B (p,q) =

(DT (DT Q)0 - pt a4 (0 odd)
(26)

Proof. We first prove (23) by induction. It is known from (17) that

C C 1 C 1
B (p,q) =1, Bi)(pvq)zp—i and Bé)(p,q)zpz—p—q2+6-



10 AN EXTENSION OF THE EULER-MACLAURIN QUADRATURE FORMULA USING A PARAMETRIC TYPE OF BERNOULLI POLYNOMIALS

Therefore (23) holds for n = 0,1,2. Now assume that it is valid for n — 1. By referring
o (19), we have

8 _
Blo) — ! — 24 ...
apon (p,q) = np P+

To complete the proof, it is enough to integrate from the above equation with respect to
the variable p to get the result (23). By referring to relation (22), the result (24) can be
similarly derived.

To prove (25), suppose that it first holds for 0,1,---,n— 1. If n = 2m, then from (17)
we have

2m—1

. 1 2m + 1 = .
By (p,q) = “o T 2 ( f > )+ (- ( > am=2kg2k - (27)
k=0

k=0

Hence, the coefficient of ¢*™ in the right hand side of (27) is equal to

and the coefficient of ¢?™2

—mil((gﬁfD(—nm—l(zm ~ -+ <§2f;><—nm—l)

L e e G [ o

So, (25) is true for n = 2m . In the second case, taking n =2m + 1 in (17) gives

1 2m + 2 “ 2m + 1 ok ok
BSZZLH(RQ) :—2m+2z< k ) +Z < >P2m+1 2k g2k
k=0

k=0
(28)

is equal to

Hence, the coefficient of ¢ in the right hand side of (28) is equal to

and the coefficient of ¢?™2

s <(2”;; N (et -rs e+ (Go ) e en - e - )

) o b

is equal to
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which completes the proof of (25). By combining (22) and (25), we can also obtain the
result (26). O

3.8. The following identities hold

n c
B ) =31 (5 ). 00, (20)
k=0
and
[25] ,
B (p,q) = Y _ (—1)k<2k+1>Bff_)%_1(p7 0)g**+, (30)
k=0

in which Bflc_)%(p, 0) = Bp—a2k(p) and Bic_)zk_l(p, 0) = Bp—2k—1(p) are usual Bernoulli
polynomials.

Proof. According to (20) and (22), first we have

82k |

(c) — (k™ (©) _ L
aqngn (p7Q) ( 1) (n_2k,)|Bn72k(paQ) fOI‘ k 0717 7[2]7
and
o n! n—2
WB;L)(]))Q) = (_1)k+1m37287)2k71(p> Q) for kZOalv 7[ 2 ]7

(c)

because By’ (p,q) is a polynomial of degree n for even n and of degree n — 1 for odd
n in terms of the variable ¢ according to the proposition 3.7. The Taylor expansion of

B (p,q) gives

"1 ok

BOwath) =3 ;o

B (p, q)h*,
k=0

in which h € R. Since Bff) (p,0) =0 for every n € Z" | by replacing ¢ =0 and h = q,
we obtain the relation (29). In a similar way, equality (30) can be derived. O

3.9. If meN and n € Z*, then we have

m—1

k
(c) — -1 ©(p4 ~ 4
k=0
and
m—1 k q
B =m" 'y BE(p+ — 1), 2
Wmp,q) =m" Y B+, ) (32)
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Proof. To prove (31), it is enough to consider the relation

q . t" teP+ i)t

ZB p—i——g)— 7005(%&,

n! et —1

In a similar way, equality (32) can be proved. O

For m = 2, relations (31) and (32) respectively yield

c 1 —2n c c
BY)(5,q) = 27" BY?(0,29) — BY(0,q),

)
and

s 1 —2n (s S
Bén)—&-l(qu) =2 2 Bén)+1(072q) Bén)—&-l(O?q)'

3.10. For every n € N and q € R, the two following propositions are valid:

Py, : The function p — (—1)"352_1(]9, q) is positive on (0,%) and negative on (3,1).
Moreover, p = % is a unique simple root on (0,1), i.e. the aforesaid function has no zero
in the intervals (0,1) and (3,1).

Q. : The function p — (—1)"B§fl)(p, q) is strictly increasing on [0, %] and strictly
decreasing on [%, 1] and always takes a positive value at p = % .

Proof. The proposition P; is clear, because —B%c)(p, q = —(p— %) = -—p+ % Now

define f(p) = (—1)"352(;0, q) to get f'(p) = 2n(—1)"B§271(p, q) . By referring to P, ,

we see that f is strictly increasing on [0, %] and decreasing on [3,1]. Moreover, since

27

n (0) (0) "
fo p) dp = ¢** > 0 (by corollary 4 ) and By, (1—p,q) = By, (p,q) (from proposition
3.2), one can conclude that f(3) > 0.

Finally define g(p) = (—1)""1BY), | (p,q) to get ¢'(p) = —(2n+ 1)(=1)"BS (p,q) . Since
Béfl) (0,q9) = B( )(1 q) , by noting Q,,, only one of the following cases occurs:

i) a€(0,3) and B € (3,1) exist such that

g' (@) =¢'(8) =0and Vp € (o, 8), ¢'(p) <0 and Vp € [0,a) U (B,1], ¢'(p) > 0.
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i) ¢'(0)=4¢'(1) =0 and Vp € (0,1), ¢'(p) <O.

iif) vp € [0,1], ¢'(p) <0.
In the first case i), by referring to corollary 2 we have

n c 2n+1 5,
A=g(0) = ()" By (0.0) = =5 ¢ > 0.

—A <0 and g takes the following table of variations

Therefore g(1) =

P 0 o 2 B 1
g (p) + 0 — 0 +
gp) |A>0 S~ ~ N, 0 N\, — S —A<0

As g(3) =0 (by corollary 1) and ¢/(1) # 0, p= 3 is a simple root of g. We can similarly
0

observe that the two other cases also hold. So the proof of P, is complete.

3.11. For every n € ZT and q¢ € R we have

C C c ].
sup |BS;) (p. q)| = max{| B5;)(0.9)l, |B)(5. )]},

p€(0,1]

and

¢ 2n+1 c o1
sup By, (p,q)| < = — max{|B§;) (0. q)l, |BY)(5.a)[}-
pE[O,l]

Proof. The result (33) is clear by referring to propositions 3.2 and 3.10. To prove (34), if

p €[0,3] then we have

BE, (0.q) = BE  (p.q) — BE,, (2.q) = @n+ 1) [ BE(t,q) t
2n+1\P> 4 911D, ) 2n+1(2aQ) (2n+1) . on (t,q) dt.
2

Therefore
1

!Bégﬂ(p, Q) <(2n+1 /
t€lp,3]

p
1 (©) (01
5 _p) max{]B% (07Q)|7 |BQn(§aq)‘}7

which is equivalent to
2n+1 1

s 1BS 1 (,0)] < =5 — max{|By)(0.q)|, 1B5;) (5, ).
pe 07§

On the other hand, Béfl)_H(l —-p,q) = —B§2+1(p, q) completes the proof of (34).

(33)

(34)
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3.12. For every n € N and q > 0, the two following propositions are valid:

Pn : The function p — (—1)”B§“:L) (p,q) 1is positive on [0, %) and negative on (%, 1].
Moreover, p = % is a unique simple root on [0,1], i.e. the aforesaid function has no zero
in the intervals [0,1) and (3,1].

Q, : The function p — (—1 )"Béfl)ﬂ( ,q) s strictly increasing on [0,3] and strictly

decreasing on [%, 1] and always takes a positive value at p = % .

Proof. The proposition P; is clear, because —Bés) (p,q) = —q(2p—1) =q(1 —2p). Now

define f(p) = (-1 )"Béfl)ﬂ( q) to get f'(p) = (2n+ 1)(—1)”B§f3(p, q) . By noting P, ,
we see that f is strictly increasing on [0, 3] and decreasing on [3,1]. Moreover, since

=

) 29
fo p) dp = ¢***1 > 0 (by corollary 4 ) and Béi)ﬂ(l —-p,q) = Béi)ﬂ(p, q) (from propo-
sition 3 2), one can conclude that f(3) > 0.
Finally define g(p) = (~1)""'By;)(p.q) to get g'(p) = —(2n + 2)(~1)"By;)(p.q)

Since Bé‘;) +1(0,9) = Bén) +1(1,9), by noting Q, , only one of the three following cases
occurs:

i) @ €(0,3) and B € (3,1) exist such that

J(a '(B) =0 and Vp € (o, 8), ¢'(p) <0 and Vp € [0,a) U (B,1], ¢'(p) > 0.
i) ’0: ()—Oandee(Ol) dp) < 0.
i 1], ¢'(p) <

In the first case i), by referring to corollary 2, we have

A7 = (0) = (="' By 5(0.) = (n+ 1)g™ ! > 0.
Therefore g(1) = —A* <0 and g takes the following table of variations

P 0 « % I} 1
q'(p) + 0 - 0 +
gp) |A*>0 7 ~ N 0 N — S A0
As g(1) =0 (by corollary 1) and ¢/(3) # 0, then p = 3 is a simple root of function g.
Similarly, we can observe that the two other cases also hold. O

Corollary 5. For every n € N and g € R we have

S S 1
sup B3y (p.0)] = max{| By, 1 (0.9)]. B3/ (5. )1},
pE[0,1]

and

S S 1
sup |BS)(p,q)| < nmax{|BS)_,(0,9)|, |BS) (5, q)[}.

p€[0,1] 2
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3.13. Let m and n be two positive integers and

1
19 = / BY(p,q)B\ (p,q) dp.
0

If m+n is odd then I'9 =0 and if it is even then

©_ N~ 1 . (k nlm! (© (©)
I C — . M B C ) B C )
2 i\ 2 () i=gitn 0B 00|

where A = max{0,k —m} and B = min{n,k} .

Proof. First, suppose that m + n is odd. By using (11) we have
1 1
19 = / B (1—-p,q)BY(1-p,q) dp = (—1)m+"/ B (p,q)BY (p,q) dp = -1
0 0

Now, assume that m +n is even. Since deg, (Bf,f) Bq(f) ) =m+n (from proposition 3.7),
by referring to (19) we obtain

m+n k
B (p,9)BY (p,q) = ) <apk (B (p, ) B (p, Q))>

which leads to the second result. O

Corollary 6. Let m and n be two positive integers and

1
1% = / B (p,q)BY (p. q) dp.
0

If m+n is odd then I =0 and if m +n is even then

0=y (S () B 00800
(k+ 1!\ 2 G/ (n=j)lm — k)t 9 omek i

k=0 ’

where A = max{0,k —m} and B = min{n,k}.
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4 Fourier expansions of Br(lc)(pp q) and BT(f)(p, q)

The Fourier series of a periodic function f on [0, L] is given by

_ap = 2k . 2kw
f(z) = 5 +;(akcos( T x) + by sin( 7 x)),
where
9 L
%:LAf@M%
2 [t 2km
ax = L/o f(x) cos(Tx) dz,
and

2 [t . 2km
by, = L/o f(x) sm(Tx) dz,

which can be also extend to the complex coefficients so that we have

> 2ik
f@)= ) ee ™™,

k=—00

in which

]. L —2ikm
ck—L/O f(z)e 177 dg.

By periodically extending the restrictions of the introduced parametric Bernoulli polyno-
mials to p € [0,1), we would encounter with periodic piecewise continuous functions so
that for every real p and ¢ we can define

3 (p, q) = B ({p}. ),
B (p,q) = B ({p}, ),

where {p} = p — [p] is the fractional part of the real p.

Theorem 4.1. Let ¢ € R. Then for any p € (0,1)

¢ 1 1 <X sin(2mkp
BP(P’Q):P—Q:—WZ(k)’ (35)
k=1

and for every n € N we respectively have

o0
B (p,q) = (~1)"¢* + Y ajncos(2mkp),  p e [0,1], (36)
k=1
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where
akn = 2(20) (1" Z (2n —QZ) Zwk)
and
B (p.q Zbknsm 2rkp), p e (0,1), (37)
k=1
where

1 q2n n q2n 2j
ben=(—1)"""(2n+ 1) — +2(2n)!
k, (=)™ (2n + )< s +2(2n) JZ:; (2n — 2j)! (27Tk)2]+1>

Proof. First, let us consider Bgc) . It is clear that

By /Bc)p, dp = /(p—)dp 0,

and for k € Z\{0} we have

(38)

1 1
5Oy _ (©) ~imkp g, _ _ 1\ aimkp
B = [ B ap = [ o= e ap -

Since Bgc)((), q) # B%C)(l, q) , according to Dirichlet’s conditions, it can be concluded for
every p € R\Z that

—1 o 1 X sin(27kp)
217rkp 2imkp _ _
=>_a(Bi 2. Tt P

keZ keZ\{0} k=1

where we use c_j(B (C)) ck(égc)) , which proves (35).
()

We now consider the case an . According to corollary 4 we have

1
Co(Béi))Z/o B (p,q) dp = (—1)"¢*",

and for k € Z\{0}

~(c ! c —2imr 2n 1 c 9%
cr(BY)) :/0 BY (p, g)e™ 2™ dp = 2i7rl<:/0 BY)_\(p,q)e 2 dp

n ~(c
= 2 u(BY) ), (39)

itk
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where we have used Bég (0,q9) = Bg;)(l, q) in proposition 3.2. Similarly, we can find that

2n+1

CO(BS;BH):O and Ck(Béf’L)+1): Sk

(o v aB). o

Now, for every n € N and k € Z\{0} we show that

ex(BY)) = (—1)™H(2n)! §n j ¢ (41)
n p (2n —2)1(2mk)%
and
- () B (_1)n+1(2n+ 1) q2 o) n 2n 2j
ck(Bayi1) = : 27rk ;:1: o — 2] )(2k)2i+1 (42)

Since ck(B§c)) = —5 by (38), from equation (39) we obtain

1, 1., 2

sy _ 1 _
(B2) = 05 o) = @

Assume that (41) is true for n. Then using (40) gives

- 2n + 1 = il
Ck(BéZ)H) = ok <(_1)n+1q2n + (=" (2n) 'Z (2n — 29)!(27k)%
J=1

1)t (2n + 1 o n—2j
— i( )<27rk: (2”)'; (2n — 2qj)!(27rk)2j+1>'

So, (42) is satisfied for n. Now let (42) be true for n. Then for n+ 1, relation (39) gives

+1 (=" 2n +1) [ ¢*" - g2n2
B(C) n |
( 2n+2) itk i 27(]{; j; 2n—2] 27Tk)2]+1
2n

— (—1)"2(2n 4 2)! (q + Zn: g% >
\(2n)!(27k)2 & (2n — 2§)!(2mk) %2

2n nt1 q2n 2542 >

. q
=(-1) +2(2n+2)!<()(27rk)+2 (2n — 2j + 2)!(27k)%

n+l 2(n+1)—2;

_ (_1\n+2 n q
= (=) +2)! ;(2(n+1)_2j) (2rk)2
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which approves (41) for n+ 1. From (41) and (42), it is clear that

(B = en(BE) and e (BL) = —aBE)L.)

Since
By (0.q) = By)(La) and Byl (0.0) # Byl (1a),
the identities (36) and (37) can be directly obtained by Dirichlet’s theorem. O

Theorem 4.2. Let g € R. Then for every p € (0,1)

s sin( 27Tkp
By (p.q) = 2qp - q——fz

s

and for every n > 2 we respectively have

B;‘;)fl(p, q) = (—D)" gt 4 Z ay,, cos(2mkp), p € [0,1], (43)
k=1
where
n—1 e
=2 2 — 1 ! .
G = 2(=1)"(2n ; on — 1 ) (2nk)%
and
éfl) (p,q Z bk o 8in(27kp), p € (0,1), (44)
k=1
where

2t n—1 G212
=2 1 2(2n —1)! : .
o =201 ( £ 4 2t DN )

Proof. The proof of this theorem is similar to the previous one. However, note that for
k € Z\{0} we have

. n—1 2n 1-2j

— —1)!
Ck(an )= (=1)"(2n-1) 21 omn — 1 — 2)!(2wk)%’
]:

and

n n— n—1 2n—1-2j5
~(s)y _ 2n(—1) gt Y q 7
ek (Ban) = = MRS RRD N v TG A T

and from corollary 4

co(BE) 1) = (=1)"'¢> ! and co(BS)) =o0.

n—1
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5 An extension of the Euler-Maclaurin quadrature formula

The Euler-Maclaurin summation formula is a suitable tool for providing a connection
between integrals and sums. It gives an estimation of the sum ;' f(k) through the
integral fo x)dz with an error term which involves Bernoulli numbers. In other words,

if m,neN and f3™ s continuous in [0,n], then [16]

") de = L N N By 25-1) () _ (21
[ s de= 5 (10500 + 3 st ;W(f (1) = F4700)) + (),

=1

(45)
where
_ S em) _ " em
Rm(f)_@m)!/o Bop (1) (kzzof (x+k:)> d:c—(zm)!/o F2™) () Bopn (2 — [2]) dz,
(46)

denotes the remainder term. This formula can be extended by using the integration by
parts via relation (19) as follows

1 1
/ f(@)de = / f(2)BY (2, q)dz, (47)
0 0

where ¢ is an arbitrary real number and B(()C) (r,q)=1.

Since a%B%C)(gc,q) = B(gc)(ac,q), substituting %B%a)(az,q) into (47) and integrating by
parts gives

1
|tz = )0 W0) - 10)B0.0) / f@)BO(@,q) do. (48)
0
Note that B(C)(l q) = Bl )(O q) and B( )(x q) = %8@3 )(:U q) . Hence (48) reads as
[ st O0.00m+10) - [ FoLE @ @)
Again, integrating by parts yields
[ st 0,0)(7(1) + £(0)) — 5 (B (1) /(1) — BE(0,)f(0)
A s e
0
(c)
= 8200 (1) + F0) ~ PP (510 - (o))
1
2 [ @) 2B @, q) dz, (50)

60 ox
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because Béc)(l, q) = Béc) (0,¢q) and Béc) (z,q) = %%B?EC)(I', q) -
By using the general relations

C C C ]. 6
B (La) = (~1)*B(0.q) and B (r.q) = ;= - B (x.0),
and continuing the process, for even m we finally obtain
/1 f(x)dr = — 221 Bgzrl(OQ)(f(22 ( )+ f(%)(O)) _ i Bé?(()’(l)(f%—l(l) _ f2i—1(0))
0 pars (20 + 1)! pa (20)!
1
o [ @B . 0) da, (51)
m: Jo
while for odd m we have
m m—1
! = (0, ) : < BY0,q) o .
21+1 q 729 (2i) _ 20 \U4) r02i-1,4y _ g2i-1
| s = Z BT U +50) - 3 R (W) - o)
1 !
R (m) c)
ot | @B ) ar (52

On the other side, since the interval of integration in relations (51) and (52) can be shifted
from [0,1] to [1,2] by replacing f(z) by f(z + 1), by considering such transpositions
up to the interval [n — 1,n] and referring to corollary 2, for every even m we obtain

2 i n—1
o=y 3 ﬂ;?ﬂ ¢ (Z (F# 0+ 1) + f@“(m))
=0 k=0

0 i
% plo) , ,
-2 3252(;))5 D(fD(n) — fEDO) + Blfra) (53)
i=1 ’
while for odd m we have
n L& (1) (2, :
o T =3 2 (2i)! v (kzzo (f (2’)(’-€+1)+f(2“(’“))>
m;l © . '
-2 Bzéz(i())iq) (FE7D () = FE7D(0)) + Rin(f30), (54)
i=1 ’
where
1™ 1 . n—1 . —1)m n " .
Rt = "0 [ B0 (;)ﬂ ><x+k>> do= C M @B @ - o],0) do,
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is the remainder term. The relations (53) and (54) are indeed a parametric extension of
the Euler-Maclaurin quadrature formula for ¢ = 0. Let us consider the even case (53)
when m — 2m as

n m— 1 ; n—
/Of(x)d %Z ,q <Z £ k+1)+f2’())>
=0 k=
m B(C .
_ Z FED () — FED(0)) + Rom(f3 q), (56)

(24)

with

1 n
(57)

By referring to relations (46) and (57), it is clear that if |Rom(f;q)| < |Rm(f)| for a
particular value of ¢, then the accuracy of the extended formula (56) is better than the
standard Euler-Maclaurin formula (45). In this direction, since

x /0 IBE) (2, )| da,
and
RuPl = 5 /132 (z) Sf@m)@:w) dz| < < £ (3]
" (2m)' 0 " =0 - (Qm) tE[O n]

1
x / |Bom(a)] da,
0

it seems that solving the polynomial type inequality

1
/ 1B (2, )| da g/ | Bop ()] d,
0

in terms of the variable ¢ is a good criterion to consider formula (56) with respect to
the well-known formula (45) though there might be other appropriate criterions for this
purpose. In the following table, we have compared the values of |Roy,(f;q)| and |R,,(f)]
for some smooth functions and found out that the absolute error of formula (57) is less
than formula (46) for some specific values of ¢. Note that to derive these values, we have
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flz) [n]m][ q R ([)] [Rom (f59)]
zsinz | 5 |1 0.1 2.14182 x 1073 | 1.55109 x 10~%
z2cosz |20 | 6 0.001 | 1.15731 x 10719 | 1.15645 x 10~10
e” 20| 7 | 0.001 1.6036 x 10~* | 1.60291 x 10~*
e " 1|2 0.2 2.03937 x 107° | 4.5966 x 10~°
ze® 10| 2 | 0.20159 10.6246 1.73236 x 104
ze ™ [10] 1 0.1 4.00736 x 1072 | 9.94681 x 10~ 4
z® 2 | 0.252354 5.9 6.04417 x 107°
e *sinxz | 1 |3 0.38 3.61361 x 1075 | 7.02988 x 107

23

used Mathematica software.
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