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In this article, we solve the duplication problem,

Pn(ax) = Zn: Cm(”a a)Pm(x)>

m=0

where {P,},>o belongs to a wide class of polynomials, including the classical orthogonal
polynomials (Hermite, Laguerre, Jacobi) as well as the classical discrete orthogonal
polynomials (Charlier, Meixner, Krawtchouk) for the specific case a=—1. We give
closed-form expressions as well as recurrence relations satisfied by the duplication coefficients.
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1. Introduction

Let & be the linear space of polynomials with complex coefficients. A polynomial
sequence {P,},-¢ in &£ is called a polynomial set if and only if deg P, = n for all non-
negative integers n.

Given a polynomial set {P,},-, the so-called duplication or multiplication problem
associated with this family asks to find the coefficients C,,(n, a) in the expansion

P,(ax) = 2’1: Cn(n, a)Py(x), (1.1)

m=0

where a designates a nonzero complex number.
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Such identities have applications in many problems in pure and applied mathematics,
especially in combinatorial analysis. This problem may be viewed as a special case of the
so-called connection problem between two polynomial sets where the first member
of (1.1) is replaced by a polynomial set Q,,(x).

The solution of this problem is known for some particular polynomial sets.
For instance, the so-called Fields—=Wimp expansion [10] gives a solution for some
hypergeometric polynomials [17].

A general method, based on lowering operators and generating functions, was
developed in [2,3] to solve connection and linearization problems [4,7]. The purpose
of this work is to use this approach to express explicitly the coefficients C,,(n, a).
The method depends on simple manipulations of formal power series. The approach
we shall propose in this article does not need the orthogonality of the polynomials
involved in the problem, and in this way the formulae obtained are still valid outside
the range of orthogonality of the parameters.

2. The method

Definition 2.1 Let {P,},-o be a polynomial set. {P,},~( is said to have a generating
function of Boas—Buck type (or is called a Boas—Buck polynomial set) if there exists
a sequence of nonzero numbers (1), such that

3 P = AWBGC(D). 1)

n=0
where A, B, C are three formal power series such that
A0)C'(0)£0, C0)=0 and BP0)#£0, ke N. (2.2)

The choice of C(f) = ¢ gives the class of Brenke polynomials.

It is obvious to see that if the normalization is changed, say: P, = ann, then the new
duplication coefficients C,,(n, a) are given by

~ c
Cm(l’l, a) = C_m Cm(l’l, Cl).

n

It means that there is no loss of generality if we limit ourselves to the case A, = 1/n!
in (2.1).

THEOREM 2.2 Let {P,},~¢ be a Boas—Buck polynomial set generated by (2.1). Then the
associated duplication coefficients defined by (1.1) are given by

_ A(t) m _ — ﬁ' n
=10 (1) =Y G, )t (2.3)

n=m

F (1)

where ®(1) = C~Y(aC(1)) and C~" is the inverse of C, i.e., C~'(C(1)) = C(C™\ (1)) = 1.
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Proof  The proof of this result is based on the following lemma.

Lemma 2.3 (see [3], Corollary 3.9) Let {P,},~¢ and {Qnu},>0 be two polynomial sets of
Boas—Buck type that are generated, respectively, by

4080 =3 " i sy = 3 2

n=0 : n=0 :

Then the connection coefficients in
On(x) = Z Cin(n) P (x), 2.4
m=0
are given by
Ar) Sl
mq) (Z) - Z k' Cm(k)t > (25)

k=m

where ®(1) = C7'(Ca(1)).

In order to derive (2.3) from this lemma, we set 4; = 4, = A, C; = C and C, = aC
in (2.5). [ |

This result shows that the duplication coefficients of a Boas—Buck polynomial set
generated by (2.1) depend only on C and A4.

3. Applications

3.1. Brenke polynomials

CoroOLLARY 3.1  The Brenke polynomials {P,},-, generated by

N Pu(x)
A(DB(x) =) n(| ), ,
n=0 !
possess a duplication formula of the form
" /n
Poax) =3 (" )a"Bn(@Pu) (3.1)

m=0

where

A K Bra) 4
A(m)_k;: o (3.2)
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Proof Applying Theorem 2.2 with C(¢) = ¢, we obtain ®(f) = at and

AW o am!
M= — Cu(n, a)t".
Afar) ;m o Cmn @)

Put A(1)/A(at) = Y 12, (Be(a)/kN)*. Tt follows, by identification, that C,,(n,a)=
(:/l)amﬁl‘l—lﬂ' .

For A(r) = ¢', Corollary 3.1 is reduced to Carlitz formula [6]

n

Pia) =" (;) d"(1 = @)™ P (). (3.3)

m=0
Let us mention that Corollary 3.1 was already given in [3] and applied essentially to

some ¢-polynomial sets.
Next, we consider some examples.

3.1.1. Brafman polynomials. The Brafman polynomials defined by

—n, (ap)
By((ap). (by):x) = p41 F, (b,) x (3.4)
q
are generated by [5,8]
(ap)
ZJ; (@), (by); x) ( o) xz>. (3.5)
q

For the definition of the generalized hypergeometric function ,F, see [15] or [18].
In the given case, we have A(7) = ¢'. According to (3.3), we obtain

B(@)ba0) =Y (") a1 = '3, (@), (by): ). (3.6)

m=0

A particular case of the Brafman polynomials are the Laguerre polynomials generated

by ([18, p. 201])
6’0F1< B
a+1

According to (3.3) or (3.6), we find the well-known formula ([18, p. 209])

(3.7)

© (@
—xt) = n () "
=+,

() (Ol + l)n o n—my(a)
L)Y (ax) = Z e+ l)m a™(1 —a)" " LY(x).

m=| 0
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3.1.2. Chaunday polynomials. The Chaunday hypergeometric polynomials

—n, (ap)
Pﬁ(x) = p+1Fq+l< 1 —)»n—le(bq) "C>

are generated by [§]

— ()‘)n A n —A ((l)
;WP"(X)I :(1 _t) I’F‘]((b[;)

xt).

For this case, we have A(f) = (1 — 7)™

A (1—1\7"
A(ar) <1 - at)

It follows, using a Cauchy product,

- ()”)n M ( )‘)n a't" ()‘)nfc (_)‘)' n
(1 — 071 — ar)* _Z p Z :Z<Z(n—kl)! k!kak)z

n=0 ! n=0 \k
)‘)n —n, —A
F
T

Z()‘)n Z ( n)k( )")k (1 M — Z
(1—A—n) k! o
Note that this type of computation can be done completely automatically by the
Sumtohyper command of the Maple hsum package [15]. We obtain from (3.1)

a> "

(3.8)

n

n m—-—n, —
M Pita) =3 (1)a" G, oF ’
W P@) =3 ()" G I(I_A_H

)(k)m P (x). (3.9)

It is easy to obtain the recurrence equation

am(m + Dpnu(a) — (A +am+a+m+1—ra)Bui1(a) + Puya(a) =0
for the coefficients Bi(a) defined by (3.2) in the given situation. This can be accom-
plished at least in two ways: either we use the given generating function F(7):=

A(t)/A(at) of Br(a)/k!, compute the holonomic differential equation (i.e., linear,
homogeneous with polynomial coefficients)

(=1 4+0)(=1+a)F'(t) + Ma— 1)F1) =0

for F(r) and convert this differential equation into the above holonomic recurrence
equation for the corresponding series coefficients by the Maple FPS package [12,14].
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Or we use the hypergeometric representation of B,(«a) given by (3.8) and (3.2) together
with Zeilberger’s algorithm (see e.g., [15]) via the Maple sumrecursion command
which yields the same recurrence.

3.1.3. Gould—Hopper polynomials. Recall that the Gould—Hopper polynomials are
generated by [11]

M exp(xt) = Zg (x, h) deN. (3.10)
For this case we have A(f) = ¢ and

A(l) /1(1 —alyd _ i hk(l — a‘l)

3.11
A 2 @10
which, by virtue of (3.1), gives
dl
gllax. =" T W@ —1)"g?,(x, h). (3.12)
m=0

This family contains as a special case the Hermite polynomials H,(x) = g2(2x, —1), so
(3.12) is reduced to

[n/2] '
a n —z\m
@) = 3 o (1~ ¢ Hioan(),

3.2. Shifted Jacobi polynomials
The shifted Jacobi polynomials defined by [18]

+1) —ma+B+n+1|x
R@A(x) = Pl — (@ ", F s
() = Py - x) = S B)
are generated by
A A+ 0o
2 0| ot A R(w,ﬁ)
(1 _ Z)i)\zF] 23 B X _ 2 :( )n (’C) ,

w1 [0=0") &= (+o,

where A = o+ B+ 1.

To solve the duplication problem for the shifted Jacobi case, we need the following
lemma.

Lemma 3.2 (Lagrange’s inversion formula [20]) Let & be a function of t implicitly
defined by

e=1(1+&"", &0)=0. (3.13)
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Then, we have

(1 +£@1) = Z; +(A+1)n(,~+(sn+ 1)n>,,15 (3.14)

where r and s are complex numbers independent of n.

For this case we have

_ oA
A =1 -0 and C(t)= (1—1)

C ! is implicitly defined by
(1=C'0))’t=-C").
Using (3.14), with € = —C~', s =1 and r = A + 2m, we obtain

[C'1"()

(11 ] 2m+- m
m—( "1 = CH ()™ e

— (_l)m i )" + 2]’}’! 2” + 2’71 + )‘ thrm-
— A+ 2n+2m n

Replacing ¢ by aC(¢) and multiplying by A(¢), we get moreover

FOy=0 =" ="y ———

n=0

A+2m 2n+2m+ A
A+2n+2m n

)(aC<z)>"+m

B i A4+2m  (2n+42m+ 2 41y g
A+2n+2m n (1- [)2n+2n1+)»

_ii(2n+2m+/\)k A+2m <2n+2m+k

n+m —1 nln+m+k
k! o+ 21+ 2m )“ =D

n

_i "k +2m+ ), . A+ 2m (2m+2k+/\

m+k k n+m
—1
=k At2m+2k k )" =D

I
gk
/_\=
5.

(2]’}/[ + 2k + )‘)n m—k A+ 2m 2m + 2k + A aerk( l)k ln
m—m—~k)! A+2m+2k k
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The duplication formula associated with shifted Jacobi polynomials can therefore be
written in terms of hypergeometric functions as follows

R;a,m(ax):i: @ (1 +a), (k+n)mF<WZ—n,m+n+)\

R@A (). 1
n—ml(1+a),(+m),>" a1 ‘a> m ! (X). (3.15)

m=0
For C,,(n,a) we get (again by Zeilberger’s algorithm) the recurrence

am —n)a+B+S5+2m)a+B+2+m)(a+B+1+m)
Cm+4+a+pm+n+a+ B+ 1)Cun) — (1 + o+ m)
(@+B+5+2m)a+B+14+2m)a+F+2+m)
x 2am® — 4m* — 4mp + 2amo — 12m + 2amp + 6am — 4mao: — 8 + 2aan
+ 2an + 2an’ + 2apn + 4aB + 4aa + 2aPo + 4a — 6a
— 68+ ad’ + ap* — o —2pa — B)Cop1(n) + a2 + m — n)
C+a+mI+a+mCm+oa+L+2) o+ pL+14+2m)
(m+a+3+B+n)Cup(n) =0

w.r.t the variable m. The initial values for this recurrence are given by C,(n) = ¢" and
Cyr1(n) = 0. In a similar way, the recurrence

Q+a+nl4+a+n@d+2n+ B+ a)(m—n)
m+n+a+B+1)Cun)—2LQ+a+n)(a+3+2n+p)
(@ + B+ 1+ n)aa® — o&® + 2afoa — 2Ba — 2an — 4o — 2ma
+ 6ac + 4aan — 4 — 2m*> — 2mpB — 2n* — 2Bn + 12an
+ 4an® + 4aBn + 6ap + 8a — 2m — 4B — 6n + ap* — %)
Con+D+Qun+a+B+2)(a+B+2+n)(a+B+1+n)
m—-n—-2)(m+a+3+8+nCp(n+2)=0

w.r.t n is obtained, where we have replaced A by o + 8+ 1, again.

3.3. Classical discrete orthogonal polynomials

In this section, we limit ourselves to the following particular duplication problem
n
Py(—x) =Y Cr(m)Pr(x). (3.16)
k=0

3.3.1. Charlier polynomials. The monic Charlier polynomial set [9, Chapter VI, (1.2)]

n

C90 =Y (") m(T) =0

m=0
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is generated by [9, Chapter VI, (1.2)]

0 (oz)
G(x, 1) = e~ eXn0+) — Z (x). (3.17)

n=0

For this case, we have:

A = e, C(t)=In(1+1), C()=¢' —1 and &)= —HLI.

It follows that

A1)
A(P(0))

Ft) = (1) = (1 + 1) " exp (—oe >e‘°"(—t)’". (3.18)

t
t+1
By sum manipulations, we get

_ t 2 (—a)" "
14+ —a—— | = —_—
( + ) exp( al+ 1) Z }’l! (1 +Z)I1+m
o (—o)" S K (4 m)
= Z(; 7 2;(—1) !

= n (m)n ak n
Z( =D (m)kk!(n—k)!)l'

2

It follows

— - n( )n g n = (_ )n n m
4 (’):Z(Z(_l) (:Z)kk!(na— k)!)t Z(; D

n=0 \ k=0
00 nnmp() O[f1m-+—k—p ”
=”;1(—1) (p=ok2=o: m)f K\(p — k)i(n —m — p)l) (3.19)

Then the duplication coefficient in (3.16) is given by

n—m

—k
Cm(n):(—l)nan—m(m>z( n+lf:)k(mn F( .

k=0

—oz>(—oz)_k. (3.20)

Recently, a fourth order recurrence relation to calculate the connection coefficients in
this last duplication formula was given in [1], where the authors used a different
approach based on the so-called Navima algorithm. Unfortunately their recurrence
[1, p. 386] contains a misprint and is wrong.

Using the above double sum and a Fasenmyer type algorithm [15] to deduce
recurrence equations for multiple hypergeometric series [19,22] we get — using
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Sprenger’s multsum package — the following much simpler third order recurrence
for C,,(n):

—a(m +2)(m + 1)(m + 3)Cpi3(n)
— (m+2)(m+ D)1 +m + 2a)Cpia(n)
+ (m + 1)(_1 —2m —2a + n)Cn1+1(n) + (l’l - n7)C111(n) =0

w.r.t m with initial values C,(n) = (—1)" and C,;1(n) = C,s2(n) = 0, as well as*

m+3-mC,n+3)+n+2)n+3)n+1+20)C,n+1)
+ @+ 2)an+ D)(n+3)Cpun)+ (n+3)2n+4 4+ 2a — m)Cy,(n + 2)
=0

w.r.t n.

3.3.2. Meixner polynomials. The monic Meixner polynomial set [16, Theorem 6]

1

i waa =@, () (7 -1) w=0)

is generated by [13, (1.9.11)]:

G(x, 1) = i(cz 1>nM”(X; % <) "= ! exp(x lnM)

— n! (1—-20“

For this case, we have

cle' —1) ct
and O(f)=———.
ele—1 and @) —c+ct+t

1 o=@
AW = e CO=I— =, €0 =

It follows that

A(t)

FO= o)

q>m([) — (1 B (t/c))a (_t)m

T—1 ) =+ /oy

By sum manipulations (as in (3.8)), we get

F) =~ Z(%zm( e
n=0 :

l—a—n

1 2 (m+ ) "
i P nf12) ¢
c) nXZ(; n! < + c) ’

*Note that Maple sorts expressions by their memory allocation, therefore the output is not always in the
usual order.
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which gives

=0 \ k=0 o

oo n —k, —
F@) = (=" Z(Z%m ( e

1 (m+a)n—k 1 " n
E) (k) (1+E) )Z'

Then the duplication coefficient in (3.16) is given by

m ! e+ TSR (@) (m+ ), 1" —k, —a
Cm =(-=D"—=|— 1 - F
=0 m!(c—l) 2 —m—ir ') A0 ek

1
)
(3.21)

Note that in [1, p. 385] a similar representation was obtained.
Using the multsum package, we get the recurrence

—(c = 1)*(n = m)Cpu(n)
— (m+2)(m+ D)(c — D)(en — *m — ¢ = 2ac¢® — 3em — 4¢ — 2ca — 1 — m)Cppya(n)
—c(m+3)(m+2)(m+ 1)(m + 2+ a)(c + 1)Cpi3(n)

+(c—D*m+ D(en+n—2em— ¢ —2coa —2m — 1)Cppir(n) = 0
w.r.t m with initial values C,(n) = (—1)" and C,41(n) = Cy12(n) = 0, as well as

c(n+2)(n+ 1)(n + 3)(a + n)(c + 1)Cpu(n)
—m+3)n+2)(c— D+ +3ecn+3c+n+142ca+ 2ca — cm)Cp(n + 1)
+(c— 1?(n+3)2cn+4c+2n+4 — em + 2ca — m)Cr(n + 2)

—(c=1D)’n+3-mCn+3)=0

w.r.t n.

3.3.3. Krawtchouk polynomials. The monic Krawtchouk polynomial set
[16, Theorem 6]

1) (n=0)

~ —n, —X
KP(x,N) = p"(=N), oF :
n( ) p( )12 1< N »

is generated by [21]

G(x, t) = (1 —pZ)N(li_—;t>x: iM tn’
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where ¢ satisfies p + ¢ = 1. For this case, we have

l+qt e —1 t
Ay =1 —p)Y, C(r) =1 cl)y=—— d o(t)=———.
0 ==p", CO=Iny—7 M) =——7 and &) =57

It follows that

AW gy (1=t N 0"
F= A(®(1)) 0= <1 —(p- l)t) (1—2p— D"

Again, by sum manipulation, we get

_ m = - (N)k —k, =N p (m_N)n—/c k n—k \ .»n
F()=(=1) Z(; 1 zFl(l_N_k‘p_l) w—h P D@D )z.

Then the duplication coefficient in (3.16) is given by
n—m
(N)(m — N)

C (}’l) - ( 1)}71”7!(2 l)n*m Z n—m—k ]7 - 1 k F _ka _N L
o it = kl(n—m—k) 2p — 1 2 1—N—klp—1)

(3.22)

One can find such a representation also by the formula

I?ln’(x,N) = Mn(x; —N, L)
p—1

which follows from the hypergeometric representations. Therefore from representation
(3.21) it follows for the multiplication coefficients of the Krawtchouk polynomials

n n! n—mn_m(_N)k(m_N)n—m—k P g _k’N p_l
L) = (=1 2p—1 F P—7).
Colm) = (=175 Cp = 1) ; Ro—m—k \2p—1) "\ 14n—k| »

Note that this representation differs from (3.22) modulo some hypergeometric identity.
Using the multsum package, we get the recurrence

pm+3)2p—D)(p—D(m~+2)m+ 1)(m+2—N)Cpiz(n) —(m+2)(m+1)
(m+ 1+ 5p*m + 6p> — Spm — 6p — 4p> N + 2Np — np* + pn)Cppia(n)
4+ (m+ D@pm+2p —2m—1—2Np —2pn+ n)Cp,y1(n)
+(n—m)Cpn) =0
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w.r.t m with initial values C,(n) = (—=1)" and C,(n) = C,42(n) =0, as well as

pn+2)n+ 1)(n+3)2p —1)(p—1)n— N)Cp(n)+ (n+3)(n+2)
(p*m — pm + 5p + Spn — 5p* — 5np> — 1 —n+ 4p>N — 2Np)
Cun+1)+(m—n—-3)Cu(n+3)
—(m+3)2pm —m—8p —4pn+4+2n+2Np)C,,(n+2) =0

w.r.t n.
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