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INTRODUCTION

We consider polynomial families (P,(x(s))), of a discrete variable on a non-uniform lattice
x(s) = q° or x(s) = ¢ that are solutions of the second-order g-difference equation of
hypergeometric type written in its equivalent form as [25,26]

A

A \%
o (x(s)) mmy(xw) + 7(x(s)) my(X(S)) + Ay (x(s)) = 0, ey

where A, is a constant. o (x(s)) = o (x) is a polynomial of degree at most 2 in the variable x
and 7(x) a first degree polynomial in x. A and V are the forward and the backward difference
operators defined respectively by

Af() =f(s+ 1D = fls), Vfls)=f(s) = fls — D).

Under the boundary condition

=0, Vk,

s=a,b

o (x(s)) w(x(s))xk <s - %)
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the polynomials (P,(x(s))), are orthogonal with respect to the weight function w (x(s))
[25,28]

b—1
D Pa(x(s)P(x(s)) wx(s)Ax (S - %) = knOum, kn # 0, Vn,

s=a

where 9§, is the Kronecker symbol, and the weight function w(x(s)) defined on the
interval [a,b] satisfies the g-difference equation

m (o (x(5) w(x(s))) = T(x(5)) w(x(s)). @)

Using the relations

(D —D1)fx) = (g — DxD,Dif(x), DiD, = ¢qD,Dx, A3)
q q q q

where D, is the Hahn operator [16] defined by

flgx) — f(x)

Pl 0= g =1

» q 71,

one transforms easily Eqs (1) and (2) respectively into (see for example, Ref. [23])

L.(y(x) = ¢(x)qu(—;y(x) + (x)D, y(x) + A, y(x) = 0, “4)
Dy x) w(x)) = (x) w(x). )

The polynomials ¢ and s are given by

W) =qZo(), ) =7(x)

for the lattice x(s) = ¢® and

1
d(x) = q20(x) = (g — Dx7(x), Yx) = 7(x)
for the lattice x(s) = ¢ °. The constant A, reads
//

di(x) q" — 1

Orthogonal polynomials (P,(x)), satisfying Eq. (4) or its equivalent form

(@ (x) + (g — Dxp(x))DyD 1 y(x) + p(x)D 1 y(x) + Apy(x) = 0 (6)
q q

are called g-classical [2,22,23]. In Ref. [23], g-classical orthogonal polynomials were
identified among polynomial families belonging to the so-called g-Askey scheme [20].
They are: The Big g-Jacobi, Big g-Laguerre, Little g-Jacobi, Little g-Laguerre
(Wall), g-Laguerre, Alternative g-Charlier, Al-Salam-Carlitz I, Al-Salam-Carlitz II,
Stieltjes-Wigert, Discrete g-Hermite, Discrete ¢ '-Hermite II, g-Hahn, g¢-Meixner,
Quantum g-Krawtchouk, g-Krawtchouk, Affine g-Krawtchouk, and g-Charlier polynomials.
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Notice that the g-difference equation (4) can also be written in the following equivalent
form which will be used in the next sections

D, ((x)) = t(gx)* (L, (»))(gx)
= (¢ (gx) + Hgx) P (gx) y(g*x) — ((q + 1) (gx) + H(qx) P (gx)

— 1(gx)*A) (qx) + g (gx) y(x) = 0, @)

with the notation #(x) = (¢ — 1)x.
Polynomial solutions (P,,(x)),, of (4) (supposed monic: P,(x) = x" 4 lower terms) satisfy a
three-term recurrence equation

Pui(x) = (x = B) Pu(x) = Yo Pp—1(x), n=1, (®)
with the initial conditions
P_i(x)=0, Polx)=1,

where B, and v, are real numbers with 7y, # 0, Vn €N, and N denotes the set
N = {1,2,...}. Also the notation Z, = {0,1,2,...} will be used.
When (P,), is g-classical, the coefficients 8, and v, are rational functions in ¢" and are
given in terms of coefficients of the polynomials ¢ and ¢ appearing in Eq. (4) [23,19].
Some modifications of the three-term recurrence equation (8) lead to new families of
orthogonal polynomials which satisfy a g-difference equation of order 4 instead of 2. For
example, the rth associated (P,,),,, denoted by (Pff))n and obtained by shifting the coefficients

B, and v, in Eq. (8)
P ) = (= Bt )PO) = ¥ P (0, n=1, PO)=0, PYw=1, (9

satisfy a fourth-order g-difference equation [9,13] and cannot satisfy in general a second-
order g-difference equation [9,13].

The fourth-order g-difference equation satisfied by some perturbations (listed in section
“Preliminaries”) of g-classical orthogonal polynomials, were given in Refs. [10,13] for the
first and rth associated, and in Refs. [14,15] for the co-recursive and the co-recursive
associated g-classical orthogonal polynomials, respectively. Also, the factorization and the
solution of the fourth-order differential and difference equations satisfied by some
modifications of classical orthogonal polynomials of continuous and discrete variables were
obtained recently in Refs. [11,12].

Following the above mentioned works [11,12], we derive in this paper the fourth-order
g-difference equations satisfied by the above mentioned modifications of the three-term
recurrence coefficients of the g-classical orthogonal polynomials. We also factorize the
corresponding g-difference operators and find a basis of solutions for each case.

In the second section we define some types of perturbations we will deal with and recall
important known results. The third section is devoted to the derivation and factorization of
the corresponding fourth-order g-difference equations. In the fourth section we give a basis
of four linear independent solutions of these g-difference equations and we also give some
examples and applications.

The fifth section is devoted to the application of the results obtained to the g-Charlier and
the Stieltjes-Wigert cases. We use the factorization obtained in the third section to solve
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a family of second—order g-difference equations and show how to extend Theorem 2 to real
order of association.

PRELIMINARIES

We first present some examples of the perturbations we will deal with and recall known
results we need.

Given (P,),, a family of g-classical orthogonal polynomials, we deal with perturbations of
the three-term recurrence equation which lead to a new family of orthogonal polynomials
denoted by (P,), related to the initial one by

Pox) = Ay(0) P () + Bo(x) Pui(x), n =K, (10)

where A,, and B,, are polynomials of degree uniformly bounded with respect to n, and k,
Kez,. P(nl) is the first associated of P, (see Eq. (9)).

Among these perturbations belong [21] (see also Refs. [11,12] for more details and
intermediate relations):

1. The rth associated orthogonal polynomials (P\"), defined by the relation (9);
2. The generalized co-recursive orthogonal polynomials, denoted by (P¥%*) —and
defined by

%k
PR = (x = B, )PIH(x) — %, PR, n=1,

PiHe =1, P =x— g,

where ,8: = B, for n # k and ,8: = Bk + w;

3. The generalized co-recursive associated, denoted by (P!"*#}) = which is the
generalized co-recursive (at the level k) of the rth associated (Pg’))n;

4. The generalized co-dilated orthogonal polynomials, denoted by (PL"”"),, and defined by
the relation

PN = (= BoPM ) — v, PP ), n=1,

Pilw =1, PMNw =x- B,

where y: = v, for n # k and y: = Ay, with A # 0.
5. The generalized co-modified orthogonal polynomials, denoted by (PL"=“*"|)” and
defined by the three-term recurrence equation

ke, A _ * * Tk,
P = (= BP0 =y, P, n= 1,

K, A kAl N *
Pyt =1, PPN =x— By,

where B: = B, y: = v, for n # k and ,8: = Br + W, 7: = Ay, with A # 0.

6. The anti-associated orthogonal polynomials (see Ref. [27] for more details) denoted by
(P,(1_ ),, ¥ € N obtained by pushing down a given Jacobi matrix and by introducing in the
empty upper left corner new coefficients B—; (i = r,r — 1,7 — 2,...,0) on the diagonal
and new coefficients y_;(i=r— 1,r—1,r —2,...,0), with y_; # 0 on the lower



FACTORIZATION AND SOLUTIONS OF g-DIFFERENCE EQUATIONS 733

subdiagonal. This family can also be defined by the three-term recurrence equations

PUN0) = (x = Bore) PV — yopin P, n=r—1,

(11)
PO =0, Py =1,

and

P = (x = B ) P () = Y PN, n> 1

The six examples of modifications listed above satisfy relation (10) and the coefficients
A, (x) and B,,(x) of Eq. (10) for each case are given in Refs. [11,12,21] for the first five cases
and in Ref. [27] for the anti-associated.

Next we state the following results due to Suslov [28] (see also Refs. [3,17]).
We also give the relation due to Foupouagnigni et al. giving the link between P,, and its first
associated.

Known Results

1.

The two linearly independent solutions of the difference equation (1) on the lattice
x(s) = ¢° or x(s) = g * are the polynomials P,(x(s)) orthogonal with respect to the
weight function w(x(s)) (see Eq. (2)) and the function of the second kind Q,, defined by
Ref. [28]

0n(x(2)) =

Ly Ax(s —1
: ); COWOODA( =3) o p— 1y (2)

w(x(z) x(s) — x(z)

0, is related to P, and its first associated (associated of order r = 1) by Ref. [28]

p
0,2 = Pu(z) Q@) + LT, (13)

and obeys the following asymptotic relation
0,(x(2)) = — m (1 + 0(@))7 x(z) — 0, (14)

with

b—1
Yo = Zw(x(s)) Ax(s — %) .

s=a

0,,(x) satisfies the three-term recurrence equation (8) with the initial conditions [28]

- V.
0x(2) = Qo(x(zo) + € 3 ——

w(x(2))’ s o) wx(s)”

0-1(x(2) = (15)
where C is a constant.

Foupouagnigni et al. [10] proved that for all families of g-classical orthogonal
polynomials (P,(x)), satisfying Eq. (4), P,, and its first associated Pfql) are linked by
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the relation

D (P (6) = a1(x) Pa(q) + ao(x) Py(x), (16)

where [D):,l< is the g-difference operator given by

D, (v(x)) = (b (g) + g (qx)) (b (g0) y(g™x)
— ((1+ q) b (gx) + 1(gx) Y (gx) — 1gx)* X))y (qx) + q (b (x)

+ 1P (0) y (%)), a7

with the polynomials a;, i = 0, 1 being

a(x) = (% - 'l/) ((1 4 ) p(gx) + tg)ip (gx) — t(gx)* A, ) H(qx),
d)//
ap(x) = — (7 -y ) ((1 + @) (qx) + 1(qx) Pgx)) 1(qx).

Notice also the important relation

¢(CIX)D,T(W(X)y(X))=w(X)(¢(X)+I(X)¢f(X))(¢(QX)+I(QX)¢(QX)) D)), Yy, (18)

where w is the weight function satisfying Eq. (5) and D,, the ¢-difference operator given by
Eq. (7).

DERIVATION OF THE g-DIFFERENCE EQUATIONS AND FACTORIZATION

Given (P,), a g-classical orthogonal polynomial sequence, we consider in general all
transformations which lead to new families of orthogonal polynomials denoted by (P,,),, and
are related to the starting sequence by Eq. (10). We have the following:

THEOREM 1 1- The orthogonal polynomials (P,),=p satisfy a common fourth-order linear
q-difference equation

Fu(y() = (Jalx, )G} + J30r, )G + Ja(x, m)GE + 105, m)Gy + Jole, m)) y (x) = 0,

where the coefficients J; are polynomials in x, with degree not depending on n and G, the
q-shift operator defined by

Gof (x) = f(gx).

2- The operator [, can be factored as product of two second-order linear q-difference
operators S, and T ,:

an]:n = Sn—[rm n = k7

where X,, and the coefficients in' S,, and T, are polynomials in x of degree not depending on n.

Proof In the first step, we solve Eq. (10) in terms of Pfﬁk_l

Fn(x) — B,(x) Pn+k(x)

po ’
An(x)

k-1 () =
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and substitute the previous relation in Eq. (16) in which n is replaced by n + k. Then we use
Eq. (7) (for P,) to eliminate the term P, ;(g°x) and get

Mn+k(Fn) = bIPnJrk(qx) + bOPnJrk(x)a (19)

where b; are rational functiorgks of x and M, a second-order linear g-difference operator
given in terms of operator D, ,, (see Eq. (16)) by

M k(3) = Au(x) An(gx) An(g’x) Dj;k <Ay) : (20)

Next, we shift Eq. (19) and again use Eq. (7), to eliminate P,H_k(qzx), and get

GoMhy ik (Py) = €1Pygi(gx) + coP (). (2D
We reiterate the same process using the previous equation and get

Gy 41 (Py) = di Prysi(q) + doPyi(x), (22)

where c¢; and d; are again rational functions of x.
From Egs. (19), (21) and (22), the following fourth-order g-difference equation holds,
in a similar way as in Ref. [4]:

bl bO Mthk(Fn)

[Fn.,O(Fn): 1 o ngn-Hc(Fn) =0.
dl do gZMn+k(Fn)

After cancellation of the denominators, the previous equation can be written as
Fro(Pu) = e2G:My1x(Py) + €1GgMyyi1(Pr) + oMy 4 (Py) = [Spo T dP) =0, (23)
where the second-order g-difference operators S, o and T, are given by
Sno =G, +e1Gg+eol, T, =My, (24)

with e, i = 0, 1,2 being polynomials in x. We conclude the proof by noticing that after
cancelling common factors of the polynomial coefficients of the g-difference operators [, o
and S, o appearing in Eq. (23), we obtain the factorization

Xﬂ [FVL = Sn—ﬂm (25)

where X,, is a polynomial of degree not depending on n, [, and S, are the g-difference
operators of order 4 and 2 (with polynomial coefficients) obtained respectively from [, o and
S,0 by cancelling common factors and taking care that the polynomial X, and the
polynomial coefficients of [, as well as those of S, have no common factor.

We would like to mention that the factorization of the fourth-order g¢-difference
equation satisfied by the first associated (i.e. » = 1) g-classical orthogonal polynomials was
derived in Ref. [10]. The previous theorem factorizing the fourth-order g-difference
equation satisfied by orthogonal polynomials P verifying Eq. (10) is a new result.
For example, it can be used to deduce the factorized form of the fourth-order g-difference
equation satisfied by the rth associated g-classical orthogonal polynomials for any positive
integer r. An application of this result will be given in section “Specializations and Application”.
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In what follows, we will denote respectively by F" FUk#l Flrkul fleAl gpg plemAl e
fourth-order g-difference operators for the rth associated, the generalized co-recursive, the
generalized co-recursive associated, the generalized co-dilated, and the generalized
co-modified orthogonal polynomials. SL’), Tff) and X" represent respectively the second-
order g-difference operators and the polynomial factor appearing in Eq. (25) for the rth
associated case.

COROLLARY |  The fourth-order g-difference operator [Fflr) for the rth associated g-classical
orthogonal polynomials factorizes as

Sg)—ﬂ_;r) = Xn((Ta 7P, Ar—1 )[F;f)y (26)

where X, = X, (o, 7, P,—1,A,—1) is a polynomial depending on o, 7, P,— and A,—.
The fourth-order g-difference operator [Fﬁf) can also be factorized as

Sg)—ﬁ—:’) = X,,(O', T, Qr*lv )\rfl)[F;r), (27)

where the expression X,(o, 7,Q,_1, A,_1) and the operators S(:) and ﬂ';r) are obtained from
the expression X, (o, 7, P,—1, \,—1) and operators Sflr) and —I]'flr) (see Eq. (26)) respectively by
replacing the polynomials P,—, with the function Q,—.

For all g-classical orthogonal polynomial families, we have computed using the software
Maple 8 [24] the expression of the polynomial X(o, 7, P,—1, A,—1) and also the coefficients
of the operators I]:f[)7 §flr) and Tf[). Since these results are too large and space consuming
we will give them only for the g-Charlier and for the Stieltjes—Wigert cases (in section
“Specializations and Application”).

SOLUTIONS OF THE FOURTH-ORDER g-DIFFERENCE EQUATIONS

In the following, we solve the fourth-order g-difference equation satisfied by the five
perturbations listed in the section “Preliminaries” and represent the new families of
orthogonal polynomials in terms of solutions of second-order g-difference equations. It shall
be noticed that the results given in the following theorem (Theorem 2) were recently
obtained by Ismail and Simeonov using a different approach [18].

THEOREM 2 Let (P,), be a g-classical orthogonal polynomial sequence, r € Z, and
(Pﬁl’)),, the rth associated of (P,),. Four linearly independent solutions of the difference
equation

FPm =0, (28)

satisfied by (P"), are

AD(x) = W(x) Pr—1(x) Py (%),
BV (x) = w(x) Py—1(x) Qpir(x),

(29)
CO(x) = w(x) Qy—1(x) P r(x),

D (x) = w(x) Qr—1(x) Quer (%),
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Q,, denoting the function of second kind associated to (P,), which is defined by Eq. (12).

Moreover, Pﬁ,’) is related to these solutions by
P(r)(x) — Bglr)(x) - Cl(‘lr)('x)
" ’YOFrfl

_ w(x) (Pr—l(x)Qn+r(x) =010 Pil+r(x))
Yol'—1

, YneN, VrelZz,,

where vy, given by Eq. (14) and T}, is given by
I ZH%, In=1
i=1
Proof In the first step, we solve the g-difference equation
TP =0.

To do this, we use Egs. (18), (20) and (24) as well as the relation [7]

P,_ PV
Pﬁlr)(x) = ﬂpi}-})—rfl(x) - ’_Z(X) PVH—r(x)a n= 07 r= 27
Fr*l Fr*l
to get
ES
TOW) = Myt (9) = Pr—1(x) Pr—1(q) Pr—1(¢*0) D, ,, (PL])

=P, 1(x) P, 1(qx) P 1(g* ) w (%) (¢ (x) + t(x)§h(x))
X (¢ (gx) + t(gx) P (qx)) Dygr(2)/ b (), (30)

where the functions y and z are related by y(x) = z(x) w(x) P,—(x). Since the two linearly
independent solutions of D,,(z) = 0 are P,, and Q,, (see section “Preliminaries”), the
two linearly independent solutions of T(n’)(y) =0, (which are also solutions of Eq. (28)
thanks to the factorization X [Fgl’) = S;r)"ﬂ'gf) are

AD(x) = w(x) Pr—1 (x) Pyr (%),
BV (x) = w(x) Pr—1(x) Q. (x).

Using Eqs. (27) and (30) and the fact that the function Q,, and the weight function w satisfy
Egs. (4) and (5) respectively, leads to

T20) = 0010 0,-1(gx) 0, 1(q>0) W) (b (x) + HO))

X (¢ (gx) + 1(g)P(gx) Doy r(2)/ b (gx), (31)

where the functions y and z are related by y(x) = z(x) w(x) Q,—(x). Equation (27) permits us
to conclude that the two independent solutions of an (y) = 0 (which are also solutions of
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Eq. (28) due to Eq. (26)) are given by

CO(x) = w(x) Q-1 (x) Py r(x),
D (x) = w(x) Qr—1(x) Qur ().

The four obtained solutions of Eq. (28) are linearly independent since P, and Q, are
two linearly independent solutions of Eq. (4) and have different asymptotic behavior
(see Eq. (14)).

Next, we state the following theorems for the generalized co-recursive, co-recursive
associated, co-dilated and co-modified g-classical orthogonal polynomials. The proofs are
similar to the previous ones and are also similar to those given in Refs. [11,12] for the
continuous and discrete cases. However, one will need the following relations [11,12] linking
the modified families to the starting ones.

2 (1)
PEZkﬁu](x) _ M?k(x) P,gl,)l(X) + (1 n MPk(;)Pk1>Pn(x), n=rk+1:
k k
P,_i(x Py, (x) PO (x
PP (x) = < Fri(l ) _ K "*F(rjk it )> P,

. (P%(x) P WP

Puy(x), n=k+1;
| | P ) *

Pkl <1 - )\)Pk_l(x)P,i”l)Pn(x)

| -
1 — AP (0P,
+( A) Fk 1(x) "(x)Pil_)l(xL n=k+1,
k—1
1= A) Py ()P PP
PLk"““’A](X)Z 1_( A) Pr—1(x) =1 +/~L (X) k—l(x) P,(x)
| P Iy

N ((1 — V)P 1(0) Pu(x)  pwPR(x)
| Iy

)Pﬁ,‘ll(x), n=k+1.

THEOREM 3 Let (P,), be a g-classical orthogonal polynomial sequence, k € N and
(PELI‘*”“]),, the generalized co-recursive of (P,),. Four linearly independent solutions of the
q-difference equation

FErlyy =0, n=k+1,
satisfied by (P**),are (with n = k + 1)
Al () = wx) PR(x) Po(x),
BYH(x) = w (x) Py(x) 0 (),
CUr ) = [yolk + pmw(x) Pe(x) Qu(x)] Po(x),
D) = [yol % + pw(x) P(x) Qi(x)] Qu (),

where Q,, is the function of second kind associated to (P,), defined by Eq. (12).
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Moreover, P,llk*“] is related to these solutions by

Yol & + pw(x) P(x) Ok ()] Pulx) = pow (x) PR(x) Qn(x)

P[k,M] — [
" Yol &

k=0, n=k+1.

THEOREM 4  Let (P,), be a g-classical orthogonal polynomial sequence, k € N and (PL"”"),,
the generalized co-dilated of (P,),. Four linearly independent solutions of the difference
equation

Fl) =0, n=k+1,
satisfied by (PL"’M),, are (withn=k+1)

AR () = w (x) Py (x) Pe(x) P, (),
BN () = w (x) P 1 (%) Pi(x) Qu (),
C*N) = [yl + A = Dyew () Pre1 (6) Q)| P,
DN = [0l + (A = Dyow () Pic 1 (0) 04(0)] Qul):

The co-dilated PL"’M is related to these solutions by

pleaAl — [Tk + (A = Dyaw () P (%) Q)] Po(x) = (A = Dyaw (1) Py 1 () Py(x) Qp(x)
" Yol 7

n=k+1.

THEOREM 5 Let (P,), be a g-classical orthogonal polynomial sequence, k € N, r € 7.
and (P,[,r’k"’”)n the generalized co-recursive associated of (P,),. Four linearly independent
solutions of the g-difference equation

Firk#ly)y =0, n=k+1,
satisfied by (PI*#h), are (withn = k + 1)

AR () = (Yo L Pr—1 () — pw () Py (x)

[Pre1(0) Qietr () = Qr—1(0) Picsr ()] ) w (1) P (1),
B ) = (Yol hewrPre1 (1) = pw () P (%)

[Pr—1(X) Qi () = Qr—1(X) Py ()] ) w (%) Qi (),
CUoM (x) = (Yol ksr @r—1(x) — pw (x) Qg (%)

[Pr—1(X) Qi () = Qr—1(X) Py ()] ) w () Py (),
DU () = (¥l sy @ 1(X) — w (x) Qg (x)

[Pr1(0) Quear () = Q1 (%) Piger ()] ) w (x) Qs ().
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Moreover, P\"** s related to these solutions by

P{r‘k’M} — (Pr—l(x) _ [.LW()C) Pk+r(x) [Pr—l(x) Qk+r(x) - Qr—l(x) Pk+r(x)]

. ’}/()Fr_l ’Y(z)rrflrk-q—r ) w (x) Qn+r(-x)

_ (Qr—l(X) W) Qe () [Pro1 () Qi r(0) = Qr1 (1) Py (0)]

w (x) Ppgr(x),
'YOFrfl 3/20F,_1Fk+, ) ( + (

r=1, n=k+1.

THEOREM 6 Let (P,), be a g-classical orthogonal polynomial sequence, k € N and
(PEZ"“’)‘])” the generalized co-modified of (P,),. Four linearly independent solutions of the
q-difference equation

Flrtly)y =0, n=k+1,
satisfied by (P*M) are (withn = k+ 1)
AN = [(A = DyPr1 () Pex) + wPr (0] w (x) Py (),
BN () = [(A = Dy Pee1(0) Pe(x) + wPr(0)] w (x) (%),
CUrN ) = [yl + A = 1) Y w () Pt (x) Q(x) + pw (x) Pix) Qi ()] Py(0),

DA ) = [yl + (A — 1)y w () P (x) Q%) + pw (%) Pi(x) Qx(x)] Q)

The co-dilated P**N s related to these solutions by

plkadl — (1 " A= Dyw®)Pr—1(x) QI}(X) + pw (x) Pr(x) Qk(x)> P.(x)
Yol k

_ A= Dyw@ Py @) Pux) + pow P
Yol

0,x), n=k+1.

SPECIALIZATIONS AND APPLICATION

In this section, doing computations with Maple 8 [24], we give explicitly the fourth-order
g-difference equation (and its factorized form) satisfied by the g-Charlier and the Stieltjes—
Wigert polynomials. We also give data as well as second-order g-difference equation and the
three-term recurrence equation for the g-Charlier and the Stieltjes—Wigert orthogonal
polynomials [20]. Notice that the data on the g-Charlier polynomials defined on the lattice
x(s) = ¢° are given in Ref. [1].
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The g-Charlier Polynomials

The g-Charlier polynomials are defined by

q n
Cn(q”;a;q)=(—a_1q;q)n1¢1<_a_1q q;—a'qg"t"" “), (32)

where

(a;q), =1 —a)1 —qa)...(1 = ¢" a);
and
k

(a3 q)k 1Y koD x
(O} .
: ( > ZO (b; q)k ’ (@ D

The monic g-Charlier polynomials, denoted by (P,),, are related to the g-Charlier
polynomials by

Culq “ia:q) = (—a) "q" Py(x), x=gq ",

and satisfy the following three-term recurrence equation
XPy(0) = Ppa1 (0 + [1+q~ " {a+q(1 = ¢")a +¢")}]
X Pu(x) +aq' (1 = ¢")a +q") Py (x).
P, satisfies the second-order g-difference equation
(gx = DY@ 0 = (@" 'x+a = 1D)y(go) +ay(x) =0,

which is equivalent to Eq. (4) with

(x—Dg—a A (I —q"q

d(x) =ax, Y= s A= : (33)
-1 (1-¢q?
The g-Charlier weight w (x) given by
s(s+1)
N 2
W(x)=L7 x:q_‘f7
(45 9)s

satisfies the g-Pearson equation (5) with the polynomials ¢ and ¢ given as in Eq. (33).
The fourth-order g-difference operator [Ffl’) for the rth associated g-Charlier orthogonal
polynomials is given by

”:t(lr) = 14(77”,6]»x)g3 + [3(7', n, q;x)g; + 12(7', n, an)gz

+11(”7”7q7)€)gq +10(r7n7Q7x)7
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with the notations: v = ¢, p = ¢" and

Io(r,n,q,x) = (x — Dag(—1 +a — q+ aq + vxqg* + ¢°>xpv);

Lir,n,q,0 = —¢*vplgp+ Dx* = ¢* Vv (gp +2¢°p+ ¢ p* + g+ p) (=1 + a)x?
—q(—1+a) (qva - aq2 + quva + aq2v+ gpva +a + q3pva + va — qv
—gpv—v—q’pr—vg’> — ¢’pv)x — (1 + ) (~1 + a)a’q — a — aq + q);

L(r,n,q,x) = ¢*v*(gp+ D(g*p* + Dx* + (1 + @vg® ( — ¢*p*v+ ¢ vp’a+ q*pra
+q°vp’a — q°p*v—q*pv— q*pa+ qra+ gpva — qpv — qv —aq — v
+ Va)x2 + q( —2a%q* +2a°¢°pv + 2aq* + 2aq + 2q*pva® — 2a*q — 3wa
— 4qva + 2a*v+ 2vq”* + 2a’qv + 2a*q* v+ 2v + 2¢° pv — 4q*pra
+ 2qv+ 2q°pv — 3qpva + 2qpv — 3aq’v — 3¢>pva + quvaz)x
+(1+@*(—1+aa*+1 - a);

I(r,n,q,%) = —q°v*plgp + Dx* = ¢*v*(¢*p+ 1 + 2gp+ ¢*p* + ¢°p)(— 1 + a)x?
—q(—1+ a)(q3p1/a + aqzv+ aq3 + gpva + qva + quva —aq+va — qv
—qpv—v—q’pv—vg> — ¢’pv)x — (1 + g)(~1 + a)a* — a — ag + 1);

I4(r,n,q,x) = (¢°x — Da(g*xpv+ gxv— g+ ag — 1 + a).

The operator [Ffl’) factorizes as
X,FO =sUTY,
with
X, = (gx — DX (g*x — D>(xv— 1+ a)
X(a*—a+axv+ 1 — xv+ grva — vgx + vigx? — aqx)Pf,l(qx) —a(g*x — 1)?
X (gx — 1*Qv*qx? + 2gxva — agx — 2vgx — 2xv + 2axv + 2 + 2a* — 3a)

X P,—1(x)P2_ (gx) + (gx — 1)*(g*x — 1)?a*(a — 1 + vgx)P2_ | (x) P,—1(gx);

T = algx — 1) Pr—1(gx) Pr-1(0)G, — (a = 1 + gxpv) P,— 1 (x)
X (_Pr—l(x)a + aPr—l(q-x) - Pr—l(qx) + Pr—l(C]X)XV)gq + ()C - 1)Pr—1(qx)

X(=Pr-1(Wa + aPr-1(gx) = Pr-1(gx) + Pr—1(gx)xv).
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The left operator factor Sff) is given by
Sy = Ja(r,n,q,0)G, + J1(r,n,q,X)Gy + Jo(r,n, q, %),
where

Ja(r,n,q,x) = Proi(go)(q’x = D(gx = DX (@ xpy+ qxv — g +ag — 1 + a);
Ji(ryn,q,0) = —(gx — )(=2a%q> — qrxa +2aq” +a — q — 3a’q + a’q> — xa’q’ — ¢
+aq’x 4+ a’q + a’¢*xpv+ wxq*a’p — a* + 3aq + a’qx — 2qxva — 2aq*xv

+ aquv+ q3x21/2a + azqzxv+ an2q3 + gxv+ vxq3 - q3x21/2 + quz

- 2vaq3x + q3xp1/+ Vq4xp + qzxpv - 2q4v2x2p - (]5)62,021/2 + q5x3p2v3

— 2@ p + q*x*vPp — g2 pv? + ¢x*p*vPa — 2q xpva — 2uxq*ap
+ q*xpa® — 2q°xpva + 2v°x*q ap + aq’x*pv® + ¢°x*pr’a) P, (qx)
+(gx — Dag(—1 4+a — g+ aq + vxq* + ¢>xpv)(a — 1 + gxpv) P,_1(x);
and
Jor,n,q,x) = (—14+a— g+ aq + vxq*> + ¢*xpv)
X ag(—qxa — a+a* + axv+ 1 — xv+ gxva — gxv+ qx*v*) P,_1(gx)

— (=1 +a—q+aq+ wq* + ¢>xpv)a’qla — 1 + qxv) P, (x).

The Stieltjes—Wigert Case

The Stieltjes—Wigert orthogonal polynomials are defined by

1 q"
Sn(x; q) = @D b, 0
>Y)n1

and are related to the monic Stieltjes—Wigert orthogonal polynomials (P,,), by

(—1'g"™
(q: 9

(P,), satisfy the three-term recurrence equation

S,(x;q) = P,(x).

Py() = Poi0) + ¢ 1+ = ¢ Py + 4" (0 = g™ Py ),
and the second-order g-difference equation
aoy(q*x) + [gx(1 = g™ — (gx + D] y(gx) + y(x) = 0,

the latter equation being equivalent to Eq. (4) with

=1 _(—¢"

b0 =2 =T M=

(34)
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The Stieltjes—Wigert weight defined by

1
(X Poo(—gx 1 @0

wi(x) =
with
(@ @) = [ [ (1 = ag®),
k=0

satisfies the g-Pearson Eq. (5) with the polynomials ¢ and ¢ given by Eq. (34).
The fourth-order g-difference operator [F;’) for the rth associated Stieltjes—Wigert
orthogonal polynomials is given by

FY = Li(r,n,q,0G, + I5(r,n,q,0)G, + I(r,n, 4, )G, + 1,(r,n, q,)G, + Io(r,n,q,x),
with the notations: v =¢", p=¢" and
Io(r,n, q,x) = qx(q’xpv + xvq” + g + 1);
Li(r,n,q,%) = —q*vVplgp+ Dx* = ¢*v*(q+ ¢°p”> +2q°p+ p+ gp)x”
—q(vg> +v—q>+qpv+ g pr+ 1 +qv+q°pr)x — qlg + 1);
Lr,n,q,0 = v’q*(gp + D(g*p” + x> + vg*(g + 1)
X (vg’p® = ¢°p+vg’p* + ¢’ pv+ qpv+ qv — q + v)x’
+29(—=q*> = q+q°pv+vq’ + ¢ pr+qpv+qv+ vx + (g + 1)
Ii(r,n,q,%) = —q°v’plgp+ Dx* — ¢*v*(q°p+2qp+ ¢°p* + ¢’p+ Dx?
—qlqv—q+q’pv+vg’ + @ pr+gpr+ v+ —q—1;
L(r,n,q,%) = ¢°x(¢°xpv+ q + gxv + 1).
The operator " factorizes as
X,FO =sVTY,
with
X, = q5x4(1 +xv)(1 +xv — gx 4+ vgx + quxz)Pr—l(qx)3
— q5x4(21/2qx2 +2vgx + 2xv — gx + 2) P, 1(x) Prfl(qx)2

+ ¢ °x* (1 + vgx) Pr—1(x)*Pr—1(gx);

TV = gxP,_ (%) Pr1(@0)G; = Proa()(=Prt ()

+ Pr—1(gx) + Pr—1(g0)xq")(1 + gxq"q")G,
+ xPr—1(gX)(=Pr—1(x) + Pr—1(gx) + Pr—1(gx)xq").
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The left operator factor Sff) is given by
SE:’) = 12(r7n7 q7x)g62] + Jl(r7 n, Cb-x)gq + ]0(r7n7Q7x)7
where

Jo(r,n,q,x) = ¢°x’Pr_1(gx) (¢%xpv + q + gxv + 1);

Ji(r,n,q,%) = qx(g°xpv + xvg*> + g + 1) (1 + qxpv) P, (x)

- qx(xvq2 + gxpv+xv+q — ¢*x + ¢*x* v + V¢’ p+ ¢xpv

+x+ v3x3p2q4 + 2v2q3x2p + szqu + quzxzp + 1/2614x2p2

+ 14+ gxv+ qzxpv) P,_1(gx);
and

Jo(r,n,q,x) = —(gxv+ 1) (¢ °xpv+ xvg*> + ¢ + 1) Pr—1 (%)

+(—gx + gxv+ 1 + xv+ gx*v?) (¢*xpv + xvg® + g + 1) Pr—1(gx).

Extension of Results

1. Let v be a real number with » = 0 and (P"), the family of polynomials defined by
P00 = @ = Burn) PV = Yarn P (), =1,
with the initial conditions
PY(x) =1, PPx)=x— B,

where 3,1, and v, , are the coefficients 3, and vy, of Eq. (8) with n replaced by n + v.

We assume that the starting family (P,,), defined in Eq. (8) is g-classical. The coefficients
B, and v, are therefore rational functions in the variable ¢ " [19,23] and the coefficients B,,
and v, , are well-defined. When 7,1, # 0, Vn = 1, the family (P\"),, thanks to Favard’s
theorem [6,8], is orthogonal and represents the associated of the family (P,,),, with real order
of association (see for example, Ref. [5]). Theorems 2 and 5, can be generalized to the real
order of association v (with ¥ = 0). The proof is similar to those given in Ref. [11,12] for the
continuous and discrete cases.

2. The factorization pointed out in Eq. (26) (see also Eq. (29)) can be used to prove the
following proposition, whose proof is similar to those given in Refs. [11,12] for orthogonal
polynomials of continuous and discrete variables.

PROPOSITION | Two linearly independent solutions of the g-difference equation
S =0,
are

EVx) =TO(CVw), FOx) =TOD (),
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where the operators §£lr) and —I]'Elr) are those defined in Eq. (26) and the functions Cﬁl’)(x) and
D,([)(x) given by Eq. (29).

The previous proposition can also be generalized to real order of association (see Refs.
[11,12] for orthogonal polynomials of continuous and discrete variables cases).

Remark 1 Using the previous proposition one can solve a family of second-order
g-difference equations with polynomial coefficients. This proposition, given for the
associated g-classical orthogonal polynomials can be used to solve the g-difference
equation S,(y) = 0 where S,, is the left factor of the factored form of the fourth-order g-
difference operator F,(X,F, =S,T,) for other modifications of g-classical orthogonal
polynomials (see Section 2).

Theorem 1, valid for orthogonal polynomials (P,), satisfying Eq. (10), with the initial
family (P,), being g-classical can be extended as in Refs. [11,12] to more general situations.
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