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ABSTRACT
By considering a specific Sturm-Liouville problem, we introduce a finite sequence of
Hahn-type discrete polynomials and prove that they are finitely orthogonal on the
real line. We then compute their norm square value by using Dougall’s bilateral sum
and obtain all moments corresponding to the introduced polynomials.
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1. Introduction

According to [4, Chapter 2] (see also [8]), the second-order difference equation

σ(x)∆∇y(x) + τ(x)∆y(x) + λy(x) = 0, (1)

where

∆y(x) = ∇y(x+ 1) = y(x+ 1)− y(x),

and σ(x) = ax2 + bx+ c, τ(x) = dx+ e with d 6= 0 are polynomials of degree at most
2 and 1 can be written as

∆
(
σ(x)w(x)∇y(x)

)
+ λw(x)y(x) = 0,
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in which w(x) satisfies the Pearson difference equation

∆
(
σ(x)w(x)

)
= τ(x)w(x). (2)

The solutions of equation (1) with

λ ≡ λn = −n
(

(n− 1)a+ d
)
,

are polynomials of degree n, say y(x) = yn(x), and usually called hypergeometric type
discrete polynomials. They are orthogonal with respect to the weight function w(x)
on the counter set x = A, A+ 1, . . . , B [8] as

B∑
x=A

yn(x)ym(x)w(x) =

(
B∑
x=A

y2n(x)w(x)

)
δn,m with δn,m =

{
0 if n 6= m,

1 if n = m,

provided that w(x) > 0 for A ≤ x ≤ B and

σ(x)w(x)xk
∣∣∣
x=A,B+1

= 0, ∀k ≥ 0. (3)

According to [4, Chapter 2], for y(x) = yn(x), equations (1) and (2) can be written as

σ1(x)(∆2yn)(x) + τ1(x)(∆yn)(x) + λn yn(x+ 1) = 0,

and

∆
(
σ1(x− 1)w(x)

)
= τ1(x)w(x+ 1),

where

σ1(x) = σ(x+ 1) + τ(x+ 1) and τ1(x) = τ(x+ 1),

or

σ2(x)(∇2yn)(x) + τ2(x)(∇yn)(x) + λn yn(x− 1) = 0,

and

∆
(
σ2(x+ 1)w(x)

)
= τ2(x+ 1)w(x),

where

σ2(x) = σ(x− 1) and τ2(x) = τ(x− 1).

Hahn’s classification [2, 8] states that equation (1) has four orthogonal polynomial
solutions, which are known in the literature, respectively, as follows:
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• The Charlier polynomials

Cn(x; a) = 2F0

( −n,−x
−

∣∣∣∣−1

a

)
,

orthogonal with respect to the Poisson distribution weight function as

∞∑
k=0

ak

k!
Cn(k; a)Cm(k; a) = a−nean! δn,m (a > 0).

• The Meixner polynomials

Mn(x;β, c) = 2F1

( −n,−x
β

∣∣∣∣ 1− 1

c

)
,

orthogonal with respect to the Pascal distribution weight function as

∞∑
k=0

(β)kc
k

k!
Mn(k;β, c)Mm(k;β, c) =

c−nn!

(β)n(1− c)β
δn,m (β > 0, 0 < c < 1).

• The Kravchuk polynomials

Kn(x; p,N) = 2F1

( −n,−x
−N

∣∣∣∣ 1

p

)
, n = 0, 1, 2, . . . , N,

orthogonal with respect to the Binomial distribution weight function as

N∑
k=0

(
N

k

)
pk(1−p)N−kKn(k; p,N)Km(k; p,N) =

(−1)nn!

(−N)n

(
1− p
p

)n
δn,m (0 < p < 1),

• and the Hahn polynomials

Qn(x;α, β,N) = 3F2

( −n,−x, n+ α+ β + 1

−N,α+ 1

∣∣∣∣ 1), n = 0, 1, 2, . . . , N,

orthogonal with respect to the Hypergeometric distribution weight function as

N∑
k=0

(
α+ k

k

)(
β +N − k
N − k

)
Qn(k;α, β,N)Qm(k;α, β,N)

=
(−1)n(n+ α+ β + 1)N+1(β + 1)nn!

(2n+ α+ β + 1)(α+ 1)n(−N)nN !
δn,m (α > −1, β > −1).

In the above definitions, the functions 2F0, 2F1 and 3F2 are all special cases of the
generalized hypergeometric series [2, 3]

pFq

(
a1, a2, . . . , ap

b1, b2, . . . , bq

∣∣∣∣ z) =

∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

zk

k!
,
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in which z may be a complex variable and (a)k is the Pochhammer symbol defined by

(a)0 = 1 and (a)k = a(a+ 1)(a+ 2) · · · (a+ k − 1).

The following table shows the data σ(x) and τ(x) for each of the four above
polynomial families [2]:

symbol Qn(x;α, β,N) Mn(x;β, c) Kn(x; p,N) Cn(x; a)
σ(x) x(N + α− x) x x x

τ(x) (β + 1)(N − 1)− (α+ β + 2)x (c− 1)x+ βc Np−x
1−p a− x

As this table shows, all polynomial coefficients σ and τ have real zeros while we can
still consider a main case of the real difference equation (1) whose coefficients have
complex zeros with four free parameters. According to [4, Chapter 2], if we expand
the Pearson equation (2) as follows

w(x+ 1)

w(x)
=
σ(x) + τ(x)

σ(x+ 1)
=

σ1(x− 1)

σ1(x)− τ1(x)
, (4)

then it is clear in (4) that if σ(x) has degree < 2, it leads to the Charlier, Meixner
and Krawtchouk polynomials and if σ(x) has the exact degree 2, Hahn polynomials
are derived if both the numerator σ(x) + τ(x) and the denominator σ(x+ 1) have real
factorizations. However, another case in (4) is when the polynomials σ(x) + τ(x) and
σ(x + 1) are real but have complex zeros. In other words, write equation (4) in the
expanded form

w(x+ 1)

w(x)
=

ax2 + (b+ d)x+ c+ e

ax2 + (2a+ b)x+ a+ b+ c
. (5)

Then, two cases can be generally considered for the parameter a in (5), i.e. a = 0 or
a 6= 0. If a = 0, the result is well known in the literature. So, by assuming a = 1 6= 0
we will reach the simplified equation

w(x+ 1)

w(x)
=

x2 + (b+ d)x+ c+ e

x2 + (b+ 2)x+ b+ c+ 1
. (6)

Now, four cases can happen for equation (6):
i) Both numerator and denominator have real zeros, namely

w(x+ 1)

w(x)
=

(x+ p)(x+ q)

(x+ r)(x+ s)
, (p, q, r, s ∈ R). (7)

ii) The numerator has real zeros but the denominator has complex roots, namely

w(x+ 1)

w(x)
=

(x+ p)(x+ q)

(x+ r + is)(x+ r − is)
(p, q, r, s ∈ R). (8)
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iii) The numerator has complex zeros but the denominator has real roots, namely

w(x+ 1)

w(x)
=

(x+ p+ iq)(x+ p− iq)
(x+ r)(x+ s)

(p, q, r, s ∈ R). (9)

iv) Finally both numerator and denominator have complex zeros, namely

w(x+ 1)

w(x)
=

(x+ p+ iq)(x+ p− iq)
(x+ r + is)(x+ r − is)

(p, q, r, s ∈ R). (10)

It is worth mentioning that the solutions of each equations (7), (8), (9) and (10) can
be written in terms of the gamma function [13]

Γ(z) = lim
n→∞

n!nz

n∏
k=0

(z + k)

, (11)

which implies

Γ(p+ iq) Γ(p− iq) = Γ2(p)

∞∏
k=0

(p+ k)2

(p+ k)2 + q2
, (12)

is a real positive value for any p > 0 and q ∈ R. One of the consequences of (12) is
that

(p+ iq)n (p− iq)n =

n−1∏
k=0

(
q2 + (p+ k)2

)
(p, q ∈ R),

is a real positive value, too. Moreover, when p = m ∈ N, we have [7]

Γ(m+ iq) Γ(m− iq) =
πq

sinh(πq)

m−1∏
k=1

(
q2 + (m− k)2

)
.

Hence, the solutions of equations (7)–(10) can be, respectively, represented as

w(x) = w1(x; p, q, r, s) =
Γ(x+ p)Γ(x+ q)

Γ(x+ r)Γ(x+ s)
, (13)

w(x) = w2(x; p, q, r, s) =
Γ(x+ p)Γ(x+ q)

Γ(x+ r + is)Γ(x+ r − is)
, (14)

w(x) = w3(x; p, q, r, s) =
Γ(x+ p+ iq)Γ(x+ p− iq)

Γ(x+ r)Γ(x+ s)
, (15)

w(x) = w4(x; p, q, r, s) =
Γ(x+ p+ iq)Γ(x+ p− iq)
Γ(x+ r + is)Γ(x+ r − is)

. (16)
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On the other hand, since a weight function must be always positive, relation (13)
implies that p = q and r = s, leading to

w1(x; p, p, r, r) =
Γ2(x+ p)

Γ2(x+ r)
> 0. (17)

Also, by referring to the important relation (12), the function (14) is positive when
p = q, i.e.

w2(x; p, p, r, s) =
Γ2(x+ p)

Γ(x+ r + is)Γ(x+ r − is)
> 0. (18)

Similarly, for the case (15) we must have r = s, i.e.

w3(x; p, q, r, r) =
Γ(x+ p+ iq)Γ(x+ p− iq)

Γ2(x+ r)
> 0. (19)

Finally, for the case (16) we observe that no restriction is required and w4(x; p, q, r, s)
is always positive. A short look at relations (17), (18) and (19) shows that they are
just particular cases of the positive weight function (16). This means that we just deal
with a sequence of hypergeometric orthogonal polynomials of a discrete variable with
four free parameters which is finitely orthogonal on the real line. In the next section,
we study such a sequence and consider three particular cases of it and in section 3, we
compute all moments corresponding to the introduced polynomials.

2. A finite sequence of Hahn-type orthogonal polynomials

According to [4, Chapter 2], for p, q, r, s ∈ R, suppose that

σ(x) + τ(x) = (x+ p)2 + q2,

and

σ(x+ 1) = (x+ r)2 + s2,

which leads to the real equation(
(x+ p+ 1)2 + q2

)
(∆2yn)(x) +

(
2(p+ 1− r)x+ (p+ 1)2 + q2 − r2 − s2

)
(∆yn)(x)

− n(n+ 1 + 2p− 2r)yn(x+ 1) = 0, (20)

or(
(x+ r − 2)2 + s2

)
(∇2yn)(x) +

(
2(p+ 1− r)x+ p2 + q2 − r2 − s2 − 2p+ 4r − 3

)
(∇yn)(x)

− n(n+ 1 + 2p− 2r)yn(x− 1) = 0. (21)
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By referring to [2, Chap. 5], we look for a polynomial solution of equation (20) in the
form

yn(x) =

n∑
k=0

an,k

(
x− 1 + r + is

k

)
, an,n 6= 0,

which is a particular case of the general solution

yn(x) =

∞∑
k=0

an,k

(
x+ c

k

)
.

Since (
x+ c

k

)
=

(−1)k(−x− c)k
k!

=
1

k!
(x+ c)k,

where

xk = x(x− 1)(x− 2) · · · (x− k + 1),

and the following relations hold:

∆(x+ c)n = n(x+ c)n−1 and x(x+ c)n = (x+ c)n+1 + (n− c)(x+ c)n, (22)

we can directly reach the following result [4, Chapter 2]:

Proposition 2.1. The monic polynomial solution of the difference equation (20) can
be represented as

yn(x) = R̄n(x; p, q, r, s) =
(−r + p+ 1− i(q + s))n(−r + p+ 1 + i(q − s))n

(n+ 2p− 2r + 1)n
(23)

× 3F2

( −n, n+ 1 + 2p− 2r,−x+ 1− r − is
−r + p+ 1− i(q + s),−r + p+ 1 + i(q − s)

∣∣∣∣ 1)
= (−1)n

(−r + p+ 1 + i(q + s))n(−r + p+ 1 + i(q − s))n
(n+ 2p− 2r + 1)n

× 3F2

( −n, n+ 1 + 2p− 2r, x+ p+ iq

−r + p+ 1 + i(q + s),−r + p+ 1 + i(q − s)

∣∣∣∣ 1).
Proof. For c = r + is− 1, if in (20) we substitute

R̄n(x; p, q, r, s) =

∞∑
k=0

an,k(x+ c)k,
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and use the properties (22), we reach the recurrence equation

(k − n) (k + n+ 1 + 2 p− 2 r) an,k + (k + 1)
(
−s2 + 2i (p+ k − r + 1) s+ p2

+ (4 k − 2n− 2 r + 4) p+ 2 k2 − 4 kr − n2 + 2nr + q2 + r2 + 5 k − n− 4 r + 3
)
an,k+1

− (k + 1) (k + 2) (iq + is+ k + p− r + 2) (iq − is− k − p+ r − 2) an,k+2 = 0.

Now, by using the Petkovšek-van-Hoeij algorithm [3, 10, 12], we can solve the above
recurrence relation and apply Koepf’s Sumtohyper procedure of the hsum.mpl package
[3] in order to write the monic solution in terms of hypergeometric series.

The second representation of R̄n comes from (21) following the same approach and
using the basis (−x+ c)k for c = −p− iq with the property

∇(−x+ c)k = −k(−x+ c)k−1.

Using Zeilberger’s algorithm [3, 11] implemented in the hsum.mpl package by the
sumrecursion command, one can show that both mentioned representations of R̄n
are solutions of the following three-term recurrence relation

R̄n+1(x; p, q, r, s) = (x− cn)R̄n(x; p, q, r, s)− dnR̄n−1(x; p, q, r, s),

where

cn =−
(p+ r − 1)n2 + (p+ r − 1) (1 + 2 p− 2 r)n+ (−r + p)

(
p2 + q2 − r2 − s2 + 2 r − 1

)
2 (n+ p− r) (n+ 1 + p− r)

,

(24)

and

dn =
n (2 r − 2 p− n)

(
(n+ p− r)2 + (q − s)2

) (
(n+ p− r)2 + (q + s)2

)
4 (n+ p− r)2 (2n+ 1 + 2 p− 2 r) (2n− 1 + 2 p− 2 r)

, (25)

with the unique initial conditions

R̄0(x; p, q, r, s) = 1 and R̄1(x; p, q, r, s) = x+
p2 + q2 − r2 − s2 + 2 r − 1

2(p+ 1− r)
.

Remark 1. Relation (23) shows that there is a direct relationship between
R̄n(x; p, q, r, s) and the continuous Hahn polynomials [3, p. 200] defined by

Pn(x; a, b, c, d) =
in(a+ c)n(a+ d)n

n!
3F2

( −n, n+ a+ b+ c+ d− 1, a+ ix

a+ c, a+ d

∣∣∣∣ 1),

8



so that we have

R̄n(x; p, q, r, s) =
n!

in(n+ 2p− 2r + 1)n
Pn(ix; 1− r − is, 1− r + is, p− iq, p+ iq)

=
n!in

(n+ 2p− 2r + 1)n
Pn(−ix; p+ iq, p− iq, 1− r + is, 1− r − is).

(26)

We are now in a position to prove that the monic polynomials (23) are finitely
orthogonal on the real line. For this purpose, we first reconsider equation (20) and
write it in a self-adjoint form to obtain[

w4(x; p, q, r, s)(x+ p+ iq)(x+ p− iq)

×
(
R̄m(x; p, q, r, s)R̄n(x+ 1; p, q, r, s)− R̄n(x; p, q, r, s)R̄m(x+ 1; p, q, r, s)

) ]∞
−∞

= (n(n+ 1 + 2p− 2r)−m(m+ 1 + 2p− 2r))

∞∑
x=−∞

w4(x; p, q, r, s)R̄m(x; p, q, r, s)R̄n(x; p, q, r, s).

(27)

In order to show that the left hand side of (27) is equal to zero when m 6= n, we can
use the following limit relations

lim
x→∞

Γ(x+ a)

Γ(x)xa
= 1 and lim

x→−∞

Γ(x+ a)

Γ(x)xa
= (−1)a (∀a ∈ C), (28)

which can be proved directly via the limit definition (11). Since

deg
(
R̄m(x; p, q, r, s)R̄n(x+1; p, q, r, s)−R̄n(x; p, q, r, s)R̄m(x+1; p, q, r, s)

)
= n+m−1,

the left hand side of (27) is equal to zero for n 6= m if

lim
x→±∞

Γ(x+ p+ iq)Γ(x+ p− iq)
Γ(x+ r + is)Γ(x+ r − is)

xk+2 = 0 for any k = 0, 1, . . . , n+m− 1. (29)

By noting (28), it is now straightforward to verify that (29) is equivalent to

lim
x→∞

xk+2−2r+2p = 0 and lim
x→−∞

(−x)k+2−2r+2p = 0 for any k = 0, 1, . . . , n+m− 1.

(30)
Finally if in (30) we take max{m,n} = N , the left hand side of (27) would be equal
to zero if

2N + 1− 2r + 2p < 0⇔ N < r − p− 1

2
. (31)

In order to take care of the poles of cn in (24), we extend the condition (31) to

N < r − p− 1 < r − p− 1

2
. (32)
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The interesting point is that if the latter condition (32) is satisfied, the coefficient dn
in (25) is automatically positive. In fact, the sign of dn is the sign of

2 r − 2 p− n
(2n+ 1 + 2 p− 2 r) (2n− 1 + 2 p− 2 r)

.

Since n < max{m,n} = N < r−p− 1
2 , then 2r−2p−n > n+1 > 0 and 2n+1+2p−2r <

0. Moreover, 2n+ 2p− 2r − 1 < 2n+ 2p− 2r + 1 < 0 and we deduce that

2 r − 2 p− n
(2n+ 1 + 2 p− 2 r) (2n− 1 + 2 p− 2 r)

> 0,

that is, dn > 0 if (32) is valid. Favard’s theorem can be therefore applied to conclude
that the monic polynomial family {R̄n(x; p, q, r, s)} is orthogonal with respect to the
weight function w4(x; p, q, r, s). By noting these comments, it now remains to compute
the norm square value

∞∑
x=−∞

w4(x; p, q, r, s)R̄2
n(x; p, q, r, s) =

( ∞∑
x=−∞

w4(x; p, q, r, s)

)
n∏
k=1

dk.

From (25), first we have

n∏
k=1

dk =
{
n! (2r − 2p− n)n (p− r + 1 + i(q − s))n (p− r + 1− i(q − s))n (p− r + 1 + i(q + s))n

(p− r + 1− i(q + s))n

}/{
24n (p− r + 1)2n (p− r + 3/2)n (p− r + 1/2)n

}
.

On the other hand, using Dougall’s bilateral sum [2, p. 7]

∞∑
n=−∞

Γ(a+ n)Γ(b+ n)

Γ(c+ n)Γ(d+ n)
=

Γ(a)Γ(1− a)Γ(b)Γ(1− b)Γ(c+ d− a− b− 1)

Γ(c− a)Γ(c− b)Γ(d− a)Γ(d− b)
, a, b /∈ Z,

the moment of order zero can be computed as

∞∑
x=−∞

w4(x; p, q, r, s) =

∞∑
x=−∞

Γ(x+ p+ iq)Γ(x+ p− iq)
Γ(x+ r + is)Γ(x+ r − is)

=
Γ(p+ iq)Γ(p− iq)Γ(1− p+ iq)Γ(1− p− iq)Γ(2r − 2p− 1)

Γ(r − p+ i(s− q))Γ(r − p− i(s− q))Γ(r − p− i(s+ q))Γ(r − p+ i(s+ q))
> 0.

(33)

Theorem 2.2. The polynomial set {R̄n(x; p, q, r, s)}N<r−p−1n=0 is finitely orthogonal
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with respect to the weight function w4(x; p, q, r, s) on the real line so that we have

∞∑
x=−∞

Γ(x+ p+ iq)Γ(x+ p− iq)
Γ(x+ r + is)Γ(x+ r − is)

R̄n(x; p, q, r, s)R̄m(x; p, q, r, s)

=
{
n! (2r − 2p− n)n (p− r + 1 + i(q − s))n (p− r + 1− i(q − s))n (p− r + 1 + i(q + s))n

(p− r + 1− i(q + s))n Γ(p+ iq)Γ(p− iq)Γ(1− p+ iq)Γ(1− p− iq)Γ(2r − 2p− 1)
}
δm,n/{

24n (p− r + 1)2n (p− r + 3/2)n (p− r + 1/2)n Γ(r − p+ i(s− q))Γ(r − p− i(s− q))

Γ(r − p− i(s+ q))Γ(r − p+ i(s+ q))
}
.

As we pointed out, there are three particular cases of the weight function
w4(x; p, q, r, s), i. e., relations (17), (18), (19). Hence, three special cases of the main
theorem 2.2 can be deduced as follows [4, Chapter 2].

Corollary 2.3. The polynomial set {R̄n(x; p, 0, r, 0)}N<r−p−1n=0 is finitely orthogonal
with respect to the weight function w1(x; p, p, r, r) on the real line so that we have

∞∑
x=−∞

Γ2(x+ p)

Γ2(x+ r)
R̄n(x; p, 0, r, 0)R̄m(x; p, 0, r, 0)

=
{
n! (2r − 2p− n)n (p− r + 1)2n Γ2(p)Γ2(1− p)Γ(2r − 2p− 1)

}
δm,n/{

24n (p− r + 3/2)n (p− r + 1/2)n Γ4(r − p)
}
.

Corollary 2.4. The polynomial set {R̄n(x; p, 0, r, s)}N<r−p−1n=0 is finitely orthogonal
with respect to the weight function w2(x; p, p, r, s) on the real line so that we have

∞∑
x=−∞

Γ2(x+ p)

Γ(x+ r + is)Γ(x+ r − is)
R̄n(x; p, 0, r, s)R̄m(x; p, 0, r, s)

=
{
n! (2r − 2p− n)n (p− r + 1− is)n (p− r + 1 + is)n (p− r + 1 + is)n

(p− r + 1− is)n Γ2(p)Γ2(1− p)Γ(2r − 2p− 1)
}
δm,n/{

24n (p− r + 1)2n (p− r + 3/2)n (p− r + 1/2)n Γ(r − p+ is)Γ(r − p− is)

Γ(r − p− is)Γ(r − p+ is)
}
.

Corollary 2.5. The polynomial set {R̄n(x; p, q, r, 0)}N<r−p−1n=0 is finitely orthogonal
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with respect to the weight function w3(x; p, q, r, r) on the real line so that we have

∞∑
x=−∞

Γ(x+ p+ iq)Γ(x+ p− iq)
Γ2(x+ r)

R̄n(x; p, q, r, 0)R̄m(x; p, q, r, 0)

=
{
n! (2r − 2p− n)n (p− r + 1 + iq)n (p− r + 1− iq)n (p− r + 1 + iq)n

(p− r + 1− iq)n Γ(p+ iq)Γ(p− iq)Γ(1− p+ iq)Γ(1− p− iq)Γ(2r − 2p− 1)
}
δm,n/{

24n (p− r + 1)2n (p− r + 3/2)n (p− r + 1/2)n Γ(r − p− iq)Γ(r − p+ iq)

Γ(r − p− iq)Γ(r − p+ iq)
}
.

3. Moments of the polynomials R̄n(x; p, q, r, s)

As stated in [5, 6], to compute the moments of a continuous or discrete distribution,
different bases are usually considered. For example, the canonical basis {xj}j≥0 is
used in the continuous normal distribution, while for the Jacobi weight function (1−
x)α(1 + x)β as the shifted beta distribution [1] on [-1, 1], using one of the two basis
{(1−x)j}j≥0 or {(1 +x)j}j≥0 is appropriate for this purpose. In the negative discrete
hypergeometric distribution corresponding to Hahn polynomials, it is more convenient
to use the Pochhammer basis {(−x)n}n≥0, instead of the canonical basis to get

N−1∑
x=0

Γ(N)Γ(α+ β + 2)Γ(α+N − x)Γ(β + x+ 1)

Γ(α+ 1)Γ(β + 1)Γ(α+ β +N + 1)Γ(N − x)Γ(x+ 1)
(−x)n = (−1)n

(1−N)n(β + 1)n
(α+ β + 2)n

.

Similarly, for the weight function w4(x; p, q, r, s), we can use the shifted Pochhammer
basis {(−x+ 1− r − is)n}n≥0 to compute the moments of the form

µn =

∞∑
x=−∞

Γ(x+ p+ iq)Γ(x+ p− iq)
Γ(x+ r + is)Γ(x+ r − is)

(−x+ 1− r − is)n.

Proposition 3.1. For n = 0, 1, 2, . . ., the above moments µn are solutions of the
recurrence equation

(n+ 2p− 2r + 2)µn+1 +
(
− 2n2 + (2 is− 4 p+ 4 r − 3)n− p2

+ (2 is+ 2 r − 2) p− r2 + (−2 is+ 2) r + 2 is− q2 + s2 − 1
)
µn

+ n
(
n2 − 2 (is− p+ r)n+ p2 − 2 (is+ r) p+ 2irs+ q2 + r2 − s2

)
µn−1 = 0. (34)

Proof. Sum the Pearson equation

∆(σ(x)w4(x; p, q, r, s))(−x+ 1− r − is)n = τ(x)w4(x; p, q, r, s)(−x+ 1− r − is)n,

from −∞ to ∞ and use, respectively, summation by parts, the boundary conditions

12



(3) and the first equation in (22) to get

n

∞∑
x=−∞

σ(x+1)w4(x+1; p, q, r, s)(−x+1−r−is)n−1 =

∞∑
x=−∞

τ(x)w4(x; p, q, r, s)(−x+1−r−is)n.

From (4), we on the other side get

σ(x+ 1)w4(x+ 1; p, q, r, s) = (σ(x) + τ(x))w4(x; p, q, r, s),

and the result follows using the second equation in (22).

To compute the explicit form of the moments, it is now enough to apply the following
formula given by N. Sadjang in [9, Theo. 50]

µn = I0(n)R̄0(x; p, q, r, s)µ0,

where µ0 is given in (33) and I0(n) can be derived from the inversion formula

(−x+ 1− r − is)n =

n∑
m=0

Im(n)R̄m(x; p, q, r, s)

=

n∑
m=0

(−n)m(m+ n+ 2p− 2r + 2)n−m
4n−mm!(m+ p− r + 3/2)n−m(m+ p− r + 1)n−m

×(m+ p+ 1− r − i(q + s))n−m(m+ p+ 1− r + i(q − s))n−mR̄m(x; p, q, r, s). (35)

Equation (35) follows from the inversion formula [14, Prop. 9]

(a+ix)n =

n∑
m=0

imn!(m+ a+ c)n−m(m+ a+ d)n−m
(n−m)!(m+ a+ b+ c+ d− 1)m(2m+ a+ b+ c+ d)n−m

Pm(x; a, b, c, d),

of the continuous Hahn polynomials and the relationship between R̄n(x; p, q, r, s) and
the continuous Hahn polynomials in (26).

Hence, we obtain

µn =
Γ(p+ iq)Γ(p− iq)Γ(1− p+ iq)Γ(1− p− iq)Γ(2r − 2p− 1)

Γ(r − p+ i(s− q))Γ(r − p− i(s− q))Γ(r − p− i(s+ q))Γ(r − p+ i(s+ q))

× (n+ 2p− 2r + 2)n(−r + p+ 1− i(q + s))n(−r + p+ 1 + i(q − s))n
4n(p− r + 3/2)n(p− r + 1)n

,

which directly satisfies the recurrence relation (34).
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