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Abstract
The indefinite integral has a dual nature: an antiderivative and a definite integral over
variable intervals f f(t)dt. The latter aspect can be demonstrated effectively in the class-
room, using symboliz computation. Using limits of special Riemann sums one can compute

T

certain indefinite integrals [ f(t)dt. Examples where this works include ¢™ (for all real m),
a

sint, cost, e, Int. Having gained a concrete understanding of the indefinite integral, students

can then use DERIVE’s built-in integration INT (f,x) to get other indefinite integrals as needed.
This constructive approach allows teaching integrals independently of derivatives.
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1 Introduction

As every calculus student knows (or should know) there are two kinds of integrals of a(n integrable)
function f in an interval [a, b]:

definite integral, defined as a limit of Riemann sums'

b
[ f@)ds = Jim Z F (&) Ay, (1)

indefinite integral, for which there are two definitions:
e antiderivative (or primitive) of f in [a,b], i.e. a function F' satisfying

F'(z) = f(z), (2)

at all points z in [a, b], with the possible exception of a countable set. F' is defined up
to a constant, the constant of integration.

e definite integral over a variable interval,

~ [ sy, (3

with the constant of integration determined by the lower endpoint a.

Definitions (2) and (3) are reconciled by the Fundamental Theorem of Calculus (FTC)2.

Theorem 1 (FTC, First Form; (Howson, 1972, p. 136)) Let f : [a,b] — R be integrable on
[a,b], and let F : [a,b] — R satisfy the conditions:
(a) the derivative F' exists and F'(z) = f(z) for all z € (a,b);
(b) the limits Ilg& F(z) and l1r£1 F(z) exist.
Then
/f dx—hm F(z) — lim F(z). O (4)

r—b_ a4

Theorem 2 (FTC, Second Form; (Bartle and Sherbert, 1992, p. 252)) Let f : [a,b] —
IR be integrable on [a, b], and let

mm:/ﬁmﬁ for all z € [a, 8] ; (5)

!Notation explained in § 2.

2Calculus books do not agree which theorem should be called the FTC, using either Theorem 1 (see e.g. (Shilov,
1973, §9.3, Theorem 9.33)), or Theorem 2 (e.g. (Lang, 1978, Chapter IX, §5, Theorem 5)), or a combined form (e.g.
Bartle and Sherbert, 1992, §7.3, p. 253)) emphasizing the inverse nature of differentiation and integration. These
are special cases (for one dimension) of Stokes’ Theorem relating “surface” and “volume” integrals, see e.g. (Spivak,
1965, Theorem 4-13), which is arguably the “true” FTC.



then F' is continuous on [a,b]. Moreover, if f is continuous at a point z € [a,b], then F is
differentiable at = and

(2) Fl(z) = f(z). O

b
Theorem 1 is useful for computing definite integrals [ f(z)dxz because

a
e for many familiar functions it is an easy exercise to find, or verify, an antiderivative,
e if F' is continuous at the endpoints a and b, then (4) assumes the form

b
[ (@) ds = F() - Fla) . (6)

Because of (6), several important calculus books? delay the definite integral until after indefinite
integrals, placing it near the end of one-variable calculus. Such practice is a deviation from the his-
torical order; special definite integrals were evaluated correctly about 2,000 years before calculus?.
As this chronology suggests, the definite integral is conceptually simpler than differentiation. More-
over, using computers to demonstrate the convergence of Riemann sums, the definite integral can
be made concrete and constructive in a way which allows teaching it effectively as early (after
limits) as one wishes.

b
For the definite integral [ f(z)dz to exist, it is only required that f be integrable in [a,b)].
a

An integrable function f may have countably many discontinuity points in [a,b], at which points
the indefinite integral F' may be non-differentiable. However, as long as we use the same indefinite
integral F' (i.e. the same constant of integration) throughout [a,b], the formula

(6) [ 7e)de = FO) - Fla)

is valid. This is illustrated by the following

Example 1 (The sign function) The function

-1 ,2<0
SIGN(z) := ¢ undefined , =0 (7)
1 ,x2>0
is integrable throughout IR,
T
/ STGN(t) dt = |z — |a] . ()

a

Therefore |z| is an indefinite integral of SIGN(z). The function |z| is non-differentiable at 0, where SIGN(x)
is discontinuous. At all other points, the derivative of |z| is SIGN(z).

*E.g. (Bartle and Sherbert, 1992), (Landau, 1951), (Lang, 1978) and (Nikolskii, 1975).
See references to Democritus and Archimedes in any book on the history of mathematics, e.g. (Edwards, 1979,
Chapters 1-2).



In applications of the indefinite integral F' to compute definite integrals, using (6), the differen-
tiability of F' (i.e. its antiderivative aspect) is a secondary issue. The indefinite integral can then
be based on

(3) Flz) = f fitydt,

defining it as a definite integral over a variable interval [a, 2], independently of differentiability and
derivatives.

The purpose of this paper is to demonstrate that this is pedagogically feasible, by illustrating
Definition (3) constructively for some familiar functions. Such illustrations require the computation
of

e Riemann sums over a variable interval [a, z], and
T
e limits of such Riemann sums giving [ f as a definite integral.

a
This is made possible by symbolic computation, done here with DERIVE.
2 Riemann sums and definite integrals
This section is devoted to computing definite integrals numerically, using limits of Riemann sums.

First some notation. Let the function f be defined and bounded on a (closed, finite) interval [a, b].
The (definite) Riemann integral of f from a to b, is defined by

b
a/ f)dr = Hm (P66 (9
where S(f,P,&1,...,&,) is a Riemann sum of f,
S(fapaglaagn) :Zf(gk)Axka (10)
k=1

corresponding to:
e a partition P of [a, b], specified by n + 1 points
=20 <1 <To< < xTp1<xTp=">=, (11)
giving n subintervals Iy := [z _1, zx] of lengths
Azy =z —xp—1, (k=1,...,n), (12)

and,
en points § € I, (k=1,...,n).
The norm ||P|| of the partition P, which features in the limit (9), is defined by
P := max Axy . (13)
The function f is Riemann integrable on [a,b] if the limit (9) exists, and is the same, for all
partitions P of [a, b], and for all selections of & in Ij.



Remark 1 (Upper and lower Riemann sums) If the function f, in each subinterval I, assumes
its maximum value

zk—rlnﬁafﬁmk f(CU) ’

and its minimum value

p, min_ fx),

then substituting these values for f(&.) in (10) gives the upper and lower Riemann sum, respectively,

Supper(f,P) = Y (Ik max ()) Azy (14)
k=1

Stowen(£P) = Y- (, min @) Ane. (13
k=1

which bound all Riemann sums of the same partition,

Svower(f,P) < S(f,P,&,..-.&) < Supper(f,P) . (16)

We conclude that f is integrable in [a, b] iff
li S = i S 17
A Lower (f;P) A vpper(f, P) (17)

the common value is the integral f; f. However, computing the upper and lower sums is not practical in
general, since these sums require the maximum and the minimum of f in each subinterval. An important
exception is the class of monotone functions, where the upper and lower sums are quite easy, see Remark 2.

When writing a computer program for Riemann sums, it is convenient to use simple partitions, and
uniform selection rules for the points . The simplest partition of [a, b] is the regular partition,

b— b—
xk::cH—kTa and Axk:Ta forall k=0,...,n. (18)

With the regular partition, we use two selection rules for the point £ in each subinterval [, =
[xkfla xk]a

e left endpoint: ¢ := zj_1, giving the Riemann sum of f in [a,b] as

“)éf(w(k—nb;“), (19)

e right endpoint: {; := zj, giving the Riemann sum
a n
)2
k=1

Remark 2 In each subinterval [x;_1, 2] where the function f is monotone (increasing or decreasing), the

b
SLEFT(f7$7a7 b7 ’fl) = (

Sricur(f,z,a,b,n) = <b a) : (20)

maximum and minimum values of f occur at the endpoints xj_1, z. For monotone functions, the sums
SterT(f, z,a,b,n) and Srigur(f,2,a,b,n) are therefore the upper and lower sums corresponding to the
regular partition.



Remark 3 If f is known to be integrable in [a,b], then it suffices to compute the limit of one Riemann
sum, say of Sygrr(f,z,a,b,n) as n = co.

Example 2 Consider the function f(z) = z? in the interval [0,1]. The two Riemann sums (19) and (20)
then give, omitting arithmetic details,

n

(5 tea Fer-estmen

k=1

Sverr(z?,2,0,1,n)

EEiapeenme

2

SRIGHT(w27m707 17”)

which converge, as n — oo, to the same limit, % . Since the function z? is monotone in [0, 1], we conclude

that
! 1
/ 2dr == .
0 3

DERIVE Session 1 DERIVE is used here to illustrate the above concepts, and to calculate few Riemann
sums. We omit DERIVE specifics, in particular which command (e.g. | Simplify |, | approX |, | Expand |

r [ Factor |) is used to transform a given expression. For the instructor, it is, however, necessary to know
that DERIVE evaluates a function f at a as a limit LIM(f,x,a). The left Riemann sum (19) of f in [a, b],
is then simply

S_LEFT(f,x,a,b,n):=(b-a)/n*xSUM(LIM(f,x,a+(k-1)*(b-a)/n),k,1,n)
Similarly, the Riemann sum (20) is computed by the function
S_RIGHT(f,x,a,b,n):=(b-a)/n*SUM(LIM(f,x,a+k*x(b-a)/n)),k,1,n)

Some teachers may argue that the students will not understand this definition using limits. If so, don’t bother
the students by showing them the definition, but use | Transfer Load Utility | instead, let the students
define an arbitrary function by F(x) :=, and | Simplify | the left Riemann sum S_RIGHT (F(x) ,x,0,n) to
get

n

.. b- GE:f[ b—aq_

Therefore, what the students see, is exactly the limit-free definition of the Riemann sum. This is so as
DERIVE assumes f to be continuous.

Now, for example, the left Riemann sum of f(x) = sinz in the interval [0, 7], with n = 100 is computed
by

4: S_LEFT(SIN(x),x,0,7,100), which is approximated, by DERIVE, to 9 1.99983 .

Similarly, S RIGHT (SIN(x),x,0,7,100) gives 1.99983. Increasing the number of partition intervals from
n = 100 to n = 1000, the left and right Riemann sums give the same approximate value 2, which is the
definite integral of sinz from 0 to .

DERIVE being a symbolic algebra package, it is unnecessary to specify the argument n in the above
Riemann sums. For example, the expression S_LEFT(x"2,x,0,1,n) gives

(n—1)(2n — 1)

10 :
6n2 ’

in agreement with (21) .



3 Riemann sums over variable intervals and indefinite integrals

In § 2 we fixed an interval I = [a,b] and computed the definite integral

b
/ f(t)dt (23)

a number, with a well-known interpretation as sum of signed areas. In this section we consider the
endpoints a and b to be variable. The integral (23) is now a function of the limits of integration a
and b, an indefinite integral.

To conform with standard notation, the upper limit of integration is renamed z.

DERIVE Session 2 We calculate the integral [ ¢?dt, for general a and z. The fact that the endpoints

a and x are arbitrary should not prevent us frogn using Riemann sums, like those in DERIVE-Session 1.
For example, the left Riemann sum S_LEFT(t~2,t,a,x,n) gives an expression that depends on a, x and n.
We take then the limit, as n — 0o, to get the integral. These two steps can be combined in the statement
LIM(S_LEFT(t"2,t,a,x,n),n,inf) which is displayed as

3 (7,3

T T
1: lim S_LEFT(t"2,t,a,x,n) and results in 2: —_-— - =, the integral f 2 dt.
n— o0 3 3 a
Next, the left Riemann sum of sint¢ from a to z, S_.LEFT(SIN(t),t,a,x,n) results in a surprisingly nice
expression

1 x a z(2n-1)
— Ccos — 41| - — —a)CO0S | —+ —717-——+
) (a=2) {a {Qn * } Qn] (z=a) [Qn * 2n }
v msm[Z 2] apsm[Z -2
2n  2n 2n  2n
whose limit® as n — oo,
7: LIM(S_LEFT(SIN(t),t,a,x,n),n,inf) is 8: C0S(a) — C0S(x) .

Similarly, the limit of the left Riemann sum of cost, from a to z,
11: LIM(S_LEFT(C0S(t),t,a,x,n),n,inf) , gives 12: SIN(z) — SIN(a) .
The left Riemann sum of ef, S_LEFT (EXP(t),t,a,x,n) gives

e (z —a) [e® — e%]

n [e’”/” — e“/”]

, and the limit, as n — oo, 14 : e’ —e®.

The left Riemann sum of % in [a,x], S_LEFT(1/t,t,a,x,n), gives

This limit is an easy exercise, using

sin u . a—x
=1, with u=
u—0 U 2n




i 1

15: —
(a w);k(a—x)—a(n+1)+x
and its limit LIM(S_LEFT(1/t,t,a,x,n),n,inf) is 16 : LN(z) — LN(a)

This approach works for some functions, and fails for others (even for functions with nice antiderivatives).
For example, trying to integrate t"* with unspecified m, using S_LEFT(t"m,t,a,x,n), gives an expression
whose limit as n — oo is too difficult®. Another example is tanz. Trying

17 LIM(S_LEFT(TAN(t),t,a,x,n),n,inf) ,
is futile: The left Riemann sum of tan ¢, S_LEFT(TAN(t),t,a,x,n) is,
n T a T 1
- TAN k[———]—— —+1
i ol ot R R ]

n

18 :

whose limit, as n — o0, is too difficult. Here we use DERIVE’s built in integration,
19: INT(TAN(t) ,t,a,x), to get 20 : LN(C0S(a)) — LN(COS(x)) -

We conclude that in symbolic computation of Riemann sums, variable intervals (corresponding
to indefinite integrals) pose no greater difficulty than fixed intervals (or definite integrals). The
difficult part, as illustrated above for £ and tan z, is finding a closed expression for the Riemann
sum. The next two examples, illustrate how “custom made” Riemann sums are easier than the
simple Riemann sums (19) and (20).

Example 3 (A nice trick) We calculate the indefinite integral,

€T

dt
/t—2, forO<a.

@

1
The function = is continuous in [a,z] for 0 < a < z, and therefore is integrable in [a,z]. By Remark 3, it
suffices to compute the limit of one Riemann sum.
Let {a = o < 21 < ... < xp_1 <z, = x} be any partition of [a,z], and for each k let the point &, be

selected as the geometric mean of the endpoints,

& =\Tr—1zp, (k=1,...,n).

Then the Riemann sum becomes

giving the correct answer without computing any limit!

5We overcome this difficulty in Example 4 by using a tricky Riemann sum.



Example 4 (Another trick) We compute the indefinite integral

x
/ t™dt, where0 < a <bandm is real.

a

It is convenient to use here a “geometric partition”, with partition points defined by the geometric sequence,
k
T\w
mk::a(—) . (k=0,1,...,n), (24)
a
instead of the regular partition. We define a left Riemann sum by taking & = xx_1,

S_LEFT_GEOM(f,t,a,x,n):=
SUM(LIM(E,t,a*(x/a) " ((k-1)/n))*(a*(x/a) " (k/n)-ax(x/a) "~ ((k-1)/n)),k,1,n)

and use DERIVE to compute’ the Riemann sum S_LEFT_GEOM(t m,t,a,x,n), giving

am/n (l.l/n _ al/n) (aerl _ Z.m+1)

qgm/n+l/n _ pm/n+l/n

whose limit as n — oo is
Z.m+1 _ am+1

m+1 ’ (25)

the indefinite integral of 2™, see Remark 4.
The value m = —1 poses no special difficulty. Indeed, S_LEFT_GEOM(1/t,t,a,x,n) gives

()"

whose limit, as n — o0, is Inz — Ina. This can be obtained alternatively, by taking the limit of (25) as
m — —1. Recall that the integrand 1/¢ was handled well also by regular partitions, see Derive Session 2.

Remark 4 Some calculus books give two answers for the integral of z™,

l.m+1

, m#—1
/xmda?: m+1 (26)

Inz ,m=-1

Since an indefinite integral is a definite integral with variable endpoints, it is natural to expect here one
answer, which holds for all m. The answer given by DERIVE’s built-in integration is pretty:

™t —1
L i — 27
[ (21)

which is (25) with a = 1, and so a constant of integration different from (26) is used. The limit of the right
hand side, as m — —1, is Inz.

"A DERIVE detail: It is required here to the variables a and z to be positive.



Remark 5 Note a difficulty in
1
/Edm:lnw-i—c (28)

is that Inz in the right hand side is defined only for positive x, while the left hand side is defined for all
nonzero x. So what is the integral of 1/z if = is negative? By changing variables it follows, for z < 0,

/ i dr =In(-z) + C. (29)

Many calculus books write one expression
1
/de:1n|a7|+0 (30)

which seems to combine (28) and (29). This is objectionable on two grounds:
¢ (30) is false in the complex case; indeed

In(—2)=lnz+in, (z€ C), (31)

showing that (28) is correct for complex z, where the constant of integration is likewise complex.

e (30) is misleading in the real case®. The function 1/z is not integrable in any interval containing z = 0,
and therefore (30) cannot unify the integrals (28) and (29) with the same constant of integration C.
It is therefore better to deal with the cases z > 0 and = < 0 separately, using (28) and (29) respectively®.

4 Discussion

In the old days of chalk and blackboard, it was difficult to demonstrate the definite integral

b n
(1) aff = lim > f(&) Az,

IPI|=0 k=1

as limit of Riemann sums, except for few simple examples'?. The indefinite integral was even

farther beyond the means of “numerical illustration”.

As shown in § 3, this has already changed. Using symbolic computation we can make the
indefinite integral as elementary and palpable as the definite integral. It is even possible to teach
indefinite integrals immediately after the definite integral, computing them as definite integrals
over variable intervals, for many functions, sufficiently many to get the point across.

We have thus computed here the following indefinite integrals (constants of integration omitted):

3
/demz% /sinxdx:—cosx /cosxdx:sinx
g™t — 1 1
[ e*dr =¢€" /xm dr = ——  (Remark 4) /—dx:lnx (Remark 5)
m+1 T

8See e.g. (Lang, 1978, pp. 269-270).

This is also how DERIVE gives the indefinite integral of 1/z.

197t can be argued that such numerical “evidence” is not needed for the “true” mathematician, capable of ab-
straction. However, the majority of students would greatly benefit from such examples, as they try to make sense of
Definition (1).



Other indefinite integrals can then be computed using either the built-in integration facility of
the symbolic package, or integration techniques, which however require knowledge of differentiation.

Moreover, both definite and indefinite integrals can be taught independently'! of differentiation,
which is no longer a prerequisite for teaching the indefinite integral.

Furthermore, DERIVE may effectively be used for numerical integration with the trapezoid and
Simpson rules (Koepf and Ben-Israel, 1993) adding another type of knowledge and experience not
available by hand calculations.

It should be noted that some knowledge of complex numbers is required for using symbolic
algebra intelligently. As calculus evolves we expect to see, at the high end of the calculus spectrum,
complex numbers (even functions of complex variables) covered quite early in the first semester.
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